矩阵分析习题及答案
北京理工大学出版社矩阵分析习题解答
![北京理工大学出版社矩阵分析习题解答](https://img.taocdn.com/s3/m/5d886b35580102020740be1e650e52ea5518ce32.png)
2005级电路与系统矩阵分析作业3-1已知)(ij a A =是n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量[]n x x x ,,,21 =α ,[]n y y y ,,,21 =β定义内积*),(βαβαA =。
(1)证明在上述定义下,n C 是酉空间;(2)写出n C 中的Canchy -Schwarz 不等式。
(1)证明:),(αβ=H A αβ=H H A )(βα=H A βα ,(βα,k )=),(βαβαk A k H =),(),()(),(γβγαγβγαγβαγβα+=+=+=+H H H A A AH A αααα=),(,因为A 为正定H 矩阵,所以0),(≥αα,当且仅当0),(0==ααα时,由上可知cn是酉空间。
証毕。
(2)解: ∑∑==n jnij ij i Hy a x A |||),(|βαβα∑∑==n jnij ijix ax ),(||||ααα,∑∑==n jnij ijiy ay ),(||||βββ由Cauchy-Schwarz 不等式有:∑∑∑∑∑∑≤n jnij ijin jnin jnij ijij ijiy ay x ax y ax *3-3(1)已知.A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡502613803---,试求酉矩阵U,使得U*AU 是上三角矩阵解:由|λE-A| = (λ+1)3得 λ= -1是A 的特征值,当λ=-1时,可得|λE-A|=000000201于是ε1=(0,1,0)T是A 的特征向量。
选择与ε1正交,并且互相也正交两个向量组成酉阵:U 1= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010则U 1*A U 1= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---520830631 取A 1= ⎥⎦⎤⎢⎣⎡--5283,|λE- A 1| = (λ+1)2λ= -1是A 1的特征值。
当λ=-1时,可得|λE- A 1|=0021,于是,α1 =( --52,51)T是A 的特征向量,选择与α1正交的向量组成酉阵U 2 = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡52515152 -,U 2*A 1U 2 = 51⎥⎦⎤⎢⎣⎡-2112⎥⎦⎤⎢⎣⎡--5283⎥⎦⎤⎢⎣⎡-2112 =⎥⎦⎤⎢⎣⎡---10101 3-9若S ,T 分别是实对称矩阵和反实对称矩阵,且0)det(≠--iS T E ,试证:1))((---++iS T E iS T E 是酉矩阵,。
矩阵分析及其应用答案
![矩阵分析及其应用答案](https://img.taocdn.com/s3/m/e3426edbb9f3f90f76c61b55.png)
P25⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=∴+-=-=+-=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-==-=-=∈∈∀+=-+-=--+=+-+=+∈∀11-11-11-00011-11-11-000),,(),,()()(0110101111011011100110011101)()3(0100,0010,10012)()()()()(,)()()()()(,)1.(1421121121121121122121121221121121121111211211212211212121212121该基下的对应的矩阵为同理:变换的像分别求上一组基的线性以取这样的一组基这是一个三维空间,可可以写为)对于空间(的线性变换是根据定义可知,设设E E E E E E T E E E T E E E T E E E T E E E a a a a W W W T X T B X X B BX X B X T FW X X T X T B X X B B X X B B X B X X B X B BX X X X B X X T WX X T T T T TT TT TTT T T T λλλλλλ()()()()()()()()()()()()()()123123123123-1123123123123123123123123-1123-1123115.,,,,,,,,101110-121,,=,,,,,=,,,,,,,,,,,,,,=,T A T B A P P T T P T P AP P AP B P APηηηηηηεεεεεεεεεηηηηηηεεεεεεηηηηηηηηηεεεεεεηη==⎛⎫⎪= ⎪ ⎪⎝⎭=⎡⎤⎣⎦=⎡⎤⎣⎦===解:由题意知:其中,设则则由()()()23-1123123-11-1,=,,,,-110100010100010=100010=110010=1101-1100110100110101010101001110110110101-12111P P B P AP ηηηηεεε-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭得到-111132⎛⎫ ⎪ ⎪ ⎪⎝⎭1.16(1)证明:()()()()()()()221223131212122T f t T f t x x x x t t x x t t +=+++++++⎡⎤⎡⎤⎣⎦⎣⎦ Q ()()()22123231312T x x t x t x x x x t x x t ⎡⎤++=+++++⎣⎦()()2123011,,1011,,110Tx x x t t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦∴()()22121213112232T f t f t T x x t x t x x t x t ⎡⎤+=+++++⎡⎤⎣⎦⎣⎦()()2212123122T x x t t x t t ⎡⎤=++++⎣⎦()()221231212,,2,,TT x x x t t t t ⎡⎤=++⎢⎥⎣⎦()()221231212011,,1012,,110Tx x x t t t t ⎡⎤⎢⎥=++⎢⎥⎢⎥⎣⎦()()()()()2223131212122x x x x t t x x t t =+++++++∴()()12T f t f t +=⎡⎤⎣⎦()()12T f t T f t +⎡⎤⎡⎤⎣⎦⎣⎦ ()()2123T f t T x x t x t λλλλ=++⎡⎤⎣⎦()()2123,,,,T T x x x t t λλλ⎡⎤=⎢⎥⎣⎦()()2123011,,101,,110Tx x x t t λλλ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦()()()2231312x x x x t x x t λλλ=+++++()T f t λ=⎡⎤⎣⎦ ∴T 是[]3F x 的线性变换 (2)解: ()()2123T f t T xx tx t=++⎡⎤⎣⎦ ()()()21231x T x T t x T t =++()()()()2212311T f t x t t x t x t =+++++⎡⎤⎣⎦∴()21T t t =+;()21T t t =+;()21T t t =+∴()()220111,,1011,,110T t t t t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦∴T 在基21,,t t 下的矩阵A 为011101110⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(3)解:()()211112111E A λλλλλλ---=--=-+--1232;1λλλ===-()112=1,1,1Tλξ=时,可以求得特征向量()()2323==1,1,0=1,0,1TTλλξξ=---1时,可以求得特征向量,故111=110101P ⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦()()21231,,t t P ∂∂∂=令,,()()2221111,,1101011,1,1t t t t t t ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦=++--则T 在基1∂=21t t ++,2∂=1t -,3∂=21t -下的矩阵为对角矩阵.P45第二章 内积空间练习题1.解:(1)Q ()11221x y x y αβ,=++,∴()11221x y x y λαβλλ,=++。
矩阵分析报告课后习题解答(整理版)
![矩阵分析报告课后习题解答(整理版)](https://img.taocdn.com/s3/m/138f4d7859eef8c75ebfb354.png)
第一章线性空间与线性变换(以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传)(此处注意线性变换的核空间与矩阵核空间的区别)1.9.利用子空间定义,)(A R 是m C 的非空子集,即验证)(A R 对m C 满足加法和数乘的封闭性。
1.10.证明同1.9。
1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数)1.13.提示:设),)(-⨯==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0( ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0( ==(其中1位于ij X 的第i 行和第j 行),代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故A A T -=,即A 为反对称阵。
若X 是n 维复列向量,同样有0=ii a ,0=+ji ij a a ,再令T ij i X X ),0,1,0,0,,0,0( ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)(1.15.存在性:令2,2HH A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==,唯一性:假设11C B A +=,1111,C C B B HH -==,且C C B B ≠≠11,,由1111C B C B A H H H -=+=,得C A A C B A A B HH =-==+=2,211(矛盾)第二章酉空间和酉变换(注意实空间与复空间部分性质的区别)2.8 法二:设~2121),,()0,0,1,0,0)(,,(X e e e e e e e n T n i ==(1在第i 行);~2121),,()0,0,1,0,0)(,,(Y e e e e e e e n T n j ==(1在第j 行) 根据此题内积定义⎩⎨⎧≠===j i j i X Y e e H j i 01),~~( 故n e e e ,,21是V 的一个标准正交基。
矩阵分析第3章习题答案
![矩阵分析第3章习题答案](https://img.taocdn.com/s3/m/2e65581b804d2b160b4ec097.png)
矩阵分析第3章习题答案第三章1、 已知()ijA a =是n 阶正定Hermite 矩阵,在n维线性空间nC 中向量1212(,,,),(,,,)n n x x x y y y αβ==L L 定义内积为(,)HA αβαβ=(1) 证明在上述定义下,nC 是酉空间;(2) 写出nC 中的Canchy-Schwarz 不等式。
2、 已知2111311101A --⎡⎤=⎢⎥-⎣⎦,求()N A 的标准正交基。
提示:即求方程0AX =的基础解系再正交化单位化。
3、 已知308126(1)316,(2)103205114A A --⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦试求酉矩阵U ,使得HUAU是上三角矩阵。
提示:参见教材上的例子4、 试证:在nC 上的任何一个正交投影矩阵P 是半正定的Hermite 矩阵。
5、 验证下列矩阵是正规矩阵,并求酉矩阵U ,使HUAU为对角矩阵,已知133261(1)6322312623A ⎡⎢⎢⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦01(2)10000i A i -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,434621(3)44326962260ii i A i i i i i +--⎡⎤⎢⎥=----⎢⎥⎢⎥+--⎣⎦11(4)11A -⎡⎤=⎢⎥⎣⎦6、 试求正交矩阵Q ,使TQAQ为对角矩阵,已知 220(1)212020A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,11011110(2)01111011A -⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦7、 试求矩阵P ,使HPAP E=(或TPAP E=),已知11(1)01112i i A i i +⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,222(2)254245A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦8、 设n 阶酉矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1()()H i E U E U -=-+是Hermite 矩阵。
反之,若H 是Hermite 矩阵,则E iH +满秩,且1()()U E iH E iH -=+-是酉矩阵。
矩阵练习题及答案
![矩阵练习题及答案](https://img.taocdn.com/s3/m/79fa8217ff4733687e21af45b307e87100f6f86f.png)
矩阵练习题及答案一、选择题1. 矩阵的转置是指将矩阵的行和列互换,以下哪个矩阵不是A的转置?A. [a11 a12; a21 a22]B. [a21 a22; a11 a12]C. [a12 a22; a11 a21]D. [a22 a12; a21 a11]2. 矩阵的加法是元素对应相加,以下哪个矩阵不能与矩阵B相加?矩阵A = [1 2; 3 4]矩阵B = [5 6; 7 8]A. [4 3; 2 1]B. [6 7; 8 9]C. [1 2; 3 4]D. [5 6; 3 4]3. 矩阵的数乘是指用一个数乘以矩阵的每个元素,以下哪个矩阵是矩阵A的2倍?矩阵A = [1 2; 3 4]A. [2 4; 6 8]B. [1 0; 3 4]C. [0 2; 3 4]D. [1 2; 6 8]4. 矩阵的乘法满足结合律,以下哪个等式是错误的?A. (A * B) * C = A * (B * C)B. A * (B + C) = A * B + A * CC. (A + B) * C = A * C + B * CD. A * (B - C) ≠ A * B - A * C5. 矩阵的逆是满足AA^-1 = I的矩阵,以下哪个矩阵没有逆矩阵?A. [1 0; 0 1]B. [2 0; 0 2]C. [0 1; 1 0]D. [1 2; 3 4]二、填空题6. 给定矩阵A = [1 2; 3 4],矩阵B = [5 6; 7 8],矩阵A和B的乘积AB的元素a31是________。
7. 矩阵的行列式是一个标量,可以表示矩阵的某些性质。
对于矩阵C = [2 1; 1 2],其行列式det(C)是________。
8. 矩阵的特征值是指满足Av = λv的非零向量v和标量λ。
对于矩阵D = [4 1; 0 3],其特征值是________。
9. 矩阵的迹是主对角线上元素的和。
对于矩阵E = [1 0; 0 -1],其迹tr(E)是________。
矩阵练习题及答案
![矩阵练习题及答案](https://img.taocdn.com/s3/m/03a65a95c0c708a1284ac850ad02de80d5d80653.png)
矩阵练习题及答案矩阵练习题及答案矩阵是线性代数中的重要概念,也是许多数学问题的基础。
通过练习矩阵题目,我们可以加深对矩阵的理解,提高解决问题的能力。
下面,我将为大家提供一些矩阵练习题及其答案,希望对大家的学习有所帮助。
一、基础练习题1. 计算以下矩阵的和:A = [2 4][1 3]B = [3 1][2 2]答案:A + B = [5 5][3 5]2. 计算以下矩阵的乘积:A = [2 3][4 1]B = [1 2][3 2]答案:A * B = [11 10][7 10]3. 计算以下矩阵的转置:A = [1 2 3][4 5 6]答案:A^T = [1 4][2 5][3 6]二、进阶练习题1. 已知矩阵 A = [2 1][3 4]求矩阵 A 的逆矩阵。
答案:A 的逆矩阵为 A^-1 = [4/5 -1/5] [-3/5 2/5]2. 已知矩阵 A = [1 2][3 4]求矩阵 A 的特征值和特征向量。
答案:A 的特征值为λ1 = 5,λ2 = -1对应的特征向量为 v1 = [1][1]v2 = [-2][1]3. 已知矩阵 A = [2 1][3 4]求矩阵 A 的奇异值分解。
答案:A 的奇异值分解为A = U * Σ * V^T其中,U = [-0.576 -0.817][-0.817 0.576]Σ = [5.464 0][0 0.365]V^T = [-0.404 -0.914][0.914 -0.404]三、实际应用题1. 一家工厂生产 A、B、C 三种产品,其销售量分别为 x1、x2、x3。
已知每天销售的总量为 100 个,且销售收入满足以下关系:2x1 + 3x2 + 4x3 = 3003x1 + 2x2 + 5x3 = 3204x1 + 3x2 + 6x3 = 380求解方程组,得到每种产品的销售量。
答案:解方程组得到 x1 = 30,x2 = 20,x3 = 50。
矩阵习题带答案
![矩阵习题带答案](https://img.taocdn.com/s3/m/c7b8145b2379168884868762caaedd3383c4b5f5.png)
矩阵习题带答案矩阵习题带答案矩阵是线性代数中的重要概念,广泛应用于各个领域。
掌握矩阵的运算和性质对于学习线性代数和解决实际问题都具有重要意义。
在这篇文章中,我们将提供一些矩阵习题,并附上详细的解答,帮助读者更好地理解和掌握矩阵的相关知识。
1. 习题一已知矩阵A = [1 2 3; 4 5 6; 7 8 9],求矩阵A的转置矩阵AT。
解答:矩阵A的转置矩阵AT即将A的行变为列,列变为行。
因此,矩阵A的转置矩阵为:AT = [1 4 7; 2 5 8; 3 6 9]2. 习题二已知矩阵B = [2 4; 1 3],求矩阵B的逆矩阵B-1。
解答:对于一个二阶矩阵B,如果其行列式不为零,即|B| ≠ 0,那么矩阵B存在逆矩阵B-1,且B-1 = (1/|B|) * [d -b; -c a],其中a、b、c、d分别为矩阵B的元素。
计算矩阵B的行列式:|B| = ad - bc = (2*3) - (4*1) = 6 - 4 = 2因此,矩阵B的逆矩阵为:B-1 = (1/2) * [3 -4; -1 2]3. 习题三已知矩阵C = [1 2 3; 4 5 6],求矩阵C的秩rank(C)。
解答:矩阵的秩是指矩阵中非零行的最大个数,也可以理解为矩阵的行向量或列向量的最大线性无关组的向量个数。
对于矩阵C,我们可以通过高斯消元法将其化为行简化阶梯形矩阵:[1 2 3; 0 -3 -6]可以看出,矩阵C中非零行的最大个数为1,因此矩阵C的秩为1。
4. 习题四已知矩阵D = [2 1; -1 3],求矩阵D的特征值和特征向量。
解答:对于一个n阶矩阵D,如果存在一个非零向量X,使得D*X = λ*X,其中λ为常数,则称λ为矩阵D的特征值,X为对应的特征向量。
首先,我们需要求解矩阵D的特征值,即求解方程|D - λI| = 0,其中I为n阶单位矩阵。
计算矩阵D - λI:[D - λI] = [2-λ 1; -1 3-λ]设置行列式等于零,得到特征值的方程式:(2-λ)(3-λ) - (1)(-1) = 0λ^2 - 5λ + 7 = 0解特征值的方程,得到两个特征值:λ1 = (5 + √(-11))/2λ2 = (5 - √(-11))/2由于特征值的计算涉及到虚数,这里不再继续计算特征向量。
矩阵分析所有习题及标准答案
![矩阵分析所有习题及标准答案](https://img.taocdn.com/s3/m/bbe88706e45c3b3567ec8bd6.png)
注:令T=-iC,则T*=iC*=i(-C)=T,即THnn.由此推 出:A可唯一地写为A=B+iT,其中B,THnn.
习题3*1试证:向量长度的齐次性
#3*1:试证 k k , k C, Cn
证:令=(a1,…,an)T ,则 k=(源自1,…,an)T.1
1 1
(1 , 1 , 1 , 1)T ; 2222
2
2 2
(1 , 1 , 1 , 1)T ; 22 2 2
3
3 3
( 1 , 1 , 1 , 1)T 22 22
1,2,3就是所要求的标正基.
习题3*5(i)用归纳法证明 1+3+5+…+(2n-1)2=n2
证:对k用归纳法证明.k=1时结论显然成立. 若n-1时结论成立
U=(A+E)(A-E)-1Unn.
习n.题试3证-2:6A设*AA的为特正征规值矩为阵|特1征|2值,…为,|1,n…|2,.
证:因为A是正规矩阵,所以存在UUnn 使得 A=Udiag(1,…,n)U*,
其中1,…, n是A的特征值.于是, A*A=Udiag(|1|2,…,|n|2)U*.
因对角矩阵diag(|1|2,…,|n|2)酉相似于A*A, 故A*A的特征值为 |1|2,…,|n|2
习题3-27
#3-27(1):A*A,AA*都是半正定Hermite矩阵. (2):若ACmn,则A*A,AA*的非零特征值相同
(它们的谱可能不一样)
证:(1): (A*A)*=A*A,(AA*)*=AA*.
xCn,x*(A*A)x =(Ax)*Ax=(Ax,Ax)0.
《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案讲课讲稿
![《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案讲课讲稿](https://img.taocdn.com/s3/m/18c35275941ea76e58fa04cd.png)
《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案第1章 线性空间和线性变换(详解)1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0的矩阵.用ij E (,1,2,,1)i j i n <=-L 表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素为1外,其余元素全为0的矩阵.显然,ii E ,ij E 都是对称矩阵,ii E 有(1)2n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1)2n n +个矩阵线性表示,此即对称矩阵组成(1)2n n +维线性空间.同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1)2n n -.评注:欲证一个集合在加法与数乘两种运算下是一个(1)2n n +维线性空间,只需找出(1)2n n +个向量线性无关,并且集合中任何一个向量都可以用这(1)2n n +个向量线性表示即可.1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可.1-3 解:方法一 设11223344x x x x =+++A E E E E即123412111111100311100000x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦ 故12341231211203x x x x x x x x x x +++++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦于是12341231,2x x x x x x x +++=++=1210,3x x x +==解之得12343,3,2,1x x x x ==-==-即A 在1234,,,E E E E 下的坐标为(3,3,2,1)T --.方法二 应用同构的概念,22R ⨯是一个四维空间,并且可将矩阵A 看做(1,2,0,3)T ,1234,,,E E E E 可看做(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)T T T T .于是有1111110003111020100311000001021000300011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦因此A 在1234,,,E E E E 下的坐标为(3,3,2,1)T --.1-4 解:证:设112233440k k k k αααα+++=即1234123412313412411111110110110110k k k k k k k k k k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤==⎢⎥++++⎣⎦于是12341230,0k k k k k k k +++=++=1341240,0k k k k k k ++=++=解之得12340k k k k ====故1234,,,αααα线性无关. 设123412341231341241111111011011011a b x x x x c d x x x x x x x x x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤=⎢⎥++++⎣⎦于是12341230,0x x x x x x x +++=++= 1341240,0x x x x x x ++=++=解之得122,x b c d a x a c =++-=-34,x a d x a b =-=-1234,,,x x x x 即为所求坐标.1-5 解:方法一 (用线性空间理论计算)32312233410()121,,,021,1,(1),(1)p x x x x x y y x x x y y ⎡⎤⎢⎥⎢⎥⎡⎤=+=⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎡⎤=---⎣⎦⎢⎥⎢⎥⎣⎦又由于23231,1,(1),(1)111101231,,,00130001x x x x x x ⎡⎤---⎣⎦⎡⎤⎢⎥-⎢⎥⎡⎤=⎣⎦⎢⎥-⎢⎥⎣⎦于是()p x 在基231,1,(1),(1)x x x ---下的坐标为11234111113012306001306000122y y y y -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦方法二 将3()12p x x =+根据幂级数公式按1x -展开可得32323()12(1)(1)(1)(1)(1)(1)(1)2!3!36(1)6(1)2(1)p x x p p p p x x x x x x =+''''''=+-+-+-=+-+-+- 因此()p x 在基231,1,(1),(1)x x x ---下的坐标为[]3,6,6,2T.评注:按照向量坐标定义计算,第二种方法比第一种方法更简单一些. 1-6 解:①设[][]12341234,,,,,,=ββββααααP将1234,,,αααα与1234,,,ββββ代入上式得20561001133611001121011010130011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦P 故过渡矩阵1100120561100133601101121001110131122223514221915223112822-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤---⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦P②设1212343410(,,,)10y y y y ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξββββ将1234,,,ββββ坐标代入上式后整理得11234792056181336027112111310130227y y y y -⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦评注:只需将,i i αβ代入过渡矩阵的定义[][]12341234,,,,,,=ββββααααP计算出P .1-7 解:因为12121212{,}{,}{,,,}span span span +=ααββααββ由于秩1212{,,,}3span =ααββ,且121,,ααβ是向量1212,,,ααββ的一个极大线性无关组,所以和空间的维数是3,基为121,,ααβ.方法一 设1212{,}{,}span span ∈ξααββI ,于是由交空间定义可知123411212111011030117k k k k -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥+++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦解之得1222122,4,3(k l k l l l l =-==-为任意数)于是11222[5,2,3,4]T k k l =+=-ξαα(很显然1122l l ββ=+ξ)所以交空间的维数为1,基为[5,2,3,4]T -. 方法二 不难知12121212{,}{,},{,}{,}span span span span ''==ααααββββ其中2213[2,2,0,1],[,2,1,0]3TT ''=--=-αβ.又12{,}span 'αα也是线性方程组13423422x x x x x x =-⎧⎨=-⎩ 的解空间.12{,}span 'ββ是线性方程组13423413232x x x x x x ⎧=-+⎪⎨⎪=-⎩ 的解空间,所以所求的交空间就是线性方程组1342341342342213232x x x x x x x x x x x x =-⎧⎪=-⎪⎪⎨=-+⎪⎪=-⎪⎩ 的解空间,容易求出其基础解系为[5,2,3,4]T -,所以交空间的维数为1,基为[5,2,3,4]T -.评注:本题有几个知识点是很重要的.12(1){,,,}n span αααL 的基底就是12,,,n αααL 的极大线性无关组.维数等于秩12{,,,}n αααL .1212(2){,}{,}span span +ααββ1212{,,,}span =ααββ.(3)方法一的思路,求交1212{,}{,}span span ααββI 就是求向量ξ,既可由12,αα线性表示,又可由12,ββ线性表示的那部分向量.(4)方法二是借用“两个齐次线性方程组解空间的交空间就是联立方程组的解空间”,将本题已知条件改造为齐次线性方程组来求解.1-8解:(1):解出方程组1234123420510640x x x x x x x x ---=⎧⎨---=⎩(Ⅰ)的基础解系,即是1V 的基, 解出方程组123420x x x x -++=(Ⅱ)的基础解系,即是2V 的基; (2): 解出方程组1234123412342051064020x x x x x x x x x x x x ---=⎧⎪---=⎨⎪-++=⎩的基础解系,即为12V V ⋂的基;(3):设{}{}1121,,,,,k l V span V span ααββ==L L ,则11,,,,,k l ααββL L 的极大无关组即是12V V +的基. 1-9解:仿上题解.1-10解: 仿上题解.1-11 证:设210121()()()0k k l l l l --++++=ξξξξL A AA①用1k -A从左侧成①式两端,由()0k=ξA可得10()0k l -=ξA因为1()0k -≠ξA,所以00l =,代入①可得21121()()()0k k l l l --+++=ξξξL A A A②用2k -A从左侧乘②式两端,由()0k=ξA可得00l =,继续下去,可得210k l l -===L ,于是21,(),(),,()k -ξξξξL A AA 线性无关.1-12 解:由1-11可知,n 个向量210,(),(),,()n -≠ξξξξL A AA线性无关,它是V 的一个基.又由21212121[,(),(),,()][(),(),,()][(),(),,(),0]000010000100[,(),(),,()]00000010n n n n n n----⨯==⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ξξξξξξξξξξξξξξL L L L L L L M M M M L LA A A AA A A A AAA A A 所以A在21,(),(),,()n -ξξξξL A AA下矩阵表示为n 阶矩阵00001000010000000010⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦L L L M M M M L L评注:n 维线性空间V 中任何一组n 个线性无关的向量组都可以构成V 的一个基,因此21,(),(),,()n -ξξξξL A A A是V 的一个基.1-13证: 设()()()111,,,,,,,,,,,r s m r s A A ξξξββααα==L L L L L 设11,,,,,,r r s ξξξξξL L L 是的极大无关组,则可以证明11,,,,,,r r s αααααL L L 是的极大无关组. 1-14 解:(1)由题意知123123[,,][,,]=ααααααA A123123111[,,][,,]011001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦βββααα 设A在基123,,βββ下的矩阵表示是B ,则11111123111011103011001215001244346238--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦B P AP (2)由于0A ≠,故0=AX 只有零解,所以A的核是零空间.由维数定理可知A的值域是线性空间3R .1-15解:已知()()2323,,,,A αααααα=11A(1) 求得式()()2323,,,,P εεεααα=11中的过渡矩阵P ,则1B P AP -=即为所求; (2)仿教材例1.5.1.(见<矩阵分析>史荣昌编著.北京理工大学出版社.) 1-16解:设()23,,A ααα=1,则{}23(),,;()R A span N A ααα=1就是齐次方程组0Ax = 的解空间. 1-17证:由矩阵的乘法定义知AB BA 与的主对角线上元素相等,故知AB BA 与的迹相等;再由1-18 题可证. 1-18证:对k 用数学归纳法证。
北京理工大学出版社矩阵分析习题解答[1]
![北京理工大学出版社矩阵分析习题解答[1]](https://img.taocdn.com/s3/m/95cd48a9d1f34693daef3e22.png)
2005级电路与系统矩阵分析作业3-1已知)(ij a A =是n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量[]n x x x ,,,21 =α ,[]n y y y ,,,21 =β定义内积*),(βαβαA =。
(1)证明在上述定义下,n C 是酉空间;(2)写出n C 中的Canchy -Schwarz 不等式。
(1)证明:),(αβ=HA αβ=HHA )(βα=HA βα ,(βα,k )=),(βαβαk A k H=),(),()(),(γβγαγβγαγβαγβα+=+=+=+HHHA A AHA αααα=),(,因为A 为正定H 矩阵,所以0),(≥αα,当且仅当0),(0==ααα时,由上可知c n是酉空间。
証毕。
(2)解: ∑∑==njnij ijiHy ax A |||),(|βαβα∑∑==n jnij ijix ax ),(||||ααα,∑∑==njnij ij i y a y ),(||||βββ由Cauchy-Schwarz 不等式有:∑∑∑∑∑∑≤njnij ij i njninjnij ijij ijiy a y x ax y ax *3-3(1)已知.A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡502613803---,试求酉矩阵U,使得U*AU 是上三角矩阵解:由|λE-A| = (λ+1)3得 λ= -1是A 的特征值,当λ=-1时,可得|λE-A|=0000201于是ε1=(0,1,0)T 是A 的特征向量。
选择与ε1正交,并且互相也正交两个向量组成酉阵:U 1= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10001010则U 1*A U 1= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---52830631取A 1= ⎥⎦⎤⎢⎣⎡--5283,|λE- A 1| = (λ+1)2λ= -1是A 1的特征值。
当λ=-1时,可得|λE- A 1|=21,于是,α1=( --52,51)T 是A 的特征向量,选择与α1正交的向量组成酉阵U 2 = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡52515152-,U 2*A 1U 2 = 51⎥⎦⎤⎢⎣⎡-2112⎥⎦⎤⎢⎣⎡--5283⎥⎦⎤⎢⎣⎡-2112 =⎥⎦⎤⎢⎣⎡---10101 3-9若S ,T 分别是实对称矩阵和反实对称矩阵,且0)det(≠--iS T E ,试证:1))((---++iS T E iS T E 是酉矩阵,。
最新矩阵分析课后习题解答(整理版)
![最新矩阵分析课后习题解答(整理版)](https://img.taocdn.com/s3/m/c4baa81358fb770bf68a552e.png)
第一章线性空间与线性变换(以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传)(此处注意线性变换的核空间与矩阵核空间的区别)1.9.利用子空间定义,)R对m C满足加(AR是m C的非空子集,即验证)(A法和数乘的封闭性。
1.10.证明同1.9。
1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数)1.13.提示:设),)(-⨯==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0( ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0( ==(其中1位于ij X 的第i 行和第j 行),代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故A A T -=,即A 为反对称阵。
若X 是n 维复列向量,同样有0=ii a ,0=+ji ij a a ,再令T ij i X X ),0,1,0,0,,0,0( ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)(1.15.存在性:令2,2HH A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==,唯一性:假设11C B A +=,1111,C C B B HH -==,且C C B B ≠≠11,,由1111C B C B A H H H -=+=,得C A A C B A A B HH =-==+=2,211(矛盾)第二章酉空间和酉变换(注意实空间与复空间部分性质的区别)2.8 法二:设~2121),,()0,0,1,0,0)(,,(X e e e e e e e n T n i ==(1在第i 行);~2121),,()0,0,1,0,0)(,,(Y e e e e e e e n T n j ==(1在第j 行) 根据此题内积定义⎩⎨⎧≠===j i j i X Y e e H j i 01),~~( 故n e e e ,,21是V 的一个标准正交基。
矩阵分析习题答案
![矩阵分析习题答案](https://img.taocdn.com/s3/m/bfc7098e763231126edb118a.png)
(文档过大,分两部分上传,此其一。
)
容分三部分:
一、袁老师布置的课后习题作业
二、习题课笔记(关于作业)
三、少量课堂笔记
教材:《矩阵分析》蒋家尚、袁永新著大学出版社
==表示第二部分(习题课笔记部分)有更正或补充;
△表有难度,自己学习有欠缺,未解决;
△表有曾有不理解,但已解决。
袁老师的《矩阵分析》课还是蛮难的,考试也有难度。
希望后来人能够好好学习,分享习题也是出于这个目的,虽然不清楚,且多有错讹。
袁老师是我在科大的大学至研究生阶段以来遇到的最好的数学老师,没有之一。
我与袁老师学期下来只对话一次,因为作业的事情。
与袁老师对话起来觉得汗颜,袁是攀登珠峰的学术人,而我则是在山脚下徘徊。
学生看不到更远处的风景,对袁也只能仰视。
Yuan lives at another level.
毕竟是书生2012/12/20考试后
一、课后习题(作业)
因文档过大,此处略去2(参考教材P48及P51证明)、3(二部分习题课有补充)、4、5(开头部分略过)题。
2020重庆邮电大学矩阵分析试题及答案
![2020重庆邮电大学矩阵分析试题及答案](https://img.taocdn.com/s3/m/a6a3fbb94afe04a1b171de41.png)
第一套试题一(10分)、设σ是数域F 上的线性空间V 的线性变换,1x ,2x ,3x 分别为σ的三个互不相同的特征值1λ,2λ,3λ的特征向量。
(1)证明:1x ,2x ,3x 是线性无关的; (2)证明:1x +2x +3x 不是σ的特征向量。
二(10分)、求λ-矩阵2(2)()(2)A λλλλλ⎡⎤-⎢⎥=⎢⎥⎢⎥-⎣⎦的Smith 标准形。
三(10分)、求矩阵111201634A ---⎛⎫⎪=-- ⎪ ⎪⎝⎭的Jordan 标准形.四(12分)、设有正规矩阵10001i A i i i -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,试求酉矩阵U ,使HU AU 为对角阵。
五(10分)、设0100100i A i ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦。
验证:()()(1);H N A R A ⊥()()()32.H N A R A C +=六(12分)、验证矩阵1302202031022i A i ⎛⎫⎪⎪= ⎪ ⎪- ⎪⎝⎭为正规矩阵,并求A 的谱分解。
七(14分)、设⎪⎪⎭⎫⎝⎛+-=i i A 1231。
计算 (1)A 的谱半径; (2)1A ,2A ,A ∞;(3)设n nA C⨯∈,证明:()A A ρ≤,其中A 是A 的任何一种范数。
八(12分)、讨论下列矩阵幂级数的敛散性。
(1)∑∞=⎪⎪⎭⎫ ⎝⎛--1231711k kk, (2)∑∞=⎪⎪⎭⎫⎝⎛--112816k kk k九(10分)、在以下题目中任选一个。
(1) 设有Hermite 矩阵.A 试证:A 是正定的充要条件,是存在可逆矩阵Q 使.HA Q Q =(2) 试证:矩阵100200m A m m ⎛⎫ ⎪= ⎪ ⎪⎝⎭相似于矩阵0000m B n m n m ⎛⎫⎪= ⎪ ⎪⎝⎭,其中n 为非零常数, m 为任意常数.(3) 设A 为一个n 阶矩阵且满足2560A A E -+=,证明:A 相似于一个对角矩阵。
第一套试题答案一(10分)、证明:(1)设11k x +22k x +33k x =0, ①用σ作用式①两端,有111k x λ+222k x λ+333k x λ=0 ②1λ⨯①-②,有21223133()()0k x k x λλλλ-+-= ③再用σ作用式③两端,有2122231333()()0k x k x λλλλλλ-+-= ④ ③⨯2λ-④,有313233()()0k x λλλλ--=。