矩阵分析课后习题答案(北京理工大学出版社) (1)

合集下载

北京理工大学矩阵分析第四章作业答案

北京理工大学矩阵分析第四章作业答案
A UDV H 1 0 0 2 0 1 0 0 1 0 0 1 . 0 i 0 0 1 0 0
2 2 0 A 8 2 a 0 0 6 是单纯矩阵, 求 a, 并且求矩阵 A的谱分解表达式.
T
2 6
1 6
T
Hale Waihona Puke G1 H 1 1

1 3 1 1 3 3 1 3
1 3
1 3 1 1 3 3 1 3
1 3 1 3 1 3
1 3 1 3 1 3
G2 2 2H 3 3H
4-1:求矩阵 A 的满秩分解
2 1 2 3 1 A 2 5 1 4 1 1 3 1 2 1
对A只进行初等行变换, 得行简化阶梯形,
1 0 0 8 5 2 5 0 1 0 1 5 1 5 0 0 1 1 5 4 5
1 3 1 2 1 6
1 3 1 2 1 6
1 3 0 2 6
4 -3( 2) 已知
求 B 的谱分解.
0 1 1 B 1 0 1 1 1 0
B B H , 所以 B 是正规矩阵.
I - B ( 1)2 ( 2)
m n
, 秩(A)= r
行简化阶梯形 J
A 初等行变换
设主元在 i1 , i2 ,
A 中的第 i1 , i2 ,
, ir 列,则选取 , ir 列组成矩阵 B
m r
r n
,
去掉 J 中的零行,剩下的组成 C A=BC
例:设矩阵的满秩分解为 A=BC, 证明:

矩阵分析报告课后习题解答(整理版)

矩阵分析报告课后习题解答(整理版)

第一章线性空间与线性变换(以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传)(此处注意线性变换的核空间与矩阵核空间的区别)1.9.利用子空间定义,)(A R 是m C 的非空子集,即验证)(A R 对m C 满足加法和数乘的封闭性。

1.10.证明同1.9。

1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数)1.13.提示:设),)(-⨯==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0( ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0( ==(其中1位于ij X 的第i 行和第j 行),代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故A A T -=,即A 为反对称阵。

若X 是n 维复列向量,同样有0=ii a ,0=+ji ij a a ,再令T ij i X X ),0,1,0,0,,0,0( ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)(1.15.存在性:令2,2HH A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==,唯一性:假设11C B A +=,1111,C C B B HH -==,且C C B B ≠≠11,,由1111C B C B A H H H -=+=,得C A A C B A A B HH =-==+=2,211(矛盾)第二章酉空间和酉变换(注意实空间与复空间部分性质的区别)2.8 法二:设~2121),,()0,0,1,0,0)(,,(X e e e e e e e n T n i ==(1在第i 行);~2121),,()0,0,1,0,0)(,,(Y e e e e e e e n T n j ==(1在第j 行) 根据此题内积定义⎩⎨⎧≠===j i j i X Y e e H j i 01),~~( 故n e e e ,,21是V 的一个标准正交基。

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后知识题目解析

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后知识题目解析

第1章 线性空间和线性变换(详解)1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0的矩阵.用ij E (,1,2,,1)i j i n <=-表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素为1外,其余元素全为0的矩阵.显然,ii E ,ij E 都是对称矩阵,ii E 有(1)2n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1)2n n +个矩阵线性表示,此即对称矩阵组成(1)2n n +维线性空间. 同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1)2n n -.评注:欲证一个集合在加法与数乘两种运算下是一个(1)2n n +维线性空间,只需找出(1)2n n +个向量线性无关,并且集合中任何一个向量都可以用这(1)2n n +个向量线性表示即可.1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可.1-3 解:方法一 设11223344x x x x =+++A E E E E即123412111111100311100000x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦故 12341231211203x x x x x x x x x x +++++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦于是12341231,2x x x x x x x +++=++=1210,3x x x +==解之得12343,3,2,1x x x x ==-==-即A 在1234,,,E E E E 下的坐标为(3,3,2,1)T--.方法二 应用同构的概念,22R ⨯是一个四维空间,并且可将矩阵A 看做(1,2,0,3)T,1234,,,E E E E 可看做(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)T T T T .于是有1111110003111020100311000001021000300011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦因此A 在1234,,,E E E E 下的坐标为(3,3,2,1)T--.1-4 解:证:设112233440k k k k αααα+++=即1234123412313412411111110110110110k k k k k k k k k k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤==⎢⎥++++⎣⎦于是12341230,0k k k k k k k +++=++= 1341240,0k k k k k k ++=++=解之得12340k k k k ====故1234,,,αααα线性无关. 设123412341231341241111111011011011a b x x x x c d x x x x x x x x x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤=⎢⎥++++⎣⎦于是12341230,0x x x x x x x +++=++= 1341240,0x x x x x x ++=++=解之得122,x b c d a x a c =++-=-34,x a d x a b =-=-1234,,,x x x x 即为所求坐标.1-5 解:方法一 (用线性空间理论计算)32312233410()121,,,021,1,(1),(1)p x x x x x y y x x x y y ⎡⎤⎢⎥⎢⎥⎡⎤=+=⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎡⎤=---⎣⎦⎢⎥⎢⎥⎣⎦又由于23231,1,(1),(1)111101231,,,00130001x x x x x x ⎡⎤---⎣⎦⎡⎤⎢⎥-⎢⎥⎡⎤=⎣⎦⎢⎥-⎢⎥⎣⎦于是()p x 在基231,1,(1),(1)x x x ---下的坐标为11234111113012306001306000122y y y y -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦方法二 将3()12p x x =+根据幂级数公式按1x -展开可得32323()12(1)(1)(1)(1)(1)(1)(1)2!3!36(1)6(1)2(1)p x x p p p p x x x x x x =+''''''=+-+-+-=+-+-+- 因此()p x 在基231,1,(1),(1)x x x ---下的坐标为[]3,6,6,2T.评注:按照向量坐标定义计算,第二种方法比第一种方法更简单一些.1-6 解:①设[][]12341234,,,,,,=ββββααααP将1234,,,αααα与1234,,,ββββ代入上式得20561001133611001121011010130011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦P 故过渡矩阵1100120561100133601101121001110131122223514221915223112822-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤---⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦P②设1212343410(,,,)10y y y y ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξββββ将1234,,,ββββ坐标代入上式后整理得11234792056181336027112111310130227y y y y -⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦评注:只需将,i i αβ代入过渡矩阵的定义[][]12341234,,,,,,=ββββααααP 计算出P .1-7 解:因为12121212{,}{,}{,,,}span span span +=ααββααββ由于秩1212{,,,}3span =ααββ,且121,,ααβ是向量1212,,,ααββ的一个极大线性无关组,所以和空间的维数是3,基为121,,ααβ. 方法一 设1212{,}{,}span span ∈ξααββ,于是由交空间定义可知123411212111011030117k k k k -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥+++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦解之得1222122,4,3(k l k l l l l =-==-为任意数)于是11222[5,2,3,4]T k k l =+=-ξαα(很显然1122l l ββ=+ξ)所以交空间的维数为1,基为[5,2,3,4]T-.方法二 不难知12121212{,}{,},{,}{,}span span span span ''==ααααββββ其中2213[2,2,0,1],[,2,1,0]3TT ''=--=-αβ.又12{,}span 'αα也是线性方程组 13423422x x x x x x =-⎧⎨=-⎩ 的解空间.12{,}span 'ββ是线性方程组13423413232x x x x x x ⎧=-+⎪⎨⎪=-⎩ 的解空间,所以所求的交空间就是线性方程组1342341342342213232x x x x x x x x x x x x =-⎧⎪=-⎪⎪⎨=-+⎪⎪=-⎪⎩ 的解空间,容易求出其基础解系为[5,2,3,4]T-,所以交空间的维数为1,基为[5,2,3,4]T -.评注:本题有几个知识点是很重要的.12(1){,,,}n span ααα的基底就是12,,,nααα的极大线性无关组.维数等于秩12{,,,}n ααα.1212(2){,}{,}span span +ααββ1212{,,,}span =ααββ.(3)方法一的思路,求交1212{,}{,}span span ααββ就是求向量ξ,既可由12,αα线性表示,又可由12,ββ线性表示的那部分向量.(4)方法二是借用“两个齐次线性方程组解空间的交空间就是联立方程组的解空间”,将本题已知条件改造为齐次线性方程组来求解.1-8解:(1):解出方程组1234123420510640x x x x x x x x ---=⎧⎨---=⎩(Ⅰ)的基础解系,即是1V 的基,解出方程组123420x x x x -++=(Ⅱ)的基础解系,即是2V 的基; (2): 解出方程组1234123412342051064020x x x x x x x x x x x x ---=⎧⎪---=⎨⎪-++=⎩的基础解系,即为12V V ⋂的基;(3):设{}{}1121,,,,,k l V span V span ααββ==,则11,,,,,k l ααββ的极大无关组即是12V V +的基. 1-9解:仿上题解.1-10解: 仿上题解.1-11 证:设210121()()()0k k l l l l --++++=ξξξξA AA①用1k -A从左侧成①式两端,由()0k=ξA 可得10()0k l -=ξA因为1()0k -≠ξA,所以00l =,代入①可得21121()()()0k k l l l --+++=ξξξA AA②用2k -A从左侧乘②式两端,由()0k=ξA可得00l =,继续下去,可得210k l l -===,于是21,(),(),,()k -ξξξξA AA线性无关.1-12 解:由1-11可知,n 个向量210,(),(),,()n -≠ξξξξAAA线性无关,它是V 的一个基.又由21212121[,(),(),,()][(),(),,()][(),(),,(),0]000010000100[,(),(),,()]0000010n n n n n n----⨯==⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ξξξξξξξξξξξξξξA A A AA A A A AAA AA 所以A在21,(),(),,()n -ξξξξA AA 下矩阵表示为n 阶矩阵0000100001000000010⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦评注:n 维线性空间V 中任何一组n 个线性无关的向量组都可以构成V 的一个基,因此21,(),(),,()n -ξξξξA AA是V 的一个基.1-13证: 设()()()111,,,,,,,,,,,r s m r s A A ξξξββααα==设11,,,,,,r r s ξξξξξ是的极大无关组,则可以证明11,,,,,,r r s ααααα是的极大无关组.1-14 解:(1)由题意知123123[,,][,,]=ααααααA A123123111[,,][,,]011001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦βββααα设A在基123,,βββ下的矩阵表示是B ,则11111123111011103011001215001244346238--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦B P AP (2)由于0A ≠,故0=AX 只有零解,所以A的核是零空间.由维数定理可知A的值域是线性空间3R .1-15解:已知()()2323,,,,A αααααα=11A(1) 求得式()()2323,,,,P εεεααα=11中的过渡矩阵P ,则1B P AP -=即为所求; (2)仿教材例1.5.1.(见<矩阵分析>史荣昌编著.北京理工大学出版社.) 1-16解:设()23,,A ααα=1,则{}23(),,;()R A span N A ααα=1就是齐次方程组0Ax = 的解空间. 1-17证:由矩阵的乘法定义知AB BA 与的主对角线上元素相等,故知AB BA 与的迹相等;再由1-18 题可证.1-18证:对k 用数学归纳法证。

矩阵分析

矩阵分析

矩阵分析课后习题答案第二章 内积空间14 . 设A , B 均为厄米特矩阵, 证明: AB 为厄米特矩阵的充要条件是AB = BA .证明: H A A =,H B B =()HH H AB AB B A AB =⇔=即 AB BA =17 . 证明:两个正规矩阵相似( 酉等价) 的充要条件是特征多项式相同.证明:设A , B 是两个n 阶的正规矩阵,如果A 与B 是酉等价的,则存在酉矩阵Q ,使得1H B Q AQ Q AQ -==()11E B E Q AQ Q E A Q E A λλλλ--⇒-=-=-=-即A , B 有相同的特征多项式反之,A , B 有相同的特征多项式,因而有相同的特征值集合{}12,,,n λλλA ,B 是正规矩阵,则存在酉矩阵1Q 及2Q ,使得1111122n Q AQ Q BQ λλλ2--⎡⎤⎢⎥⎢⎥==⎢⎥ ⎢⎥ ⎣⎦ 则有 ()()11111121121212B Q Q A Q Q Q QA Q QP A P------=== 易知,112p Q Q -=是酉矩阵,即A , B 是酉相似的。

第三章 矩阵的标准形6 . 在复数域上, 求下列矩阵的约当标准形:()11 -1 2 3 7 -3 3 0 8 4 5 -2⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥ 3 -3 6 ; (2) -2 -5 2; (3) 3 -1 6; (4) -⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥2 -2 4-4 -10 3-2 0 -5⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥2 -2 1 ⎢⎥⎢⎥-1 -1 1⎣⎦解 (1) 特征矩阵为λλλ-1 1 -2⎡⎤⎢⎥-3 +3 - 6⎢⎥⎢⎥-2 2 -4⎣⎦所以行列式因子为()()121D D λλλ==,,()()232D λλλ=-不变因子为()()()()()()()()()231123121,D D d D d d D D λλλλλλλλλλλ== ==, ==-2全部初级因子为()2,,λλλ-故约当标准型为 2J 0 0⎡⎤⎢⎥=0 0 0⎢⎥⎢⎥0 0 0⎣⎦(2) 特征矩阵为λλλ -3 - 7 3⎡⎤⎢⎥ 2 +5 -2⎢⎥⎢⎥ 4 10 - 3⎣⎦所以行列式因子为()()211D D λλ==,()()31()()D i i λλλλ=--+不变因子为()()()()()()()()()231123121,1()()D D d D d d i i D D λλλλλλλλλλλ== ==1, ==--+全部初级因子为1,,i i λλλ- - +故约当标准型为 J i i 1 0 0⎡⎤⎢⎥=0 0⎢⎥⎢⎥0 0 -⎣⎦(3) 特征矩阵为5λλλ -3 0 -8⎡⎤⎢⎥ -3 +1 -6⎢⎥⎢⎥ 2 0 +⎣⎦所以行列式因子为()()()()1231,1,1D D D λλλλλ3= =+ =+不变因子为()()()()()()()()()2231123121,1D D d D d d D D λλλλλλλλλλ== ==+1, ==+全部初级因子为21,1)λλ+ (+故约当标准型为 J -1 0 0⎡⎤⎢⎥= 0 -1 0⎢⎥⎢⎥ 0 1 -1⎣⎦(4) 特征矩阵为λλλ -4 - 5 2⎡⎤⎢⎥ 2 +2 -1⎢⎥⎢⎥ 1 1 - 1⎣⎦所以行列式因子为()()211D D λλ==,()()331D λλ=-不变因子为()()()()()()()()()3231123121,D D d D d d D D λλλλλλλλλ== ==1, ==-1全部初级因子为()31λ-故约当标准型为 J 1 0 0⎡⎤⎢⎥=1 1 0⎢⎥⎢⎥0 1 1⎣⎦8 . 证明: ( 1)方阵A 的特征值全是零的充要条件是存在自然数m ,使得A m = 0; ( 2) 若A m = 0 , 则1A E +=.证明:(1) 如λ为A 的任一特征值,A 为n 阶方阵,则m λ为m A 的特征值,若0m A =则m n E A E λλλ-==,即A 的特征值为0。

矩阵分析所有习题及标准答案

矩阵分析所有习题及标准答案

习题3 习题3-13
#3-13: =A,则存在 则存在U #3-13:若A∈Hn×n,A2=A,则存在U∈Un×n使得 U*AU=diag(Er,0),r=rank(A). 存在U 证:存在U∈Un×n使得 A=Udiag(λ A=Udiag(λ1,…,λn)U*, , (*) 其中λ 的特征值的任意排列 任意排列. 其中λ1,…,λn是A的特征值的任意排列. , ∵ A2=A 和 =Udiag(λ Udiag(λ A2=Udiag(λ1,…,λn)U*Udiag(λ1,…,λn)U* , , =Udiag(λ =Udiag(λ12,…,λn2)U* , {0,1},i=1,…,n,. ∴ λi2=λi,即λi∈{0,1},i=1, ,n,. 取λ1,…,λn的排列使特征值0全排在后面,则(*) , 的排列使特征值0全排在后面, 式即给出所需答案. 式即给出所需答案.
习题3 已知A 是正定Hermite矩阵, Hermite矩阵 习题3-1已知A∈Cn×n是正定Hermite矩阵, β∈C α,β∈Cn.定义内积 (α,β)=αAβ*.①试证它 是内积; 写出相应的C 是内积;②写出相应的C-S不等式
①: ( β , α ) = β Aα * = (α Aβ * )T = (α Aβ * )* = α Aβ * = (α , β ) ; (kα , β ) = kα Aβ * = k (α , β );
−1 0 3 5 −1 3 6 1 1 0 = 0 − 1 − 10 W A1 W1* 1 0 0 −1 0
习题3 习题83-3(1) 0 3
6 −1 3 6 −1 3 8 3 0 3 8 = 0 , A1 = − 2 − 5 A1 0 − 2 − 5 0

矩阵分析所有习题及标准答案

矩阵分析所有习题及标准答案
于是 B=(1/2)(A+A*),C=(1/2)(A-A*). 证毕
注:令T=-iC,则T*=iC*=i(-C)=T,即THnn.由此推 出:A可唯一地写为A=B+iT,其中B,THnn.
习题3*1试证:向量长度的齐次性
#3*1:试证 k k , k C, Cn
证:令=(a1,…,an)T ,则 k=(源自1,…,an)T.1
1 1
(1 , 1 , 1 , 1)T ; 2222
2
2 2
(1 , 1 , 1 , 1)T ; 22 2 2
3
3 3
( 1 , 1 , 1 , 1)T 22 22
1,2,3就是所要求的标正基.
习题3*5(i)用归纳法证明 1+3+5+…+(2n-1)2=n2
证:对k用归纳法证明.k=1时结论显然成立. 若n-1时结论成立
U=(A+E)(A-E)-1Unn.
习n.题试3证-2:6A设*AA的为特正征规值矩为阵|特1征|2值,…为,|1,n…|2,.
证:因为A是正规矩阵,所以存在UUnn 使得 A=Udiag(1,…,n)U*,
其中1,…, n是A的特征值.于是, A*A=Udiag(|1|2,…,|n|2)U*.
因对角矩阵diag(|1|2,…,|n|2)酉相似于A*A, 故A*A的特征值为 |1|2,…,|n|2
习题3-27
#3-27(1):A*A,AA*都是半正定Hermite矩阵. (2):若ACmn,则A*A,AA*的非零特征值相同
(它们的谱可能不一样)
证:(1): (A*A)*=A*A,(AA*)*=AA*.
xCn,x*(A*A)x =(Ax)*Ax=(Ax,Ax)0.

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案讲课讲稿

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案讲课讲稿

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案第1章 线性空间和线性变换(详解)1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0的矩阵.用ij E (,1,2,,1)i j i n <=-L 表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素为1外,其余元素全为0的矩阵.显然,ii E ,ij E 都是对称矩阵,ii E 有(1)2n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1)2n n +个矩阵线性表示,此即对称矩阵组成(1)2n n +维线性空间.同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1)2n n -.评注:欲证一个集合在加法与数乘两种运算下是一个(1)2n n +维线性空间,只需找出(1)2n n +个向量线性无关,并且集合中任何一个向量都可以用这(1)2n n +个向量线性表示即可.1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可.1-3 解:方法一 设11223344x x x x =+++A E E E E即123412111111100311100000x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦ 故12341231211203x x x x x x x x x x +++++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦于是12341231,2x x x x x x x +++=++=1210,3x x x +==解之得12343,3,2,1x x x x ==-==-即A 在1234,,,E E E E 下的坐标为(3,3,2,1)T --.方法二 应用同构的概念,22R ⨯是一个四维空间,并且可将矩阵A 看做(1,2,0,3)T ,1234,,,E E E E 可看做(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)T T T T .于是有1111110003111020100311000001021000300011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦因此A 在1234,,,E E E E 下的坐标为(3,3,2,1)T --.1-4 解:证:设112233440k k k k αααα+++=即1234123412313412411111110110110110k k k k k k k k k k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤==⎢⎥++++⎣⎦于是12341230,0k k k k k k k +++=++=1341240,0k k k k k k ++=++=解之得12340k k k k ====故1234,,,αααα线性无关. 设123412341231341241111111011011011a b x x x x c d x x x x x x x x x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤=⎢⎥++++⎣⎦于是12341230,0x x x x x x x +++=++= 1341240,0x x x x x x ++=++=解之得122,x b c d a x a c =++-=-34,x a d x a b =-=-1234,,,x x x x 即为所求坐标.1-5 解:方法一 (用线性空间理论计算)32312233410()121,,,021,1,(1),(1)p x x x x x y y x x x y y ⎡⎤⎢⎥⎢⎥⎡⎤=+=⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎡⎤=---⎣⎦⎢⎥⎢⎥⎣⎦又由于23231,1,(1),(1)111101231,,,00130001x x x x x x ⎡⎤---⎣⎦⎡⎤⎢⎥-⎢⎥⎡⎤=⎣⎦⎢⎥-⎢⎥⎣⎦于是()p x 在基231,1,(1),(1)x x x ---下的坐标为11234111113012306001306000122y y y y -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦方法二 将3()12p x x =+根据幂级数公式按1x -展开可得32323()12(1)(1)(1)(1)(1)(1)(1)2!3!36(1)6(1)2(1)p x x p p p p x x x x x x =+''''''=+-+-+-=+-+-+- 因此()p x 在基231,1,(1),(1)x x x ---下的坐标为[]3,6,6,2T.评注:按照向量坐标定义计算,第二种方法比第一种方法更简单一些. 1-6 解:①设[][]12341234,,,,,,=ββββααααP将1234,,,αααα与1234,,,ββββ代入上式得20561001133611001121011010130011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦P 故过渡矩阵1100120561100133601101121001110131122223514221915223112822-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤---⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦P②设1212343410(,,,)10y y y y ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξββββ将1234,,,ββββ坐标代入上式后整理得11234792056181336027112111310130227y y y y -⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦评注:只需将,i i αβ代入过渡矩阵的定义[][]12341234,,,,,,=ββββααααP计算出P .1-7 解:因为12121212{,}{,}{,,,}span span span +=ααββααββ由于秩1212{,,,}3span =ααββ,且121,,ααβ是向量1212,,,ααββ的一个极大线性无关组,所以和空间的维数是3,基为121,,ααβ.方法一 设1212{,}{,}span span ∈ξααββI ,于是由交空间定义可知123411212111011030117k k k k -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥+++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦解之得1222122,4,3(k l k l l l l =-==-为任意数)于是11222[5,2,3,4]T k k l =+=-ξαα(很显然1122l l ββ=+ξ)所以交空间的维数为1,基为[5,2,3,4]T -. 方法二 不难知12121212{,}{,},{,}{,}span span span span ''==ααααββββ其中2213[2,2,0,1],[,2,1,0]3TT ''=--=-αβ.又12{,}span 'αα也是线性方程组13423422x x x x x x =-⎧⎨=-⎩ 的解空间.12{,}span 'ββ是线性方程组13423413232x x x x x x ⎧=-+⎪⎨⎪=-⎩ 的解空间,所以所求的交空间就是线性方程组1342341342342213232x x x x x x x x x x x x =-⎧⎪=-⎪⎪⎨=-+⎪⎪=-⎪⎩ 的解空间,容易求出其基础解系为[5,2,3,4]T -,所以交空间的维数为1,基为[5,2,3,4]T -.评注:本题有几个知识点是很重要的.12(1){,,,}n span αααL 的基底就是12,,,n αααL 的极大线性无关组.维数等于秩12{,,,}n αααL .1212(2){,}{,}span span +ααββ1212{,,,}span =ααββ.(3)方法一的思路,求交1212{,}{,}span span ααββI 就是求向量ξ,既可由12,αα线性表示,又可由12,ββ线性表示的那部分向量.(4)方法二是借用“两个齐次线性方程组解空间的交空间就是联立方程组的解空间”,将本题已知条件改造为齐次线性方程组来求解.1-8解:(1):解出方程组1234123420510640x x x x x x x x ---=⎧⎨---=⎩(Ⅰ)的基础解系,即是1V 的基, 解出方程组123420x x x x -++=(Ⅱ)的基础解系,即是2V 的基; (2): 解出方程组1234123412342051064020x x x x x x x x x x x x ---=⎧⎪---=⎨⎪-++=⎩的基础解系,即为12V V ⋂的基;(3):设{}{}1121,,,,,k l V span V span ααββ==L L ,则11,,,,,k l ααββL L 的极大无关组即是12V V +的基. 1-9解:仿上题解.1-10解: 仿上题解.1-11 证:设210121()()()0k k l l l l --++++=ξξξξL A AA①用1k -A从左侧成①式两端,由()0k=ξA可得10()0k l -=ξA因为1()0k -≠ξA,所以00l =,代入①可得21121()()()0k k l l l --+++=ξξξL A A A②用2k -A从左侧乘②式两端,由()0k=ξA可得00l =,继续下去,可得210k l l -===L ,于是21,(),(),,()k -ξξξξL A AA 线性无关.1-12 解:由1-11可知,n 个向量210,(),(),,()n -≠ξξξξL A AA线性无关,它是V 的一个基.又由21212121[,(),(),,()][(),(),,()][(),(),,(),0]000010000100[,(),(),,()]00000010n n n n n n----⨯==⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ξξξξξξξξξξξξξξL L L L L L L M M M M L LA A A AA A A A AAA A A 所以A在21,(),(),,()n -ξξξξL A AA下矩阵表示为n 阶矩阵00001000010000000010⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦L L L M M M M L L评注:n 维线性空间V 中任何一组n 个线性无关的向量组都可以构成V 的一个基,因此21,(),(),,()n -ξξξξL A A A是V 的一个基.1-13证: 设()()()111,,,,,,,,,,,r s m r s A A ξξξββααα==L L L L L 设11,,,,,,r r s ξξξξξL L L 是的极大无关组,则可以证明11,,,,,,r r s αααααL L L 是的极大无关组. 1-14 解:(1)由题意知123123[,,][,,]=ααααααA A123123111[,,][,,]011001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦βββααα 设A在基123,,βββ下的矩阵表示是B ,则11111123111011103011001215001244346238--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦B P AP (2)由于0A ≠,故0=AX 只有零解,所以A的核是零空间.由维数定理可知A的值域是线性空间3R .1-15解:已知()()2323,,,,A αααααα=11A(1) 求得式()()2323,,,,P εεεααα=11中的过渡矩阵P ,则1B P AP -=即为所求; (2)仿教材例1.5.1.(见<矩阵分析>史荣昌编著.北京理工大学出版社.) 1-16解:设()23,,A ααα=1,则{}23(),,;()R A span N A ααα=1就是齐次方程组0Ax = 的解空间. 1-17证:由矩阵的乘法定义知AB BA 与的主对角线上元素相等,故知AB BA 与的迹相等;再由1-18 题可证. 1-18证:对k 用数学归纳法证。

北京理工大学出版社矩阵分析习题解答[1]

北京理工大学出版社矩阵分析习题解答[1]

2005级电路与系统矩阵分析作业3-1已知)(ij a A =是n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量[]n x x x ,,,21 =α ,[]n y y y ,,,21 =β定义内积*),(βαβαA =。

(1)证明在上述定义下,n C 是酉空间;(2)写出n C 中的Canchy -Schwarz 不等式。

(1)证明:),(αβ=HA αβ=HHA )(βα=HA βα ,(βα,k )=),(βαβαk A k H=),(),()(),(γβγαγβγαγβαγβα+=+=+=+HHHA A AHA αααα=),(,因为A 为正定H 矩阵,所以0),(≥αα,当且仅当0),(0==ααα时,由上可知c n是酉空间。

証毕。

(2)解: ∑∑==njnij ijiHy ax A |||),(|βαβα∑∑==n jnij ijix ax ),(||||ααα,∑∑==njnij ij i y a y ),(||||βββ由Cauchy-Schwarz 不等式有:∑∑∑∑∑∑≤njnij ij i njninjnij ijij ijiy a y x ax y ax *3-3(1)已知.A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡502613803---,试求酉矩阵U,使得U*AU 是上三角矩阵解:由|λE-A| = (λ+1)3得 λ= -1是A 的特征值,当λ=-1时,可得|λE-A|=0000201于是ε1=(0,1,0)T 是A 的特征向量。

选择与ε1正交,并且互相也正交两个向量组成酉阵:U 1= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10001010则U 1*A U 1= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---52830631取A 1= ⎥⎦⎤⎢⎣⎡--5283,|λE- A 1| = (λ+1)2λ= -1是A 1的特征值。

当λ=-1时,可得|λE- A 1|=21,于是,α1=( --52,51)T 是A 的特征向量,选择与α1正交的向量组成酉阵U 2 = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡52515152-,U 2*A 1U 2 = 51⎥⎦⎤⎢⎣⎡-2112⎥⎦⎤⎢⎣⎡--5283⎥⎦⎤⎢⎣⎡-2112 =⎥⎦⎤⎢⎣⎡---10101 3-9若S ,T 分别是实对称矩阵和反实对称矩阵,且0)det(≠--iS T E ,试证:1))((---++iS T E iS T E 是酉矩阵,。

矩阵分析参考答案

矩阵分析参考答案

矩阵分析参考答案矩阵分析参考答案矩阵分析是线性代数中的一个重要分支,它研究的是矩阵的性质和运算。

在实际应用中,矩阵分析被广泛应用于各个领域,如物理学、工程学、计算机科学等。

本文将从矩阵分析的基本概念、性质和运算等方面,为读者提供一份参考答案。

首先,我们来介绍一些矩阵分析的基本概念。

矩阵是由数个数构成的矩形阵列,通常用大写字母表示。

矩阵的行数和列数分别称为矩阵的阶数。

例如,一个3行2列的矩阵可以表示为:A = [a11 a12a21 a22a31 a32]其中,a11、a12等表示矩阵中的元素。

矩阵的元素可以是实数、复数或其他数值类型。

矩阵的性质包括可逆性、对称性、正定性等。

一个矩阵如果存在逆矩阵,即乘以其逆矩阵后得到单位矩阵,那么该矩阵就是可逆的。

对称矩阵是指矩阵的转置等于其本身,即A = A^T。

正定矩阵是指矩阵的所有特征值都大于零。

接下来,我们来介绍一些矩阵的运算。

矩阵的加法和减法是按照对应元素相加和相减的规则进行的。

例如,对于两个相同阶数的矩阵A和B,它们的加法可以表示为C = A + B,其中C的元素为A和B对应元素的和。

矩阵的乘法是按照矩阵乘法的规则进行的。

例如,对于一个m行n列的矩阵A和一个n行p列的矩阵B,它们的乘法可以表示为C = AB,其中C为一个m行p列的矩阵,C的元素为A的行向量与B的列向量的内积。

除了基本的矩阵运算外,矩阵还有一些特殊的运算。

矩阵的转置是指将矩阵的行和列互换,即A的转置为A^T。

矩阵的迹是指矩阵主对角线上的元素之和,用Tr(A)表示。

矩阵的行列式是一个标量,用det(A)表示,它可以用来判断一个矩阵是否可逆。

矩阵的特征值和特征向量是矩阵分析中的重要概念。

对于一个n阶矩阵A,如果存在一个非零向量x和一个标量λ,使得Ax = λx,那么λ就是A的特征值,x就是对应于特征值λ的特征向量。

特征值和特征向量可以用来描述矩阵的性质和变换。

最后,我们来讨论一些矩阵分析的应用。

矩阵分析第3章习题答案

矩阵分析第3章习题答案

第三章1、 已知()ij A a =是n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量1212(,,,),(,,,)n n x x x y y y αβ== 定义内积为(,)H A αβαβ=(1) 证明在上述定义下,n C 是酉空间; (2) 写出n C 中的Canchy-Schwarz 不等式。

2、 已知2111311101A --⎡⎤=⎢⎥-⎣⎦,求()N A 的标准正交基。

提示:即求方程0AX =的基础解系再正交化单位化。

3、 已知308126(1)316,(2)103205114A A --⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦试求酉矩阵U ,使得HU AU 是上三角矩阵。

提示:参见教材上的例子4、 试证:在nC 上的任何一个正交投影矩阵P 是半正定的Hermite 矩阵。

5、 验证下列矩阵是正规矩阵,并求酉矩阵U ,使HU AU 为对角矩阵,已知131(1)612A ⎡⎢⎢⎢=⎢⎢⎢⎥⎢⎥⎣⎦01(2)10000i A i -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,434621(3)44326962260ii i A i i i i i +--⎡⎤⎢⎥=----⎢⎥⎢⎥+--⎣⎦11(4)11A -⎡⎤=⎢⎥⎣⎦6、 试求正交矩阵Q ,使TQ AQ 为对角矩阵,已知220(1)212020A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,11011110(2)01111011A -⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦7、 试求矩阵P ,使H P AP E =(或T P AP E =),已知11(1)01112i i A i i +⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,222(2)254245A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦8、 设n 阶酉矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1()()H i E U E U -=-+是Hermite 矩阵。

反之,若H 是Hermite 矩阵,则E iH +满秩,且1()()U E iH E iH -=+-是酉矩阵。

矩阵分析习题附答案

矩阵分析习题附答案

一、空题(每小题5分,共30分)1、若矩阵A =0110101002103202211010352234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦的满秩分解为A =BC ,则 B =⎡⎢⎢⎢⎢⎣⎤⎥⎥⎥⎥⎦,C =⎡⎢⎢⎢⎣⎤⎥⎥⎥⎦。

解:由初等行变换A =0110101002103202211010352234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦→01101011300112200011010000⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦→1310100222133001022200011010000000⎡⎤--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦, 知:B =110021221352⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,C =13101002221330010222110001⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥⎣⎦。

2、矩阵A =101010403-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦的最小多项式为()ϕλ= 。

解:由于[]()()()21011011000100100140300314001I A λλλλλλλλλλ⎡⎤+---⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-→-→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--++⎣⎦-⎣⎦⎢⎥⎣⎦ 知A 的初等因子为(λ—1),(λ—1)2,故A 的最小多项式为()ϕλ=(λ—1)2。

3、设1010221202A ⎡⎤=⎢⎥⎣⎦,则N (A )的一个标准正交基为。

解:由于1213531235452101020222212020x x x x x Ax x x x x x x x ⎡⎤⎢⎥⎢⎥++⎡⎤⎡⎤⎡⎤⎢⎥===⎢⎥⎢⎥⎢⎥+++⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦等价于 135252020x x x x x ++⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦,而其解空间的一个基为 α1=(-1,0,1,0,0)T ,α2=(0,0,0,1,0)T ,α3=(-2,2,0,0,1)T对其作标准正交化即得其一个标准正交基为(0,0,0)T ,(0,0,0,1,0)T ,(0,T 4、设12121121,;,2013e e e e ⎡⎤⎡⎤⎡⎤⎡⎤''====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦为2R 的两个基,T 为2R 的线性变换,且1213(),()21T e T e ⎡⎤⎡⎤''==⎢⎥⎢⎥⎣⎦⎣⎦, 则T 在基12,e e 下的矩阵为A =⎡⎤⎢⎥⎣⎦。

最新矩阵分析课后习题解答(整理版)

最新矩阵分析课后习题解答(整理版)

第一章线性空间与线性变换(以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传)(此处注意线性变换的核空间与矩阵核空间的区别)1.9.利用子空间定义,)R对m C满足加(AR是m C的非空子集,即验证)(A法和数乘的封闭性。

1.10.证明同1.9。

1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数)1.13.提示:设),)(-⨯==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0( ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0( ==(其中1位于ij X 的第i 行和第j 行),代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故A A T -=,即A 为反对称阵。

若X 是n 维复列向量,同样有0=ii a ,0=+ji ij a a ,再令T ij i X X ),0,1,0,0,,0,0( ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)(1.15.存在性:令2,2HH A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==,唯一性:假设11C B A +=,1111,C C B B HH -==,且C C B B ≠≠11,,由1111C B C B A H H H -=+=,得C A A C B A A B HH =-==+=2,211(矛盾)第二章酉空间和酉变换(注意实空间与复空间部分性质的区别)2.8 法二:设~2121),,()0,0,1,0,0)(,,(X e e e e e e e n T n i ==(1在第i 行);~2121),,()0,0,1,0,0)(,,(Y e e e e e e e n T n j ==(1在第j 行) 根据此题内积定义⎩⎨⎧≠===j i j i X Y e e H j i 01),~~( 故n e e e ,,21是V 的一个标准正交基。

矩阵分析习题答案

矩阵分析习题答案

(文档过大,分两部分上传,此其一。


容分三部分:
一、袁老师布置的课后习题作业
二、习题课笔记(关于作业)
三、少量课堂笔记
教材:《矩阵分析》蒋家尚、袁永新著大学出版社
==表示第二部分(习题课笔记部分)有更正或补充;
△表有难度,自己学习有欠缺,未解决;
△表有曾有不理解,但已解决。

袁老师的《矩阵分析》课还是蛮难的,考试也有难度。

希望后来人能够好好学习,分享习题也是出于这个目的,虽然不清楚,且多有错讹。

袁老师是我在科大的大学至研究生阶段以来遇到的最好的数学老师,没有之一。

我与袁老师学期下来只对话一次,因为作业的事情。

与袁老师对话起来觉得汗颜,袁是攀登珠峰的学术人,而我则是在山脚下徘徊。

学生看不到更远处的风景,对袁也只能仰视。

Yuan lives at another level.
毕竟是书生2012/12/20考试后
一、课后习题(作业)
因文档过大,此处略去2(参考教材P48及P51证明)、3(二部分习题课有补充)、4、5(开头部分略过)题。

矩阵分析报告课后习题解答(整理版)

矩阵分析报告课后习题解答(整理版)

第一章线性空间与线性变换(以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传)(此处注意线性变换的核空间与矩阵核空间的区别)1.9.利用子空间定义,)R对m C满足加(AR是m C的非空子集,即验证)(A法和数乘的封闭性。

1.10.证明同1.9。

1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数)1.13.提示:设),)(-⨯==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0( ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0( ==(其中1位于ij X 的第i 行和第j 行),代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故A A T -=,即A 为反对称阵。

若X 是n 维复列向量,同样有0=ii a ,0=+ji ij a a ,再令T ij i X X ),0,1,0,0,,0,0( ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)(1.15.存在性:令2,2HH A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==,唯一性:假设11C B A +=,1111,C C B B HH -==,且C C B B ≠≠11,,由1111C B C B A H H H -=+=,得C A A C B A A B HH =-==+=2,211(矛盾)第二章酉空间和酉变换(注意实空间与复空间部分性质的区别)2.8 法二:设~2121),,()0,0,1,0,0)(,,(X e e e e e e e n T n i ==(1在第i 行);~2121),,()0,0,1,0,0)(,,(Y e e e e e e e n T n j ==(1在第j 行) 根据此题内积定义⎩⎨⎧≠===j i j i X Y e e H j i 01),~~( 故n e e e ,,21是V 的一个标准正交基。

矩阵分析_第二章 北京理工大学

矩阵分析_第二章 北京理工大学

要(2)式成立,取
Q0 D0 , Q1 D1 AQ0 , Q2 D2 AQ1 , , Qk Dk AQk 1 , , Qm 1 Dm 1 AQm 2 ,U 0 Dm AQm 1
定理 A ~ B E A E B 的证明
0 A2 ( ) 0
0 0 A3 ( )
对于 A3 ( ) ,其初等因子为 , 1, 1 由上面的定理可知 A( ) 的初等因子为
, , , 1, 1, 1
的秩为4,故
因为
A( )
A( )
的不变因子为
d 4 ( 1)( 1), d 3 ( 1), d 2 , d1 1
1 0 0, D3 ( ) 1 1

D3 ( ) 1 D2 ( ) 1, D1 ( ) 1
1 0 0 1 D4 ( ) 0 0
5
4 3
0 0 1
4
2
3
2
2 3 4 5
d1 ( ) 1, d2 ( ) 1, d3 ( ) 1 4 3 2 d 4 ( ) 2 3 4 5
例 如果 5 6 矩阵 A( ) 的秩为4,其初等因
子为 , , , 1,( 1) ,( 1) ,( i )
2 2 3 3
( i ) 求 A( ) 的Smith标准形。
3
解:首先求出 A( ) 的不变因子
d 4 ( 1) ( i ) ( i )
E U ( ) P ( E A)V 1 ( ) R( ) [( E A)Q( ) U 0 ]P ( E A)V 1 ( ) R( ) U 0 P ( E A)[Q( ) P V ( ) R( )]

矩阵分析-(1)(终)

矩阵分析-(1)(终)
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
《矩阵分析》
1.教材:
《矩阵分析》史荣昌编,北京理工大学出版社
2.参考书:
《矩阵分析学习指导》魏丰,史荣昌等编, 北京理工大学出版社
2014-3-16
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
难点: 求线性映射的值域、核的基与维数
2014-3-16
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
首先, 我们回忆一下《线性代数》中的向量.
向量的运算及性质
负向量: 向量 ( a1 , a2 ,, an ) 称为向量 的负向量
2014-3-16
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
向量的差: ( )
2014-3-16
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
2014-3-16
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
2014-3-16
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
2014-3-16
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
2014-3-16
第一章 线性空间和线性映射
2014-3-16
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
2014-3-16
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
2014-3-16
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
2014-3-16
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
2014-3-16
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档