排列组合常用几种基本方法-PPT
合集下载
排列组合ppt课件
在工程领域,排列组合用于优化设计 、规划、调度等问题,如计算机科学 、信息论、控制论等。
02
排列组合基础
排列数公式与组合数公式
排列数公式
从n个不同元素中取出m个元素的所有排列的个数,用符号A(n,m)表示,公式 为A(n,m)=n!/(n-m)!,其中n!表示n的阶乘,即n×(n-1)×...×3×2×1。
给定一个无向图,用k种颜色对图 中的边进行染色,使得每条边的 颜色都不相同,求所有可能的染 色方案。
染色问题的解法
使用递归和回溯法,从全不染色的 情况开始,逐渐增加染色的边数, 直到全部染色。
染色问题的应用
在解决一些组合优化问题时,染色 问题可以用来计算不同方案的数量 。
平均分组
平均分组的定义
将n个元素平均分成m组,每组k 个元素,求所有可能的分组方案
反序:若在排列a中有i<j,且 a(i)=a( j),则称a中i和j为反序
。
奇偶性:若n个元素全排列的 排法数为偶数,则称n个元素 全排列为偶排列,否则称为奇
排列。
组合的定义与性质
组合的定义:从n个不同元素中取出m个 元素的所有组合的个数,记作C(n,m)。
结合律:C(n,k)C(n-k,m)=C(n,m)C(nm,k)。
03
排列组合进阶
错位重排
错位重排的定义
在n个元素中,如果有m个元素互不相邻,则称这 个排列为错位重排。
错位重排的公式
$n!(1-1/2!+1/3!-...+(-1)^n/n!)$
错位重排的应用
在解决一些排列组合问题时,错位重排公式可以 用来计算某些元素不在一起排列的总数。
染色问题
染色问题的定义
等待时间
02
排列组合基础
排列数公式与组合数公式
排列数公式
从n个不同元素中取出m个元素的所有排列的个数,用符号A(n,m)表示,公式 为A(n,m)=n!/(n-m)!,其中n!表示n的阶乘,即n×(n-1)×...×3×2×1。
给定一个无向图,用k种颜色对图 中的边进行染色,使得每条边的 颜色都不相同,求所有可能的染 色方案。
染色问题的解法
使用递归和回溯法,从全不染色的 情况开始,逐渐增加染色的边数, 直到全部染色。
染色问题的应用
在解决一些组合优化问题时,染色 问题可以用来计算不同方案的数量 。
平均分组
平均分组的定义
将n个元素平均分成m组,每组k 个元素,求所有可能的分组方案
反序:若在排列a中有i<j,且 a(i)=a( j),则称a中i和j为反序
。
奇偶性:若n个元素全排列的 排法数为偶数,则称n个元素 全排列为偶排列,否则称为奇
排列。
组合的定义与性质
组合的定义:从n个不同元素中取出m个 元素的所有组合的个数,记作C(n,m)。
结合律:C(n,k)C(n-k,m)=C(n,m)C(nm,k)。
03
排列组合进阶
错位重排
错位重排的定义
在n个元素中,如果有m个元素互不相邻,则称这 个排列为错位重排。
错位重排的公式
$n!(1-1/2!+1/3!-...+(-1)^n/n!)$
错位重排的应用
在解决一些排列组合问题时,错位重排公式可以 用来计算某些元素不在一起排列的总数。
染色问题
染色问题的定义
等待时间
(最新整理)《排列组合专题》PPT课件
2021/7/26
25
例9.有男女各五个人,其中有3对是夫妻,沿 圆桌就座,若每对夫妻都坐在相邻的位置,问有 多少种坐法?
设3对夫妻分别为A和a,B和b,C和c,先让A,B, C三人和另外4个人沿圆桌就座的方法为6!种.
又对上述每种坐法,a坐在A的邻座的方式有左右两 种,b,c也如此.
所以共有6!*2*2*2=5760种.
将0到299的整数都看成三位数,其中数字3不 出现的,百位数字可以是0,1或2三种情况。十位 数字与个位数字均有九种,因此除去0共有
3×9×9-1=242(个).
2021/7/26
12
例10、
在小于10000的自然数中,含有数字1的数有 多少个?
不妨将0至9999的自然数均看作四位数,凡位数不到 四位的自然数在前面补0,使之成为四位数。
所以符合题意的个数为:
1× P18× P28=448
2021/7/26
19
例4、用0、1、2、3、4、5六个数字,可以 组成多少个没有重复数字的三位偶数?
1.个位为0,十位为1、2、3、4、5中的一个,百位为剩下的 四个数字中的一个,所以这样的偶数共有1×P15×P14
2.个位为2,百位为1、3、4、5中的一个,十位为剩下的四个 数字中的一个,所以这样的偶数共有1×P14×P14
2021/7/26
10
例8、求正整数1400的正因数的个
数.
因为任何一个正整数的任何一个正因数(除1外)都是这个 数的一些质因数的积,因此,我们先把1400分解成质因数的 连乘积1400=23527.所以这个数的任何一个正因数都是由2, 5,7中的若干个相乘而得到(有的可重复)。
于是取1400的一个正因数,这件事情是分如下三个步骤 完成的:
大学排列组合ppt课件
排列与组合的综合实例解析
总结词
通过综合实例,理解排列与组合在实际 问题中的应用。
VS
详细描述
通过一个复杂的问题,如安排一场活动或 者组织一次旅行,综合运用排列和组合的 知识来解决实际问题,并强调排列与组合 在解决实际问题中的重要性和关联性。
05
排列组合的解题技巧
解题思路分析
明确问题要求
01
首先需要清楚题目是关于排列还是组合的问题,排列需要考虑
04
排列组合的实例解析
排列实例解析
总结词
通过具体实例,深入理解排列的概念和计算方法。
详细描述
通过实际生活中的例子,如学生选课、物品的排列等,解释排列的概念,并介绍排列的计算公式,以及如何应用 这些公式解决实际问题。
组合实例解析
总结词
通过具体实例,深入理解组合的概念和计算方法。
详细描述
通过实际生活中的例子,如彩票中奖概率、选举代表等,解释组合的概念,并介绍组合的计算公式, 以及如何应用这些公式解决实际问题。
少?
答案解析
答案1
从5个人中选3个人参加会议共有 $C_{5}^{3} = 10$种不同的选法。
答案3
大于2000的三位数,首位数字可以为 2,3或4,共有$A_{3}^{1} times A_{4}^{2} = 36$种。
答案2
将4把椅子排好,共有$A_{5}^{3} = 60$种坐法。
答案4
不同的分法种数为$A_{5}^{4} = 120$种。
常见错误解析与避免方法
混淆排列与组合
遗漏情况
排列和组合是不同的概念,需要明确 题目要求,正确使用公式。
在解题过程中,需要注意不要遗漏某 些情况,例如在排列时需要考虑元素 的顺序,在组合时需要考虑元素的取 法。
排列与组合ppt课件
数。
从10个不同字母中取出 5个字母的所有排的个
数。
从8个不同数字中取出4 个数字的所有排列的个
数。
从n个不同元素中取出m 个元素的所有排列的个
数。
03
CHAPTER
组合的计算方法
组合的公式
组合的公式:C(n,k) = n! / (k!(n-k)!)
"!"表示阶乘,即n! = n * (n-1) * ... * 3 * 2 * 1。
3
排列组合在计算机科学中的应用
计算机科学中,排列组合用于算法设计和数据结 构分析。
排列与组合的未来发展
排列与组合理论的发展方向
随着数学和其他学科的发展,排列与组合理论将不断发展和完善,出现更多新 的公式和定理。
排列与组合的应用前景
随着科学技术的发展,排列与组合的应用领域将更加广泛,特别是在计算机科 学、统计学和信息论等领域的应用将更加深入。
在计算排列和组合时,使用的 公式和方法也不同。
02
CHAPTER
排列的计算方法
排列的公式
01
02
03
排列的公式
P(n, m) = n! / (n-m)!, 其中n是总的元素数量, m是需要选取的元素数量 。
排列的公式解释
表示从n个不同元素中取 出m个元素的所有排列的 个数。
排列的公式应用
适用于计算不同元素的排 列组合数,例如计算从n 个不同数字中取出m个数 字的所有排列的个数。
该公式用于计算从n 个不同元素中选取k 个元素(不放回)的 组合数。
组合的计算方法
直接使用组合公式进行计算。 当n和k较大时,需要注意计算的复杂性和准确性。
可以使用数学软件或在线工具进行计算。
从10个不同字母中取出 5个字母的所有排的个
数。
从8个不同数字中取出4 个数字的所有排列的个
数。
从n个不同元素中取出m 个元素的所有排列的个
数。
03
CHAPTER
组合的计算方法
组合的公式
组合的公式:C(n,k) = n! / (k!(n-k)!)
"!"表示阶乘,即n! = n * (n-1) * ... * 3 * 2 * 1。
3
排列组合在计算机科学中的应用
计算机科学中,排列组合用于算法设计和数据结 构分析。
排列与组合的未来发展
排列与组合理论的发展方向
随着数学和其他学科的发展,排列与组合理论将不断发展和完善,出现更多新 的公式和定理。
排列与组合的应用前景
随着科学技术的发展,排列与组合的应用领域将更加广泛,特别是在计算机科 学、统计学和信息论等领域的应用将更加深入。
在计算排列和组合时,使用的 公式和方法也不同。
02
CHAPTER
排列的计算方法
排列的公式
01
02
03
排列的公式
P(n, m) = n! / (n-m)!, 其中n是总的元素数量, m是需要选取的元素数量 。
排列的公式解释
表示从n个不同元素中取 出m个元素的所有排列的 个数。
排列的公式应用
适用于计算不同元素的排 列组合数,例如计算从n 个不同数字中取出m个数 字的所有排列的个数。
该公式用于计算从n 个不同元素中选取k 个元素(不放回)的 组合数。
组合的计算方法
直接使用组合公式进行计算。 当n和k较大时,需要注意计算的复杂性和准确性。
可以使用数学软件或在线工具进行计算。
排列组合复习课解排列组合问题的常用技巧课件
交通安排
在城市中选择最佳的交通 路径,涉及排列组合中的 排列问题。
彩票中奖
计算彩票中奖的概率,涉 及排列组合中的组合问题。
排列组合在计算机科学中的应用
算法设计
计算机程序设计中,算法 的复杂度分析涉及排列组 合中的计算。
数据结构
在数据结构中,对数据的 排列和组合涉及排列组合 中的相关知识。
加密算法
密码的生成和破解,涉及 排列组合中的排列和组合 问题。
2023
REPORTING
排列组合复习课:解 排列组合问题的常用 技巧
• 排列组合基本概念 • 排列组合问题的常用解题技巧 • 排列组合问题中的计数原理 • 排列组合问题中的实际应用 • 排列组合问题的模拟试题与解析
2023
PART 01
排列组合基本概念
REPORTING
排列的定义与计算公式
排列的定义
反面思考法
总结词
在解决排列组合问题时,有时候从正面思考比较困难,可以采用反面思考法来解决问题。
详细描述
反面思考法是一种常用的解题技巧,它主要用于解决从正面思考比较困难的问题。具体来说,反面思考法是通过 考虑问题的反面情况来解决问题。这种方法特别适用于涉及对立事件或不可能事件的问题,它可以简化计算过程 并提高准确性。
分步乘法计数原理
要点一
总结词
分步乘法计数原理是解决排列组合问题的基本方法之一, 其核心思想是将问题按照不同的步骤分为若干个小的步骤, 然后分别计算每个步骤的数量,最后将各个步骤的数量相 乘得到总数量。
要点二
详细描述
分步乘法计数原理的步骤是首先确定问题的不同步骤,然 后对每一步进行计数,最后将各个步骤的计数结果相乘。 这个原理在排列组合问题中广泛应用,例如在解决排列问 题、组合问题以及概率问题时非常有效。
《排列组合》PPT课件
考考你:饮料和点心 只能各选一样,有几 种不同的搭配方式?
① ②
3×2=6(种)
M 下
能组成哪几个不同 的两位数呢?
? ? 从宁波到北京一共有几种走法?
飞机
轮船 火车 飞机
宁波
汽车
上海
火车
北京
火车
8种
我们知道了: 有的问题需要考虑到顺序,也就是结果和顺 序有关,例如组成几位数这样的问题等 有的问题不用考虑到顺序,也就是说结果和 顺序无关,例如握手、比赛等问题 今后我们在遇到这些问题的时候一定要认真 审题,看清楚问题的“隐含条件”
学习目标:
1、我能找出简单事物的组合数。
2、我能用排列与组合的知识解决生活中的 实际问题。
小组讨论一:
一件衣服搭配一条裤子或者一条裙子,可以 搭配多少种? 要求:小组中一人记录,其他同学陈述自己 的观点。
穿法一
穿法二
穿法三
穿法六
穿法四
穿法五
2×3﹦6(种)
小组合作讨论二:
用1,2,3可以组合成哪些两位数? 要求:小组中一人记录,其他同学陈述自己 的观点。
12 21 31 13 23 32
十 个 位 位
十 个 位 位
十 个 位 位
猜一猜:
我今年读九年级了,我的 班级是由1、2、3这三个数 字组成的一个三位数,请 你猜一猜我读的是多少班?
123 132 213 231 312 321
作业:
同学们回家后仔细观察周围环境中可搭配和 组合的实物,自己搭配和组合。
小学数学课件
灿若寒星整理制作
排列组合ppt课件
排列组合基本公式 • 排列组合的应用 • 排列组合的扩展知识 • 练习题与答案解析
01
排列组合基本概念
排列的定义
排列的定义
从n个不同元素中取出m个元素( m≤n),按照一定的顺序排成一列, 称为从n个不同元素中取出m个元素的 排列。
组合公式推导
根据乘法原理,组合数等 于从n个不同元素中取出m 个元素的排列数除以这m 个元素的全排列数。
组合公式证明
通过数学归纳法证明组合 公式。
排列组合公式的推导与证明
排列组合公式的推导
通过数学归纳法和乘法原理,逐步推导出排列和组合的公式。
排列组合公式的证明
通过数学归纳法和反证法,证明排列和组合公式的正确性。
机器学习
03
在机器学习中,排列组合用于描述样本空间和事件发生的可能
性,例如在朴素贝叶斯分类器中。
在统计学中的应用
概率分布
在统计学中,排列组合用于描述概率分布和随机事件的组合数量 ,例如在二项分布、多项分布等概率分布中。
统计推断
在统计推断中,排列组合用于计算样本数据的可能性和置信区间 ,例如在贝叶斯推断和参数估计中。
从n个不同元素中取出m个元素的所有组合方式。
排列组合在概率论中的应用
总结词
排列组合在概率论中有广泛的应用,它们是概率论中的基本概念之一。
详细描述
在概率论中,排列组合被广泛应用于各种概率模型和随机事件的计算中。例如,在计算随机事件的概率时,可以 使用排列组合来计算样本空间的大小和基本事件的数量。在计算条件概率时,可以使用排列组合来计算条件事件 的基本事件的数量。此外,在概率分布的计算中,排列组合也起着重要的作用。
3
组合的特性
组合无方向性,即顺序不影响组合的唯一性。
01
排列组合基本概念
排列的定义
排列的定义
从n个不同元素中取出m个元素( m≤n),按照一定的顺序排成一列, 称为从n个不同元素中取出m个元素的 排列。
组合公式推导
根据乘法原理,组合数等 于从n个不同元素中取出m 个元素的排列数除以这m 个元素的全排列数。
组合公式证明
通过数学归纳法证明组合 公式。
排列组合公式的推导与证明
排列组合公式的推导
通过数学归纳法和乘法原理,逐步推导出排列和组合的公式。
排列组合公式的证明
通过数学归纳法和反证法,证明排列和组合公式的正确性。
机器学习
03
在机器学习中,排列组合用于描述样本空间和事件发生的可能
性,例如在朴素贝叶斯分类器中。
在统计学中的应用
概率分布
在统计学中,排列组合用于描述概率分布和随机事件的组合数量 ,例如在二项分布、多项分布等概率分布中。
统计推断
在统计推断中,排列组合用于计算样本数据的可能性和置信区间 ,例如在贝叶斯推断和参数估计中。
从n个不同元素中取出m个元素的所有组合方式。
排列组合在概率论中的应用
总结词
排列组合在概率论中有广泛的应用,它们是概率论中的基本概念之一。
详细描述
在概率论中,排列组合被广泛应用于各种概率模型和随机事件的计算中。例如,在计算随机事件的概率时,可以 使用排列组合来计算样本空间的大小和基本事件的数量。在计算条件概率时,可以使用排列组合来计算条件事件 的基本事件的数量。此外,在概率分布的计算中,排列组合也起着重要的作用。
3
组合的特性
组合无方向性,即顺序不影响组合的唯一性。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.06.2020
4
3.捆绑法
相邻元素的排列,可以采用“局部到整体”的 排法,即将相邻的元素局部排列当成“一个”元素, 然后再进行整体排列.
例3 . 6人排成一排.甲、乙两人必须相邻,有多少种不的排法?
解:(1)分两步进行:
♀♀♀♀♀♀
第一步,把甲乙排列(捆绑): 有A22=2种捆法甲 乙
第二步,甲乙两个人的梱看作一个元素与其它的排队:
16.06.2020
16.06.2020
1
1. 分组(堆)问题 分组(堆)问题的六个模型:①无序不等分;
②无序等分;③无序局部等分;(④有序不等分; ⑤有序等分;⑥有序局部等分.)
处理问题的原则:
①若干个不同的元素“等分”为 m个堆,要将 选取出每一个堆的组合数的乘积除以m!
②若干个不同的元素局部“等分”有 m个均等堆, 要将选取出每一个堆的组合数的乘积除以m!
串成一串从间隙里选m-1个结点剪截成m段.
变式: 某校准备参加今年高中数学联赛,把16个选
手名额分配到高三年级的1-4 个教学班,每班的名额
不少于该班的序号数,则不同的分配方案共有___种.
解: 问题等价于先给2班1个,3班2个,4班3个,
再把余下的10个相同小球放入4个盒子里,每个盒子
至少有一个小球的放法种数问题.
种间接解题的方法.
排列组合应用题往往和代数、三角、立体几何、平面解 析几何的某些知识联系,从而增加了问题的综合性,解答这 类应用题时,要注意使用相关知识对答案进行取舍.
例7. 从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直 线方程Ax+By+C=0中的A、B、C,所得的经过坐标 原点的直线有_________条.
例4. 5个人站成一排,甲总站在乙的右侧的有多少 种站法?
解法1:将5个人依次站成一排,有
A
5 5
种站法,
然后再消去甲乙之间的顺序数
A
2 2
∴甲总站在乙的右侧的有站法总数为
A55 A22
543
A53
解法2:先让甲乙之外的三人从5个位置选出3个站好,
有
A
3 5
种站法,留下的两个位置自然给甲乙有1种站法
解:所有这样的直线共有 A73 210 条, 其中不过原点的直线有 A61A62 180条,
∴所得的经过坐标原点的直线有210-180=30条.
16.06.2020
11
巩固练习
1.将 3 封不同的信投入 4 个不同的邮筒,则不同的投法 的种数是( B )
A. 34
B. 43
C. A43
D.
C
3 4
③非均分堆问题,只要按比例取出分完再用乘
法原理作积.
④要明确堆的顺序时,必须先分堆后再把堆数当
作元素个数作全排列.
16.06.2020
2
1. 分组(堆)问题
例1.有四项不同的工程,要发包给三个工程队,要 求每个工程队至少要得到一项工程. 共有多少种不同 的发包方式?
解:要完成发包这件事,可以分为两个步骤:
将10个小球串成一串,截为4段有
C
3 9
84
种截断法,对应放到4个盒子里. 因此,不同的分配方案共有84种 .
16.06.2020
9
6.错位法:
编号为1至n的n个小球放入编号为1到 n的n个盒 子里,每个盒子放一个小球.要求小球与盒子的编 号都不同,这种排列称为错位排列.
特别当n=2,3,4,5时的错位数各为1,2,9,44.
⑴先将四项工程分为三“堆”,有
C
2 4
C
1 2
C
1 1
A
2 2
6
种分法;
⑵再将分好的三“堆”依次给三个工程队,
有3!=6种给法.
∴共有6×6=36种不同的发包方式.
16.06.2020
3
2.插空法: 解决一些不相邻问题时,可以先排“一
般”元素然后插入“特殊”元素,使问题得以
解决.
♀ ♀ ♀ ♀ ♀♀ ♀
解: 问题等价于把16个相同小球放入4个盒子里, 每个盒子至少有一个小球的放法种数问题.
将16个小球串成一串,截为4段有 C135 455
种截断法,对应放到4个盒子里.
因此,不同的分配方案共有455种 .
16.06.2020
8
5.剪截法:
n个 相同小球放入m(m≤n)个盒子里,要求每个
盒子里至少有一个小球的放法等价于n个相同小球
16.06.2020
14
2.从黄瓜、白菜、油菜、扁豆 4 种蔬菜品种中选出
3 种,分别种在不同土质的三块地上,其中黄瓜必须种
植,不同的种植方法共有( B )
A.24 种 B.18 种
C.12 种
D.6 种
16.06.2020
12
巩固练习
3. 12 名同学分别到三个不同的路口进行车流量的调
查,若每个路口 4 人,则不同的分配方案共有( A )
7
5.剪截法(隔板法):
n个 相同小球放入m(m≤n)个盒子里,要求每个 盒子里至少有一个小球的放法等价于n个相同小球 串成一串从间隙里选m-1个结点剪截成m段. 例5. 某校准备参加今年高中数学联赛,把16个选手名 额分配到高三年级的1-4 个教学班,每班至少一个名 额,则不同的分配方案共有___种.
有
A 11 11
排法(5-1)+(8-1)=11格:
A
4 4
A
7 7
种A 排法.
→↑ →↑ ↑ →→→↑ →→ 1 ①2 ②③3 4 5 ④6 7
其中必有四个↑和七个→组成!
所以, 四个↑和七个→一个排序就对应一条路经,
所以从A到B共有
C C 51
4
(51)(81)
11
条不同的路径.
16.06.2020
∴甲总站在乙的右侧的有站法总数为 A53 1 A53
16.06.2020
6
4.消序法(留空法) 变式:如下图所示,有5
解: 如图所示
B
横8竖构成的方格图,从
A到B只能上行或右行
也共可有以多看少作条是不同的路线?
1,2,3,4,5,6,7,①,②,③, B
④顺序一定的排列,
A
将一条路经抽象为如下的一个
例6. 编号为1至6的6个小球放入编号为1至6的6个 盒子里,每个盒子放一个小球,其中恰有2个小球与盒 子的编号相同的放法有____种.
解: 选取编号相同的两组球和盒子的方法有
C
2 6
15
种,其余4组球与盒子需错位排列有9种放法.
故所求方法有15×9=135种.
16.06.2020
10
7.剔除法 从总体中排除不符合条件的方法数,这是一
A.
C142
C84
C
4 4
种
B.3
C142
C84
C
4 4
种
C.
C142Cຫໍສະໝຸດ 4 8A33种
D.
C142C84C44 A33
种
4. 5个人排成一排,其中甲、乙不相邻的排法种数是
(C)
A.6
B.12
C.72
D.144
16.06.2020
13
小结
①分堆问题; ②解决排列、组合问题的一些常用方法: 错位法、剪截法(隔板法)、捆绑法、 剔除法、插孔法、消序法(留空法).
有 共 有 A5 5 2 = 1 1 2 2 0 = 0种 2 4 0 排 种 排 法 法 几捆其个绑它成元的一素进个必行元须排素相列,邻. 再时与,先
16.06.2020
5
4.消序法(留空法)
几个元素顺序一定的排列问题,一般是先排列,再消 去这几个元素的顺序.或者,先让其它元素选取位置排 列,留下来的空位置自然就是顺序一定的了.
↑ ↑ ↑ ↑↑ ↑
例2 . 7人排成一排.甲、乙两人不相邻,有多少种不同的排法?
解:分两步进行:
第1步,把除甲乙外的一般人排列: 有 A55=120种 排 法
第2步,将甲乙分别插入到不同的间隙或两端中(插孔):
有 A62=30种 插 入 法
几个元素不能相邻
共 有 1 2 0 3 0 = 3 6 0 0 种 排 法 时,先排一般元素, 再让特殊元素插孔.