机器人运动学
机器人运动学和动力学分析及控制
机器人运动学和动力学分析及控制引言随着科技的不断进步,机器人在工业、医疗、军事等领域发挥着越来越重要的作用。
而机器人的运动学和动力学是支撑其运动和控制的重要理论基础。
本文将围绕机器人运动学和动力学的分析及控制展开讨论,探究其原理与应用。
一、机器人运动学分析1. 关节坐标和笛卡尔坐标系机器人运动学主要涉及的两种坐标系为关节坐标系和笛卡尔坐标系。
关节坐标系描述机器人每个关节的转动,而笛卡尔坐标系则描述机器人末端执行器在三维空间中的位置和姿态。
2. 正运动学和逆运动学正运动学问题是指已知机器人每个关节的位置和姿态,求解机器人末端执行器的位置和姿态。
逆运动学问题则是已知机器人末端执行器的位置和姿态,求解机器人每个关节的位置和姿态。
解决机器人正逆运动学问题对于实现精确控制非常重要。
3. DH参数建模DH参数建模是机器人运动学分析中的重要方法。
它基于丹尼尔贝维特-哈特伯格(Denavit-Hartenberg, DH)方法,将机器人的每个关节看作旋转和平移运动的连续组合。
通过矩阵变换,可以得到机器人各个关节之间的位置和姿态关系。
二、机器人动力学分析1. 动力学基本理论机器人动力学研究的是机器人在力、力矩作用下的运动学规律。
通过牛顿-欧拉方法或拉格朗日方程,可以建立机器人的动力学模型。
动力学模型包括质量、惯性、重力、摩擦等因素的综合考虑,能够描述机器人在力学环境中的行为。
2. 关节力和末端力机器人动力学分析中的重要问题之一是求解机器人各个关节的力。
关节力是指作用在机器人各个关节上的力和力矩,它对于机器人的稳定性和安全性具有重要意义。
另一个重要问题是求解末端执行器的力,这关系到机器人在任务执行过程中是否能够对外界环境施加合适的力。
3. 动力学参数辨识为了建立精确的机器人动力学模型,需要准确测量机器人的动力学参数。
动力学参数包括质量、惯性、摩擦等因素。
动力学参数辨识是通过实验方法,对机器人的动力学参数进行测量和估计的过程。
第三章机器人运动学
第三章机器人运动学机器人运动学是研究机器人如何在二维或三维空间中进行运动的学科。
它涉及到机器人的轨迹规划、运动控制和路径规划等重要内容。
本章将介绍机器人运动学的基本概念和常用模型,帮助读者全面了解机器人的运动规律和控制原理。
1. 机器人运动学的基本概念机器人运动学是研究机器人位置和姿态变化的学科,包括正运动学和逆运动学两个方面。
正运动学研究机器人的末端执行器的位置和姿态如何由关节变量确定;逆运动学则研究机器人如何通过末端执行器的位置和姿态来确定关节变量的值。
机器人的运动学建模一般采用DH(Denavit-Hartenberg)参数表示方法。
DH 参数是由Denavit和Hartenberg提出的一种机器人坐标系的选择和旋转轴的确定方法。
通过定义一系列关节坐标系,建立起机器人的坐标系链,并确定各个关节的旋转轴和约定的方向,可以方便地描述机器人的运动学特性。
2. 机器人正运动学机器人正运动学是研究机器人末端执行器位置和姿态如何由关节变量确定的问题。
在机器人的正运动学中,常用的方法有几何法和代数法。
2.1 几何法几何法是一种较为直观的方法,通过对机器人各个关节坐标系的位置和旋转进行推导,得到机器人末端执行器的位置和姿态。
几何法适用于无约束和无外力干扰的情况,可以简单快速地推导出机器人的正运动学方程。
2.2 代数法代数法是一种基于运动学链的代数运算的方法,通过DH参数建立起机器人的坐标系链,并通过矩阵运算推导出机器人的正运动学方程。
代数法在机器人正运动学的推导和计算过程中更具有普适性和灵活性。
3. 机器人逆运动学机器人逆运动学是研究机器人如何通过末端执行器的位置和姿态来确定关节变量的值的问题。
机器人逆运动学在机器人运动规划和路径控制中起到重要的作用。
机器人逆运动学的求解一般采用迭代方法,通过迭代计算来逼近解析解,实现对机器人关节变量的求解。
逆运动学的求解过程中可能会出现奇异点和多解的情况,需要通过约束条件和优化方法来处理。
第3章 机器人运动
3 齐次坐标变换 3.1齐次坐标变换 3.1齐次坐标变换 假设机器人手部拿一个钻头在 工件上实施钻孔作业,已知钻 头中心P点相对于手腕中心的 位置,求P点相对于基座的位 置。
x i o
zb kb yb jb o, ib xb P
z
k
j
y
分别在基座和手部设置为固定坐标系和动坐标系, 如图所示。
P点 相对于固定坐标系
1 4 0 −3 0 7 0 1
T中第一列的三个元素(0,1,0)T表示活动坐标系的u轴与 固定坐标系三个坐标轴之间的投影,故u轴平行于y轴;T中第 二列的三个元素(0,0,1)T表示活动坐标系的v轴与固定坐 标系三个坐标轴之间的投影,故v轴平行于z轴;T中第三列的 三个元素(1,0,0)T表示活动坐标系的w轴与固定坐标系三 个坐标轴之间的投影,故轴w平行于x轴;T中第四列的三个元 素(4,-3,7)T表示活动坐标系的原点与固定坐标系原点之 间的距离。
b
3.3.2 举例 ⋅ i i
z kb k o, xb i o xi y j y j
1 0 0 R = 0 1 0 0 0 1
所以
x0 X 0 = y0 z0
0 0 1 0 0 1 0 0
1 0 A = Trans( x0 , y0 , z0 ) = 0 0
上面所述的坐标变换每步都是相对于固定坐标系进行的,也可以 相对于动坐标系进行变换: 坐标系 {o , : u , v, w} 初始与固定坐标系 {o:x, y, z} 相重合,首先相对于固定坐标系平移
4i − 3 j + 7 k ;然后绕活动系的v轴旋转900;最后绕w轴旋转900。
变换的几何表示如图所示。这是合成变换矩阵为
机器人的运动学和动力学模型
机器人的运动学和动力学模型机器人的运动学和动力学是研究机器人运动和力学性质的重要内容。
运动学是研究机器人姿态、位移和速度之间关系的学科,动力学则是研究机器人运动过程中力的产生和作用的学科。
机器人的运动学和动力学模型可以帮助我们理解机器人的运动方式和受力情况,进而指导机器人的控制算法设计和路径规划。
一、机器人运动学模型机器人运动学模型是描述机器人运动方式和位置关系的数学表达。
机器人的运动状态可以用关节角度或末端执行器的位姿来表示。
机器人的运动学模型分为正运动学和逆运动学两种。
1. 正运动学模型正运动学模型是通过机器人关节角度或末端执行器的位姿来确定机器人的位置。
对于串联机器人,可以使用连续旋转和平移变换矩阵来描述机械臂的位置关系。
对于并联机器人,由于存在并联关节,正运动学模型比较复杂,通常需要使用迭代方法求解。
正运动学模型的求解可以通过以下几个步骤:(1) 坐标系建立:确定机器人的基坐标系和各个关节的局部坐标系。
(2) 运动方程描述:根据机器人的结构和连杆长度等参数,建立各个关节的运动方程。
(3) 正运动学求解:根据关节的角度输入,通过迭代计算,求解机器人的末端执行器的位姿。
正运动学模型的求解可以用于机器人路径规划和目标定位。
2. 逆运动学模型逆运动学模型是通过机器人末端执行器的位姿来确定机器人的关节角度。
逆运动学问题在机器人的路径规划和目标定位等任务中起着重要作用。
逆运动学求解的难点在于解的存在性和唯一性。
由于机器人的复杂结构,可能存在多个关节角度组合可以满足末端执行器的位姿要求。
解决逆运动学问题的方法有解析法和数值法两种。
解析法通常是通过代数或几何方法,直接求解关节角度,但是解析法只适用于简单的机器人结构和运动方式。
数值法是通过迭代计算的方式,根据当前位置不断改变关节角度,直到满足末端执行器的位姿要求。
数值法可以用于复杂的机器人结构和运动方式,但是求解时间较长。
二、机器人动力学模型机器人动力学模型是描述机器人运动时受到的力和力矩的模型。
机器人运动学
58
斯坦福机器人反向运动学方程求解
• 已知斯坦福机器人的运动学方程为T6=A1A2A3A4A5A6, 以及T6 矩阵与各杆参数a、α、d,求关节变量θ1~θ6 , 其中θ3= d3。
• 求θ1:
59
斯坦福机器人反向运动学方程求解
• 求θ1:
• “+”号对应右肩位姿,“-”号对应左肩位姿。60
斯坦福机器人反向运动学方程求解
2 机器人运动学
• • • • 齐次坐标及动坐标系、对象物位姿的描述 齐次变换 机器人连杆坐标系及其齐次变换矩阵 机器人运动学方程及其求解
1
齐次坐标及动坐标系、对象物位姿的描述 • • • • • 点的直角坐标描述 点的齐次坐标描述 坐标轴方向的齐次坐标描述 动坐标系位姿的齐次坐标描述 对象物位姿的齐次坐标描述
n cos30 cos60 cos90 0 T 0.866 0.500 0.000 0
P 2 1 cos90 0 T 0.500 0.866 0.000 0 a 0.000 0.000 1.000 0
2
点的直角坐标描述
式中:Px、Py、Pz是点P在坐标 系{A}中的三个位置坐标分量。
点的直角坐标描述
3
点的齐次坐标描述
• 齐次坐标的表示不是惟一的,将其各元素同 乘一非零因子ω后,仍然代表同一点P,即
4
坐标轴方向的齐次坐标描述
坐标轴方向的描述
5
• 4 1列阵[a b c w]T中第四个元素不为零,则表示空 间某点的位置; • 4 1列阵[a b c w]T 中第四个元素为零,且满足 a2 + b2 + c2 = 1,则表示某轴(矢量)的方向。
44
正向运动学方程求解
机器人学基础_第3章_机器人运动学
Kinematics treats motion without regard to the forces that cause it. Within the science of kinematics one studies the position, velocity, acceleration, and all higher order derivatives of the position variables (with respect to time or any other variable). 从几何学 几何学的观点来处 几何学 理手指位置 手指位置P与关节变量 关节变量 手指位置 L1, L2, θ1 和 θ 2的关系称为 运动学(Kinematics)。 运动学
(3.9)
3.1 Representation of Kinematics Equation of Manipulator
17
3.1 Representation of Kinetic Equation of Robot Manipulator
3.1 Representation of Kinematics Equation of Manipulator
12
3.1.1 Kinetic Pose and Oriented Angle Roll, Pitch, Yaw to represent motion pose
机器人 运动学
机器人运动学机器人运动学机器人运动学是研究机器人运动规律和运动控制的学科。
它是机器人技术的重要组成部分,对于机器人的设计、控制和应用具有重要意义。
机器人运动学主要研究机器人在空间中的运动规律,包括位置、速度和加速度等。
通过研究机器人的运动学特性,可以实现对机器人的精确控制和规划。
机器人运动学主要包括正运动学和逆运动学两个方面。
正运动学是指根据机器人关节的位置和长度,求解机器人末端执行器的位置。
它通过解析几何、向量运算和矩阵变换等数学方法,将机器人关节的位置参数转化为末端执行器的位置参数,从而实现对机器人的位置控制。
逆运动学是指根据机器人末端执行器的位置,求解机器人关节的位置和长度。
逆运动学是机器人运动学的核心内容,也是机器人控制的关键问题之一。
通过逆运动学,可以实现对机器人末端执行器的精确控制,从而实现机器人在空间中的精确定位和定向。
机器人运动学的研究还包括机器人的姿态和轨迹规划。
姿态是指机器人在空间中的朝向和姿势,轨迹是指机器人在运动过程中的路径和速度。
通过研究机器人的姿态和轨迹规划,可以实现机器人在复杂环境中的灵活运动和避障控制。
机器人运动学的应用非常广泛。
在工业领域,机器人运动学被应用于自动化生产线的控制和优化,实现了生产效率的提高和生产成本的降低。
在医疗领域,机器人运动学被应用于手术机器人的控制和操作,实现了微创手术和精确手术的目标。
在军事领域,机器人运动学被应用于无人飞机和无人车辆的控制和导航,实现了作战效能的提高和战场风险的降低。
机器人运动学的发展离不开先进的传感器和控制技术的支持。
传感器可以实时感知机器人的位置和环境信息,控制技术可以根据机器人的位置和运动规律,实现对机器人的精确控制和运动规划。
总结起来,机器人运动学是研究机器人运动规律和运动控制的学科,主要包括正运动学、逆运动学、姿态和轨迹规划等内容。
机器人运动学的研究和应用对于机器人技术的发展和应用具有重要意义,将为我们创造更多的便利和机会。
机器人运动学知识要点梳理
机器人运动学知识要点梳理机器人运动学是研究机器人运动规律和姿态变化的学科。
它是机器人学的重要基础,掌握机器人运动学知识对于研究机器人的运动控制、路径规划等方面具有重要意义。
本文将梳理机器人运动学的要点,对其进行全面而简明的阐述。
一、机器人运动学概述机器人运动学是机器人学中的一个重要分支,主要研究机器人的运动规律和姿态变化。
它研究的对象是机器人的关节运动和末端执行器的运动,通过对机器人的结构和运动方式的分析,可以帮助我们了解机器人的运动特性,为机器人的运动控制与路径规划提供理论基础。
机器人运动学主要包括正运动学和逆运动学两个方面。
正运动学是指已知机器人关节角度,通过运动链的迭代求解,计算机器人末端执行器的位置和姿态。
逆运动学则是已知机器人末端执行器的位置和姿态,求解机器人关节角度。
二、机器人运动学基础知识1. 坐标系与位姿表示机器人运动学中经常使用的坐标系有世界坐标系(world coordinate system)、基坐标系(base coordinate system)和末端执行器坐标系(end-effector coordinate system)。
世界坐标系是一个固定的参考坐标系,基坐标系是机器人坐标系中的一个相对于世界坐标系的参考坐标系,而末端执行器坐标系则是机器人末端执行器的坐标系。
机器人在三维空间中的位姿表示可以使用欧拉角(Euler angle)或四元数(quaternion)等方式。
2. DH参数与齐次变换矩阵DH参数(Dennavit-Hartenberg parameters)是机器人运动学中常用的参数化方法,用于描述机器人关节之间的姿态和位移关系。
齐次变换矩阵(homogeneous transformation matrix)则是将机器人的坐标系从一个关节变换到下一个关节的变换矩阵。
3. 机器人正运动学机器人正运动学是已知机器人关节角度,求解机器人末端执行器位置和姿态的过程。
机器人运动学分析与仿真实现
机器人运动学分析与仿真实现在当今科技飞速发展的时代,机器人技术的应用越来越广泛,从工业生产中的自动化装配线,到医疗领域的手术机器人,再到家庭服务中的智能机器人,机器人已经逐渐融入到我们生活的方方面面。
而机器人运动学作为机器人技术的重要基础,对于机器人的设计、控制和应用具有至关重要的意义。
本文将对机器人运动学进行分析,并探讨其仿真实现的方法和过程。
一、机器人运动学的基本概念机器人运动学主要研究机器人各关节的运动与机器人末端执行器位姿之间的关系。
简单来说,就是如何通过控制机器人的关节角度或位移,来实现期望的末端执行器的位置和姿态。
机器人运动学可以分为正运动学和逆运动学两个方面。
正运动学是已知机器人各关节的参数(如关节角度、长度等),求解末端执行器在空间中的位置和姿态。
这就好比我们知道了一个人的各个肢体的长度和关节的转动角度,就能推算出他的手能够到达的位置。
逆运动学则是已知末端执行器的期望位置和姿态,求解各关节应有的参数值。
这相当于我们给定了一个目标位置,需要反过来计算出各个肢体应该如何运动才能达到这个目标。
二、机器人运动学模型的建立为了进行机器人运动学的分析,首先需要建立机器人的运动学模型。
常见的机器人模型有串联机器人和并联机器人。
串联机器人是由一系列关节依次连接而成,每个关节只有一个自由度;并联机器人则是由多个支链并行连接到动平台和静平台之间,具有多个自由度。
在建立模型时,需要确定机器人的连杆参数,包括连杆长度、连杆扭转角、关节偏移量和关节转角等。
这些参数通常可以通过机器人的机械结构设计图纸或实际测量得到。
以一个简单的平面两关节机器人为例,我们可以将其看作是两个连杆通过关节连接在一起。
设第一个连杆的长度为$l_1$,第二个连杆的长度为$l_2$,关节 1 的转角为$\theta_1$,关节 2 的转角为$\theta_2$。
通过三角函数的关系,可以得到末端执行器在平面坐标系中的位置坐标$(x, y)$与关节角度$\theta_1$ 和$\theta_2$ 之间的关系。
机器人运动学
机器人运动学机器人运动学是研究机器人运动和姿态变化的一门学科。
它通过分析机器人的构造和动力学参数,研究机器人在特定环境下的运动规律和遵循的动力学约束,以实现机器人的准确控制和运动规划。
本文将从机器人运动学的基本概念、运动学模型、运动学正解和逆解等方面进行介绍。
1. 机器人运动学的基本概念机器人运动学是机器人学中的一个重要分支,主要研究机器人在空间中的运动状态、末端执行器的位置和姿态等基本概念。
其中,运动状态包括位置、方向和速度等;末端执行器的位置和姿态是描述机器人末端执行器在空间中的位置和朝向。
通过研究和分析这些基本概念,可以实现对机器人运动的控制和规划。
2. 运动学模型运动学模型是机器人运动学研究的重要工具,通过建立机器人的运动学模型,可以描述机器人在运动过程中的运动状态和姿态变化。
常见的运动学模型包括平面机器人模型、空间机器人模型、连续关节机器人模型等。
每种模型都有其独特的参数和运动学关系,可以根据实际情况选择合适的模型进行分析和研究。
3. 运动学正解运动学正解是指根据机器人的构造和动力学参数,求解机器人末端执行器的位置和姿态。
具体而言,根据机器人的关节角度、关节长度和连杆长度等参数,可以通过连乘法求解机器人末端执行器的位姿。
运动学正解是机器人运动学中的常见问题,解决这个问题可以帮助我们了解机器人在空间中的运动规律和运动范围。
4. 运动学逆解运动学逆解是指根据机器人末端执行器的位置和姿态,求解机器人的关节角度。
反过来,控制机器人的运动状态就需要求解逆运动学问题。
运动学逆解是机器人运动学研究的重要内容之一,它的解决可以帮助我们实现对机器人的准确定位和控制。
总结:机器人运动学是研究机器人运动和姿态变化的学科,通过运动学模型、运动学正解和运动学逆解等方法,可以描述机器人的运动状态、末端执行器的位置和姿态。
深入研究机器人运动学,可以实现对机器人的准确控制和运动规划。
随着机器人技术的不断发展,机器人运动学的研究也得到了越来越广泛的应用和重视。
机器人运动学熊有伦机器人技术基础
s
i 1
dici1
1
3.1.4操作臂运动学方程
T i1 i
{R}
{P}
变换矩阵:i1P i1RT RQT QPT PiT i P
{Q}
化简: 这里:
i 1 P
i1iT i P
T i1 i
i1RT RQT QPT PiT
根据变换 过程:
T i1 i
Rot(
c4c5s6 s4c6
c4 s 5
a3
36T
34T
46T
s5 s6
s4c5c6
c4 s6
s5s6 s4c5s6 c4c6
c5 s4 s5
d4 0
0
0
0 1
c23 s23 0 a2c2
13T
21T
23T
0
s23 0
描述连杆连接的两个参数: 1) link offset 连杆偏距di. 相邻两个连杆之间有一个公
共的关节, 沿着两个相邻连杆公共法线
线的距离可以用一个参数描 述为连杆偏2)距jodini. t angle 关节角θi. 当一i为变移量动. 关节当描时i述为,连两转杆个动偏相关距邻节为连时杆,关绕节公角共为轴一线变旋量转. 的夹角θi.
T i1 i {P}
1.坐标系{i-1}相对于坐标系{i}的变换是由连杆四个参数构成
的函数,其中只有一个变量。
{Q}
2.为求解
T i 1 i
,对每个连杆建立坐标系,分解成4个变换子
问题,每个子变换只包含一个连杆参数。
机器人运动学分析的工作原理
机器人运动学分析的工作原理机器人运动学分析是机器人控制中的重要部分,它在机器人运动控制中扮演着非常重要的角色。
目前,机器人运动学分析已成为机器人控制领域的研究热点之一。
本文将从以下几个方面来阐述机器人运动学分析的工作原理。
一、机器人运动学简介机器人运动学是描述机器人的运动过程的学科,是机器人控制中最基本的分支之一。
机器人运动学研究机器人的位姿、速度、加速度、力与力矩,以及机器人操作的方式。
机器人运动学的研究内容包括位置、速度、加速度等基本知识,以及机器人的工作空间、工作范围和重心分析等。
机器人运动学中有两种基本的方法:1、正运动学:正运动学是指机器人末端的位置和姿态与机器人各个关节的角度之间的关系。
在机器人的控制过程中,各关节的角度控制朝着使末端执行具体的任务的方向进行;而由于关节角度与末端位置和姿态之间的变换式已知,在控制中就可以根据控制任务要求确定末端所需要达到的位置和姿态。
正运动学是掌握各关节角度和末端位置和姿态之间的变换关系,从而计算机器人末端的位置和姿态,确定机器人需要达到的位置和姿态,进一步完成机器人的控制。
2、逆运动学:逆运动学是指计算机器人各个关节的角度,从而让机器人的末端达到需要的位置和姿态。
在计算过程中,只要给出机器人末端的位置和姿态,就可以计算出机器人各个关节的角度。
以笛卡尔空间指定为例,逆运动学可以计算出机器人各关节的角度,从而控制机器人实现指定的位置和姿态。
二、机器人运动学分析的目的和意义机器人运动学分析的目的是研究机器人运动规律,从而实现机器人的运动控制。
模拟机器人的运动轨迹和加速度,精确地了解机器人的控制过程,以达到最优化、最快速、最准确、最稳定的效果。
机器人运动学分析的意义在于解决了机器人的控制问题,机器人可以根据指令控制角度、位置和速度的变化,精确地执行各种任务。
同时,运动学分析还可实现机器人的路径规划、动力学分析等。
三、机器人运动学分析的实现流程机器人运动学分析,一般分为以下几个步骤:1、建立机器人的坐标系在进行机器人运动学分析之前,需要建立机器人的坐标系和轴方向,以方便分析。
机器人的运动学和动力学模型是什么
机器人的运动学和动力学模型是什么机器人的运动学和动力学模型是为了描述机器人运动和力学特性而建立的数学模型。
运动学模型描述机器人的位姿、速度和加速度,而动力学模型则描述机器人的力、力矩和力的影响。
本文将详细介绍机器人的运动学和动力学模型,包括其定义、应用和建模方法。
一、运动学模型1. 定义机器人的运动学模型用于描述机器人的位姿、速度和加速度之间的关系。
位姿是机器人在三维空间中的位置和方向,速度是机器人在时间上的位置变化率,加速度是速度的变化率。
运动学模型可以帮助我们理解机器人的运动规律,例如机器人的轨迹、路径和姿态等。
2. 应用运动学模型在机器人领域有广泛的应用。
首先,它可以用于路径规划和轨迹跟踪。
通过建立机器人的运动学模型,我们可以预测机器人在不同环境下的运动轨迹,从而实现有效的路径规划和轨迹跟踪。
其次,运动学模型可以用于机器人的姿态控制。
通过了解机器人的位姿、速度和加速度之间的关系,我们可以设计控制算法,实现机器人在不同姿态下的运动控制。
此外,运动学模型还可以用于机器人的碰撞检测和避障。
通过分析机器人的运动学特性,我们可以预测机器人的碰撞风险,并采取相应的避障策略。
3. 建模方法机器人的运动学模型可以通过几何方法、代数方法和向量方法进行建模。
几何方法是最常用的建模方法之一。
它通过描述机器人的几何特征和运动规律来建立运动学模型。
例如,可以使用笛卡尔坐标系和欧拉角来描述机器人的位姿,使用导数和积分来描述机器人的速度和加速度。
代数方法是另一种常用的建模方法。
它通过代数方程和矩阵运算来描述机器人的位姿、速度和加速度之间的关系。
例如,可以使用坐标变换和雅可比矩阵来描述机器人的运动规律。
向量方法是较新的建模方法之一。
它通过向量运算和微分几何来描述机器人的位姿、速度和加速度之间的关系。
例如,可以使用四元数和向量叉乘来描述机器人的姿态和运动规律。
二、动力学模型1. 定义机器人的动力学模型用于描述机器人的力、力矩和力对机器人的影响。
机器人运动学正解逆解课件
在机器人力控制中,需要知道每个关节的角度变化来调整 机器人的姿态和力矩。逆解可以用于求解每个关节的角度 变化,从而调整机器人的姿态和力矩。
机器人定位
在机器人定位中,需要知道每个关节的角度变化来调整机 器人的位置和姿态。逆解可以用于求解每个关节的角度变 化,从而调整机器人的位置和姿态。
04
实现复杂运动轨迹
利用运动学正解与逆解,可以规划出 复杂的运动轨迹,满足各种应用需求 。
02
机器人运动学正解
正解的基本概念
正解是指机器人末端执行器从某一初 始位置和姿态到达目标位置和姿态所 需经过的关节角度值。
正解是机器人运动学中的基本问题, 是实现机器人精确控制和自主导航的 基础。
正解的求解方法
逆解的求解方法
01
代数法
通过建立机器人关节角度与目标点坐标之间的方程组,利用数学软件求
解方程组得到关节角度。这种方法适用于简单的机器人结构,但对于复
杂机器人结构求解过程可能较为繁琐。
02
数值法
通过迭代或搜索的方法,不断逼近目标点坐标,最终得到满足要求的关
节角度。这种方法适用于复杂机器人结构,但求解时间较长且可能存在
机器人运动学正解逆解课件
目 录
• 机器人运动学概述 • 机器人运动学正解 • 机器人运动学逆解 • 机器人运动学正逆解的对比与联系 • 机器人运动学正逆解的实例分析
01
机器人运动学概述
定义与分类
定义
机器人运动学是研究机器人末端 执行器位姿与关节变量之间的关 系的学科。
分类
根据机器人的结构和运动特性, 可以分为串联机器人和并联机器 人。
局部最优解。
03
解析法
通过几何学和代数学的方法,直接求解关节角度与目标点坐标之间的关
机器人技术基础课件第三章 机器人运动学
30
3.2.1 机器人正运动学方程
如图所示是个三自由度的机器人, 三个关节皆为旋 转关节,第3关节轴线垂直于1、2关节轴线所在的平 面,各个关节的旋转方向如图所示,用D-H方法建立 各连杆坐标系,求出该机器人的运动学方程。
刚体的姿态可由动坐标系的坐
标的轴刚 位方置体向可Q在来用固表齐定示次坐。坐标令标系n形、O式oX、的YZa一中分
别为X′、y ′、z ′坐标轴的 个(4×1)列阵表示为: 单位方向矢量,每个单位方向 矢量在固定坐标系上的分量为 动坐标系各坐标轴的方向余弦, 用齐次坐标形式的(4×1)列阵 分别表示为:
y L1 sin1 L2 sin(1 2 )
通常的矢量形式:
r f ( )
29
3.2.1 机器人正运动学方程
机器人正运动学将关节变量作为自变量,研究机器人末 端执行器位姿与基座之间的函数关系。总体思想是:
(1)给每个连杆指定坐标系; (2)确定从一个连杆到下一连杆变换(即相邻参考系 之间的变化); (3)结合所有变换,确定末端连杆与基座间的总变换 ; (4)建立运动学方程求解。 机器人运动学的一般模型为:
03T 01T12T 23T
如此类推,对于六连杆机器人,有下列矩阵:
06T 01T12T 23T 34T 45T 56T
3.2 3.2 机械手运动学方程
26
0 6
T
3.1.4 连杆变换矩阵及其乘积
06T 01T12T23T34T 45T56T
机器人运动学方程
此式右边表示了从固定参考系到手部坐标系的各连杆
机器人学基础_第3章机器人运动学
移动连杆坐标系的建立
移动连杆坐标系的规定:
• 坐标轴Zi:与i+1关节的轴线重合; • 坐标轴Xi:沿移动关节i轴线与关节i+1轴线的公垂线,指向i+1关节; • 坐标轴Yi:按右手直角坐标系法则确定; • 坐标原点Oi: (1)当关节i轴线和关节i+1轴线相交时,取交点; (2)当关节i轴线和关节i+1轴线异面时,取两轴线的公垂线与关节i轴
动到使其原点与连杆i坐标系原点重合的地方。 • (4) 绕Xi旋转αi角,使Zi–1转到与Zi同一直线上。 • 连杆i–1的坐标系经过上述变换与连杆i的坐标系
重合。如果把表示相邻连杆相对空间关系的矩阵 称为A矩阵,那么根据上述变换步骤,从连杆i到 连杆i–1的坐标变换矩阵Ai为
•
(3.13)
• 同理,对联轴器的齐次坐标变换矩阵有 •
• 手部的位置矢量为固定参考系原点指向手 部坐标系{B}原点的矢量P,手部的方向矢 量为n、o、a。于是手部的位姿可用4 4 矩阵表示为
•
•
nX oX a X PX
T
nY
oY
aY
PY
nZ 0
oz 0
aZ 0
PZ 1
• 思考:
• ①说明位姿矩阵的左上角3×3矩阵的几何 意义。
• ②分别说明n, o, a, P的几何意义。
a1 = l 1 =100
a2 = l 2 =100
旧课复习与总结
转动连杆坐标系的建立
• 坐标轴Zi:与i+1关节的轴线重合; • 坐标轴Xi:沿连杆i两关节轴线的公垂线,指向i+1关节; • 坐标轴Yi:按右手直角坐标系法则确定; • 坐标原点Oi: (1)当关节i轴线和关节i+1轴线相交时,取交点; (2)当关节i轴线和关节i+1轴线异面时,取两轴线的公垂
机器人学-第3章_机器人运动学
1, di)表示。
空间机械臂坐标系选择
为了获得机械臂末端执行器在3维空间的位置和姿态,需要在每个连杆上 定义与连杆固连的坐标系来描述相邻连杆之间的位置关系。
根据固连坐标系所在连杆的编号对固连坐标系命名,如在固连在连杆i上 的固连坐标系称为坐标系{i}。
若ai =0,两Z轴相交,则选Xi垂于Zi和Zi+1 ,坐标系{i}的选择不是唯一的。
9
轴i θi
轴 i-1
连杆坐标系中连杆参数确定
θi-1
连杆 i-1
DH参数按以下方法确定:
Zi
ai =沿Xi轴,从Zi移动到Zi+1的距离;
Yi
i =绕Xi轴,从Zi旋转到Zi+1的角度;
di =沿Zi轴,从Xi-1移动到Xi的距离;
系{1}与坐标系{0}重合。
对于坐标系{n},原点位置可以在关节轴
上任意选取, Xn的方向也是任意的。但在选 择时应尽量使更多的连杆参数为1=0 1=-90o d1=0
Y2
a2=L2 2=0 q2=-90o d2=L1
(b)
Z1
X2
Y2
Y1
X1
a1=0 1=90o d1=0
相邻连杆间坐标变换公式
建立 {P}、{Q}和{R}3个中间坐标系, 其中{i}和{i-1}是固定在连杆 i 和 i-1 上的固 连坐标系,如图3-13所示。
连杆 i-1 Zi
ZP
Xi ai
di ZQ XQ
ZR
qi
Zi-1
Xi-1XR ai-1
XP
i-1
1. 绕 Xi-1 轴旋转 i-1角
机器人运动学基础
机器人运动学基础机器人运动学是机器人学科中的一个重要分支,它研究机器人的运动规律和运动控制方法,是机器人技术的基础。
在机器人运动学中,我们主要研究机器人的运动学模型、坐标系、运动规律以及机器人的运动控制方法等问题。
机器人运动学模型机器人运动学模型是机器人运动学中最基础的概念之一。
机器人运动学模型是指通过数学方法描述机器人在三维空间中运动的数学模型。
在机器人运动学模型中,我们通常采用笛卡尔坐标系和关节坐标系来描述机器人的运动状态。
笛卡尔坐标系是直角坐标系的一种,它是三维空间中的一个坐标系,可以用来描述机器人的位置和姿态。
在机器人运动学中,我们通常采用笛卡尔坐标系来描述机器人的末端执行器的位姿。
关节坐标系是机器人的关节所在点构成的坐标系,它用来描述机器人的关节状态。
在机器人运动学中,我们通常采用关节坐标系来描述机器人的运动状态。
机器人运动规律机器人的运动规律是机器人运动学中的另一个重要概念。
机器人的运动规律是指机器人在运动过程中遵循的数学规律和运动轨迹。
机器人的运动规律可以用运动学方程来描述,其中最常用的是正运动学方程和逆运动学方程。
正运动学方程是指通过机器人的各个关节的运动状态来求解机器人的末端执行器的位姿的方程。
逆运动学方程是指通过机器人的末端执行器的位姿来求解机器人各个关节的运动状态的方程。
机器人运动控制方法机器人运动控制方法是机器人运动学中的另一个重要内容。
机器人运动控制方法是指通过控制机器人的运动状态和运动规律来实现机器人的运动目标。
机器人运动控制方法可以分为开环控制和闭环控制两种。
开环控制是指通过预先设定的控制信号来控制机器人的运动状态和运动规律。
开环控制的优点是简单、易于实现,但是其控制精度较低。
闭环控制是指通过机器人的传感器来反馈机器人的运动状态,并根据反馈信息来调节控制信号来实现机器人的运动目标。
闭环控制的优点是控制精度较高,但是其实现难度较大。
总结机器人运动学是机器人学科中的一个重要分支,它研究机器人的运动规律和运动控制方法,为机器人技术的发展提供了基础。
04-机器人课程-运动学
1、机器人运动学
1.5机器人微分运动及速度
机器人的微分运动是研究机器人关节变量的微小变化与机器人手部位姿的微小变化 之间的微分关系。如果已知两者之间的微分关系,就可以解决机器人微分运动的两 类基本问题:一类是在已知机器人各个关节变量的微小变化时求机器人手部位姿的 微小变化;另一类是在已知机器人手部位姿的微小变化时求机器人各个关节变量相 应的微小变化。机器人的微分运动对机器人控制、误差分析、动力分析和保证工作 精度具有十分重要的意义。
1、机器人运动学
1.3齐次变换及运算
1.3.1 直角坐标变换 在机器人中建立直角坐标系后,机器人的手部和各活动杆件之间相对位 置和姿态就可以看成是直角坐标系之间的坐标变换。
1、机器人运动学
1.3齐次变换及运算
平移变换 设坐标系{i}和坐标系{j}具有相同的姿态,但两者的坐标原点不重合,如图3-7所 示。 若用矢量Pij表示坐标系{i}和坐标系{j}原点之间的矢量,则坐标系{j}就可以看成 是由坐标系{i}沿矢量Pij平移变换而来的,所以称矢量Pij为平移变换矩阵,它是一个 3×1的矩阵
1.1、机器人位姿描述
机器人的位姿主要是指机器人手部在空间的位置和姿态,有 时也会用到其他各个活动杆件在空间的位置和姿态。需要先 了解的与机器人运动相关的一些基础知识。 机器人的机构运动简图、机器人的自由度、机器人的坐标系、 机器人的工作空间、机器人的位姿
1、机器人运动学
1.2机器人的位姿
所谓机器人的位姿主要就是指机器人手部在空间的位置和姿态。有了机器 人坐标系,机器人手部和各个活动杆件相对于其他坐标系的位置和姿态就 可以用一个3×1的位置矩阵和一个3×3的姿态矩阵来描述。如图3-2所示, 机器人手部的坐标系{H}相对于机座坐标系{O}位置就可以用坐标系{H}的 原点OH在坐标系{O}三个坐标分量xOH、yOH、zOH、组成3×1的位置矩阵来 表示
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机器人运动学
随着科技的不断发展,机器人已经逐渐成为了人们生活中不可或缺的一部分。
机器人的出现不仅改变了人们生活的方方面面,还为工业、医疗等领域带来了巨大的变革。
作为机器人领域的核心技术之一,机器人运动学是机器人技术中的重要组成部分。
本文将从机器人运动学的基本概念、运动学分析、运动规划等方面进行详细的阐述。
一、机器人运动学的基本概念
机器人运动学是研究机器人运动的学科,主要研究机器人的运动规律、运动学模型、运动学分析和运动规划等问题。
机器人运动学的基本概念包括机器人的自由度、坐标系、位姿等。
1. 机器人的自由度
机器人的自由度是指机器人能够自由运动的方向和数量。
机器人的自由度通常是由机器人的关节数量决定的。
例如,一个具有6个关节的机器人,其自由度就是6。
机器人的自由度越大,机器人的运动能力就越强。
2. 坐标系
坐标系是机器人运动学中的重要概念,用于描述机器人的位置和姿态。
机器人通常使用笛卡尔坐标系或者极坐标系来描述机器人的位置和姿态。
在机器人运动学中,通常使用基座坐标系和工具坐标系来描述机器人的运动。
3. 位姿
位姿是机器人运动学中的另一个重要概念,用于描述机器人的位
置和姿态。
位姿通常由位置和方向两个部分组成。
在机器人运动学中,通常使用欧拉角、四元数或旋转矩阵来描述机器人的位姿。
二、机器人运动学分析
机器人运动学分析是指对机器人的运动进行分析和计算,以确定机器人的运动规律和运动学模型。
机器人运动学分析通常涉及到逆运动学、正运动学和雅可比矩阵等内容。
1. 逆运动学
逆运动学是机器人运动学分析中的重要内容,用于确定机器人关节的运动规律。
逆运动学通常包括解析解法和数值解法两种方法。
解析解法是指通过数学公式来计算机器人关节的运动规律,数值解法是指通过计算机模拟来计算机器人关节的运动规律。
2. 正运动学
正运动学是机器人运动学分析中的另一个重要内容,用于确定机器人末端执行器的位置和姿态。
正运动学通常包括前向运动学和反向运动学两种方法。
前向运动学是指通过机器人的关节运动来计算机器人末端执行器的位置和姿态,反向运动学是指通过机器人末端执行器的位置和姿态来计算机器人的关节运动。
3. 雅可比矩阵
雅可比矩阵是机器人运动学分析中的另一个重要概念,用于描述机器人的运动学模型。
雅可比矩阵通常用于计算机器人的速度和加速度,以确定机器人的运动规律。
雅可比矩阵的计算通常需要使用微积分和矩阵运算等数学工具。
三、机器人运动规划
机器人运动规划是指通过机器人的运动学模型来确定机器人的运动规律和运动路径。
机器人运动规划通常包括轨迹规划、避障规划和优化规划等内容。
1. 轨迹规划
轨迹规划是机器人运动规划中的重要内容,用于确定机器人运动的路径和速度。
轨迹规划通常需要考虑机器人的自由度、运动速度和加速度等因素,以确定机器人的运动路径和速度。
2. 避障规划
避障规划是机器人运动规划中的另一个重要内容,用于避免机器人在运动过程中与障碍物发生碰撞。
避障规划通常需要考虑机器人的传感器和环境信息,以确定机器人的运动路径和速度。
3. 优化规划
优化规划是机器人运动规划中的另一个重要内容,用于优化机器人的运动路径和速度。
优化规划通常需要考虑机器人的能量消耗和运动效率等因素,以确定机器人的最优运动路径和速度。
结语
机器人运动学是机器人技术中的重要组成部分,对于机器人的运动规律和运动路径的确定具有重要的意义。
随着机器人技术的不断发展,机器人运动学将会在更多的领域中得到应用,为人们带来更多的便利和创新。