排列组合常用几种基本方法 ppt课件
合集下载
人教版三年级数学上册《排列组合》PPT课件
穿法二
穿法三
穿法四
穿法五
穿法六
2×3﹦6(种)
要求:小组中一人记录,其他同学陈述自己的点。
用1,2,3可以组合成哪些两位数?
B
A
小组合作讨论二:
12
13
21
23
31
32
十位
十位
十位
个位
个位
个位
猜一猜:
我今年读九年级了,我的班级是由1、2、3这三个数字组成的一个三位数,请你猜一猜我读的是多少班?
有的问题需要考虑到顺序,也就是结果和顺序有关,例如组成几位数这样的问题等
今后我们在遇到这些问题的时候一定要认真审题,看清楚问题的“隐含条件”
这节课我们学了什么
作业:
同学们回家后仔细观察周围环境中可搭配和组合的实物,自己搭配和组合。
123
132
213
231
312
321
考考你:饮料和点心只能各选一样,有几种不同的搭配方式?
3×2=6(种)
⑥
①
②
③
④
⑤
下
M
能组成哪几个不同的两位数呢?
48 96 98
28
26
46
43
93
从宁波到北京一共有几种走法?
北京 上海 火车 火车 8种
轮船
宁波
飞机
火车
飞机
汽车
我们知道了:
有的问题不用考虑到顺序,也就是说结果和顺序无关,例如握手、比赛等问题
排列与组合
点击此处添加正文,文字是您思想的提炼,请尽量言简意赅的阐述观点。
学习目标:
01
我能找出简单事物的组合数。
02
我能用排列与组合的知识解决生活中的实际问题。
最新排列组合常用几种基本方法课件ppt
③非均分堆问题,只要按比例取出分完再用乘
法原理作积.
④要明确堆的顺序时,必须先分堆后再把堆数当
作元素个数作全排列.
15.02.2021
新疆奎屯市第一高级中学
2
特级教师王新敞
1. 分组(堆)问题
例1.有四项不同的工程,要发包给三个工程队,要 求每个工程队至少要得到一项工程. 共有多少种不同 的发包方式?
解: 问题等价于把16个相同小球放入4个盒子里, 每个盒子至少有一个小球的放法种数问题.
将16个小球串成一串,截为4段有 C135 455
种截断法,对应放到4个盒子里.
因此,不同的分配方案共有455种 .
15.02.2021
新疆奎屯市第一高级中学
8
特级教师王新敞
5.剪截法:
n个 相同小球放入m(m≤n)个盒子里,要求每个 盒子里至少有一个小球的放法等价于n个相同小球 串成一串从间隙里选m-1个结点剪截成m段.
解: 如图所示
B
横8竖构成的方格图,从
A到B只能上行或右行
也共可有以多看少作条是不同的路线?
1,2,3,4,5,6,7,①,②,③, B
④顺序一定的排列,
A
将一条路经抽象为如下的一个
有
A 11 11
排法(5-1)+(8-1)=11格:
A
4 4
A
7 7
种A 排法.
→↑ →↑ ↑ →→→↑ →→ 1 ①2 ②③3 4 5 ④6 7
其中必有四个↑和七个→组成!
所以, 四个↑和七个→一个排序就对应一条路经,
所以从A到B共有
C C 51
4
(51)(81)
11
条不同的路径.15.02.2021新疆奎屯市第一高级中学
17种排列组合方法ppt课件
甲乙 丙丁
由分步计数原理可得共有 A55A22 A22 =480
种不同的排法
6
五.不相邻问题插空策略
例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞 蹈节目不能连续出场,则节目的出场顺序有多少种?
解:分两步进行第一步排2个相声和3个独唱共
个有元A素55 中种间,包第含二首步尾将两4舞个蹈空插位入共第有一种步排A好64 的不6
练习:从6个男同学和4个女同学中,选出3个男同学和 2个女同学,分别担任五项不同的工作,一共有多少 种不同的分配方法?
5
四.相邻元素捆绑策略 例2.7人站成一排 ,其中甲乙相邻且丙丁相邻, 共 有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元 素,同时丙丁也看成一个复合元素,再与其它元素进 行排列,同时对相邻元素内部进行自排.
个空隙中插入3个不亮的灯有__C__35 _种.
12
十二.元素相同问题隔板策略 例10.有10个三好学生名额,在分给7个班,每班至 少一个,有多少种分配方案?
解:因为10个名额没有差别,把它们排成一排,相 邻名额之间形成9个空隙. 在9个空档中选6个 位置插个隔板,可把名额分成7份,对应地分给 7个班级,每一种插板方法对应一种分法共有
同的方法.由分步计数原理,节目的不同顺序
共有
A A55
4 6
种
相 独 独独相
7
六.固定顺序问题用除法策略 例4.7人排队,其中甲乙丙3人顺序一定,共有多少不 同的排法?
1除法:对于某几个元素顺序一定的排列问题,可 先把这几个元素与其他元素一起进行排列,然后 用总排列数除以这几个元素之间的全排列数,则 共有不同排法种数是: A77
A22
15
练习:某兴趣小组有9个人,现有3项不同的活动可以让
由分步计数原理可得共有 A55A22 A22 =480
种不同的排法
6
五.不相邻问题插空策略
例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞 蹈节目不能连续出场,则节目的出场顺序有多少种?
解:分两步进行第一步排2个相声和3个独唱共
个有元A素55 中种间,包第含二首步尾将两4舞个蹈空插位入共第有一种步排A好64 的不6
练习:从6个男同学和4个女同学中,选出3个男同学和 2个女同学,分别担任五项不同的工作,一共有多少 种不同的分配方法?
5
四.相邻元素捆绑策略 例2.7人站成一排 ,其中甲乙相邻且丙丁相邻, 共 有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元 素,同时丙丁也看成一个复合元素,再与其它元素进 行排列,同时对相邻元素内部进行自排.
个空隙中插入3个不亮的灯有__C__35 _种.
12
十二.元素相同问题隔板策略 例10.有10个三好学生名额,在分给7个班,每班至 少一个,有多少种分配方案?
解:因为10个名额没有差别,把它们排成一排,相 邻名额之间形成9个空隙. 在9个空档中选6个 位置插个隔板,可把名额分成7份,对应地分给 7个班级,每一种插板方法对应一种分法共有
同的方法.由分步计数原理,节目的不同顺序
共有
A A55
4 6
种
相 独 独独相
7
六.固定顺序问题用除法策略 例4.7人排队,其中甲乙丙3人顺序一定,共有多少不 同的排法?
1除法:对于某几个元素顺序一定的排列问题,可 先把这几个元素与其他元素一起进行排列,然后 用总排列数除以这几个元素之间的全排列数,则 共有不同排法种数是: A77
A22
15
练习:某兴趣小组有9个人,现有3项不同的活动可以让
大学排列组合ppt课件
排列与组合的综合实例解析
总结词
通过综合实例,理解排列与组合在实际 问题中的应用。
VS
详细描述
通过一个复杂的问题,如安排一场活动或 者组织一次旅行,综合运用排列和组合的 知识来解决实际问题,并强调排列与组合 在解决实际问题中的重要性和关联性。
05
排列组合的解题技巧
解题思路分析
明确问题要求
01
首先需要清楚题目是关于排列还是组合的问题,排列需要考虑
04
排列组合的实例解析
排列实例解析
总结词
通过具体实例,深入理解排列的概念和计算方法。
详细描述
通过实际生活中的例子,如学生选课、物品的排列等,解释排列的概念,并介绍排列的计算公式,以及如何应用 这些公式解决实际问题。
组合实例解析
总结词
通过具体实例,深入理解组合的概念和计算方法。
详细描述
通过实际生活中的例子,如彩票中奖概率、选举代表等,解释组合的概念,并介绍组合的计算公式, 以及如何应用这些公式解决实际问题。
少?
答案解析
答案1
从5个人中选3个人参加会议共有 $C_{5}^{3} = 10$种不同的选法。
答案3
大于2000的三位数,首位数字可以为 2,3或4,共有$A_{3}^{1} times A_{4}^{2} = 36$种。
答案2
将4把椅子排好,共有$A_{5}^{3} = 60$种坐法。
答案4
不同的分法种数为$A_{5}^{4} = 120$种。
常见错误解析与避免方法
混淆排列与组合
遗漏情况
排列和组合是不同的概念,需要明确 题目要求,正确使用公式。
在解题过程中,需要注意不要遗漏某 些情况,例如在排列时需要考虑元素 的顺序,在组合时需要考虑元素的取 法。
排列组合问题17种方法ppt课件
C
6 9
一
二
三
四
五
六
七
班
班
班
班
班
班
班
30
将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用m-1块隔板,插入n个元素 排成一排的n-1个空隙中,所有分法数为
C m 1 n 1
31
练习题
1. 10个相同的球装5个盒中,每盒至少一 有多少装法?
C4 9
2 .x+y+z+w=100求这个方程组的自然数解 的组数
A
5 5
A A A
2 4
1 4
5 5
一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研究.
前排
后排
20
练习题
有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并 且这2人不左右相邻,那么不同排法的种数是______
346
21
重排问题求幂策略
把6名实习生分配到7个车间实习,共有 多少种不同的分法
解:完成此事共分六步:把第一名实习生分配 到车间有 种分法.
7
把第二名实习生分配
到车间也有7种分法,
依此类推,由分步计
7 6 数原理共有 种不同的排法
允许重复的排列问题的特点是以元素为研究 对象,元素不受位置的约束,可以逐一安排 各个元素的位置,一般地n不同的元素没有限 制地安排在m个位置上的排列数为 种
一个盒子装1个 (6)每个盒子至少1个
25
练习题 一个班有6名战士,其中正副班长各1人 现从中选4人完成四种不同的任务,每人 完成一种任务,且正副班长有且只有1人 参加,则不同的选法有________ 种 192
排列与组合ppt课件
数。
从10个不同字母中取出 5个字母的所有排的个
数。
从8个不同数字中取出4 个数字的所有排列的个
数。
从n个不同元素中取出m 个元素的所有排列的个
数。
03
CHAPTER
组合的计算方法
组合的公式
组合的公式:C(n,k) = n! / (k!(n-k)!)
"!"表示阶乘,即n! = n * (n-1) * ... * 3 * 2 * 1。
3
排列组合在计算机科学中的应用
计算机科学中,排列组合用于算法设计和数据结 构分析。
排列与组合的未来发展
排列与组合理论的发展方向
随着数学和其他学科的发展,排列与组合理论将不断发展和完善,出现更多新 的公式和定理。
排列与组合的应用前景
随着科学技术的发展,排列与组合的应用领域将更加广泛,特别是在计算机科 学、统计学和信息论等领域的应用将更加深入。
在计算排列和组合时,使用的 公式和方法也不同。
02
CHAPTER
排列的计算方法
排列的公式
01
02
03
排列的公式
P(n, m) = n! / (n-m)!, 其中n是总的元素数量, m是需要选取的元素数量 。
排列的公式解释
表示从n个不同元素中取 出m个元素的所有排列的 个数。
排列的公式应用
适用于计算不同元素的排 列组合数,例如计算从n 个不同数字中取出m个数 字的所有排列的个数。
该公式用于计算从n 个不同元素中选取k 个元素(不放回)的 组合数。
组合的计算方法
直接使用组合公式进行计算。 当n和k较大时,需要注意计算的复杂性和准确性。
可以使用数学软件或在线工具进行计算。
从10个不同字母中取出 5个字母的所有排的个
数。
从8个不同数字中取出4 个数字的所有排列的个
数。
从n个不同元素中取出m 个元素的所有排列的个
数。
03
CHAPTER
组合的计算方法
组合的公式
组合的公式:C(n,k) = n! / (k!(n-k)!)
"!"表示阶乘,即n! = n * (n-1) * ... * 3 * 2 * 1。
3
排列组合在计算机科学中的应用
计算机科学中,排列组合用于算法设计和数据结 构分析。
排列与组合的未来发展
排列与组合理论的发展方向
随着数学和其他学科的发展,排列与组合理论将不断发展和完善,出现更多新 的公式和定理。
排列与组合的应用前景
随着科学技术的发展,排列与组合的应用领域将更加广泛,特别是在计算机科 学、统计学和信息论等领域的应用将更加深入。
在计算排列和组合时,使用的 公式和方法也不同。
02
CHAPTER
排列的计算方法
排列的公式
01
02
03
排列的公式
P(n, m) = n! / (n-m)!, 其中n是总的元素数量, m是需要选取的元素数量 。
排列的公式解释
表示从n个不同元素中取 出m个元素的所有排列的 个数。
排列的公式应用
适用于计算不同元素的排 列组合数,例如计算从n 个不同数字中取出m个数 字的所有排列的个数。
该公式用于计算从n 个不同元素中选取k 个元素(不放回)的 组合数。
组合的计算方法
直接使用组合公式进行计算。 当n和k较大时,需要注意计算的复杂性和准确性。
可以使用数学软件或在线工具进行计算。
排列组合的ppt课件免费
题目2:从7个不同元素 中取出4个元素的组合数 ,其中某特定元素可以 不被取出。
答案1:$A_{7}^{4} A_{6}^{3} = 7 times 6 times 5 times 4 - 6 times 5 times 4 = 336$
答案2:$C_{7}^{4} C_{6}^{3} = frac{7 times 6 times 5 times 4}{4 times 3 times 2 times 1} - frac{6 times 5 times 4}{3 times 2 times 1} = 28$
排列组合问题的变种与拓展
排列组合问题的变种
如“带限制的不同元素的排列组合” 、“重复元素的排列组合”等,需要 进一步拓展学生的思路。
拓展方法
通过变种问题的解析,引导学生深入 思考排列组合问题,并掌握其变化规 律,为解决更复杂的问题打下基础。
04
CATALOGUE
排列组合的数学原理
排列组合的数学原理简介
数学教育的核心
排列组合是数学教育中的 重要内容,对于培养学生 的数学素养和解决问题的 能力具有重要意义。
解决排列组合问题的方法与技能
乘法原理
加法原理
乘法原理是解决排列组合问题的基础,通 过将各个独立事件的产生概率相乘,可以 计算出复合事件的产生概率。
加法原理用于计算具有互斥性的事件的概 率,通过将各个互斥事件的产生概率相加 ,可以得到总的产生概率。
解析方法
通过实例演示和讲授,帮助学生理解排列组合的基本概念和计算方法,同时引导 学生思考如何解决实际问题。
实际问题的排列组合解决方案
实际问题的排列组合
如“安排会议”、“排定演出节目单”、“安排生产计划” 等,需要结合具体情境进行分析。
排列组合ppt课件
排列组合基本公式 • 排列组合的应用 • 排列组合的扩展知识 • 练习题与答案解析
01
排列组合基本概念
排列的定义
排列的定义
从n个不同元素中取出m个元素( m≤n),按照一定的顺序排成一列, 称为从n个不同元素中取出m个元素的 排列。
组合公式推导
根据乘法原理,组合数等 于从n个不同元素中取出m 个元素的排列数除以这m 个元素的全排列数。
组合公式证明
通过数学归纳法证明组合 公式。
排列组合公式的推导与证明
排列组合公式的推导
通过数学归纳法和乘法原理,逐步推导出排列和组合的公式。
排列组合公式的证明
通过数学归纳法和反证法,证明排列和组合公式的正确性。
机器学习
03
在机器学习中,排列组合用于描述样本空间和事件发生的可能
性,例如在朴素贝叶斯分类器中。
在统计学中的应用
概率分布
在统计学中,排列组合用于描述概率分布和随机事件的组合数量 ,例如在二项分布、多项分布等概率分布中。
统计推断
在统计推断中,排列组合用于计算样本数据的可能性和置信区间 ,例如在贝叶斯推断和参数估计中。
从n个不同元素中取出m个元素的所有组合方式。
排列组合在概率论中的应用
总结词
排列组合在概率论中有广泛的应用,它们是概率论中的基本概念之一。
详细描述
在概率论中,排列组合被广泛应用于各种概率模型和随机事件的计算中。例如,在计算随机事件的概率时,可以 使用排列组合来计算样本空间的大小和基本事件的数量。在计算条件概率时,可以使用排列组合来计算条件事件 的基本事件的数量。此外,在概率分布的计算中,排列组合也起着重要的作用。
3
组合的特性
组合无方向性,即顺序不影响组合的唯一性。
01
排列组合基本概念
排列的定义
排列的定义
从n个不同元素中取出m个元素( m≤n),按照一定的顺序排成一列, 称为从n个不同元素中取出m个元素的 排列。
组合公式推导
根据乘法原理,组合数等 于从n个不同元素中取出m 个元素的排列数除以这m 个元素的全排列数。
组合公式证明
通过数学归纳法证明组合 公式。
排列组合公式的推导与证明
排列组合公式的推导
通过数学归纳法和乘法原理,逐步推导出排列和组合的公式。
排列组合公式的证明
通过数学归纳法和反证法,证明排列和组合公式的正确性。
机器学习
03
在机器学习中,排列组合用于描述样本空间和事件发生的可能
性,例如在朴素贝叶斯分类器中。
在统计学中的应用
概率分布
在统计学中,排列组合用于描述概率分布和随机事件的组合数量 ,例如在二项分布、多项分布等概率分布中。
统计推断
在统计推断中,排列组合用于计算样本数据的可能性和置信区间 ,例如在贝叶斯推断和参数估计中。
从n个不同元素中取出m个元素的所有组合方式。
排列组合在概率论中的应用
总结词
排列组合在概率论中有广泛的应用,它们是概率论中的基本概念之一。
详细描述
在概率论中,排列组合被广泛应用于各种概率模型和随机事件的计算中。例如,在计算随机事件的概率时,可以 使用排列组合来计算样本空间的大小和基本事件的数量。在计算条件概率时,可以使用排列组合来计算条件事件 的基本事件的数量。此外,在概率分布的计算中,排列组合也起着重要的作用。
3
组合的特性
组合无方向性,即顺序不影响组合的唯一性。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将16个小球串成一串,截为4段有 C135 455
种截断法,对应放到4个盒子里.
因此,不同的分配方案共有455种 .
14.08.2020
新疆奎屯市第一高级中学
8
特级教师王新敞
5.剪截法:
n个 相同小球放入m(m≤n)个盒子里,要求每个 盒子里至少有一个小球的放法等价于n个相同小球 串成一串从间隙里选m-1个结点剪截成m段.
C
3 9
84
种截断法,对应放到4个盒子里.
因此,不同的分配方案共有84种 .
14.08.2020
新疆奎屯市第一高级中学
9
特级教师王新敞
6.错位法:
编号为1至n的n个小球放入编号为1到 n的n个盒 子里,每个盒子放一个小球.要求小球与盒子的编 号都不同,这种排列称为错位排列.
特别当n=2,3,4,5时的错位数各为1,2,9,44.
般”元素然后插入“特殊”元素,使问题得以
解决.
♀ ♀ ♀ ♀ ♀♀ ♀
↑ ↑ ↑ ↑↑ ↑
例2 . 7人排成一排.甲、乙两人不相邻,有多少种不同的排法?
解:分两步进行:
第1步,把除甲乙外的一般人排列: 有 A55=120种 排 法
第2步,将甲乙分别插入到不同的间隙或两端中(插孔):
有 A62=30种 插 入 法
14.08.2020
新疆奎屯市第一高级中学
5
特级教师王新敞
4.消序法(留空法)
几个元素顺序一定的排列问题,一般是先排列,再 消去这几个元素的顺序.或者,先让其它元素选取位置 排列,留下来的空位置自然就是顺序一定的了.
例4. 5个人站成一排,甲总站在乙的右侧的有多少 种站法?
解法1:将5个人依次站成一排,有
6
特级教师王新敞
4.消序法(留空法) 变式:如下图所示,有5
解: 如图所示
B
横8竖构成的方格图,从
A到B只能上行或右行
也共可有以多看少作条是不同的路线?
1,2,3,4,5,6,7,①,②,③, B
④顺序一定的排列,
A
将一条路经抽象为如下的一个
有
A 11 11
排法(5-1)+(8-1)=11格:
A
4 4
③非均分堆问题,只要按比例取出分完再用乘
法原理作积.
④要明确堆的顺序时,必须先分堆后再把堆数当
作元素个数作全排列.
14.08.2020
新疆奎屯市第一高级中学
2
特级教师王新敞
1. 分组(堆)问题
例1.有四项不同的工程,要发包给三个工程队,要 求每个工程队至少要得到一项工程. 共有多少种不同 的发包方式?
A
5 5
种站法,
然后再消去甲乙之间的顺序数
A
2 2
∴甲总站在乙的右侧的有站法总数为
A55 A22
543 A53
解法2:先让甲乙之外的三人从5个位置选出3个站好,
有
A
3 5
种站法,留下的两个位置自然给甲乙有1种站法
∴甲总站在乙的右侧的有站法总数为 A53 1 A53
14.08.2020
新疆奎屯市第一高级中学
解:要完成发包这件事,可以分为两个步骤:
⑴先将四项工程分为三“堆”,有
C
2 4
C
1 2
C
1 1
A
2 2
6
种分法;
⑵再将分好的三“堆”依次给三个工程队,
有3!=6种给法.
∴共有6×6=36种不同的发包方式.
14.08.2020
新疆奎屯市第一高级中学
3
特级教师王新敞
2.插空法: 解决一些不相邻问题时,可以先排“一
几个元素不能相邻
共 有 1 2 0 3 0 = 3 6 0 0 种 排 法 时,先排一般元素, 再让特殊元素插孔.
14.08.2020
新疆奎屯市第一高级中学
4
特级教师王新敞
3.捆绑法
相邻元素的排列,可以采用“局部到整体”的 排法,即将相邻的元素局部排列当成“一个”元素, 然后再进行整体排列.
例3 . 6人排成一排.甲、乙两人必须相邻,有多少种不的排法?
14.08.2020
14.08.2020
1
1. 分组(堆)问题 分组(堆)问题的六个模型:①无序不等分;
②无序等分;③无序局部等分;(④有序不等分; ⑤有序等分;⑥有序局部等分.)
处理问题的原则:
①若干个不同的元素“等分”为 m个堆,要将 选取出每一个堆的组合数的乘积除以m!
②若干个不同的元素局部“等分”有 m个均等堆, 要将选取出每一个堆的组合数的乘积除以m!
解:(1)分两步进行:
♀♀♀♀♀♀
第一步,把甲乙排列(捆绑): 有A22=2种捆法甲 乙
第二步,甲乙两个人的梱看作一个元素与其它的排队:
有 共 有 A5 5 2 = 1 1 2 2 0 = 0种 2 4 0 排 种 排 法 法 几捆其个绑它元成的素一进必 个 行须 元 排相 素 列.邻 ,时 再,与先
变式: 某校准备参加今年高中数学联赛,把16个选 手名额分配到高三年级的1-4 个教学班,每班的名额 不少于该班的序号数,则不同的分配方案共有___种.
解: 问题等价于先给2班1个,3班2个,4班3个,
再把余下的10个相同小球放入4个盒子里,每个盒子
至少有一个小球的放法种数问题.
将10个小球串成一串,截为4段有
例6. 编号为1至6的6个小球放入编号为1至6的6个 盒子里,每个盒子放一个小球,其中恰有2个小球与盒 子的编号相同的放法有____种.
解: 选取编号相同的两组球和盒子的方法有
C
2 6
15
种,其余4组球与盒子需错位排列有9种放法.
故所求方法有15×9=135种.
14.08.2020
新疆奎屯市第一高级中学
10
特级教师王新敞
7.剔除法 从总体中排除不符合条件的方法数,这是一
种间接解题的方法.
排列组合应用题往往和代数、三角、立体几何、平面 解析几何的某些知识联系,从而增加了问题的综合性,解 答这类应用题时,要注意使用相关知识对答案进行取舍.
n个 相同小球放入m(m≤n)个盒子里,要求每个 盒子里至少有一个小球的放法等价于n个相同小球 串成一串从间隙里选m-1个结点剪截成m段. 例5. 某校准备参加今年高中数学联赛,把16个选手 名额分配到高三年级的1-4 个教学班,每班至少一个 名额,则不同的分配方案共有___种.
解: 问题等价于把16个相同小球放入4个盒子里, 每个盒子至少有一个小球的放法种数问题.
A
7 7
种A 排法.
→↑ →↑ ↑ →→→↑ →→ 1 ①
所以, 四个↑和七个→一个排序就对应一条路经,
所以从A到B共有
C C 51
4
(51)(81)
11
条不同的路径.
14.08.2020
新疆奎屯市第一高级中学
7
特级教师王新敞
5.剪截法(隔板法):
种截断法,对应放到4个盒子里.
因此,不同的分配方案共有455种 .
14.08.2020
新疆奎屯市第一高级中学
8
特级教师王新敞
5.剪截法:
n个 相同小球放入m(m≤n)个盒子里,要求每个 盒子里至少有一个小球的放法等价于n个相同小球 串成一串从间隙里选m-1个结点剪截成m段.
C
3 9
84
种截断法,对应放到4个盒子里.
因此,不同的分配方案共有84种 .
14.08.2020
新疆奎屯市第一高级中学
9
特级教师王新敞
6.错位法:
编号为1至n的n个小球放入编号为1到 n的n个盒 子里,每个盒子放一个小球.要求小球与盒子的编 号都不同,这种排列称为错位排列.
特别当n=2,3,4,5时的错位数各为1,2,9,44.
般”元素然后插入“特殊”元素,使问题得以
解决.
♀ ♀ ♀ ♀ ♀♀ ♀
↑ ↑ ↑ ↑↑ ↑
例2 . 7人排成一排.甲、乙两人不相邻,有多少种不同的排法?
解:分两步进行:
第1步,把除甲乙外的一般人排列: 有 A55=120种 排 法
第2步,将甲乙分别插入到不同的间隙或两端中(插孔):
有 A62=30种 插 入 法
14.08.2020
新疆奎屯市第一高级中学
5
特级教师王新敞
4.消序法(留空法)
几个元素顺序一定的排列问题,一般是先排列,再 消去这几个元素的顺序.或者,先让其它元素选取位置 排列,留下来的空位置自然就是顺序一定的了.
例4. 5个人站成一排,甲总站在乙的右侧的有多少 种站法?
解法1:将5个人依次站成一排,有
6
特级教师王新敞
4.消序法(留空法) 变式:如下图所示,有5
解: 如图所示
B
横8竖构成的方格图,从
A到B只能上行或右行
也共可有以多看少作条是不同的路线?
1,2,3,4,5,6,7,①,②,③, B
④顺序一定的排列,
A
将一条路经抽象为如下的一个
有
A 11 11
排法(5-1)+(8-1)=11格:
A
4 4
③非均分堆问题,只要按比例取出分完再用乘
法原理作积.
④要明确堆的顺序时,必须先分堆后再把堆数当
作元素个数作全排列.
14.08.2020
新疆奎屯市第一高级中学
2
特级教师王新敞
1. 分组(堆)问题
例1.有四项不同的工程,要发包给三个工程队,要 求每个工程队至少要得到一项工程. 共有多少种不同 的发包方式?
A
5 5
种站法,
然后再消去甲乙之间的顺序数
A
2 2
∴甲总站在乙的右侧的有站法总数为
A55 A22
543 A53
解法2:先让甲乙之外的三人从5个位置选出3个站好,
有
A
3 5
种站法,留下的两个位置自然给甲乙有1种站法
∴甲总站在乙的右侧的有站法总数为 A53 1 A53
14.08.2020
新疆奎屯市第一高级中学
解:要完成发包这件事,可以分为两个步骤:
⑴先将四项工程分为三“堆”,有
C
2 4
C
1 2
C
1 1
A
2 2
6
种分法;
⑵再将分好的三“堆”依次给三个工程队,
有3!=6种给法.
∴共有6×6=36种不同的发包方式.
14.08.2020
新疆奎屯市第一高级中学
3
特级教师王新敞
2.插空法: 解决一些不相邻问题时,可以先排“一
几个元素不能相邻
共 有 1 2 0 3 0 = 3 6 0 0 种 排 法 时,先排一般元素, 再让特殊元素插孔.
14.08.2020
新疆奎屯市第一高级中学
4
特级教师王新敞
3.捆绑法
相邻元素的排列,可以采用“局部到整体”的 排法,即将相邻的元素局部排列当成“一个”元素, 然后再进行整体排列.
例3 . 6人排成一排.甲、乙两人必须相邻,有多少种不的排法?
14.08.2020
14.08.2020
1
1. 分组(堆)问题 分组(堆)问题的六个模型:①无序不等分;
②无序等分;③无序局部等分;(④有序不等分; ⑤有序等分;⑥有序局部等分.)
处理问题的原则:
①若干个不同的元素“等分”为 m个堆,要将 选取出每一个堆的组合数的乘积除以m!
②若干个不同的元素局部“等分”有 m个均等堆, 要将选取出每一个堆的组合数的乘积除以m!
解:(1)分两步进行:
♀♀♀♀♀♀
第一步,把甲乙排列(捆绑): 有A22=2种捆法甲 乙
第二步,甲乙两个人的梱看作一个元素与其它的排队:
有 共 有 A5 5 2 = 1 1 2 2 0 = 0种 2 4 0 排 种 排 法 法 几捆其个绑它元成的素一进必 个 行须 元 排相 素 列.邻 ,时 再,与先
变式: 某校准备参加今年高中数学联赛,把16个选 手名额分配到高三年级的1-4 个教学班,每班的名额 不少于该班的序号数,则不同的分配方案共有___种.
解: 问题等价于先给2班1个,3班2个,4班3个,
再把余下的10个相同小球放入4个盒子里,每个盒子
至少有一个小球的放法种数问题.
将10个小球串成一串,截为4段有
例6. 编号为1至6的6个小球放入编号为1至6的6个 盒子里,每个盒子放一个小球,其中恰有2个小球与盒 子的编号相同的放法有____种.
解: 选取编号相同的两组球和盒子的方法有
C
2 6
15
种,其余4组球与盒子需错位排列有9种放法.
故所求方法有15×9=135种.
14.08.2020
新疆奎屯市第一高级中学
10
特级教师王新敞
7.剔除法 从总体中排除不符合条件的方法数,这是一
种间接解题的方法.
排列组合应用题往往和代数、三角、立体几何、平面 解析几何的某些知识联系,从而增加了问题的综合性,解 答这类应用题时,要注意使用相关知识对答案进行取舍.
n个 相同小球放入m(m≤n)个盒子里,要求每个 盒子里至少有一个小球的放法等价于n个相同小球 串成一串从间隙里选m-1个结点剪截成m段. 例5. 某校准备参加今年高中数学联赛,把16个选手 名额分配到高三年级的1-4 个教学班,每班至少一个 名额,则不同的分配方案共有___种.
解: 问题等价于把16个相同小球放入4个盒子里, 每个盒子至少有一个小球的放法种数问题.
A
7 7
种A 排法.
→↑ →↑ ↑ →→→↑ →→ 1 ①
所以, 四个↑和七个→一个排序就对应一条路经,
所以从A到B共有
C C 51
4
(51)(81)
11
条不同的路径.
14.08.2020
新疆奎屯市第一高级中学
7
特级教师王新敞
5.剪截法(隔板法):