bjt单管共射极放大电路实验原理
单管共射极放大电路实验报告
![单管共射极放大电路实验报告](https://img.taocdn.com/s3/m/455ca0774b73f242336c5f85.png)
单管共射极放大电路实验报告————————————————————————————————作者:————————————————————————————————日期:实验一、单管共射极放大电路实验1. 实验目的 (1) 掌握单管放大电路的静态工作点和电压放大倍数的测量方法。
(2) 了解电路中元件的参数改变对静态工作点及电压放大倍数的影响。
(3) 掌握放大电路的输入和输出电阻的测量方法。
2. 实验仪器① 示波器② 低频模拟电路实验箱③ 低频信号发生器 ④ 数字式万用表 3. 实验原理(图) 实验原理图如图1所示——共射极放大电路。
4. 实验步骤 (1) 按图1连接共射极放大电路。
(2) 测量静态工作点。
② 仔细检查已连接好的电路,确认无误后接通直流电源。
③ 调节RP1使RP1+RB11=30k④ 按表1测量各静态电压值,并将结果记入表1中。
表1 静态工作点实验数据测量值理论计算值 U B /V U C /V U E /V U CE /V I C /mA I B /mA βU B /V U C /V U E /V U CE /V I C /mA 2.634.941.992.953.540.041 86.34342.2441.7564(1) 测量电压放大倍数① 将低频信号发生器和万用表接入放大器的输入端Ui ,放大电路输出端接入示波器,如图2所示,信号发生器和示波器接入直流电源,调整信号发生器的频率为1KHZ ,输入信号幅度为20mv 左右的正弦波,从示波器上观察放大电路的输出电压UO 的波形,分别测Ui 和UO 的值,求出放大电路电压放大倍数AU 。
低频信号发生器放大电路示波器示波器RL UiUoRP1100K RB114.7K C14.7μF Rs 4.7K RB1210KRC12KRE 510ΩRE151ΩBG1C247C347μF μF DUi I UsUo +12V图1 共射极放大电路图2 实验电路与所用仪器连接图② 保持输入信号大小不变,改变RL ,观察负载电阻的改变对电压放大倍数的影响,并将测量结果记入表2中。
共射极放大电路的工作原理及BJT工作状态判断
![共射极放大电路的工作原理及BJT工作状态判断](https://img.taocdn.com/s3/m/fc8ffe5d6d175f0e7cd184254b35eefdc8d3151f.png)
输出信号
将晶体管输出级与负载电 阻相连接,产生输出信号。
偏置电路
为晶体管提供合适的静态 工作点,通常由电源和电 阻组成。
信号输入与
信号输入
输入信号通过基极与发射极之间 的电压差作用在晶体管上,引起 基极电流的变化。
信号输出
晶体管集电极电流的变化通过集 电极电阻转换成电压的变化,输 出信号。
电压与电流放大过程
改善音质
通过放大音频信号,共射极放大电路可以改善声 音的清晰度、动态范围和失真度,提高音质。
3
平衡输出
在多声道音频系统中,共射极放大电路可以用于 平衡不同声道之间的输出功率,实现立体声效果。
在通信系统中的应用
信号的调制与解调
在无线通信和光纤通信中,共射极放大电路常被用于信号的调制 和解调过程,实现信号的传输和处理。
提高电路的稳定性和可靠性
增加旁路电容
旁路电容能够减小电源电压波动对电路性能的影 响,提高电路的稳定性。
优化散热设计
良好的散热设计能够降低晶体管的温度,从而提 高其可靠性。
采用保护电路
在电路中加入过流保护、过压保护等保护电路, 可以提高电路的可靠性。
THANKS
感谢您的观看
共射极放大电路的工作 原理及Bjt工作状态判断
• 共射极放大电路的工作原理 • Bjt(双极型晶体管)的工作状态 • Bjt工作状态的判断方法 • 共射极放大电路的应用 • 共射极放大电路的优化与改进
目录
Part
01
共射极放大电路的工作原理
电路组成与结构
输入信号
将微弱信号源与晶体管输 入级相连接,提供输入信 号。
使用示波器观察波形
• 通过观察输入信号和输出信号的波形,可以判断三极管的工作状态。在放大状态下,输出信号的幅度应大于输入信 号,且波形无明显失真。在截止或饱和状态下,输出信号的幅度会减小或产生失真。
实验一 BJT单管共射电压放大电路
![实验一 BJT单管共射电压放大电路](https://img.taocdn.com/s3/m/0847cf1b844769eae009eda9.png)
实验一BJT单管共射电压放大电路一、实验目的1.掌握放大电路静态工作点的测试方法,分析静态工作点对放大器性能的影响。
2.掌握放大电路动态性能(电压增益、输入电阻、输出电阻、最大不失真输出电压以及幅频特性等)测试方法3、进一步熟练常用电子仪器的使用二、实验原理1.射极偏置单管放大电路由Rb1和Rb2组成分压电路,并在发射极中接有电阻Re,以稳定放大器的静态工作点。
当在放大电路的输入端加入输入信号后,在放大电路的输出端便可得到一个与输入信号相位相反,幅值被放大了的输出信号,从而实现电压放大。
2.放大电路的测量与调试:a. 通电观察b.静态测试:(1)静态工作点的测量:将放大电路输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流以及各电极对地的电位。
(2)静态工作点的调试:对管子集电极电流的调整与测试(3)动态指标测试:动态调试的目的是为了使放大电路增益、输出电压动态范围、波形失真、输入、输出电阻、通频带等性能达到要求a.电压增益Av的测量Av=Vo/Vib.输入电阻Ri的测量Ri=ViR/Vs-Vic.输出电阻Ro的测量Ro=((Vo/VL)-1)/RLd.最大不失真输出电压的测量:在放大电路正常工作情况下,逐步增大输入信号的幅度,并同时调节Rw,用示波器观察Vo,直到输出波形同时出现削底和缩顶现象e.放大电路幅频特性的测量:fbw=fh-fl改变频率时,要保持输入信号的幅度不变,输出波形不能失真三、实验设备与器件1.+12V直流稳压电源2. 函数信号发生器3.双踪示波器4.交流毫伏表5.万用电表6.频率计7. 晶体三极管电阻器,电容器若干四、实验内容1.调试静态工作点接通直流电源前,先将Rw调至最大,函数信号发生器输出旋钮选至零。
接通+12V电源,调节Rw,是Ic=2mA(VE=2v),测量VB,VE,VC及RB1值。
2.测量电压放大倍数在放大电路输入端加入平率为1KHZ的正弦型号Vs,调节函数信号发生器的输出旋钮使放大电路的输入电压vi=5mV, 同时用示波器观察放大电路输出电压Vo波形,在波形不失真的条Rc=2KΩ RL=2KΩ Vi=2.7mV饱和失真正常像后,无法再进行变化。
bjt共射放大电路
![bjt共射放大电路](https://img.taocdn.com/s3/m/121ad3ae6394dd88d0d233d4b14e852459fb395f.png)
bjt共射放大电路BJT共射放大电路是一种常用的放大电路。
它采用双极型晶体管(BJT)作为放大器件,通过合适的偏置和负反馈来实现信号放大。
本文将介绍BJT共射放大电路的基本原理、特点、工作原理以及其在实际应用中的一些注意事项。
一、BJT共射放大电路的基本原理BJT共射放大电路是一种单级放大电路,其基本原理是将输入信号接在晶体管的基极上,输出信号从晶体管的集电极上取出。
通过合适的偏置和负反馈,将输入信号放大到需要的幅度,并输出到负载中。
二、BJT共射放大电路的特点1.电压放大倍数大:由于BJT晶体管能够提供大的β值(即电流放大倍数),因此在共射放大电路中,可以获得较大的电压放大倍数。
2.输入电阻低:共射放大电路的输入电阻主要由无源负载电阻和晶体管的输入电阻组成,通常输入电阻的数值较小,能够适应各种源的输出特性。
3.输出电阻高:由于BJT晶体管的输出电阻较高,因此共射放大电路能够驱动较大的负载电阻。
4.频率响应好:BJT晶体管的频率响应范围广,使得共射放大电路在高频场合中能够得到很好的放大效果。
三、BJT共射放大电路的工作原理BJT共射放大电路的工作原理可以分为静态工作点分析和动态分析两个方面。
1.静态工作点分析:在共射放大电路中,为了使晶体管正常工作,需要对其进行偏置设置,以确保处于放大区,同时避免饱和或截止状态。
通过选择适当的电阻分压网络和电源电压,可以使得输入电压能够提供合适的基极电压,使BJT晶体管处于放大区。
2.动态分析:在共射放大电路中,输入信号作为输入电压,接在晶体管的基极上。
当输入信号变化时,由于输入电容的存在,晶体管的电流也随之变化,进而影响到输出电压。
通过适当地选择偏置条件和输入电容的阻抗,可以实现对输入信号的有效放大,并利用输出电容,增加频率响应。
四、BJT共射放大电路的应用注意事项1.偏置稳定性:在设计共射放大电路时,需要保证偏置点的稳定性,使得晶体管能够始终处于放大区,避免过度饱和或过度截止。
共射极单管放大电路实验报告
![共射极单管放大电路实验报告](https://img.taocdn.com/s3/m/9290120a3868011ca300a6c30c2259010202f388.png)
共射极单管放大电路实验报告
共射极单管放大电路是一种常见的放大电路,由一个NPN型晶体管组成。
本实验的目的是通过实验验证共射极单管放大电路的放大特性。
一、实验原理:
共射极单管放大电路是一种常用的放大电路,使用一个NPN型晶体管来放大输入信号。
晶体管的三个引脚分别为发射极(E)、基极(B)、集电极(C)。
在共射极单管放大电路中,输入信号通过耦合电容C1输入到基极,集电极通过负载电阻RC与正电源相连。
输出信号由电容C2耦合到负载电阻RL上。
二、实验仪器:
1. 功率放大器实验箱
2. 万用表
3. 音频信号发生器
三、实验步骤:
1. 连接电路:根据实验箱上的电路图,将电路连接好。
2. 调整电源:根据实验箱上的电源电压要求,调整电源电压。
3. 调节发生器:将发生器的频率调节到所需的数值,信号幅度调节适宜值。
4. 测量电压:用万用表分别测量发射极电压、集电极电压和基极电压。
5. 测量电流:用万用表测量发射极电流、集电极电流和基极电流。
6. 测量电容:用万用表测量输入输出电容。
四、实验结果:
将实验测得的数据填入实验报告中,并绘制相应的图表。
五、实验分析:
根据实验结果分析共射极单管放大电路的放大特性、输入输出电容等参数。
六、实验总结:
总结本实验的目的、步骤、结果以及实验中遇到的问题等。
七、思考题:
进一步思考实验中遇到的问题,并提出解决方案。
单管共发射极放大电路实验报告
![单管共发射极放大电路实验报告](https://img.taocdn.com/s3/m/34af7e730a4c2e3f5727a5e9856a561252d321a7.png)
单管共发射极放大电路实验报告一、实验目的。
本实验旨在通过搭建单管共发射极放大电路,了解其工作原理和特性,掌握其基本性能参数的测量方法,并通过实验验证理论知识的正确性。
二、实验原理。
单管共发射极放大电路是一种常用的放大电路,其基本原理是利用晶体管的放大作用将输入信号放大,输出一个放大后的信号。
在共发射极放大电路中,输入信号通过电容耦合方式输入到晶体管的基极,晶体管的发射极接地,输出信号则从晶体管的集电极获取。
三、实验仪器和器材。
1. 电源,直流稳压电源。
2. 信号源,正弦波信号源。
3. 示波器,示波器。
4. 元器件,晶体管、电容、电阻等。
四、实验步骤。
1. 按照电路图搭建单管共发射极放大电路,注意连接的正确性和稳固性。
2. 调节电源,使其输出电压为所需工作电压。
3. 将正弦波信号源连接到输入端,调节信号源的频率和幅度。
4. 连接示波器,观察输入信号和输出信号的波形。
5. 测量输入信号和输出信号的幅度,并计算电压增益。
6. 调节电路参数,如电容、电阻值,观察对电路工作的影响。
五、实验结果与分析。
通过实验观察和测量,我们得到了单管共发射极放大电路的输入输出波形和幅度,并计算出了电压增益。
通过调节电路参数,我们也观察到了电路工作的变化。
实验结果表明,单管共发射极放大电路能够有效放大输入信号,并且其放大倍数与理论计算值基本吻合。
六、实验总结。
本次实验通过搭建单管共发射极放大电路,对其工作原理和特性有了更深入的了解。
同时,我们也掌握了测量电路性能参数的方法,并通过实验验证了理论知识的正确性。
在实验过程中,我们也发现了一些问题和不足之处,为今后的实验和学习提供了一定的参考和借鉴。
七、实验心得。
通过本次实验,我对单管共发射极放大电路有了更深入的了解,也提高了实验操作和数据处理的能力。
在今后的学习和科研工作中,我将继续努力,不断提升自己的实验技能和理论水平。
以上就是本次单管共发射极放大电路实验的报告内容,希望能对大家有所帮助。
共发射极单管放大器实验报告
![共发射极单管放大器实验报告](https://img.taocdn.com/s3/m/e21995dc988fcc22bcd126fff705cc1755275f20.png)
共发射极单管放大器实验报告
实验名称:共发射极单管放大器实验
实验目的:通过实验了解共发射极单管放大器的工作原理和特性,并掌握其实验测量方法。
实验器材:信号发生器、示波器、电阻器、电容器、二极管、三极管、电源、万用表等。
实验原理:共发射极单管放大器是一种常用的放大电路,其基本原理是将输入信号通过电容耦合方式输入到放大管的基极,通过放大管的放大作用得到增强的信号。
同时,由于放大管的集电极与负载电阻串联,由其输出的信号可以直接驱动负载。
共发射极单管放大器的电压增益可以通过输入电阻、输出电阻和放大倍数计算出来。
实验步骤:
1. 按照电路图连接电路,调节电源电压为适当值,接通电源,预热电路。
2. 用万用表分别测量输入电阻、输出电阻和放大倍数,并计算其电压增益。
可以根据需要调整电路中的电阻和电容来改变电压增益的大小。
3. 调节信号发生器产生正弦波信号,将其输入到电路中的输入端,并通过示波器观察输出信号的变化情况。
4. 不断调整电路中的元器件,并观察输出信号的变化,以得到最佳的电路性能和效果。
实验结果:通过实验,我们得到了共发射极单管放大器的电路特性和性能,学习了如何通过调整电路中的元器件来得到最佳的电路效果,并加深了对放大电路的理解和认识。
实验结论:共发射极单管放大器是一种常用的放大电路,具有良好的电路性能和效果。
通过实验,我们掌握了其工作原理和特性,并可以根据需要调整电路参数来得到最佳的电路效果。
单管共射极放大电路实验报告
![单管共射极放大电路实验报告](https://img.taocdn.com/s3/m/fdeba05a6ad97f192279168884868762cbaebb75.png)
单管共射极放大电路实验报告一、实验目的:1.了解单管共射极放大电路的基本结构和工作原理;2.掌握单管共射极放大电路的直流工作点的确定方法;3.学习基于单管共射极放大电路设计的放大器;4.通过实验测量并分析单管共射极放大电路的电压增益、输入阻抗和输出阻抗。
二、实验仪器与器件:1.数字万用表;2.函数信号发生器;3.直流稳压电源;4.双踪示波器;5.NPN型晶体管;6.电阻、电容等电子元件。
三、实验原理1.在输出信号的封装之前,输入信号先经过耦合电容CE进入晶体管的基极,经过放大形成输出信号;2.输入信号通过耦合电容CE进入基极后,根据电流放大的原理,使得集电极电流的变化与输入信号在幅度上成正比;3.集电极电流变化引起集电极电压变化,通过电容负载使输出电压变化;4.通过对负载进行选择可以实现不同放大效果,如电阻负载可以使电路具有较好的输出信号功率;电容负载可以实现相位整顿放大等。
四、实验步骤及结果分析1.首先按照实验电路连接图连接实验电路,电源电压选择为12V,电阻和电容的数值按照实验要求选择;2.使用数字万用表测量并记录各个器件正常工作电压,包括集电极电压、基极电压、发射极电压等;3.调节函数信号发生器的输出频率和幅度,通过双踪示波器观察输入电压、输出电压的变化规律,并记录相关数据;4.根据所测得的数据,计算并分析电压增益、输入阻抗和输出阻抗的数值,与理论计算的结果进行对比并给出分析结论。
五、实验结果分析通过实验测量得到的数据,我们可以计算得到单管共射极放大电路的电压增益、输入阻抗和输出阻抗。
其中电压增益可以通过输出电压幅值除以输入电压幅值得到,输入阻抗可以通过理想放大电路的计算公式得到,输出阻抗可以通过输出电压与输出电流的比值得到。
根据实验结果分析,可以得到单管共射极放大电路在一定范围内具有较高的电压增益和较低的输入阻抗,从而可以实现信号的放大和阻抗匹配功能。
同时,在选择合适的负载电阻和负载电容的情况下,还可以实现对输出信号的改变,如形成整流放大等特殊功能。
单管共射电压放大电路
![单管共射电压放大电路](https://img.taocdn.com/s3/m/c1b7dd3f4a73f242336c1eb91a37f111f1850db3.png)
实验九 BJT单管共射电压放大电路一.实验目的1.掌握三极管的工作原理2.学习放大电路静态工作点(Q点)、放大倍数Av、输入电阻Ri、输出电阻Ro和最大不失真输出电压的测试方法,了解共射电路的特性3.进一步熟悉示波器、信号源和数字万用表等仪器仪表的使用方法。
4.掌握基础信号,保护电阻等作用5.理解放大电路静态工作点对交流特性的影响6.了解电路产生非线性失真的原因二.实验原理1.该电路主要由电位器,电解电容,三极管,电阻,电源等组成。
2.三极管用途主要是交流信号放大,直流信号放大和电路开关。
3.NPN三极管构造:4.半导体三极管的参数主要有电流放大倍数β、极间反向电流ICEO、极限参数(如最高工作电压VCEM、集电极最大工作电流ICM、最高结温TjM、集电极最大功耗PCM)以及频率特性参数等。
5.共射极放大电路既有电流放大作用,又有电压放大作用,故常用于小信号的放大。
改变电路的静态工作点,可调节电路的电压放大倍数。
而电路工作点的调整,主要是通过改变电路参数(Rb、Rc)来实现。
(负载电阻RL的变化不影响电路的静态工作点,只改变电路的电压放大倍数。
)该电路信号从基极输入,从集电极输出。
输入电阻与相同材料的二极管正向偏置电阻相当,输出电阻较高,适用于多级放大电路的中间级。
三.实验设备与器件1.直流稳压电源2.函数信号发生器3.双踪示波器4.交流毫伏表5.万用电表6.频率计7.晶体三极管8实验电路板四.实验内容1 调试静态工作点接通直流电源前,将Rw调到最大(保护电路)。
接通后,使Ve = 2V测量VB,VE,VC,RB1的值。
(在测量各电极的电位时最好选用内阻较高的万用表,否则必须考虑到万用表内阻对被测电路的影响)Ve=0.50VVe=1.0VVe=2.0VVe=2.5V2.截顶:Ve = 1.17V,VCE=8.33V3.削底:Ve=3.48V,Vce=1.37V结论:1.随着Ve的增大,图像开始出现失真,先为截顶,后为削底。
单管共射放大电路实验报告
![单管共射放大电路实验报告](https://img.taocdn.com/s3/m/c113195f02d8ce2f0066f5335a8102d276a261a6.png)
一、实验目的1. 掌握单管共射放大电路的基本原理和组成;2. 学习如何调试和测试单管共射放大电路的静态工作点;3. 熟悉单管共射放大电路的电压放大倍数、输入电阻和输出电阻的测量方法;4. 分析静态工作点对放大电路性能的影响。
二、实验原理单管共射放大电路是一种基本的放大电路,由晶体管、电阻和电容等元件组成。
其工作原理是:输入信号通过晶体管的基极和发射极之间的电流放大作用,使输出信号的幅值得到放大。
单管共射放大电路的静态工作点是指晶体管在无输入信号时的工作状态。
静态工作点的设置对放大电路的性能有重要影响,如静态工作点过高或过低,都可能导致放大电路的失真。
电压放大倍数、输入电阻和输出电阻是衡量放大电路性能的重要参数。
电压放大倍数表示输入信号经过放大后的输出信号幅值与输入信号幅值之比;输入电阻表示放大电路对输入信号的阻抗;输出电阻表示放大电路对负载的阻抗。
三、实验仪器与设备1. 晶体管共射放大电路实验板;2. 函数信号发生器;3. 双踪示波器;4. 交流毫伏表;5. 万用电表;6. 连接线若干。
四、实验内容与步骤1. 调试和测试静态工作点(1)将实验板上的晶体管插入电路,连接好电路图中的电阻和电容元件。
(2)使用万用电表测量晶体管的基极和发射极之间的电压,确定静态工作点。
(3)调整偏置电阻,使静态工作点符合设计要求。
(4)测量静态工作点下的晶体管电流和电压,记录数据。
2. 测量电压放大倍数(1)使用函数信号发生器产生一定频率和幅值的输入信号。
(2)将输入信号接入放大电路的输入端。
(3)使用交流毫伏表测量输入信号和输出信号的幅值。
(4)计算电压放大倍数。
3. 测量输入电阻和输出电阻(1)使用交流毫伏表测量放大电路的输入端和输出端的电压。
(2)计算输入电阻和输出电阻。
五、实验结果与分析1. 静态工作点根据实验数据,晶体管的静态工作点为:Vbe = 0.7V,Ic = 10mA。
2. 电压放大倍数根据实验数据,电压放大倍数为:A = 100。
中大模电实验一 BJT单管共射放大电路 实验报告
![中大模电实验一 BJT单管共射放大电路 实验报告](https://img.taocdn.com/s3/m/1ac67ac6c1c708a1284a44b4.png)
实验一BJT单管共射放大电路一、实验目的1、掌握放大电路静态工作点的测试方法,分析静态工作点对放大器性能的影响。
2、掌握放大电路动态性能(电压增益、输入电阻、输出电阻、最大不失真输出电压及幅频特性等)的测试方法。
3、进一步熟练常用电子仪器的使用。
二、实验原理1、电路图图一2、通电观察:接好电路之后,在确认安装正确无误后,才可以把经过准确测量的电源电压接入电路。
电源接入电路之后,也不应急于观察数据,而应先观察有无异常现象。
3、静态测试:(1)测量放大电路的静态工作点,应在输入信号Vi=0的情况下进行。
分别测量VB、VC、VE,然后通过Ic≈IE=VE/RE可算出Ic,同时可算出VBE=VB-VE,VCE=Vc-VE。
(2)静态工作点的调试:指对管子集电极电流Ic或VCE的调整与测试。
静态工作点是否合适,对放大电路的性能及输出波形都有很大的影响,偏高或偏低的静态工作点都会使输出波形出现失真。
而静态工作点本身也会影响管子的性能。
改变电路的Vcc、Rc、RB都会引起静态工作点的变化,但通常采用调节偏置电阻Rb1来改变静态工作点。
4、动态指标测试(1)电压增益Av的测量:测出vi和vo的有效值,则Av=Vo/Vi .图二(2)输入电阻Ri : 如图2在被测放大电路的输入端与信号源之间串入一测量辅助电阻R,在放大电路正常工作的情况下,用交流毫伏表测出Vs和Vi,则输入电阻可由Ri=ViR/(Vs-Vi)算出。
(3)输出电阻Ro:在放大电路正常工作的条件下,测出输出端不接负载RL输出电压Vo和接入负载后的输出电压VL,根据Ro= [(Vo/VL)-1]RL求出输出电阻。
(4)最大不失真输出电压Vo(p-p)的测量(最大动态范围):在放大电路正常工作的情况下,逐步增大输入信号的幅度,并同时调节Rw(改变静态工作点),用示波器观察Vo, 当输出波形同时出现削底和缩顶现象时,说明静态工作点已调在交流负载线的中点,然后反复调整输入信号,使波形输出幅度最大,且无明显失真时,用交流毫伏表测出Vo有效值,则动态范围等于22Vo,或用示波器直接读出Vo(p-p)。
晶体管单管共射放大器实验报告
![晶体管单管共射放大器实验报告](https://img.taocdn.com/s3/m/63d0a96e82c4bb4cf7ec4afe04a1b0717fd5b38d.png)
一、实验目的1. 理解晶体管单管共射放大器的工作原理。
2. 掌握晶体管单管共射放大器静态工作点的调试方法。
3. 学习放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。
4. 熟悉常用电子仪器及模拟电路实验设备的使用。
二、实验原理晶体管单管共射放大器是一种常用的模拟电子电路,主要用于信号的放大。
本实验采用共射极接法,其基本电路如图1所示。
图1 晶体管单管共射放大器实验电路1. 静态工作点:晶体管单管共射放大器的静态工作点是指在没有输入信号时,晶体管的工作状态。
它决定了放大器的线性范围和输出信号的幅度。
静态工作点通常由偏置电路确定。
2. 电压放大倍数:电压放大倍数是指放大器输出电压与输入电压的比值。
它反映了放大器对信号的放大能力。
3. 输入电阻:输入电阻是指放大器输入端对信号源呈现的电阻。
它反映了放大器对信号源的影响。
4. 输出电阻:输出电阻是指放大器输出端对负载呈现的电阻。
它反映了放大器对负载的影响。
三、实验仪器与设备1. 晶体管(如3DG6)2. 电阻(如10kΩ、2.2kΩ、1kΩ、220Ω、100Ω、10Ω等)3. 电位器(如10kΩ)4. 直流电源(如+12V)5. 函数信号发生器(如AS101E)6. 双踪示波器(如DS1062E-EDU)7. 交流毫伏表(如GB7676-98)8. 直流电压表9. 万用电表四、实验步骤1. 根据实验电路图,搭建晶体管单管共射放大器实验电路。
2. 调节偏置电路,使晶体管工作在合适的静态工作点。
测量静态工作点(Uce、Ic)。
3. 在放大器输入端加入频率为1kHz的正弦信号,调节函数信号发生器的输出幅度,使放大器输入电压在合适的范围内。
4. 测量放大器的输出电压,计算电压放大倍数。
5. 测量放大器的输入电阻和输出电阻。
6. 测量放大器的最大不失真输出电压。
五、实验数据及分析1. 静态工作点:Uce=3V,Ic=2mA。
2. 电压放大倍数:Aυ=20倍。
BJT单管共射电压放大电路--实验报告
![BJT单管共射电压放大电路--实验报告](https://img.taocdn.com/s3/m/bacef8a6eff9aef8951e069c.png)
BJT单管共射电压放大电路--实验报告【实验目的】1、掌握放大电路静态工作点的测量方法,并分析静态工作点对放大器性能的影响2、掌握放大电路动态性能,包括电压增益、输入电阻、输出电阻、最大不失真输出电压以及幅频响应特性的测试方法。
3、熟练掌握常用电子仪器的使用【实验原理】1、BJT单管共射放大电路可以实现对输入交流信号的反相放大,放大倍数为Av=-β(Rc按照图1-1连接电路,先不接函数信号发生器,只接通12V直流电源,将Rw从最大开始缓慢调小,同时用直流电压表测量三极管e级对地电压,当Ve=2V时,即此时Ic=Ie=2mA,测量并计算放大电路的静态工作点,并填写下表。
步骤1分析说明:计算值和其测量值在误差允许范围内相等。
而Ic可以通过测量电压Ve或Vc得出, Ic~Ie=Ve/Re。
步骤2.保持步骤1的Rw阻值不变(即静态工作点不变),将函数信号发生器输出调为1KHz,示波器上观察输出峰峰值为10mV的正弦波信号作为放大电路的输入信号Vi,在波形不失真的情况下用示波器观察下表所列三种条件下信号Vo的峰峰值,并计算放大电路的放大倍数Av,填写下表。
要求在实验报告上记录Rc=2千欧,RL=2千欧时,示波器显示的输入、输出信号波形。
Rc(千欧) RL(千欧) Vo(V) Av2 开路1 开路682 2步骤2分析说明:在RL开路的情况下,Rc减小,Vo减小,而Vi不变,Av减小。
在Rc不变的情况下,增大RL,Vo减小,而Vi不变,Av减小。
步骤3.令放大电路Rc=2千欧,输出端开路,输入信号Vi 为1KHz,示波器上观察峰峰值为10mV的正弦波信号,按照下表Ic值调节Rw,在Vo不失真情况下,记录Vo、Av的变化情况。
步骤3分析说明:在误差允许的范围内,随着Ic的增大,Vo和Av的值也随之增大。
步骤4.令放大电路Rc=2千欧,RL=2千欧,输入信号为1KHz的正弦波,首先逐步增大输入信号Vi幅度,并同时调节Rw使示波器上显示输出信号Vo同时出现缩顶和削底现象,然后将缓慢减小Vi幅度,直到示波器上显示输出信号Vo波形达到最大不失真。
BJT单管共射放大电路实验报告模板pdf
![BJT单管共射放大电路实验报告模板pdf](https://img.taocdn.com/s3/m/04fa423003768e9951e79b89680203d8cf2f6a6b.png)
BJT单管共射放大电路-实验报告模板.pdf标题:BJT单管共射放大电路实验报告一、实验目的1.掌握单管共射放大电路的基本原理和组成。
2.学习并掌握BJT(双极结型晶体管)的基本特性及工作原理。
3.通过实验,观察和分析放大电路的输入、输出电压关系以及放大倍数、频率响应等特性。
4.培养实验操作能力和问题解决能力,提高对电子技术的兴趣和认识。
二、实验原理1.BJT的基本特性:包括输入、输出特性曲线,放大倍数,频率响应等。
2.单管共射放大电路的工作原理:输入信号通过基极进入晶体管,经过放大后从集电极输出,通过调整偏置电压和其他元件参数,实现电路的放大功能。
3.放大电路的性能指标:放大倍数、频率响应、失真度等。
三、实验步骤1.准备实验器材:电源、信号源、电阻器、电容器、电感器、放大器、示波器等。
2.搭建单管共射放大电路:连接电源、信号源、电阻器、电容器、电感器等元件,构成完整的单管共射放大电路。
3.调整电路参数:通过调整偏置电压、电阻器阻值等参数,使电路达到最佳工作状态。
4.测试放大电路的性能:利用示波器等仪器,测量输入、输出电压的关系,计算放大倍数,观察频率响应等特性。
5.分析实验结果:根据实验数据,分析电路性能,与理论预期进行比较,加深对单管共射放大电路的理解。
四、实验结果与分析1.数据记录:记录实验过程中测量的输入、输出电压数据,计算放大倍数、频率响应等特性指标。
2.结果分析:根据实验数据,分析单管共射放大电路的性能表现,与理论预期进行比较,找出误差原因,提出改进措施。
3.问题解答:针对实验过程中遇到的问题,进行深入分析和解答,巩固所学知识。
五、结论总结1.通过本次实验,我们深入了解了BJT单管共射放大电路的原理和性能特点,掌握了其组成和测试方法。
2.通过实际操作,我们学会了如何调整电路参数和测试仪器使用,提高了实验操作能力和问题解决能力。
3.通过与理论预期的比较和分析,我们认识到实际电路与理想模型的差异和局限性,为今后深入学习和实践打下基础。
单管共射极放大电路实验报告
![单管共射极放大电路实验报告](https://img.taocdn.com/s3/m/08a2ca86ba4cf7ec4afe04a1b0717fd5360cb285.png)
单管共射极放大电路实验报告单管共射极放大电路实验报告一、引言在电子电路实验中,单管共射极放大电路是一种常见的基础电路。
它具有放大效果好、输入输出阻抗适中等优点,被广泛应用于放大电路设计中。
本实验旨在通过搭建单管共射极放大电路并对其性能进行测试,深入了解该电路的工作原理和特点。
二、实验原理单管共射极放大电路由一个NPN型晶体管、电阻、电容等元器件组成。
其工作原理如下:当输入信号加到基极时,晶体管的集电极电流将随之变化,从而使输出电压发生相应的变化。
通过调整偏置电压和负载电阻,可以使输出信号放大。
三、实验步骤1. 准备实验所需的元器件:NPN型晶体管、电阻、电容等。
2. 按照电路图搭建单管共射极放大电路。
3. 连接信号发生器和示波器,分别将输入信号和输出信号接入示波器。
4. 调整偏置电压和负载电阻,使电路工作在合适的工作点。
5. 通过信号发生器输入不同频率的正弦波信号,观察输出信号的变化情况。
6. 记录实验数据,并进行分析。
四、实验结果与分析通过实验观察和数据记录,我们得到了如下结果和分析:1. 输出电压随输入信号的变化而变化,呈现出放大的效果。
输入信号的幅值越大,输出信号的幅值也越大。
2. 输出信号的相位与输入信号相位一致,没有发生反相变化。
3. 随着输入信号频率的增加,输出信号的幅值逐渐减小,这是由于晶体管的频率响应特性导致的。
4. 在一定范围内,调整偏置电压和负载电阻可以使电路工作在合适的工作点,以获得最佳的放大效果。
五、实验总结通过本次实验,我们深入了解了单管共射极放大电路的工作原理和特点。
该电路具有放大效果好、输入输出阻抗适中等优点,适用于各种放大电路设计。
同时,我们也了解到了电路中各个元器件的作用和调整方法。
通过调整偏置电压和负载电阻,可以使电路工作在合适的工作点,以获得最佳的放大效果。
此外,我们还观察到了输入信号频率对输出信号幅值的影响,这对于电路设计和应用也具有一定的指导意义。
六、展望本次实验只是对单管共射极放大电路进行了初步的实验研究,还有许多其他方面的内容有待进一步探索。
模电共射放大电路实验报告 (2)
![模电共射放大电路实验报告 (2)](https://img.taocdn.com/s3/m/ecebb53ab84ae45c3a358c54.png)
实验报告一、实验名称BJT单管共射放大电路特性分析二、实验目得(1)掌握共射放大电路得基本调试方法。
(2)掌握放大电路电压放大倍数、输入电阻、输出电阻得基本分析方法。
(3)了解放大电路频率特性得分析方法。
(4)理解放大电路静态工作点对交流特性得影响。
(5)了解电路产生非线性失真得原因。
三、实验原理(1)直流分析;+ VccR RcRe直流通路UBQ=I EQ=UCEQ=VCC-I CQ(Rc+R e)I BQ=(2)交流分析r beβIb交流通路r be=r'bb+(1+β)Au=-βRi= Rb1//Rb2//rbeRo=Rc四、实验内容(1)静态工作点分析测量值计算值U BQ(V)U CQ(V)U EQ(V) UBEQ(V) U CEQ(V)ICQ(mA) 2、53 6、77 1、910、624、86 1、06计算值:U BEQ=U BQ-UEQ=2、53-1、91=0、62VU CEQ=UCQ-UEQ=6、77-1、91=4、86VI CQ≈IEQ==1、91/1、8=1、06mA(2)电压放大倍数测量在放大电路输入端加入频率为1KHZ,有效值为5mV得正弦信号uuo得波形。
在u o波形不失真i,同时用示波器观察放大电路输出电压得条件下,测量当R L=5、1KΩ与开路时得U i与U O值,计算电压放大倍数A u。
RL(KΩ) 测量值计算值U i(mV) Uo(mV) A u5、1 4、999 -301、54-60、32计算值:A U==-301、54/4、999=-60、32(3)共射放大电路波形失真分析截止失真:接通信号源与直流电源,改变滑动变阻器为原阻值75%使波形出现截止失真饱与失真:适当增大输入电压,并改变滑动变阻器为原阻值5%波形出现饱与失真五、实验结论(1)在波形上,可以读出输入与输出电压得峰值,从而求出增益Au。
同时发现,输入输出电压相位相反。
(2)放大器在线性工作范围内,可以将信号不失真地放大,超过这个线性范围后,其输出信号将产生非线性失真。
bjt单管共射极放大电路实验原理
![bjt单管共射极放大电路实验原理](https://img.taocdn.com/s3/m/afcd87496d85ec3a87c24028915f804d2a168710.png)
bjt单管共射极放大电路实验原理
BJT(双极型晶体管)单管共射极放大电路是一种常用的放大
电路。
其原理如下:
在这个电路中,BJT晶体管的基极接收输入信号,发射极作为
输出信号端,集电极则通过电阻连接到正电源。
当输入信号加在基极上时,如果信号是正向的,则会使得晶体管中的电流增加,进而影响晶体管的工作。
当基极电压较低时,晶体管是处于截止区(cut-off region)的,此时没有电流通过晶体管。
当输入信号增加,使得基极电压增大,当基极电压达到晶体管的基极-发射极电压(Vbe),晶体管开始导通。
晶体管导通后,基极电流会传输到集电极,并输出电流。
此时,晶体管工作在放大区(active region),集电极电流的增加会
导致输出电流的增加。
因此,当输入信号经过晶体管放大后,可以得到放大后的输出信号。
需要注意的是,为了确保放大电路正常工作,需要合理设置电路元件的数值,特别是电阻和电源电压。
另外,还需要注意输入信号的幅度和频率范围,以及对输入和输出信号的功率进行适当的平衡。
总之,BJT单管共射极放大电路利用BJT晶体管的放大特性,将输入信号放大后得到输出信号。
BJT单管共射放大电路-实验报告模板
![BJT单管共射放大电路-实验报告模板](https://img.taocdn.com/s3/m/2fc9a50e2af90242a895e5ee.png)
实验一BJT单管共射放大电路姓名:____________学号:____________班级:____________一、实验目的1、掌握放大电路静态工作点的测试方法,分析静态工作点对放大器性能的影响。
2、掌握放大电路动态性能(电压增益、输入电阻、输出电阻、最大不失真输出电压及幅频特性等)的测试方法。
3、进一步熟练常用电子仪器的使用。
二、实验原理1、电路图图一2、通电观察:接好电路之后,在确认安装正确无误后,才可以把经过准确测量的电源电压接入电路。
电源接入电路之后,也不应急于观察数据,而应先观察有无异常现象。
3、静态测试:(1)测量放大电路的静态工作点,应在输入信号Vi=0的情况下进行。
分别测量VB、VC、VE,然后通过Ic≈IE=VE/RE可算出Ic,同时可算出VBE=VB-VE,VCE=Vc-VE。
(2)静态工作点的调试:指对管子集电极电流Ic或VCE的调整与测试。
静态工作点是否合适,对放大电路的性能及输出波形都有很大的影响,偏高或偏低的静态工作点都会使输出波形出现失真。
而静态工作点本身也会影响管子的性能。
改变电路的Vcc、Rc、RB都会引起静态工作点的变化,但通常采用调节偏置电阻Rb1来改变静态工作点。
4、动态指标测试(1)电压增益Av的测量:测出vi和vo的有效值,则Av=Vo/Vi.图二(2)输入电阻Ri:如图2在被测放大电路的输入端与信号源之间串入一测量辅助电阻R,在放大电路正常工作的情况下,用交流毫伏表测出Vs和Vi,则输入电阻可由Ri=ViR/(Vs-Vi)算出。
(3)输出电阻Ro:在放大电路正常工作的条件下,测出输出端不接负载RL输出电压Vo和接入负载后的输出电压VL,根据Ro=[(Vo/VL)-1]RL求出输出电阻。
(4)最大不失真输出电压Vo(p-p)的测量(最大动态范围):在放大电路正常工作的情况下,逐步增大输入信号的幅度,并同时调节Rw(改变静态工作点),用示波器观察Vo,当输出波形同时出现削底和缩顶现象时,说明静态工作点已调在交流负载线的中点,然后反复调整输入信号,使波形输出幅度最大,且无明显失真时,用交流毫伏表测出Vo有效值,则动态范围等于22Vo,或用示波器直接读出Vo(p-p)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
bjt单管共射极放大电路实验原理
一、Bjt工作原理
Bjt(双极晶体管)是利用电流放大效应的半导体器件,其工作原理基于半导体内部电子和空穴的流动。
当Bjt工作在放大状态时,其基极电流控制集电极电流,从而实现电流放大。
二、共射极电路结构
共射极电路是Bjt放大电路的基本结构,由Bjt、电阻、电容等元件组成。
其中,Bjt的发射极和集电极作为输入和输出端,电阻用于提供偏置电流,电容用于隔离直流分量。
三、电压放大原理
在共射极电路中,当输入信号加到Bjt的基极时,会引起基极电流的变化。
这个变化的电流通过Bjt的放大作用,在集电极产生相应的电压变化,从而实现电压放大。
四、输入电阻与输出电阻
输入电阻是指输入信号源的内阻与共射极电路输入端的等效电阻之比,它反映了电路对输入信号的阻碍程度。
输出电阻是指输出端的等效内阻,它反映了电路对负载的驱动能力。
五、频率响应与带宽
频率响应是指放大电路对不同频率信号的放大能力。
带宽是指放大电路对信号的频率范围。
在共射极电路中,由于Bjt的频率响应和带宽限制,其放大能力受到一定影响。
六、失真与非线性
失真是指放大电路对信号的失真程度。
在共射极电路中,由于非线性和噪声等因素的影响,可能会导致信号失真。
为了减小失真,需要采取措施如优化电路设计、选择合适的元件等。
七、稳定性与反馈
稳定性是指放大电路在受到干扰时保持稳定的能力。
在共射极电路中,可以通过引入负反馈来提高稳定性。
反馈是指将输出信号的一部分返回到输入端,以改变输入信号的幅度和相位。
负反馈可以减小非线性和噪声的影响,提高放大电路的稳定性。
八、实验操作与注意事项
在进行Bjt单管共射极放大电路实验时,需要注意以下几点:
1.正确连接电路:确保Bjt、电阻、电容等元件正确连接,避免短路或断路。
2.选择合适的元件:根据实验要求选择合适的Bjt、电阻和电容等元件,以确保电路性能稳定。
3.注意安全:在实验过程中要注意安全,避免触电或损坏设备。
4.调整参数:根据实验需要调整电阻和电容等元件的参数,以获得最佳的放大效果。
5.观察现象:在实验过程中要仔细观察电路的工作现象,记录数据并进行分析。
6.注意事项:注意保护实验设备,避免损坏;同时注意实验环境的清洁和干燥,以避免影响实验结果。