机器人运动学
第三章机器人运动学
第三章机器人运动学机器人运动学是研究机器人如何在二维或三维空间中进行运动的学科。
它涉及到机器人的轨迹规划、运动控制和路径规划等重要内容。
本章将介绍机器人运动学的基本概念和常用模型,帮助读者全面了解机器人的运动规律和控制原理。
1. 机器人运动学的基本概念机器人运动学是研究机器人位置和姿态变化的学科,包括正运动学和逆运动学两个方面。
正运动学研究机器人的末端执行器的位置和姿态如何由关节变量确定;逆运动学则研究机器人如何通过末端执行器的位置和姿态来确定关节变量的值。
机器人的运动学建模一般采用DH(Denavit-Hartenberg)参数表示方法。
DH 参数是由Denavit和Hartenberg提出的一种机器人坐标系的选择和旋转轴的确定方法。
通过定义一系列关节坐标系,建立起机器人的坐标系链,并确定各个关节的旋转轴和约定的方向,可以方便地描述机器人的运动学特性。
2. 机器人正运动学机器人正运动学是研究机器人末端执行器位置和姿态如何由关节变量确定的问题。
在机器人的正运动学中,常用的方法有几何法和代数法。
2.1 几何法几何法是一种较为直观的方法,通过对机器人各个关节坐标系的位置和旋转进行推导,得到机器人末端执行器的位置和姿态。
几何法适用于无约束和无外力干扰的情况,可以简单快速地推导出机器人的正运动学方程。
2.2 代数法代数法是一种基于运动学链的代数运算的方法,通过DH参数建立起机器人的坐标系链,并通过矩阵运算推导出机器人的正运动学方程。
代数法在机器人正运动学的推导和计算过程中更具有普适性和灵活性。
3. 机器人逆运动学机器人逆运动学是研究机器人如何通过末端执行器的位置和姿态来确定关节变量的值的问题。
机器人逆运动学在机器人运动规划和路径控制中起到重要的作用。
机器人逆运动学的求解一般采用迭代方法,通过迭代计算来逼近解析解,实现对机器人关节变量的求解。
逆运动学的求解过程中可能会出现奇异点和多解的情况,需要通过约束条件和优化方法来处理。
机器人运动学
机器人运动学(培训教材)(总49页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第2章机器人位置运动学引言本章将研究机器人正逆运动学。
当已知所有的关节变量时,可用正运动学来确定机器人末端手的位姿。
如果要使机器人末端手放在特定的点上并且具有特定的姿态,可用逆运动学来计算出每一关节变量的值。
首先利用矩阵建立物体、位置、姿态以及运动的表示方法,然后研究直角坐标型、圆柱坐标型以及球坐标型等不同构型机器人的正逆运动学,最后利用Denavit-Hartenberg(D-H)表示法来推导机器人所有可能构型的正逆运动学方程。
实际上,机器手型的机器人没有末端执行器,多数情况下,机器人上附有一个抓持器。
根据实际应用,用户可为机器人附加不同的末端执行器。
显然,末端执行器的大小和长度决定了机器人的末端位置,即如果末端执行器的长短不同,那么机器人的末端位置也不同。
在这一章中,假设机器人的末端是一个平板面,如有必要可在其上附加末端执行器,以后便称该平板面为机器人的“手”或“端面”。
如有必要,还可以将末端执行器的长度加到机器人的末端来确定末端执行器的位姿。
机器人机构机器手型的机器人具有多个自由度(DOF),并有三维开环链式机构。
在具有单自由度的系统中,当变量设定为特定值时,机器人机构就完全确定了,所有其他变量也就随之而定。
如图所示的四杆机构,当曲柄转角设定为120°时,则连杆与摇杆的角度也就确定了。
然而在一个多自由度机构中,必须独立设定所有的输入变量才能知道其余的参数。
机器人就是这样的多自由度机构,必须知道每一关节变量才能知道机器人的手处在什么位置。
图 具有单自由度闭环的四杆机构如果机器人要在空间运动,那么机器人就需要具有三维的结构。
虽然也可能有二维多自由度的机器人,但它们并不常见。
机器人是开环机构,它与闭环机构不同(例如四杆机构),即使设定所有的关节变量,也不能确保机器人的手准确地处于给定的位置。
第3章 机器人运动
3 齐次坐标变换 3.1齐次坐标变换 3.1齐次坐标变换 假设机器人手部拿一个钻头在 工件上实施钻孔作业,已知钻 头中心P点相对于手腕中心的 位置,求P点相对于基座的位 置。
x i o
zb kb yb jb o, ib xb P
z
k
j
y
分别在基座和手部设置为固定坐标系和动坐标系, 如图所示。
P点 相对于固定坐标系
1 4 0 −3 0 7 0 1
T中第一列的三个元素(0,1,0)T表示活动坐标系的u轴与 固定坐标系三个坐标轴之间的投影,故u轴平行于y轴;T中第 二列的三个元素(0,0,1)T表示活动坐标系的v轴与固定坐 标系三个坐标轴之间的投影,故v轴平行于z轴;T中第三列的 三个元素(1,0,0)T表示活动坐标系的w轴与固定坐标系三 个坐标轴之间的投影,故轴w平行于x轴;T中第四列的三个元 素(4,-3,7)T表示活动坐标系的原点与固定坐标系原点之 间的距离。
b
3.3.2 举例 ⋅ i i
z kb k o, xb i o xi y j y j
1 0 0 R = 0 1 0 0 0 1
所以
x0 X 0 = y0 z0
0 0 1 0 0 1 0 0
1 0 A = Trans( x0 , y0 , z0 ) = 0 0
上面所述的坐标变换每步都是相对于固定坐标系进行的,也可以 相对于动坐标系进行变换: 坐标系 {o , : u , v, w} 初始与固定坐标系 {o:x, y, z} 相重合,首先相对于固定坐标系平移
4i − 3 j + 7 k ;然后绕活动系的v轴旋转900;最后绕w轴旋转900。
变换的几何表示如图所示。这是合成变换矩阵为
机器人的运动学和动力学模型
机器人的运动学和动力学模型机器人的运动学和动力学是研究机器人运动和力学性质的重要内容。
运动学是研究机器人姿态、位移和速度之间关系的学科,动力学则是研究机器人运动过程中力的产生和作用的学科。
机器人的运动学和动力学模型可以帮助我们理解机器人的运动方式和受力情况,进而指导机器人的控制算法设计和路径规划。
一、机器人运动学模型机器人运动学模型是描述机器人运动方式和位置关系的数学表达。
机器人的运动状态可以用关节角度或末端执行器的位姿来表示。
机器人的运动学模型分为正运动学和逆运动学两种。
1. 正运动学模型正运动学模型是通过机器人关节角度或末端执行器的位姿来确定机器人的位置。
对于串联机器人,可以使用连续旋转和平移变换矩阵来描述机械臂的位置关系。
对于并联机器人,由于存在并联关节,正运动学模型比较复杂,通常需要使用迭代方法求解。
正运动学模型的求解可以通过以下几个步骤:(1) 坐标系建立:确定机器人的基坐标系和各个关节的局部坐标系。
(2) 运动方程描述:根据机器人的结构和连杆长度等参数,建立各个关节的运动方程。
(3) 正运动学求解:根据关节的角度输入,通过迭代计算,求解机器人的末端执行器的位姿。
正运动学模型的求解可以用于机器人路径规划和目标定位。
2. 逆运动学模型逆运动学模型是通过机器人末端执行器的位姿来确定机器人的关节角度。
逆运动学问题在机器人的路径规划和目标定位等任务中起着重要作用。
逆运动学求解的难点在于解的存在性和唯一性。
由于机器人的复杂结构,可能存在多个关节角度组合可以满足末端执行器的位姿要求。
解决逆运动学问题的方法有解析法和数值法两种。
解析法通常是通过代数或几何方法,直接求解关节角度,但是解析法只适用于简单的机器人结构和运动方式。
数值法是通过迭代计算的方式,根据当前位置不断改变关节角度,直到满足末端执行器的位姿要求。
数值法可以用于复杂的机器人结构和运动方式,但是求解时间较长。
二、机器人动力学模型机器人动力学模型是描述机器人运动时受到的力和力矩的模型。
机器人运动学
58
斯坦福机器人反向运动学方程求解
• 已知斯坦福机器人的运动学方程为T6=A1A2A3A4A5A6, 以及T6 矩阵与各杆参数a、α、d,求关节变量θ1~θ6 , 其中θ3= d3。
• 求θ1:
59
斯坦福机器人反向运动学方程求解
• 求θ1:
• “+”号对应右肩位姿,“-”号对应左肩位姿。60
斯坦福机器人反向运动学方程求解
2 机器人运动学
• • • • 齐次坐标及动坐标系、对象物位姿的描述 齐次变换 机器人连杆坐标系及其齐次变换矩阵 机器人运动学方程及其求解
1
齐次坐标及动坐标系、对象物位姿的描述 • • • • • 点的直角坐标描述 点的齐次坐标描述 坐标轴方向的齐次坐标描述 动坐标系位姿的齐次坐标描述 对象物位姿的齐次坐标描述
n cos30 cos60 cos90 0 T 0.866 0.500 0.000 0
P 2 1 cos90 0 T 0.500 0.866 0.000 0 a 0.000 0.000 1.000 0
2
点的直角坐标描述
式中:Px、Py、Pz是点P在坐标 系{A}中的三个位置坐标分量。
点的直角坐标描述
3
点的齐次坐标描述
• 齐次坐标的表示不是惟一的,将其各元素同 乘一非零因子ω后,仍然代表同一点P,即
4
坐标轴方向的齐次坐标描述
坐标轴方向的描述
5
• 4 1列阵[a b c w]T中第四个元素不为零,则表示空 间某点的位置; • 4 1列阵[a b c w]T 中第四个元素为零,且满足 a2 + b2 + c2 = 1,则表示某轴(矢量)的方向。
44
正向运动学方程求解
第3章_机器人运动学
(3.1)
一个六连杆机械手可具有六个自由度,每个连 杆含有一个自由度,并能在其运动范围内任意 定位与定向。
机器人学基础 2
3.1 机器人运动方程的表示 3.1.1 运动姿态和方向角 机械手的运动方向
原点由矢量p表示。 接近矢量a:z向矢量 方向矢量o:y向矢量 法线矢量n:它与矢量 图3.1 矢量n,o,a和p o和a一起构成一个右手 矢量集合,并由矢量的交乘所规定:n = o × a。
9
3.1 机器人运动方向的表示
3.1.2 运动位置和坐标
用球面坐标表示运动位置 用球面坐标表示手臂运动位置矢量的方法。这个方法 对应于沿轴平移,再绕轴旋转角,最后绕轴旋转角, 如图3.4(b)所示,即为:
Sph(α , β , r ) = Rot ( z ,α ) Rot ( y , β )Trans (0,0, r )
(3.9)
式中,Sph 表示球面坐标组合变换。
3.1 机器人运动方向的表示
10
3.1 机器人运动方程的表示
3.1.3 连杆变换矩阵及其乘积 广义连杆 相邻坐标系间及其相应连杆可以用齐次变换矩阵来表 示。要求出操作手所需要的变换矩阵,每个连杆都要 用广义连杆来描述。在求得相应的广义变换矩阵之后, 可对其加以修正,以适合每个具体的连杆。
cθ1 sθ 0 T1 = 1 0 0
cθ 3 sθ 2 T3 = 3 0 0
− sθ1 cθ1 0 0
− sθ 3 cθ 3 0 0
0 0 1 0
0 0 0 1
cθ 2 0 1 T2 = − sθ 2 0
− sθ 2 0 − cθ 2 0
3.1 机器人运动方向的表示 13
机器人学基础_第3章_机器人运动学
Kinematics treats motion without regard to the forces that cause it. Within the science of kinematics one studies the position, velocity, acceleration, and all higher order derivatives of the position variables (with respect to time or any other variable). 从几何学 几何学的观点来处 几何学 理手指位置 手指位置P与关节变量 关节变量 手指位置 L1, L2, θ1 和 θ 2的关系称为 运动学(Kinematics)。 运动学
(3.9)
3.1 Representation of Kinematics Equation of Manipulator
17
3.1 Representation of Kinetic Equation of Robot Manipulator
3.1 Representation of Kinematics Equation of Manipulator
12
3.1.1 Kinetic Pose and Oriented Angle Roll, Pitch, Yaw to represent motion pose
机器人 运动学
机器人运动学机器人运动学机器人运动学是研究机器人运动规律和运动控制的学科。
它是机器人技术的重要组成部分,对于机器人的设计、控制和应用具有重要意义。
机器人运动学主要研究机器人在空间中的运动规律,包括位置、速度和加速度等。
通过研究机器人的运动学特性,可以实现对机器人的精确控制和规划。
机器人运动学主要包括正运动学和逆运动学两个方面。
正运动学是指根据机器人关节的位置和长度,求解机器人末端执行器的位置。
它通过解析几何、向量运算和矩阵变换等数学方法,将机器人关节的位置参数转化为末端执行器的位置参数,从而实现对机器人的位置控制。
逆运动学是指根据机器人末端执行器的位置,求解机器人关节的位置和长度。
逆运动学是机器人运动学的核心内容,也是机器人控制的关键问题之一。
通过逆运动学,可以实现对机器人末端执行器的精确控制,从而实现机器人在空间中的精确定位和定向。
机器人运动学的研究还包括机器人的姿态和轨迹规划。
姿态是指机器人在空间中的朝向和姿势,轨迹是指机器人在运动过程中的路径和速度。
通过研究机器人的姿态和轨迹规划,可以实现机器人在复杂环境中的灵活运动和避障控制。
机器人运动学的应用非常广泛。
在工业领域,机器人运动学被应用于自动化生产线的控制和优化,实现了生产效率的提高和生产成本的降低。
在医疗领域,机器人运动学被应用于手术机器人的控制和操作,实现了微创手术和精确手术的目标。
在军事领域,机器人运动学被应用于无人飞机和无人车辆的控制和导航,实现了作战效能的提高和战场风险的降低。
机器人运动学的发展离不开先进的传感器和控制技术的支持。
传感器可以实时感知机器人的位置和环境信息,控制技术可以根据机器人的位置和运动规律,实现对机器人的精确控制和运动规划。
总结起来,机器人运动学是研究机器人运动规律和运动控制的学科,主要包括正运动学、逆运动学、姿态和轨迹规划等内容。
机器人运动学的研究和应用对于机器人技术的发展和应用具有重要意义,将为我们创造更多的便利和机会。
机器人运动学
机器人运动学机器人运动学是研究机器人运动和姿态变化的一门学科。
它通过分析机器人的构造和动力学参数,研究机器人在特定环境下的运动规律和遵循的动力学约束,以实现机器人的准确控制和运动规划。
本文将从机器人运动学的基本概念、运动学模型、运动学正解和逆解等方面进行介绍。
1. 机器人运动学的基本概念机器人运动学是机器人学中的一个重要分支,主要研究机器人在空间中的运动状态、末端执行器的位置和姿态等基本概念。
其中,运动状态包括位置、方向和速度等;末端执行器的位置和姿态是描述机器人末端执行器在空间中的位置和朝向。
通过研究和分析这些基本概念,可以实现对机器人运动的控制和规划。
2. 运动学模型运动学模型是机器人运动学研究的重要工具,通过建立机器人的运动学模型,可以描述机器人在运动过程中的运动状态和姿态变化。
常见的运动学模型包括平面机器人模型、空间机器人模型、连续关节机器人模型等。
每种模型都有其独特的参数和运动学关系,可以根据实际情况选择合适的模型进行分析和研究。
3. 运动学正解运动学正解是指根据机器人的构造和动力学参数,求解机器人末端执行器的位置和姿态。
具体而言,根据机器人的关节角度、关节长度和连杆长度等参数,可以通过连乘法求解机器人末端执行器的位姿。
运动学正解是机器人运动学中的常见问题,解决这个问题可以帮助我们了解机器人在空间中的运动规律和运动范围。
4. 运动学逆解运动学逆解是指根据机器人末端执行器的位置和姿态,求解机器人的关节角度。
反过来,控制机器人的运动状态就需要求解逆运动学问题。
运动学逆解是机器人运动学研究的重要内容之一,它的解决可以帮助我们实现对机器人的准确定位和控制。
总结:机器人运动学是研究机器人运动和姿态变化的学科,通过运动学模型、运动学正解和运动学逆解等方法,可以描述机器人的运动状态、末端执行器的位置和姿态。
深入研究机器人运动学,可以实现对机器人的准确控制和运动规划。
随着机器人技术的不断发展,机器人运动学的研究也得到了越来越广泛的应用和重视。
机器人运动学熊有伦机器人技术基础
s
i 1
dici1
1
3.1.4操作臂运动学方程
T i1 i
{R}
{P}
变换矩阵:i1P i1RT RQT QPT PiT i P
{Q}
化简: 这里:
i 1 P
i1iT i P
T i1 i
i1RT RQT QPT PiT
根据变换 过程:
T i1 i
Rot(
c4c5s6 s4c6
c4 s 5
a3
36T
34T
46T
s5 s6
s4c5c6
c4 s6
s5s6 s4c5s6 c4c6
c5 s4 s5
d4 0
0
0
0 1
c23 s23 0 a2c2
13T
21T
23T
0
s23 0
描述连杆连接的两个参数: 1) link offset 连杆偏距di. 相邻两个连杆之间有一个公
共的关节, 沿着两个相邻连杆公共法线
线的距离可以用一个参数描 述为连杆偏2)距jodini. t angle 关节角θi. 当一i为变移量动. 关节当描时i述为,连两转杆个动偏相关距邻节为连时杆,关绕节公角共为轴一线变旋量转. 的夹角θi.
T i1 i {P}
1.坐标系{i-1}相对于坐标系{i}的变换是由连杆四个参数构成
的函数,其中只有一个变量。
{Q}
2.为求解
T i 1 i
,对每个连杆建立坐标系,分解成4个变换子
问题,每个子变换只包含一个连杆参数。
机器人的运动学和动力学模型是什么
机器人的运动学和动力学模型是什么机器人的运动学和动力学模型是为了描述机器人运动和力学特性而建立的数学模型。
运动学模型描述机器人的位姿、速度和加速度,而动力学模型则描述机器人的力、力矩和力的影响。
本文将详细介绍机器人的运动学和动力学模型,包括其定义、应用和建模方法。
一、运动学模型1. 定义机器人的运动学模型用于描述机器人的位姿、速度和加速度之间的关系。
位姿是机器人在三维空间中的位置和方向,速度是机器人在时间上的位置变化率,加速度是速度的变化率。
运动学模型可以帮助我们理解机器人的运动规律,例如机器人的轨迹、路径和姿态等。
2. 应用运动学模型在机器人领域有广泛的应用。
首先,它可以用于路径规划和轨迹跟踪。
通过建立机器人的运动学模型,我们可以预测机器人在不同环境下的运动轨迹,从而实现有效的路径规划和轨迹跟踪。
其次,运动学模型可以用于机器人的姿态控制。
通过了解机器人的位姿、速度和加速度之间的关系,我们可以设计控制算法,实现机器人在不同姿态下的运动控制。
此外,运动学模型还可以用于机器人的碰撞检测和避障。
通过分析机器人的运动学特性,我们可以预测机器人的碰撞风险,并采取相应的避障策略。
3. 建模方法机器人的运动学模型可以通过几何方法、代数方法和向量方法进行建模。
几何方法是最常用的建模方法之一。
它通过描述机器人的几何特征和运动规律来建立运动学模型。
例如,可以使用笛卡尔坐标系和欧拉角来描述机器人的位姿,使用导数和积分来描述机器人的速度和加速度。
代数方法是另一种常用的建模方法。
它通过代数方程和矩阵运算来描述机器人的位姿、速度和加速度之间的关系。
例如,可以使用坐标变换和雅可比矩阵来描述机器人的运动规律。
向量方法是较新的建模方法之一。
它通过向量运算和微分几何来描述机器人的位姿、速度和加速度之间的关系。
例如,可以使用四元数和向量叉乘来描述机器人的姿态和运动规律。
二、动力学模型1. 定义机器人的动力学模型用于描述机器人的力、力矩和力对机器人的影响。
机器人运动学正解逆解课件
在机器人力控制中,需要知道每个关节的角度变化来调整 机器人的姿态和力矩。逆解可以用于求解每个关节的角度 变化,从而调整机器人的姿态和力矩。
机器人定位
在机器人定位中,需要知道每个关节的角度变化来调整机 器人的位置和姿态。逆解可以用于求解每个关节的角度变 化,从而调整机器人的位置和姿态。
04
实现复杂运动轨迹
利用运动学正解与逆解,可以规划出 复杂的运动轨迹,满足各种应用需求 。
02
机器人运动学正解
正解的基本概念
正解是指机器人末端执行器从某一初 始位置和姿态到达目标位置和姿态所 需经过的关节角度值。
正解是机器人运动学中的基本问题, 是实现机器人精确控制和自主导航的 基础。
正解的求解方法
逆解的求解方法
01
代数法
通过建立机器人关节角度与目标点坐标之间的方程组,利用数学软件求
解方程组得到关节角度。这种方法适用于简单的机器人结构,但对于复
杂机器人结构求解过程可能较为繁琐。
02
数值法
通过迭代或搜索的方法,不断逼近目标点坐标,最终得到满足要求的关
节角度。这种方法适用于复杂机器人结构,但求解时间较长且可能存在
机器人运动学正解逆解课件
目 录
• 机器人运动学概述 • 机器人运动学正解 • 机器人运动学逆解 • 机器人运动学正逆解的对比与联系 • 机器人运动学正逆解的实例分析
01
机器人运动学概述
定义与分类
定义
机器人运动学是研究机器人末端 执行器位姿与关节变量之间的关 系的学科。
分类
根据机器人的结构和运动特性, 可以分为串联机器人和并联机器 人。
局部最优解。
03
解析法
通过几何学和代数学的方法,直接求解关节角度与目标点坐标之间的关
机器人技术基础课件第三章 机器人运动学
30
3.2.1 机器人正运动学方程
如图所示是个三自由度的机器人, 三个关节皆为旋 转关节,第3关节轴线垂直于1、2关节轴线所在的平 面,各个关节的旋转方向如图所示,用D-H方法建立 各连杆坐标系,求出该机器人的运动学方程。
刚体的姿态可由动坐标系的坐
标的轴刚 位方置体向可Q在来用固表齐定示次坐。坐标令标系n形、O式oX、的YZa一中分
别为X′、y ′、z ′坐标轴的 个(4×1)列阵表示为: 单位方向矢量,每个单位方向 矢量在固定坐标系上的分量为 动坐标系各坐标轴的方向余弦, 用齐次坐标形式的(4×1)列阵 分别表示为:
y L1 sin1 L2 sin(1 2 )
通常的矢量形式:
r f ( )
29
3.2.1 机器人正运动学方程
机器人正运动学将关节变量作为自变量,研究机器人末 端执行器位姿与基座之间的函数关系。总体思想是:
(1)给每个连杆指定坐标系; (2)确定从一个连杆到下一连杆变换(即相邻参考系 之间的变化); (3)结合所有变换,确定末端连杆与基座间的总变换 ; (4)建立运动学方程求解。 机器人运动学的一般模型为:
03T 01T12T 23T
如此类推,对于六连杆机器人,有下列矩阵:
06T 01T12T 23T 34T 45T 56T
3.2 3.2 机械手运动学方程
26
0 6
T
3.1.4 连杆变换矩阵及其乘积
06T 01T12T23T34T 45T56T
机器人运动学方程
此式右边表示了从固定参考系到手部坐标系的各连杆
机器人学-第3章_机器人运动学
1, di)表示。
空间机械臂坐标系选择
为了获得机械臂末端执行器在3维空间的位置和姿态,需要在每个连杆上 定义与连杆固连的坐标系来描述相邻连杆之间的位置关系。
根据固连坐标系所在连杆的编号对固连坐标系命名,如在固连在连杆i上 的固连坐标系称为坐标系{i}。
若ai =0,两Z轴相交,则选Xi垂于Zi和Zi+1 ,坐标系{i}的选择不是唯一的。
9
轴i θi
轴 i-1
连杆坐标系中连杆参数确定
θi-1
连杆 i-1
DH参数按以下方法确定:
Zi
ai =沿Xi轴,从Zi移动到Zi+1的距离;
Yi
i =绕Xi轴,从Zi旋转到Zi+1的角度;
di =沿Zi轴,从Xi-1移动到Xi的距离;
系{1}与坐标系{0}重合。
对于坐标系{n},原点位置可以在关节轴
上任意选取, Xn的方向也是任意的。但在选 择时应尽量使更多的连杆参数为1=0 1=-90o d1=0
Y2
a2=L2 2=0 q2=-90o d2=L1
(b)
Z1
X2
Y2
Y1
X1
a1=0 1=90o d1=0
相邻连杆间坐标变换公式
建立 {P}、{Q}和{R}3个中间坐标系, 其中{i}和{i-1}是固定在连杆 i 和 i-1 上的固 连坐标系,如图3-13所示。
连杆 i-1 Zi
ZP
Xi ai
di ZQ XQ
ZR
qi
Zi-1
Xi-1XR ai-1
XP
i-1
1. 绕 Xi-1 轴旋转 i-1角
04-机器人课程-运动学
1、机器人运动学
1.5机器人微分运动及速度
机器人的微分运动是研究机器人关节变量的微小变化与机器人手部位姿的微小变化 之间的微分关系。如果已知两者之间的微分关系,就可以解决机器人微分运动的两 类基本问题:一类是在已知机器人各个关节变量的微小变化时求机器人手部位姿的 微小变化;另一类是在已知机器人手部位姿的微小变化时求机器人各个关节变量相 应的微小变化。机器人的微分运动对机器人控制、误差分析、动力分析和保证工作 精度具有十分重要的意义。
1、机器人运动学
1.3齐次变换及运算
1.3.1 直角坐标变换 在机器人中建立直角坐标系后,机器人的手部和各活动杆件之间相对位 置和姿态就可以看成是直角坐标系之间的坐标变换。
1、机器人运动学
1.3齐次变换及运算
平移变换 设坐标系{i}和坐标系{j}具有相同的姿态,但两者的坐标原点不重合,如图3-7所 示。 若用矢量Pij表示坐标系{i}和坐标系{j}原点之间的矢量,则坐标系{j}就可以看成 是由坐标系{i}沿矢量Pij平移变换而来的,所以称矢量Pij为平移变换矩阵,它是一个 3×1的矩阵
1.1、机器人位姿描述
机器人的位姿主要是指机器人手部在空间的位置和姿态,有 时也会用到其他各个活动杆件在空间的位置和姿态。需要先 了解的与机器人运动相关的一些基础知识。 机器人的机构运动简图、机器人的自由度、机器人的坐标系、 机器人的工作空间、机器人的位姿
1、机器人运动学
1.2机器人的位姿
所谓机器人的位姿主要就是指机器人手部在空间的位置和姿态。有了机器 人坐标系,机器人手部和各个活动杆件相对于其他坐标系的位置和姿态就 可以用一个3×1的位置矩阵和一个3×3的姿态矩阵来描述。如图3-2所示, 机器人手部的坐标系{H}相对于机座坐标系{O}位置就可以用坐标系{H}的 原点OH在坐标系{O}三个坐标分量xOH、yOH、zOH、组成3×1的位置矩阵来 表示
工业机器人课件第三章 机器人运动学
T3= A1 A2 A3
称这些A矩阵的乘积为T矩阵,其前置上标若为0,则可省略。对于六 连杆机械手,有下列T矩阵
T6= A1 A2 A3 A4 A5 A6
手爪坐标系
机械手的运动方向 原点由矢量p表示。 接近矢量a:z轴设在手指接近物体的方向,称为接近矢量 方向矢量o:y轴设在两手指的连线方向,称为方位矢量 法线矢量n:x轴由右手系确定, 即 n = o a ,称为法向矢量。
0 sin i cos i 0
0 0 0 1
对于在第i坐标系中的点ri在第i—1坐标系中表示为:
ri 1 i 1Ai ri
确定第i坐标系相对于机座坐标系的位置的齐次变换矩阵i-1Ti是 各齐次变换矩阵Ai的连乘积,可表示成
0
Ti A1 A2 A3 A4 A5 A6 A j
பைடு நூலகம்
cos i sin cos i i 1 sin i sin i 1 0
例 建立右图所示机器人相邻坐标 系间的转换矩阵 解:建立的坐标系如右图,这是二维坐 标系(在三维空间中,各坐标系的z轴垂 直于纸面),其相邻坐标系的变换矩阵 为
A1 Rz ,Tx ,l1
第三章 机器人运动学
§ 3.1 机器人运动方程的表示
机器人的机械手看作是一系列由关节连接起来的连杆构成的。为机 械手的每一连杆建立一个坐标系,并用齐次变换来描述这些坐标系间 的相对位置和姿态。通常把描述一个连杆与下一个连杆间相对关系的 齐次变换叫做A矩阵。一个A矩阵就是一个描述连杆坐标系间相对平移 和旋转的齐次变换。如果A1表示第一个连杆对于基系的位置和姿态, A2表示第二个连杆相对于第一个连杆的位置和姿态,则第二个连杆在 基系中的位置和姿态可由下列矩阵的乘积给出 T2= A1 A2 同理,若A3表示第三个连杆相对于第二个连杆的位置和姿态,则有
工业机器人运动学1
*
手部位姿矢量为从固定参考坐标系OXYZ原点指向手部坐标系{B}原点的矢量p。手部的位姿可由(4×4)矩阵表示:
*
例:手部抓握物体Q,物体为边长2个单位的正立方体,写出表达该手部位姿的矩阵式。
*
解:
因为物体Q形心与手部坐标系0`X`y`z`的坐标原点0’相重合,所以手部位置的(4x1)列阵为:
工业机器人 PTP 运动和 CP 运动
运动轨迹规划
*
1955年Denavit和Hartenberg提出了一种采用矩阵代数的系统而广义的方法,来描述机器人手臂杆件相对于固定参考坐标系的空间几何关系,这种方法是标准、通用的。
这种方法使用4×4齐次变换矩阵来描述两个相邻的机械刚性构件间的空间关系,把正向运动学问题简化为寻求等价的4×4齐次变换矩阵,此矩阵把手部坐标系的空间位移与参考坐标系联系起来。并且该矩阵还可用于推导手臂运动的动力学方程。而逆向运动学问题可采用几种方法来求解。最常用的是矩阵代数、迭代或几何方法。
*
推导如下: 因A点是绕Z轴旋转的, 所以把A与A′投影到XOY平面内, 设OA=r, 则有
同时有
其中, α′=α+θ, 即
*
所以
所以
由于Z坐标不变, 因此有
*
写成矩阵形式为
记为:
A′=Rot(z, θ)A
其中, 绕Z轴旋转算子左乘是相对于固定坐标系,即
*
同理:
工业机器人反向运动学是工业机器人控制的基础,而正向运动学又是反向运动学的基础。
*
运动学正问题
How do I
put my
hand here?
Where is
my hand?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 0 0 1
c6 s A6 6 0 0
s6 c6 0 0
0 0 1 0
0 0 0 1
机器人末端位置和姿态为:T A1 A2 A3 A4 A5 A6
该机械手末端的位置方程如下:
Px c1[d 6(c23c4 s5 s 23c5) d 4 s 23 a2c2] s1(d 6 s 4 s5 d 2) Py s1[d 6(c23c4 s5 s 23c5) d 4 s 23 a2c2] c1(d 6 s 4 s5 d 2) Pz d 6(c 23c5 s 23c4 s5) d 4c 23 a 2 s 2
转动连杆坐标系的建立
• 首连杆0:基座坐标系{0}是固定不动的;Z0
轴取关节1的轴线,O0的设置任意,通常与 O1重合; • 末连杆n:工具坐标系{n}固定在机器人的 终端,由于连杆n的终端不再有关节,约定 坐标系{n}与{n-1}平行;
再看转动连杆参数的含义
• 连杆的尺寸参数
连杆长度ai:Zi和Zi-1沿Xi的距离,总为正;; 连杆扭角αi :Zi-1绕Xi转至Zi的转角,符号根据右手定则确 定;
T6 A1 A2 A3 A4 A5 A6
注意前后 顺序
二、 机器人运动学方程
2、手爪位姿的表示
位置矢量P:两手指连线的中点(手爪坐标系的原点); 接近矢量a:夹持器进入物体的方向(手爪坐标系的Z轴); 方向矢量o:指尖互相指向(手爪坐标系的Y轴); 法线矢量n:垂直手掌面的方向(手爪坐标系的X轴);
i i i i i
c i s i s i 0
s i s i c i s i c i 0
ai c i ai s i di 1
(三)移动连杆坐标系及连杆的D-H坐标变换
移动连杆坐标系的建立
转动坐标臂(RRR)
Z0
X1 X0 Z1 Z2 Z3 X2 X3
参数 θi 连杆
di 0
ai 0
αi 90º
1
θ1
2
3
θ2
θ3
0
0
a2
a3
0
0
A1 Rot( Z , θ 1) Rot( x,π / 2) A2 Rot( Z , θ )Trans(a 2,0,0) A3 Rot( Z , θ 3)Trans(a 3,0,0) T A1 A2 A3
0 s3 0 c3 1 0 0 0
a3c3 a3 s3 d3 1
0 a 2 c2 0 a2 s2 1 d2 0 1 s4 0 c4 0 0 0 0 1
c5 s A5 5 0 0
0 s5 0 c5 1 0 0 0
• 存在性:对于给定的位姿,至少存在一组 关节变量来产生希望的机器人位姿;如果 给定机械手位置在工作空间外,则解不存 在。
(一)机器人运动学逆解有关问题
• 唯一性:对于给定的位姿,仅有一组关节变量来产生希望的机器人位 姿。对于机器人,可能出现多解。 • 机器人运动学逆解的数目取决于关节数目、连杆参数和关节变量的活 动范围。一般,非零连杆参数越多,运动学逆解数目越多(多至16 个)。 • 如何从多重解中选择出其中的一组?应根据具体情况而定,在避免碰 撞的前提下,通常按最短行程的准则来择优,使每个关节的移动量为 最小。 • 由于工业机器人前面三个连杆的尺寸较大,后面三个较小,故应加权 处理,遵循多移动小关节、少移动大关节的原则。
移动连杆坐标系的建立
• 首连杆0:基座坐标系{0}是固定不动的;Z0
轴取关节1的轴线,O0的设置任意,通常与 O1重合; • 末连杆n:工具坐标系{n}固定在机器人的 终端,由于连杆n的终端不再有关节,约定 坐标系{n}与{n-1}平行;
再看移动连杆参数的含义
• 由于移动连杆的OiZi轴线平行于移动关节轴 线移动, OiZi在空间的位置是变化的,因而 ai参数无意义。连杆i的长度在坐标系{i-1} 中考虑, 故参数ai=0 。原点Oi的零位与Oi-1 重合,此时移动连杆的变量di=0 。
• 相邻连杆的关系参数
连杆偏置di :沿关节i轴线方向,两个共垂线之间的距离;
关节转角θi :垂直于关节轴线的平面内,两个共垂线之 间的夹角;
关节变量
• 旋转关节:
关节转角θi是关节变量,连杆长度ai、连杆 扭角αi 、连杆偏置di 是固定不变的;
• 移动关节:
连杆偏置di是关节变量,连杆长度ai 、连杆 扭角αi 、关节转角 θi是固定不变的;
(1)绕Zi-1轴转θi ;Rot(Zi-1,θi)
(2)沿Zi-1轴移动di ;Trans(Zi-1,di) (3)沿Xi轴移动ai ;Trans(Xi,ai)
(4)绕Xi轴转αi ;Rot(Xi,αi)
• 由于以上变换都是相对于动坐标系的,根据“由左向右”的原则可求 出变换矩阵: A Rot( z , )Trans(0,0, d )Trans(a ,0,0) Rot( x, )
n oa oo 1 aa 1 oa 1
nx n T T6 y nz 0
ox oy oz 0
ax ay az 0
px py pz 1
二、 机器人运动学方程
3、机器人运动学方程 • 由手爪相对于基座的两种位姿表示,可得:
nx n T T6 y nz 0
二、机器人运动学方程
(运动学方程/典型机器人运动学方程)
三、机器人逆运动学
(机器人运动学逆解有关问题/典型臂运动学逆解)
一、机器人连杆参数及其D-H坐标变换
在驱动装置带动下,连杆将绕或沿关节轴线, 相对于前一临近连杆转动或移动。
(一)连杆参数
(一)连杆参数
• 连杆的尺寸参数
连杆长度ai:两个关节轴线i和i+1 沿共垂线的距离; 连杆扭角αi :两个关节轴线i和i+1的夹角;
球面(极)坐标臂(RRP)
z3
三个连杆长度分别为: d1、d2、d3 ,其中d3是 变量
参数 θi 连杆
θ2 z1 x2
x3 z2
di d1 d2 d3
ai 0 0 0
αi -90º 90º 0
1 2 3
θ1 θ2 0
x1
z0
θ1 x0 y0
A1 Rot( Z , θ 1)Trans(0,0, d 1) Rot( x, π / 2) A2 Rot( Z , θ )Trans(0,0, d 2) Rot( x,π / 2) A3 Trans(0,0, d 3) T A1 A2 A3 c1c2 s1 c1s2 d 3c1s2 d 2 s1 s c c s s d s s d c 1 2 1 1 2 3 1 2 2 1 s2 0 c2 d 3c2 d1 0 0 1 0
移动连杆坐标系的D-H变换
• 移动连杆的D-H参数为θi、ai、αi 、di,其中关 节变量是di 。用与求转动连杆坐标系相同的方法 可求出移动连杆的D-H变换矩阵:
Ai Rot( z , i )Trans(0,0, d i )Trans(ai ,0,0) Rot( x, i ) c i s i 0 0 s i c i c i c i s i 0 s i s i c i s i c i 0 0 0 di 1
(二)转动连杆坐标系及连杆的D-H坐标变换
转动连杆坐标系的建立
• 坐标轴Zi:与i+1关节的轴线重合; • 坐标轴Xi:沿连杆i两关节轴线的公垂线,指向i+1关节; • 坐标轴Yi:按右手直角坐标系法则确定;
• 坐标原点Oi:
(1)当关节i轴线和关节i+1轴线相交时,取交点; (2)当关节i轴线和关节i+1轴线异面时,取两轴线的公垂 线与关节i+1轴线的交点; (3)当关节i轴线和关节i+1轴线平行时,取关节i+1轴线与 关节i+2轴线的公垂线与关节i+1轴线的交点;
二、机器人运动学方程
(一)运动学方程
• 机械手可以看成由一系列关节连接起来的连杆组构成。
• 给每一个连杆在关节处设置一个连杆坐标系,该连杆坐标系 随关节运动而运动。
二、 机器人运动学方程
1、A矩阵和T矩阵
• 用A矩阵描述连杆坐标系间相对平移和旋转 的齐次变换。 • A1表示第一连杆对基坐标的位姿, A2表示 第二连杆对第一连杆位姿…… • 则第二连杆对基坐标的位姿为 T2 A1 A2 • 手爪相对于基座的位姿
三、机器人逆运动学
nx n T T6 y nz 0 ox oy oz 0 ax ay az 0 px py =A1 A2 A3 A4 A5 A6 pz 1
• 1)问题:已知手部位姿,求各关节位置 • 2)意义:是机械手控制的关键
(一)机器人运动学逆解有关问题
ox oy oz 0
ax ay az 0
px py =A1 A2 A3 A4 A5 A6 pz 1
• 方程左边是手爪相对基座的位置和姿态,方程右边是各连 杆A矩阵的乘积(是n个关节变量的函数),上式称为机器 人的运动学方程。
典型机器人运动学方程
• 圆柱坐标臂(PRP)
参数 θi 连杆
• 相邻连杆的关系参数
连杆偏置di : Xi-1沿Zi-1至Xi的距离,沿Zi-1正向时为正; 关节转角θi :Xi-1绕Zi-1转至Xi的转角,符号根据右手定则 确定;
转动连杆坐标系的D-H变换
• 转动连杆的D-H参数为θi、ai、αi 、di,其中关节变量是θi 。这四 个参数确定了连杆i相对于连杆i-1的位姿,即D-H坐标变换矩阵Ai。 • 坐标系{i-1}经过下面四次有序的相对变换可得到坐标系{i}: