(完整版)导数双变量专题
导数中的双变量问题
导数1、设函数/(x) = (2-a)Inx + 2</V-~ -(a < 0).(1)讨论函数/(X)在定义域内的单调性;⑵当ae(-3,-2)时,任意x p x2e[l,3], (m + ln3)a-21n3>l/(x1)-/(x2)P®成立,求实数加的取值范围.2、已知二次函数g(x)对PxwR都满足g(x-l) + g(l-x)" - 2x-l且g(l) = j,设函数19= g(x + -) + m\nx + - ( mx>0 ) •e R r2o(I)求gd)的表达式;(II)若3xe/?+,使/W<0成立,求实数用的取值范围;(【II)设15", H(x) = f(x)-(m + l)x,求证:对于Vxp x2e[l,w],恒有I//(x1)-//(x2)l< 103、设x = 3是函数/(x) = (x2 + ax+e /?)的一个极值点.(1)求"与〃的关系式(用"表示方),并求的单调区间;95(2)设。
>0,曲)=oh扌若存在匚盒可0,4],使得|/(切-&(幻<1成立,求"的取x q丿值范围.4、f (A) = (x2 + cix + b)e x(x 已R).(1)若a = 2t b = -2f求函数/⑴的极值;(2)若x = l是函数/(x)的一个极值点,试求出“关于b的关系式(用。
表示b ),并确定/(兀)的单调区间;(3)在(2)的条件下,设。
>0,函数g(x) = (/ +⑷严.若存在衛仆[0,4]使得1/(2,)-/(22)1<1成立,求"的取值范围.5、已知函数f(^x) = ax i+bx2 -3x(a,beR)在点(1J⑴)处的切线方程为y + 2 = 0. ⑴求函数f(x)的解析式;⑵若对于区间[-2,2]±任意两个自变量的值几花都有|/(州)-/(勺)|“,求实数c的最小值;⑶若过点M(2冲)(〃?工2)可作曲线y = f(X)的三条切线,求实数山的取值范围.6、设函数/(x) = x —丄一dlnx(dR).x⑴讨论函数/(劝的单调性;⑵若/⑴有两个极值点州內,记过点心后)),BgJ(兀2))的直线斜率为问:是否存在",使得k = 2-a若存在,求出"的值;若不存在,请说明理由.(1)求函数/G)的单调增区间;⑵记函数F(x)的图象为曲线C,设点心j)、BS)是曲线C上两个不同点,如果曲线C上存在点Mg,。
导数双变量问题
导数双变量问题导数的概念一元函数的导数在数学中,导数是描述函数局部变化率的概念。
对于一元函数,导数表示函数在某一点的切线斜率。
它可以通过极限的定义来求解,即函数在该点的变化量与自变量变化量的比值。
多元函数的导数对于多元函数,导数的概念稍微复杂一些。
我们先来看双变量函数的导数。
双变量函数的导数可以看作是函数在某一点沿着某个方向的变化率。
和一元函数类似,双变量函数在该点处的导数也可以通过极限的定义来求解。
部分偏导数定义双变量函数的导数中,最常见的是部分偏导数。
部分偏导数是指在函数中固定一个变量,把其他变量视为常量,然后对所选择的变量求导。
示例假设有双变量函数f(x, y),我们想要求f对x的偏导数。
为了求解,我们保持y 不变,然后对x求导。
这样就得到了关于x的偏导数。
方向导数定义方向导数是双变量函数在某一点沿着某个方向的变化率。
在二维平面上,方向导数可以通过求得偏导数的方式来计算。
方向导数的公式可以表示为:Df(x, y) = ∇f(x, y) · u,其中∇f(x, y)是双变量函数的梯度向量,u是单位向量。
梯度向量定义梯度向量是双变量函数在某一点的导数。
梯度向量的方向是函数在该点变化最快的方向,而梯度向量的模是函数在该点变化的速率。
公式梯度向量的公式可以表示为:∇f(x, y) = (∂f/∂x, ∂f/∂y),其中∂f/∂x和∂f/∂y分别是函数对x和y的偏导数。
高阶偏导数除了一阶偏导数,我们还可以求解双变量函数的高阶偏导数。
高阶偏导数是指对函数的偏导数再次求导的过程。
应用领域经济学导数在经济学中有广泛的应用。
例如,在微观经济学中,导数可以表示边际效应,帮助我们理解市场供需关系和消费者行为。
物理学导数在物理学中也有重要的应用。
例如,在运动学中,速度和加速度可以表示为位置函数的导数。
工程学中的许多问题也可以通过导数来求解。
例如,在电路设计中,电流和电压之间的关系可以通过求解导数来获得。
2020届高三一轮复习专题:导数之双变量的问题
双变量问题是导数问题中的一个难点,通常情况下,让所求的参数的式子满足另外一个已知的式子的取值范围,不仅可以解决最值得问题,还可以解决其中双变量中的参数问题。
一.双变量最值[例题1]已知函数14341ln)(-+-=xxxxf.(Ⅰ)求函数)(xf的单调区间;(Ⅱ)设42)(2-+-=bxxxg,若对任意)2,0(1∈x,[]2,12∈x,不等式)()(21xgxf≥恒成立,求实数b的取值范围二、双变量求参数问题[例题1] 设是函数的一个极值点. (1)求与的关系式(用表示),并求的单调区间;(2)设,若存在,使得成立,求的取值范围.3x =()()()23,x f x x ax b e x R -=++∈a b a b ()f x ()2250,4x a g x a e ⎛⎫>=+ ⎪⎝⎭[]12,0,4ξξ∈()()121f g ξξ-<a[例题2] .(1)若,求函数的极值; (2)若是函数的一个极值点,试求出关于的关系式(用表示),并确定的单调区间;(3)在(2)的条件下,设,函数.若存在使得成立,求的取值范围.2()()()xf x x ax b e x R =++∈2,2a b ==-()f x 1x =()f x a b a b ()f x 0a >24()(14)xg x a e +=+]4,0[,21∈λλ1|)()(|21<-λλf f a[例题3] 已知二次函数对都满足且,设函数(,).(Ⅰ)求的表达式;(Ⅱ)若,使成立,求实数的取值范围;(Ⅲ)设,,求证:对于,恒有.()g x x R ∀∈2(1)(1)21g x g x x x -+-=--(1)1g =-19()()ln 28f x g x m x =+++m R ∈0x >()g x x R +∃∈()0f x ≤m 1m e <≤()()(1)H x f x m x =-+12[1,]x x m ∀∈,12|()()|1H x H x -<[例题4]设函数. (1)讨论函数在定义域内的单调性;(2)当时,任意,恒成立,求实数的取值范围.221()(2)ln (0)ax f x a x a x+=-+<()f x (3,2)a ∈--12,[1,3]x x ∈12(ln 3)2ln 3|()()|m a f x f x +->-m。
导数双变量问题
导数双变量问题导数双变量问题导数是微积分的一个基本概念,它描述了函数在某一点处的变化率。
在单变量情况下,导数的概念已经被广泛应用于各种领域,如物理学、工程学、经济学等。
然而,在双变量情况下,导数的概念稍微复杂一些。
本文将介绍双变量函数的导数及其应用。
一、双变量函数首先,我们来回顾一下单变量函数的概念。
单变量函数是指只涉及一个自变量和一个因变量的函数,例如y=f(x)。
而双变量函数则是指涉及两个自变量和一个因变量的函数,例如z=f(x,y)。
在这种情况下,我们通常将x和y看作平面上的坐标轴,并将z看作垂直于这个平面的高度。
二、偏导数在单变量情况下,导数表示了函数在某一点处的斜率或者切线的斜率。
而在双变量情况下,则需要引入偏导数这个概念。
偏导数是指将多元函数中除了所求偏导数对应自变量以外所有自变量均视为常数后对该自变量求导得到的结果。
例如,在函数z=f(x,y)中,如果我们要求偏导数f_x,那么我们需要将y看作常数,对x求导。
同样地,如果我们要求偏导数f_y,那么我们需要将x看作常数,对y求导。
三、双变量函数的导数在单变量情况下,导数可以表示为函数的微分。
而在双变量情况下,则需要引入梯度这个概念。
梯度是一个向量,它的方向指向函数值增加最快的方向,并且它的模长表示了这个增加率。
在双变量函数中,梯度可以表示为:grad f = (df/dx, df/dy)其中df/dx和df/dy分别表示对x和y的偏导数。
这个向量可以被看作是一个切向量,在某一点处与曲面相切。
四、应用双变量函数的导数在许多领域都有着广泛的应用。
1. 最优化问题当我们想要最小化或者最大化一个双变量函数时,可以使用梯度下降法或者牛顿法等优化算法来寻找极值点。
这些算法利用了梯度的信息来确定下一步应该朝哪个方向前进。
2. 物理学物理学中有很多问题都涉及到双变量函数的导数。
例如,当我们想要计算电场或者磁场的分布时,可以使用梯度来表示这些场在不同位置处的变化率。
导数压轴题双变量问题题型归纳总结
导数应用之双变量问题(一)构造齐次式,换元【例】已知函数()2ln f x x ax b x =++,曲线()y f x =在点()()1,1f 处的切线方程为2y x =.(1)求实数,a b 的值;(2)设()()()()21212,,0F x f x x mx m R x x x x =-+∈<<分别是函数()F x的两个零点,求证:0F '<.【解析】(1)1,1a b ==-;(2)()2ln f x x x x =+-,()()1ln F x m x x =+-,()11F x m x'=+-, 因为12,x x 分别是函数()F x 的两个零点,所以()()11221ln 1ln m x x m x x +=⎧⎪⎨+=⎪⎩, 两式相减,得1212ln ln 1x x m x x -+=-,|1212ln ln 1x x F m x x -'=+=-0F '<,只需证1212ln ln x x x x -<-.思路一:因为120x x <<,只需证1122ln ln ln 0x x x x ->⇔>.令()0,1t =,即证12ln 0t t t -+>. 令()()12ln 01h t t t t t =-+<<,则()()22212110t h t t t t -'=--=-<, 所以函数()h t 在()0,1上单调递减,()()10h t h >=,即证12ln 0t t t-+>.由上述分析可知0F '<.【规律总结】这是极值点偏移问题,此类问题往往利用换元把12,x x 转化为t 的函数,常把12,x x 的关系变形为齐次式,设12111222,ln ,,x x x xt t t x x t e x x -===-=等,构造函数来解决,可称之为构造比较函数法. 思路二:因为120x x <<,只需证12ln ln 0x x -, 设())22ln ln 0Q x x x x x =-<<,则()2110Q x xx '===<, …所以函数()Q x 在()20,x 上单调递减,()()20Q x Q x >=,即证2ln ln xx -.由上述分析可知0F '<.【规律总结】极值点偏移问题中,由于两个变量的地位相同,将待证不等式进行变形,可以构造关于1x (或2x )的一元函数来处理.应用导数研究其单调性,并借助于单调性,达到待证不等式的证明.此乃主元法.【变式训练】 已知函数()()21f x x axlnx ax 2a R 2=-++∈有两个不同的极值点x 1,x 2,且x 1<x 2. (1)求实数a 的取值范围;(2)求证:x 1x 2<a 2.【分析】(1)先求导数,再根据导函数有两个不同的零点,确定实数a 所需满足的条件,解得结果,(2)先根据极值点解得a ,再代入化简不等式x 1x 2<a 2,设21x x t =,构造一元函数,利用导数研究函数单调性,最后构造单调性证明不等式.【解析】(1)略(2)f′(x )=x-a lnx ,g (x )=x-a lnx ,由x 1,x 2是g (x )=x-a lnx=0的两个根,¥则2211lnx x lnx x a a =⎧⎨=⎩,两式相减,得a (lnx 2-lnx 1)=x 2-x 1),即a =2121x x lnx lnx --,即证x 1x 2<221221(x x )x (ln )x -,即证22221121x (x x )(ln )x x x -<=2112x x 2x x -+, 由x 1<x 2,得21x x =t >1,只需证ln 2t-t-120t +<,设g (t )=ln 2t-t-12t+,则g′(t )=221lnt 1t t -+=112lnt t t t ⎛⎫-+ ⎪⎝⎭, 令h (t )=2lnt-t+t1,∴h′(t )=2211t t --=-(11t -)2<0,∴h(t )在(1,+∞)上单调递减,∴h(t )<h (1)=0,∴g′(t )<0,即g (t )在(1,+∞)上是减函数,∴g(t )<g (1)=0,即ln 2t <t-2+t1在(1,+∞)上恒成立,∴x 1x 2<a 2. "【变式训练】 已知函数()12ln f x x a x x=-+⋅. (1)讨论()f x 的单调性;(2)设()2ln g x x bx cx =--,若函数()f x 的两个极值点()1212,x x x x <恰为函数()g x 的两个零点,且()12122x x y x x g +⎛⎫'=-⋅ ⎪⎝⎭的范围是2ln 2,3⎡⎫-+∞⎪⎢⎣⎭,求实数a 的取值范围.【解析】(1)()f x 的定义域为()0,∞+,()22212211a x ax f x x x x--+'=-+=-. (i )若1a ≤,则()0f x '≤,当且仅当1a =,1x =时,()0f x '=(ii )若1a >,令()0f x '=得12x a x a ==当(()20,x a a a ∈++∞时,()0f x '<;当(x a a ∈时,()0f x '>,!所以,当1a ≤时,()f x 单调递减区间为()0,∞+,无单调递增区间; 当1a >时,()f x单调递减区间为(()0,,a a +∞;单调递增区间为(a a .(2)由(1)知:1a >且12122,1x x a x x +==.又()12g x b cx x'=--, ∴()12121222x x g b c x x x x +⎛⎫'=--+⎪+⎝⎭, 由()()120g x g x ==得()()22112122lnx b x x c x x x =-+-, ()()()()1222121212121222-+⎛⎫'=-=---- ⎪+⎝⎭x x x x y x x g b x x c x x x x .()121112212122212ln ln 1⎛⎫- ⎪-⎝⎭=-=-++x x x x x x x x x x x x ,令12(0,1)x t x =∈,∴2(1)ln 1t y t t -=-+, ∴22(1)0(1)t y t t --'=<+,所以y 在()0,1上单调递减. ~由y 的取值范围是2ln 2,3⎡⎫-+∞⎪⎢⎣⎭,得t 的取值范围是10,2⎛⎤⎥⎝⎦,∵122x x a +=, ∴()222222211221212112212212(2)242x x x x x xa x x x x x x a x x x x ++=+=++===++,∴2122119422,2x x a t x x t ⎡⎫=++=++∈+∞⎪⎢⎣⎭,又∵1a >,故a的取值范围是4⎡⎫+∞⎪⎢⎪⎣⎭.(二)各自构造一元函数【例】 已知函数f (x )=lnx ﹣ax +1(a ∈R ). (1)求f (x )的单调区间; (2)设g (x )=lnx 344x x-+,若对任意的x 1∈(0,+∞),存在x 2∈(1,+∞),使得f (x 1)<g (x 2)成立,求实数a 的取值范围. 【分析】(1)函数求导得()11'axf x a x x-=-=,然后分a ≤0和a >0两种情况分类求解. (2)~(3)根据对任意的x 1∈(0,+∞),存在x 2∈(1,+∞),使得f (x 1)<g (x 2)成立,等价于f (x )max <g (x )max ,然后分别求最大值求解即可.【详解】(1) 略(2)()()()222213113143'4444x x x x g x x x x x-+--+-=--⨯==, 在区间(1,3)上,g ′(x )>0,g (x )单调递增,在区间(3,+∞)上,g ′(x )<0,g (x )单调递减,所以g (x )max =g (3)=ln 312-, 因为对任意的x 1∈(0,+∞),存在x 2∈(1,+∞),使得f (x 1)<g (x 2)成立, 等价于f (x )max <g (x )max ,由(1)知当a ≤0时,f (x )无最值,~当a >0时,f (x )max =f (1a )=﹣lna ,所以﹣lna <ln 312-,所以3lna >ln ,解得a 3.【变式训练】【广东省2020届高三期末】设函数2()()e ()xf x x ax a a -=+-⋅∈R .(1)当0a =时,求曲线()y f x =在点(1,(1))f --处的切线方程;(2)设2()1g x x x =--,若对任意的[0,2]t ∈,存在[0,2]s ∈使得()()f s g t ≥成立,求a 的取值范围.【解析】 (1)当0a =时,因为()2xf x x e -=⋅,所以()()()2'2,'13xf x x x e f e -=-+⋅-=-,又因为()1f e -=,所以曲线()y f x =在点()()1,1f --处的切线方程为()31y e e x -=-+,即320ex y e ++=.(2)“对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立”等价于“在区间[]0,2上,()f x 的最大值大于或等于()g x 的最大值”.因为()2215124g x x x x ⎛⎫=--=-- ⎪⎝⎭,所以()g x 在[]0,2上的最大值为()21g =. ()()()2'2xx f x x a ex ax a e --=+⋅-+-⋅ ()222x e x a x a -⎡⎤=-+--⎣⎦()()2x e x x a -=--+,令()'0f x =,得2x =或x a =-.①当0a -≤,即0a ≥时,()'0f x ≥在[]0,2上恒成立,()f x 在[]0,2上为单调递增函数,()f x 的最大值大为()()2124f a e =+⋅,由()2141a e+⋅≥,得24a e ≥-; >②当02a <-<,即20a -<<时,当()0,x a ∈-时,()()'0,f x f x <为单调递减函数,当(),2x a ∈-时,()()'0,f x f x >为单调递增函数,所以()f x 的最大值大为()0f a =-或()()2124f a e=+⋅.由1a -≥,得1a ≤-;由()2141a e+⋅≥,得24a e ≥-,又因为20a -<<,所以21a -<≤-; ③当2a -≥,即2a ≤-时,()'0f x ≤在[]0,2上恒成立,()f x 在[]0,2上为单调递减函数,所以()f x 的最大值大为()0f a =-,由1a -≥,得1a ≤-,又因为2a ≤-,所以2a ≤-, 综上所述,实数a 的取值范围是1a ≤-或24a e ≥-. (三)消元构造一元函数【例】已知函数f (f )={e −f +1,f ≤0,2√f , f >0.函数f =f (f (f )+1)−f (f ∈f )恰有两个零点f 1和f 2. (1)求函数f (f )的值域和实数f 的最小值;(2)若f1<f2,且ff1+f2≥1恒成立,求实数f的取值范围.【解析】(1)当f≤0时,f(f)=e−f+1≥2.`当f>0时,f(f)=2√f>0.∴f(f)的值域为(0,+∞).令f(f(f)+1)=f,∵f(f)+1>1,∴f(f(f)+1)>2,∴f>2.又f(f)的单调减区间为(−∞,0],增区间为(0,+∞).设f(f)+1=f1,f(f)+1=f2,且f1<0,f2>1.∴f(f)=f1−1无解.从而f(f)=f2−1要有两个不同的根,应满足f2−1≥2,∴f2≥3.∴f(f2)=f(f(f)+1)≥2√3.即f≥2√3.∴f的最小值为2√3.(2) f=f(f(f)+1)−f有两个零点f1、f2且f1<f2,设f(f)=f,f∈[2,+∞),∴e−f1+1=f,∴f1=−ln(f−1).2√f2=f,∴f2=f24.#∴−f ln(f−1)+f24≥1对f∈[2,+∞)恒成立设f(f)=−f ln(f−1)+f24−1,f′(f)=−ff−1+f2=f2−f−2f2(f−1).∵f∈[2,+∞),∴f2−f∈[2,+∞)恒成立.∴当2f≤2,即f≤1时,f′(f)≥0,∴f(f)在[2,+∞)上单调递增.∴f(f)≥f(2)=−f ln1+1−1=0成立.当f>1时,设f(f)=f2−f−2f.由f(2)=4−2−2f=2−2f<0.∴∃f0∈(2,+∞),使得f(f0)=0.且当f∈(2,f0)时,f(f)<0,f∈(f0,+∞)时,f(f)>0.∴当f∈(2,f0)时,f(f)单调递减,此时f(f)<f(2)=0不符合题意.综上,f≤1.【变式训练】f(f)=f2+ff−f ln f.(1)若函数f(f)在[2,5]上单调递增,求实数f的取值范围;(2)当f=2时,若方程f(f)=f2+2f有两个不等实数根f1,f2,求实数f的取值范围,并证明f1f2<1.【解析】(1)f′(f)=2f+f−ff,∵函数f(f)在[2,5]上单调递增,∴f′(f)≥0在f∈[2,5]恒成立,即2f+f−ff≥0对f∈[2,5]恒成立,∴f≥−2f2f−1对f∈[2,5]恒成立,即f≥(−2f2f−1)max,f∈[2,5],令f(f)=−2f2f−1(f∈[2,5]),则f′(f)=−2f2+4f(f−1)2≤0(f∈[2,5]),∴f(f)在[2,5]上单调递减,∴f(f)在[2,5]上的最大值为f(2)=−8.\∴f的取值范围是[−8,+∞).(2)∵当f=2时,方程f(f)=f2+2f⇔f−ln f−f=0,令f(f)=f−ln f−f(f>0),则f′(f)=1−1f,当f∈(0,1)时,f′(f)<0,故f(f)单调递减,当f∈(1,+∞)时,f′(f)>0,故f(f)单调递增,∴f(f)min=f(1)=1−f.若方程f(f)=f2+2f有两个不等实根,则有f(f)min<0,即f>1,当f>1时,0<f−f<1<f f,f(f−f)=f−f>0,f(f f)=f f−2f,令f(f)=f f−2f(f>1),则f′(f)=f f−2>0,f(f)单调递增,f(f)>f(1)=f−2>0,∴f(f f)>0,∴原方程有两个不等实根,∴实数f的取值范围是(1,+∞).不妨设f 1<f 2,则0<f 1<1<f 2,0<1f 2<1,∴f 1f 2<1⇔f 1<1f 2⇔f (f 1)>f (1f 2),∵f (f 1)=f (f 2)=0,∴f (f 1)−f (1f 2)=f (f 2)−f (1f 2)=(f 2−ln f 2−f )−(1f 2−ln 1f 2−f ),=f 2−1f 2−2ln f 2.令f (f )=f −1f−2ln f (f >1),则f′(f )=1+1f 2−2f=(1f −1)2>0,∴f (f )在(1,+∞)上单调递增,∴当f >1时,f (f )>f (1)=0,即f 2−1f 2−2ln f 2>0,∴f (f 1)>f (1f 2),∴f 1f 2<1.(四)独立双变量,化为两边同函数形式【例】 已知函数()()1ln f x kx x =-,其中k 为非零实数. (1)求()f x 的极值; ,(2)当4k =时,在函数()()22g x f x x x =++的图象上任取两个不同的点()11,M x y 、()22,N x y .若当120x x t <<<时,总有不等式()()()12124g x g x x x -≥-成立,求正实数t 的取值范围: 【详解】(1) 略;(2)当4k =时,()4ln f x x =-',()224ln g x x x x =+-,当120x x t <<<时,总有不等式()()()12124g x g x x x -≥-成立,即()()112244g x x g x x -≥-,构造函数()()2424ln F x g x x x x x =-=--,由于120x x t <<<,()()12F x F x ≥,则函数()y F x =在区间()0,t 上为减函数或常函数,()()()221422x x F x x x x='-+=--,0x,解不等式()0F x '≤,解得02x <≤.`由题意可知()(]0,0,2t ⊆,02t ∴<≤,因此,正实数t 的取值范围是(]0,2;【变式训练】设函数. (1)若曲线在点处的切线与直线垂直,求的单调递减区间和极小值(其中为自然对数的底数);(2)若对任何恒成立,求的取值范围. 【解析】(2)条件等价于对任意恒成立,设. 则在上单调递减, 则在上恒成立,得恒成立, —∴(对仅在时成立),故的取值范围是【变式训练】已知函数f (f )=f +f ln f .(Ⅰ)求函数f (f )的图象在点(1,1)处的切线方程;(Ⅱ)若f ∈f ,且f (f −1)<f (f )对任意f >1恒成立,求f 的最大值; (Ⅲ)当f >f ≥4时,证明:(ff f )f >(ff f )f .()ln ,k R kf x x x=+∈()y f x =()(),e f e 20x -=()f x e ()()1212120,x x f x f x x x >>-<-k ()()1211220,x x f x x f x x >>-<-()()()ln 0kh x f x x x x x x=-=+->()h x ()0,+∞()2110k h x x x '=--≤()0,+∞()2211024k x x x x ⎛⎫≥-+=--+> ⎪⎝⎭14k ≥()1,04k h x '==12x =k 1,4⎡⎫+∞⎪⎢⎣⎭【解析】(Ⅰ)∵f ′(f )=ln f +2,∴f ′(1)=2,函数f (f )的图象在点(1,1)处的切线方程f =2f −1;(Ⅱ)由(Ⅰ)知,f (f )=f +f ln f ,∴f (f −1)<f (f ),对任意f >1恒成立,)即f <f +f ln ff −1对任意f >1恒成立. 令f (f )=f +f ln ff −1,则f′(f )=f −ln f −2(f −1)2,令f (f )=f −ln f −2(f >1),则f ′(f )=1−1f =f −1f>0,所以函数f (f )在(1,+∞)上单调递增.∵f (3)=1−ln 3〈0,f (4)=2−2ln 2〉0,∴方程f (f )=0在(1,+∞)上存在唯一实根f 0,且满足f 0∈(3,4).当1<f <f 0时,f (f )<0,即f′(f )<0,当f >f 0时,f (f )>0,即f′(f )>0, 所以函数f (f )=f +f ln ff −1在(1,f 0)上单调递减,在(f 0,+∞)上单调递增. ∴[f (f )]min =f (f 0)=f 0(1+ln f 0)f 0−1=f 0(1+f 0−2)f 0−1=f 0∈(3,4),∴f <[f (f )]min =f 0∈(3,4),故整数f 的最大值是3.)(Ⅲ)由(Ⅱ)知,f (f )=f +f ln ff −1是[4,+∞)上的增函数,∴当f >f ≥4时,f +f ln f f −1>f +f ln ff −1. 即f (f −1)(1+ln f )>f (f −1)(1+ln f ).整理,得ff ln f +f ln f >ff ln f +f ln f +(f −f ). ∵f >f ,∴ff ln f +f ln f >ff ln f +f ln f .即ln f ff +ln f f >ln f ff +ln f f .即ln (f ff f f )>ln (f ff f f ).∴(ff f )f >(ff f )f . (五)把其中一个看作自变量,另一个看作参数【例】 已知a R ∈,函数()()2ln 12f x x x ax =+-++(Ⅰ)若函数()f x 在[)2,+∞上为减函数,求实数a 的取值范围;(Ⅱ)设正实数121m m +=,求证:对)1()(f x f ≥上的任意两个实数1x ,2x ,总有()()()11221122f m x m x m f x m f x +≥+成立]【分析】(Ⅰ)将问题转化为()0f x '≤在[)+∞∈,2x 上恒成立,可得112+-≤x x a ,令()121h x x x =-+,可判断出()h x 在[)2,+∞上单调递增,即()()min 2h x h =,从而可得a 的范围;(Ⅱ)构造函数()()()122122()F x f m x m x m f x m f x =+--,(]21,x x ∈-,且121x x -<≤;利用导数可判断出()F x 在(]21,x x ∈-上是减函数,得到()()2F x F x ≥,经验算可知()20F x =,从而可得()()()122122f m x m x m f x m f x +≥+,从而可证得结论.【解析】(Ⅰ)由题意知:()121f x x a x '=-++ 函数()f x 在[)2,+∞上为减函数,即()0f x '≤在[)+∞∈,2x 上恒成立即112+-≤x x a 在[)+∞∈,2x 上恒成立,设()121h x x x =-+ 当2≥x 时,11=+y x 单调递减,2=y x 单调递增()h x ∴在[)2,+∞上单调递增 ()()min 1112433h x h ∴==-=,113a ∴≤,即a 的取值范围为11,3⎛⎤-∞ ⎥⎝⎦(Ⅱ)设121x x -<≤,令:()()()122122()F x f m x m x m f x m f x =+--,(]21,x x ∈-则()()()()21221220F x f m m x m m f x =+-+=⎡⎤⎣⎦*()()()()()112211122F x m f m x m x m f x m f m x m x f x '''''∴=+-=+-⎡⎤⎣⎦()()1221222222210m x m x x x m m x m x m x m x x +-=-+=-+=-≥,122m x m x x ∴+≥()121f x x a x '=-++,令()()g x f x =',则()()21201g x x '=--<+ ()f x ∴'在()1,x ∈-+∞上为减函数,()()122f m x m x f x ''∴+≤()()11220m f m x m x f x ''∴+-≤⎡⎤⎣⎦,即()0F x '≤()F x ∴在(]21,x x ∈-上是减函数,()2()0F x F x ∴≥=,即()0F x ≥ ()()()1221220f m x m x m f x m f x ∴+--≥(]21,x x ∴∈-时,()()()122122f m x m x m f x m f x +≥+(121x x -<≤ ,()()()11221122f m x m x m f x m f x ∴+≥+【变式训练】 已知函数f (f )=f f −f ,f (f )=(f +f )ln (f +f )−f .(1)若f =1,f ′(f )=f ′(f ),求实数f 的值.(2)若f ,f ∈f +,f (f )+f (f )≥f (0)+f (0)+ff ,求正实数f 的取值范围. 【解析】(1)由题意,得f ′(f )=f f −1,f ′(f )=ln (f +f ),由f =1,f ′(f )=f ′(f )…①,得f f −ln (f +1)−1=0, 令f (f )=f f −ln (f +1)−1,则f ′(f )=f f −1f +1,…因为f″(f)=f f+1(f+1)2>0,所以f′(f)在(−1,+∞)单调递增,又f′(0)=0,所以当−1<f<0时,f′(f)>0,f(f)单调递增;当f>0时,f′(f)<0,f(f)单调递减;所以f(f)≤f(0)=0,当且仅当f=0时等号成立.故方程①有且仅有唯一解f=0,实数f的值为0.(2)解法一:令f(f)=f(f)−ff+f(f)−f(0)−f(0)(f>0),则f′(f)=f f−(f+1),所以当f>ln(f+1)时,f′(f)>0,f(f)单调递增;当0<f<ln(f+1)时,f′(f)<0,f(f)单调递减;;故f(f)≥f(ln(f+1))=f(ln(f+1))+f(f)−f(0)−f(0)−f ln(f+1)=(f+f)ln(f+f)−(f+1)ln(f+1)−f ln f.令f(f)=(f+f)ln(f+f)−(f+1)ln(f+1)−f ln f(f>0),则f′(f)=ln(f+f)−ln(f+1).(i)若f>1时,f′(f)>0,f(f)在(0,+∞)单调递增,所以f(f)>f(0)=0,满足题意.(ii)若f=1时,f(f)=0,满足题意.(iii)若0<f<1时,f′(f)<0,f(f)在(0,+∞)单调递减,所以f(f)<f(0)=0.不满足题意.综上述:f≥1.(六)利用根与系数的关系,把两变量用另一变量表示>【例】(2020山西高三期末)设函数1()ln() f x x a x a Rx=--∈(1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x 和2x ,记过点1122(,()),(,())A x f x B x f x 的直线的斜率为k ,问:是否存在a ,使得2k a =-若存在,求出a 的值,若不存在,请说明理由. 【解析】(1)()f x 定义域为()0,∞+,()22211'1a x ax f x x x x-+=+-=, 令()221,4g x x ax a =-+∆=-,①当22a -≤≤时,0∆≤,()'0f x ≥,故()f x 在()0,∞+上单调递增, ·②当2a <-时,>0∆,()0g x =的两根都小于零,在()0,∞+上,()'0f x >,故()f x 在()0,∞+上单调递增,③当2a >时,>0∆,()0g x =的两根为12x x ==,当10x x <<时,()'0f x >;当12x x x <<时,()'0f x <;当2x x >时,()'0f x >; 故()f x 分别在()()120,,,x x +∞上单调递增,在()12,x x 上单调递减.(2)由(1)知,2a >,因为()()()()1212121212ln ln x x f x f x x x a x x x x --=-+--. 所以()()1212121212ln ln 11f x f x x x k a x x x x x x --==+⋅--,又由(1)知,121=x x ,于是1212ln ln 2x x k a x x -=--,若存在a ,使得2k a =-,则1212ln ln 1x x x x -=-,即1212ln ln x x x x -=-,亦即222212ln 0(1)x x x x --=>|再由(1)知,函数()12ln h t t t t=--在()0,∞+上单调递增,而21>x ,所以22212ln 112ln10x x x -->--=,这与上式矛盾,故不存在a ,使得2k a =-. 【变式训练】 已知函数21()2ln 2f x x x a x =-+,其中0a >. (1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x ,2x ,证明:123()()2f x f x -<+<-.【解析】(1)解:由题得22'()2a x x af x x x x-+=-+=,其中0x >,考察2()2g x x x a =-+,0x >,其中对称轴为1x =,44a ∆=-. 若1a ≥,则,此时()0g x ≥,则'()0f x ≥,所以()f x 在(0,)+∞上单调递增;|若,则∆>0,此时220x x a -+=在R 上有两个根111x a =--,211x a =+-,且1201x x <<<,所以当时,()0g x >,则'()0f x >,()f x 单调递增;当12(,)x x x ∈时,()0g x <,则'()0f x <,()f x 单调递减;当2(,)x x ∈+∞时,()0g x >,则'()0f x >,()f x 单调递增,综上,当1a ≥时,()f x 在(0,)+∞上单调递增;当时,()f x 在(0,11)a --上单调递增,在(11,11)a a --+-上单调递减,在(11,)a +-+∞上单调递增.(2)证明:由(1)知,当时,()f x 有两个极值点1x ,2x ,且122x x +=,12x x a =,所以()()2212111222112ln 2ln 22fx f x x x a x x x a x +=-++-+ ()()()2212121212ln ln 2x x x x a x x =+-+++()()()212121212122ln 2x x x x x x a x x ⎡⎤=+--++⎣⎦()21224ln ln 22a a a a a a =--+=--. 令()ln 2h x x x x =--,01x <<,则只需证明3()2h x -<<-, 由于'()ln 0h x x =<,故()h x 在(0,1)上单调递减,所以()(1)3h x h >=-.又当01x <<时,ln 11x -<-,(ln 1)0x x -<,故()ln 2(ln 1)22h x x x x x x =--=--<-, 所以,对任意的01x <<,3()2h x -<<-. 综上,可得()()1232fx f x -<+<-.【变式训练】已知函数21ln 02f x ax x a x=-+≥()(). (1)讨论函数f (x )的极值点的个数;/(2)若f (x )有两个极值点1x ,2x ,证明:1234ln 2f x f x +>-()(). 【解析】(1)由题意,函数221ln ln 22f x ax x x ax x x=-+=--+(), 得2121'21ax x f x ax x x -+-=--+=(),0x ∈+∞(,), (i )若0a =时;1x f x x-'=(),当01x ∈(,)时,()0f x '<,函数()f x 单调递减;当),(∞+∈1x 时,()0f x '>, 函数()f x 单调递增,所以当1x =,函数()f x 取得极小值,1x =是()f x 的一个极小值点;(ii )若0a >时,则180a ∆=-≤,即18a ≥时,此时0f x '≤(),()f x 在(0,)+∞是减函数,()f x '无极值点,当108a <<时,则180a ∆=->,令0=')(x f ,解得1x =,2x =,当10x x ∈(,)和2x x ∈+(,)∞时,0f x '<(),当12x x x ∈(,)时,0>')(x f , `∴()f x 在1x 取得极小值,在2x 取得极大值,所以()f x 有两个极值点, 综上可知:(i )0a =时,()f x 仅有一个极值点;(ii).当18a ≥时,()f x 无极值点; (iii)当108a <<,()f x 有两个极值点. (2)由(1)知,当且仅当108a ∈(,)时,()f x 有极小值点1x 和极大值点2x ,且1x ,2x 是方程2210ax x 的两根,∴1212x x a +=,1212x x a=, 则222121121211ln ln 22f x f x ax x ax x x x +=-++-+()() 22121212ln 2ln 2x x a x x x x =-+-+++()()()22111ln[]42a a a a a=---+ 11ln 1242a a a =++-1ln 1ln 24a a=+--,【设1ln ln 24g a a a =++-()1,1(0,)8a ∈,则221141044a g a a a a-'=-=<(),∴10,8a ∈()时,()a g 是减函数,1()()8g a g >,∴1ln 3ln 234ln 28g a >+-=-(), ∴1234ln 2f x f x +>-()(). 三、跟踪训练 1.已知函数1()ln ()f x x a x a R x=-+∈. (1)讨论函数()y f x =的单调性; (2)若10<<b ,1()()g x f x bx x=+-,且存在不相等的实数1x ,2x ,使得()()12g x g x =,求证:0a <且2211a x x b ⎛⎫> ⎪-⎝⎭. 【解析】(1)由题意,函数1()ln ()f x x a x a R x =-+∈,可得22211'()1(0)a x ax f x x x x x++=++=>, @当0a ≥时,因为0x >,所以210x ax ++>,所以'()0f x >,故函数()f x 在(0,)+∞上单调递增;当20a -≤<时,240a ∆=-≤,210x ax ++≥,所以'()0f x >, 故函数()f x 在(0,)+∞单调递增;当2a <-时,'()0f x >,解得0x <<或x >,'()0f x <x <<,所以函数()f x 在区间⎛⎫⎪ ⎪⎝⎭上单调递减,在区间⎛⎫⎪ ⎪⎝⎭和区间⎫+∞⎪⎪⎝⎭上单调递增. 综上所述,当2a ≥-时,函数()f x 在(0,)+∞上单调递增,当2a <-时,函数()f x在区间⎛⎫⎪ ⎪⎝⎭上单调递减, !在区间0,2a ⎛⎫-- ⎪ ⎪⎝⎭和区间2a ⎛⎫-++∞⎪ ⎪⎝⎭上单调递增. (2)由题知()(1)ln g x b x a x =-+,则'()1ag x b x=-+. 当0a ≥时,0)('>x g ,所以()g x 在(0,)+∞上单调递增,与存在不相等的实数1x ,2x ,使得12()()g x g x =矛盾,所以0a <.由12()()g x g x =,得1122(1)ln (1)ln b x a x b x a x -+=-+, 所以()()2121ln ln (1)a x x b x x --=--,不妨设120x x <<,因为10<<b ,所以212101ln ln x x a b x x -=>--,欲证2121a x x b ⎛⎫< ⎪-⎝⎭,只需证2211221ln ln x x x x x x ⎛⎫-> ⎪-⎝⎭,只需证2121ln ln x x x x ->-21x t x =,1t >,等价于证明1ln t t->ln 0t -<, |令()ln 1)h t t t =->,2'()0h t =<,所以)(t h 在区间(1,)+∞上单调递减,所以()(1)0h t h <=,从而ln 0t <得证,于是2211a x x b ⎛⎫> ⎪-⎝⎭.2.【2020河北省衡水市高三期末】已知函数f (f )=f ln f −f 2.(1)令f (f )=f (f )+ff ,若f =f (f )在区间(0,3)上不单调,求f 的取值范围;(2)当f =2时,函数f (f )=f (f )−ff 的图象与f 轴交于两点f (f 1,0),f (f 2,0),且0<f 1<f 2,又f ′(f )是f (f )的导函数.若正常数f ,f 满足条件f +f =1,f ≥f .试比较f ′(ff 1+ff 2)与0的关系,并给出理由【解析】(1)因为f (f )=f ln f −f 2+ff ,所以f ′(f )=ff −2f +f , 因为f (f )在区间(0,3)上不单调,所以f ′(f )=0在(0,3)上有实数解,且无重根, 由f ′(f )=0,有f =2f 2f +1=2(f +1+1f +1)−4,f ∈(0,3),令t=x+1>4则y=2(t+1f )−4在t>4单调递增,故f ∈(0,92)、(2)∵f ′(f )=2f −2f −f ,又f (f )−ff =0有两个实根f 1,f 2,∴{2fff 1−f 12−ff 1=02fff 2−f 22−ff 2=0,两式相减,得2(ln f 1−ln f 2)−(f 12−f 22)=f (f 1−f 2), ∴f =2(ln f 1−ln f 2)f 1−f 2−(f 1+f 2),于是f ′(ff 1+ff 2)=2ff 1+ff 2−2(ff 1+ff 2)−2(ln f 1−ln f 2)f 1−f 2+(f 1+f 2)=2ff 1+ff 2−2(ln f 1−ln f 2)f 1−f 2+(2f −1)(f 2−f 1).∵f ≥f ,∴2f ≤1,∴(2f −1)(f 2−f 1)≤0. 要证:f ′(ff 1+ff 2)<0,只需证:2ff1+ff 2−2(ln f 1−ln f 2)f 1−f 2<0,只需证:f 1−f 2ff 1+ff 2−ln f1f 2>0.(*)令f 1f 2=f ∈(0,1),∴(*)化为1−fff +f +ln f <0,只需证f (f )=ln f +1−fff +f <0;f ′(f )=1f −1(ff +f )2>0∵f (f )在(0,1)上单调递增,f (f )<f (1)=0,∴ln f +1−f ff +f<0,即f 1−f 2ff +f+ln f 1f 2<0.∴f ′(ff 1+ff 2)<0.2.(2020·江苏金陵中学高三开学考试)已知函数f (x )=12ax 2+lnx ,g (x )=-bx ,其中a ,b∈R,设h (x )=f (x )-g (x ),(1)若f (x )在x=√22处取得极值,且f′(1)=g (-1)-2.求函数h (x )的单调区间;(2)若a=0时,函数h (x )有两个不同的零点x 1,x 2 ①求b 的取值范围;②求证:x 1x 2e 2>1.【答案】(1)在区间(0,1)上单调增;在区间(1,+)上单调减.(2)①(−1f ,0)②详见解析—【解析】试题分析:(1)先确定参数:由f ′(1)=f (−1)−2可得a=b-3. 由函数极值定义知f ′(√22)=√22f +√2=0所以a=" -2,b=1" .再根据导函数求单调区间(2)①当f =0时,f (f )=ln f +ff ,原题转化为函数f (f )=−ln ff与直线f =f 有两个交点,先研究函数f (f )=−ln ff图像,再确定b 的取值范围是(−1f ,0). ②f 1f 2f 2>1⇔f 1f 2>f 2⇔ln f 1f 2>2,由题意得ln f 1+ff 1=0,ln f 2+ff 2=0,所以ln f 1f 2ln f 2−ln f 1=f 1+f 2f 2−f 1,因此须证ln f 2−ln f 1>2(f 2−f 1)f 2+f 1,构造函数f (f )=ln f −2(f −1)f +1,即可证明 试题解析:(1)因为f ′(f )=ff +1f ,所以f ′(1)=f +1,由f ′(1)=f (−1)−2可得a=b-3.又因为f (f )在f =√22处取得极值,所以f ′(√22)=√22f +√2=0,所以a=" -2,b=1" .所以f (f )=−f 2+ln f +f ,其定义域为(0,+)f′(f )=−2f +1f +1=−2f 2+f +1f =−(2f +1)(f −1)f{令f′(f )=0得f 1=−12,f 2=1,当f ∈(0,1)时,f′(f )>0,当f ∈(1,+)f′(f )<0,所以函数h (x )在区间(0,1)上单调增;在区间(1,+)上单调减.(2)当f =0时,f (f )=ln f +ff ,其定义域为(0,+).①由f (f )=0得f =-ln ff,记f (f )=−ln ff,则f′(f )=ln f −1f 2,所以f (f )=−ln ff在(0,f )单调减,在(f ,+∞)单调增,所以当f =f 时f (f )=−ln ff取得最小值−1f .又f (1)=0,所以f ∈(0,1)时f (f )>0,而f ∈(1,+∞)时f (f )<0,所以b 的取值范围是(−1f ,0). ②由题意得ln f 1+ff 1=0,ln f 2+ff 2=0,所以ln f 1f 2+f (f 1+f 2)=0,ln f 2−ln f 1+f (f 2−f 1)=0,{所以ln f 1f 2ln f2−ln f 1=f 1+f 2f 2−f 1,不妨设x1<x2,要证f 1f 2>f 2, 只需要证ln f 1f 2=f 1+f2f 2−f 1(ln f 2−ln f 1)>2.即证ln f 2−ln f 1>2(f 2−f 1)f 2+f 1,设f =f2f 1(f >1),则f (f )=ln f −2(f −1)f +1=ln f +4f +1−2,所以f′(f )=1f −4(f +1)2=(f −1)2f (f +1)2>0,所以函数f (f )在(1,+)上单调增,而f (1)=0,所以f (f )>0即ln f >2(f −1)f +1,所以f 1f 2>f 2.考点:函数极值,构造函数利用导数证明不等式3.【福建省2020高三期中】已知函数f (f )=f f (f f −ff +f )有两个极值点f 1,f 2.(1)求f 的取值范围;,(2)求证:2f 1f 2<f 1+f 2.【解析】(1)因为f (f )=f f (f f −ff +f ),所以f ′(f )=f f (f f −ff +f )+f f (f f −f )=f f (2f f −ff ),令f ′(f )=0,则2f f =ff ,当f =0时,不成立;当f ≠0时,2f =ff f ,令f (f )=f ef,所以f ′(f )=1−ff f ,当f <1时,f ′(f )>0,当f >1时,f ′(f )<0,所以f (f )在(−∞,1)上单调递增,在(1,+∞)上单调递减,又因为f (1)=1f ,当f →−∞时,f (f )→−∞,当f →+∞时,f (f )→0,'因此,当0<2f <1f 时,f (f )有2个极值点,即f 的取值范围为(2f ,+∞).(2)由(1)不妨设0<f 1<1<f 2,且{2f f 1=ff 12f f 2=ff 2,所以{ff2+f 1=fff +fff 1ff2+f 2=fff +fff 2,所以f 2−f 1=ln f 2−ln f 1,要证明2f 1f 2<f 1+f 2,只要证明2f 1f 2(ln f 2−ln f 1)<f 22−f 12,即证明2ln (f 2f 1)<f 2f 1−f 1f 2,设f 2f 1=f (f >1),即要证明2ln f −f +1f <0在f ∈(1,+∞)上恒成立,记f (f )=2ln f −f +1f (f >1),f ′(f )=2f −1−1f 2=−f 2+2f −1f 2=−(f −1)2f 2<0,所以f (f )在区间(1,+∞)上单调递减,所以f (f )<f (1)=0,即2ln f −f +1f <0,即2f 1f 2<f 1+f2.4.【安徽省示范高中皖北协作区2020届高三模拟】已知函数f(f)=−12f2+2f−2f ln f.$(1)讨论函数f(f)的单调性;(2)设f(f)=f′(f),方程f(f)=f(其中f为常数)的两根分别为f,f(f<f),证明:f′(f+f2)<0.注:f′(f),f′(f)分别为f(f),f(f)的导函数.【解析】(1)函数f(f)的定义域为(0,+∞),f′(f)=−f+2−2ff =−f2+2f−2ff,令f(f)=−f22f−2f,f=4−8f,①当f≤0时,即f≥12时,恒有f(f)≤0,即f′(f)≤0,∴函数f(f)在(0,+∞)上单调减区间.②当f>0时,即f<12时,由f(f)=0,解得f1=1−√1−2f,f2=1+√1−2f,(i)当0<f<12时,当f∈(0,f1),(f2,+∞)时,f(f)<0,即f′(f)<0,|当f∈(f1,f2)时,f(f)>0,即f′(f)>0,∴函数f(f)在(0,f1),(f2,+∞)单调递减,在(f1,f2)上单调递增.(ii)当f≤0时,f(0)=−2f≥0,当f∈(f2,+∞)时,f(f)<0,即f′(f)<0,当f∈(0,f2)时,f(f)>0,即f′(f)>0,∴函数f(f)在(f2,+∞)单调递减,在(0,f2)上单调递增.证明(2)由条件可得f (f )=−f +2-2ff,f >0,∴f ′(f )=−1+2ff 2,!∵方程f (f )=f (其中f 为常数)的两根分别为f ,f (f <f ),∴{f (f )=f f (f )=f可得ff =2f ,∴f ′(f +f2)=−1+8f (f +f )2=−1+4ff (f +f )2=−1+4ff +f f+2,∵0<f <f , ∴0<ff <1, ∴ff +f f >2,∴f ′(f +f2)=−1+4f f +f f+2<−1+1=0.5.(2020江苏徐州一中高三期中)设函数()ln 1nf x x m x =+-,其中n ∈N *,n ≥2,且m ∈R .{(1)当2n =,1m =-时,求函数()f x 的单调区间;(2)当2n =时,令()()22g x f x x =-+,若函数()g x 有两个极值点1x ,2x ,且12x x <,求()2g x 的取值范围;【答案】(1)见解析;(2)12ln 2,04-⎛⎫⎪⎝⎭;(3)见解析 【解析】 【分析】(1)将2n =,1m =-代入解析式,求出函数的导数,从而即可得到函数()f x 的单调区间;(2)由题意知()221ln g x x x m x =-++,求导,从而可得2220x x m -+=,由方程2220x x m -+=有两个不相等的正数根1x ,2x (12x x <)可得102m <<,由方程得22x =,且2112x <<,由此分析整理即可得到答案;(3)求出函数的导数,得到()f x 的单调性,求出()f x 的最小值,通过构造函数结合零点存在性定理判断函数的零点即可.、【详解】(1)依题意得,()2ln 1f x x x =--,()0,x ∈+∞,∴ ()21212x f x x x x='-=-.令()0f x '>,得2x >;令()0f x '<,得02x <<. 则函数()f x在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)由题意知:()221ln g x x x m x =-++.则()22222m x x mg x x x x='-+=-+,令()0g x '=,得2220x x m -+=,故方程2220x x m -+=有两个不相等的正数根1x ,2x (12x x <),则()412002m m⎧∆=->⎪⎨>⎪⎩,, 解得102m <<.由方程得22x =,且2112x <<. ¥由222220x x m -+=,得22222m x x =-+.()()222222222122ln g x x x x x x =-++-+,2112x <<. ()22214ln 02g x x x ⎛'⎫=--> ⎪⎝⎭,即函数()2g x 是1,12⎛⎫ ⎪⎝⎭上的增函数, 所以()212ln204g x -<<,故()2g x 的取值范围是12ln2,04-⎛⎫⎪⎝⎭. 6.(2019·江苏徐州一中高三月考)已知函数()alnxf x x=,g (x )=b (x ﹣1),其中a ≠0,b ≠0 (1)若a =b ,讨论F (x )=f (x )﹣g (x )的单调区间;(2)已知函数f (x )的曲线与函数g (x )的曲线有两个交点,设两个交点的横坐标分别为x 1,x 2,证明:()12122x x g x x a++>. 【答案】(1)见解析(2)见解析,【解析】 【分析】(1)求导得()()222111lnx a F x a x lnx x x-⎛⎫'=-=--⎪⎝⎭,按照a >0、 a <0讨论()F x '的正负即可得解; (2)设x 1>x 2,转化条件得()1212112122x x x x x g x x ln a x x x +++=⋅-,令121x t x =>,()121t p t lnt t -=-⋅+,只需证明()0p t >即可得证. 【详解】(1)由已知得()()()1lnx F x f x g x a x x ⎛⎫=-=-+⎪⎝⎭,∴()()222111lnx a F x a x lnx x x-⎛⎫'=-=-- ⎪⎝⎭,当0<x <1时,∵1﹣x 2>0,﹣lnx >0,∴1﹣x 2﹣lnx >0,; 当x >1时,∵1﹣x 2<0,﹣lnx <0,∴1﹣x 2﹣lnx <0.<故若a >0,F (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 故若a <0,F (x )在(0,1)上单调递减,在(1,+∞)上单调递增.(2)不妨设x 1>x 2,依题意()1111lnx ab x x =-, ∴()2111alnx b x x =-①,同理得()2222alnx b x x =-②由①﹣②得,∴()()()2211122121221x alnb x x x x b x x x x x =--+=-+-, ∴()()1212121x lnx b x x a x x +-=-,∴()()()121211212121221x x x x x bg x x x x x x ln a a x x x +++=+⋅⋅+-=⋅-, 故只需证1211222x x x ln x x x +⋅->,取∴121x t x =>,即只需证明121t lnt t +⋅>-,1t ∀>成立, 即只需证()1201t p t lnt t -=-⋅>+,1t ∀>成立, .∵()()()()222114011t p t t t t t -'=-=++>,∴p (t )在区间[1,+∞)上单调递增,∴p (t )>p (1)=0,∀t>1成立,故原命题得证.【点睛】本题考查了导数的综合运用,考查了转化化归思想与计算能力,属于难题. 7.(2020·广西南宁二中高三(文))已知函数()()2ln 1,f x x ax x =++-()()21ln ln 12g x a x x ax x x=--+-+(Ⅰ)若0a >,讨论函数()f x 的单调性;(Ⅱ)设()()()h x f x g x =+,且()h x 有两个极值点12,x x ,其中11(0,]x e∈,求()()12h x h x -的最小值.(注:其中e 为自然对数的底数)【答案】(Ⅰ)见解析;(Ⅱ)最小值为4e. 【解析】 【分析】&(Ⅰ)对函数()f x 求导,对a 分情况讨论即可确定()f x 的单调区间;(Ⅱ)先对()h x 求导,令导数式等于0由韦达定理求出两个极值点12,x x 的关系1212,1x x a x x +=-= ,所以211111,x a x x x ==--,整理()()12h x h x -,构造关于1x 的函数()x ϕ ,求导根据单调性确定最值即可。
导数压轴题双变量问题题型归纳总结
导数压轴题双变量问题题型归纳总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII导数应用之双变量问题(一)构造齐次式,换元【例】已知函数()2ln f x x ax b x =++,曲线()y f x =在点()()1,1f 处的切线方程为2y x =.(1)求实数,a b 的值;(2)设()()()()21212,,0F x f x x mx m R x x x x =-+∈<<分别是函数()F x的两个零点,求证:0F '<.【解析】(1)1,1a b ==-;(2)()2ln f x x x x =+-,()()1ln F x m x x =+-,()11F x m x'=+-, 因为12,x x 分别是函数()F x 的两个零点,所以()()11221ln 1ln m x x m x x +=⎧⎪⎨+=⎪⎩, 两式相减,得1212ln ln 1x x m x x -+=-,1212ln ln 1x x F m x x -'=+=-0F '<,只需证1212ln ln x x x x -<-. 思路一:因为120x x <<,只需证1122ln ln ln 0x x x x ->⇔>.令()0,1t =,即证12ln 0t t t -+>. 令()()12ln 01h t t t t t=-+<<,则()()22212110t h t t t t -'=--=-<,所以函数()h t 在()0,1上单调递减,()()10h t h >=,即证12ln 0t t t-+>.由上述分析可知0F '<.【规律总结】这是极值点偏移问题,此类问题往往利用换元把12,x x 转化为t 的函数,常把12,x x 的关系变形为齐次式,设12111222,ln ,,x x x xt t t x x t e x x -===-=等,构造函数来解决,可称之为构造比较函数法.思路二:因为120x x <<,只需证12ln ln 0x x -, 设())22ln ln 0Q x x x x x =-<<,则 ()22110Q x xx '===<,所以函数()Q x 在()20,x 上单调递减,()()20Q x Q x >=,即证2ln ln xx -. 由上述分析可知0F '<.【规律总结】极值点偏移问题中,由于两个变量的地位相同,将待证不等式进行变形,可以构造关于1x (或2x )的一元函数来处理.应用导数研究其单调性,并借助于单调性,达到待证不等式的证明.此乃主元法.【变式训练】 已知函数()()21f x x axlnx ax 2a R 2=-++∈有两个不同的极值点x 1,x 2,且x 1<x 2. (1)求实数a 的取值范围;(2)求证:x 1x 2<a 2.【分析】(1)先求导数,再根据导函数有两个不同的零点,确定实数a 所需满足的条件,解得结果,(2)先根据极值点解得a ,再代入化简不等式x 1x 2<a 2,设21x x t =,构造一元函数,利用导数研究函数单调性,最后构造单调性证明不等式.【解析】(1)略(2)f′(x )=x-a lnx ,g (x )=x-a lnx ,由x 1,x 2是g (x )=x-a lnx=0的两个根,则2211lnx x lnx x a a =⎧⎨=⎩,两式相减,得a (lnx 2-lnx 1)=x 2-x 1),即a =2121x x lnx lnx --,即证x 1x 2<221221(x x )x (ln )x -,即证22221121x (x x )(ln )x x x -<=2112x x 2x x -+,由x 1<x 2,得21x x =t >1,只需证ln 2t-t-120t +<,设g (t )=ln 2t-t-12t+,则g′(t )=221lnt 1t t -+=112lnt t t t ⎛⎫-+ ⎪⎝⎭, 令h (t )=2lnt-t+t1,∴h′(t )=2211t t --=-(11t -)2<0,∴h(t )在(1,+∞)上单调递减,∴h(t )<h (1)=0,∴g′(t )<0,即g (t )在(1,+∞)上是减函数,∴g(t )<g (1)=0, 即ln 2t <t-2+t1在(1,+∞)上恒成立,∴x 1x 2<a 2. 【变式训练】 已知函数()12ln f x x a x x=-+⋅. (1)讨论()f x 的单调性;(2)设()2ln g x x bx cx =--,若函数()f x 的两个极值点()1212,x x x x <恰为函数()g x 的两个零点,且()12122x x y x x g +⎛⎫'=-⋅⎪⎝⎭的范围是2ln 2,3⎡⎫-+∞⎪⎢⎣⎭,求实数a 的取值范围. 【解析】(1)()f x 的定义域为()0,∞+,()22212211a x ax f x x x x--+'=-+=-. (i )若1a ≤,则()0f x '≤,当且仅当1a =,1x =时,()0f x '= (ii )若1a >,令()0f x '=得12x a x a ==+当(()20,x a a a ∈++∞时,()0fx '<;当(x a a ∈时,()0f x '>,所以,当1a ≤时,()f x 单调递减区间为()0,∞+,无单调递增区间; 当1a >时,()f x 单调递减区间为(()0,,aa+∞;单调递增区间为(a a .(2)由(1)知:1a >且12122,1x x a x x +==.又()12g x b cx x'=--, ∴()12121222x x g b c x x x x +⎛⎫'=--+⎪+⎝⎭, 由()()120g x g x ==得()()22112122lnx b x x c x x x =-+-, ()()()()1222121212121222-+⎛⎫'=-=---- ⎪+⎝⎭x x x x y x x g b x x c x x x x .()121112212122212ln ln 1⎛⎫- ⎪-⎝⎭=-=-++x x x x x x x x x x x x ,令12(0,1)x t x =∈,∴2(1)ln 1t y t t -=-+, ∴22(1)0(1)t y t t --'=<+,所以y 在()0,1上单调递减. 由y 的取值范围是2ln 2,3⎡⎫-+∞⎪⎢⎣⎭,得t 的取值范围是10,2⎛⎤⎥⎝⎦,∵122x x a +=,∴()222222211221212112212212(2)242x x x x x xa x x x x x x a x x x x ++=+=++===++,∴2122119422,2x x a t x x t ⎡⎫=++=++∈+∞⎪⎢⎣⎭,又∵1a >,故a的取值范围是4⎡⎫+∞⎪⎢⎪⎣⎭.(二)各自构造一元函数【例】 已知函数f (x )=lnx ﹣ax +1(a ∈R ). (1)求f (x )的单调区间; (2)设g (x )=lnx 344x x-+,若对任意的x 1∈(0,+∞),存在x 2∈(1,+∞),使得f (x 1)<g (x 2)成立,求实数a 的取值范围. 【分析】(1)函数求导得()11'ax f x a x x-=-=,然后分a ≤0和a >0两种情况分类求解. (2)根据对任意的x 1∈(0,+∞),存在x 2∈(1,+∞),使得f (x 1)<g (x 2)成立,等价于f (x )max <g (x )max ,然后分别求最大值求解即可. 【详解】(1) 略(2)()()()222213113143'4444x x x x g x x x x x -+--+-=--⨯==, 在区间(1,3)上,g ′(x )>0,g (x )单调递增,在区间(3,+∞)上,g ′(x )<0,g (x )单调递减,所以g (x )max =g (3)=ln 312-, 因为对任意的x 1∈(0,+∞),存在x 2∈(1,+∞),使得f (x 1)<g (x 2)成立, 等价于f (x )max <g (x )max ,由(1)知当a ≤0时,f (x )无最值, 当a >0时,f (x )max =f (1a )=﹣lna ,所以﹣lna <ln 312-,所以3lna >ln ,解得a 【变式训练】【广东省2020届高三期末】设函数2()()e ()x f x x ax a a -=+-⋅∈R .(1)当0a =时,求曲线()y f x =在点(1,(1))f --处的切线方程;(2)设2()1g x x x =--,若对任意的[0,2]t ∈,存在[0,2]s ∈使得()()f s g t ≥成立,求a 的取值范围.【解析】 (1)当0a =时,因为()2xf x x e -=⋅,所以()()()2'2,'13xf x x x e f e -=-+⋅-=-,又因为()1f e -=,所以曲线()y f x =在点()()1,1f --处的切线方程为()31y e e x -=-+,即320ex y e ++=.(2)“对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立”等价于“在区间[]0,2上,()f x 的最大值大于或等于()g x 的最大值”.因为()2215124g x x x x ⎛⎫=--=-- ⎪⎝⎭,所以()g x 在[]0,2上的最大值为()21g =. ()()()2'2x x f x x a e x ax a e --=+⋅-+-⋅ ()222x e x a x a -⎡⎤=-+--⎣⎦()()2x e x x a -=--+,令()'0f x =,得2x =或x a =-.①当0a -≤,即0a ≥时,()'0f x ≥在[]0,2上恒成立,()f x 在[]0,2上为单调递增函数,()f x 的最大值大为()()2124f a e =+⋅,由()2141a e+⋅≥,得24a e ≥-; ②当02a <-<,即20a -<<时,当()0,x a ∈-时,()()'0,f x f x <为单调递减函数,当(),2x a ∈-时,()()'0,f x f x >为单调递增函数,所以()f x 的最大值大为()0f a =-或()()2124f a e =+⋅.由1a -≥,得1a ≤-;由()2141a e+⋅≥,得24a e ≥-,又因为20a -<<,所以21a -<≤-; ③当2a -≥,即2a ≤-时,()'0f x ≤在[]0,2上恒成立,()f x 在[]0,2上为单调递减函数,所以()f x 的最大值大为()0f a =-,由1a -≥,得1a ≤-,又因为2a ≤-,所以2a ≤-, 综上所述,实数a 的取值范围是1a ≤-或24a e ≥-. (三)消元构造一元函数 【例】已知函数f(x)={e−x+1,x ≤0,2√x, x >0.函数y =f(f(x)+1)−m(m ∈R)恰有两个零点x 1和x 2.(1)求函数f(x)的值域和实数m 的最小值;(2)若x 1<x 2,且ax 1+x 2≥1恒成立,求实数a 的取值范围. 【解析】(1)当x ≤0时,f(x)=e −x +1≥2.当x >0时,f(x)=2√x >0.∴ f(x)的值域为(0,+∞).令f(f(x)+1)=m ,∵ f(x)+1>1,∴ f(f(x)+1)>2,∴ m >2. 又f(x)的单调减区间为(−∞,0],增区间为(0,+∞).设f(x)+1=t 1,f(x)+1=t 2,且t 1<0,t 2>1.∴ f(x)=t 1−1无解.从而f(x)=t2−1要有两个不同的根,应满足t2−1≥2,∴t2≥3.∴f(t2)=f(f(x)+1)≥2√3.即m≥2√3.∴m的最小值为2√3.(2) y=f(f(x)+1)−m有两个零点x1、x2且x1<x2,设f(x)=t,t∈[2,+∞),∴e−x1+1=t,∴x1=−ln(t−1).2√x2=t,∴x2=t24.∴−aln(t−1)+t24≥1对t∈[2,+∞)恒成立设ℎ(t)=−aln(t−1)+t24−1,ℎ′(t)=−at−1+t2=t2−t−2a2(t−1).∵t∈[2,+∞),∴t2−t∈[2,+∞)恒成立.∴当2a≤2,即a≤1时,ℎ′(t)≥0,∴ℎ(t)在[2,+∞)上单调递增.∴ℎ(t)≥ℎ(2)=−aln1+1−1=0成立.当a>1时,设g(t)=t2−t−2a.由g(2)=4−2−2a=2−2a<0.∴∃t0∈(2,+∞),使得g(t0)=0.且当t∈(2,t0)时,g(t)<0,t∈(t0,+∞)时,g(t)>0.∴当t∈(2,t0)时,ℎ(t)单调递减,此时ℎ(t)<ℎ(2)=0不符合题意.综上,a≤1.【变式训练】f(x)=x2+ax−alnx.(1)若函数f(x)在[2,5]上单调递增,求实数a的取值范围;(2)当a=2时,若方程f(x)=x2+2m有两个不等实数根x1,x2,求实数m的取值范围,并证明x1x2<1.【解析】(1)f′(x)=2x+a−ax,∵函数f(x)在[2,5]上单调递增,∴f′(x)≥0在x∈[2,5]恒成立,即2x+a−ax≥0对x∈[2,5]恒成立,∴a≥−2x2x−1对x∈[2,5]恒成立,即a≥(−2x2x−1)max,x∈[2,5],令g(x)=−2x2x−1(x∈[2,5]),则g′(x)=−2x2+4x(x−1)2≤0(x∈[2,5]),∴g(x)在[2,5]上单调递减,∴g(x)在[2,5]上的最大值为g(2)=−8.∴a的取值范围是[−8,+∞).(2)∵当a=2时,方程f(x)=x2+2m⇔x−lnx−m=0,令ℎ(x)=x−lnx−m(x>0),则ℎ′(x)=1−1x,当x∈(0,1)时,ℎ′(x)<0,故ℎ(x)单调递减,当x∈(1,+∞)时,ℎ′(x)>0,故ℎ(x)单调递增,∴ℎ(x)min=ℎ(1)=1−m.若方程f(x)=x2+2m有两个不等实根,则有ℎ(x)min<0,即m>1,当m >1时,0<e −m <1<e m ,ℎ(e −m )=e −m >0,ℎ(e m )=e m −2m ,令g(x)=e x −2x(x >1),则g′(x)=e x −2>0,g(x)单调递增,g(x)>g(1)=e −2>0, ∴ℎ(e m )>0,∴原方程有两个不等实根,∴实数m 的取值范围是(1,+∞).不妨设x 1<x 2,则0<x 1<1<x 2,0<1x 2<1,∴x 1x 2<1⇔x 1<1x 2⇔ℎ(x 1)>ℎ(1x 2),∵ℎ(x 1)=ℎ(x 2)=0,∴ℎ(x 1)−ℎ(1x 2)=ℎ(x 2)−ℎ(1x 2)=(x 2−lnx 2−m )−(1x 2−ln 1x 2−m),=x 2−1x 2−2lnx 2.令φ(x)=x −1x−2lnx(x >1),则φ′(x)=1+1x 2−2x=(1x −1)2>0,∴φ(x)在(1,+∞)上单调递增,∴当x >1时,φ(x)>φ(1)=0,即x 2−1x 2−2lnx 2>0,∴ℎ(x 1)>ℎ(1x 2),∴x 1x 2<1.(四)独立双变量,化为两边同函数形式【例】 已知函数()()1ln f x kx x =-,其中k 为非零实数. (1)求()f x 的极值;(2)当4k =时,在函数()()22g x f x x x =++的图象上任取两个不同的点()11,M x y 、()22,N x y .若当120x x t <<<时,总有不等式()()()12124g x g x x x -≥-成立,求正实数t 的取值范围: 【详解】(1) 略;(2)当4k =时,()4ln f x x =-',()224ln g x x x x =+-,当120x x t <<<时,总有不等式()()()12124g x g x x x -≥-成立,即()()112244g x x g x x -≥-,构造函数()()2424ln F x g x x x x x =-=--,由于120x x t <<<,()()12F x F x ≥,则函数()y F x =在区间()0,t 上为减函数或常函数,()()()221422x x F x x x x='-+=--,0x,解不等式()0F x '≤,解得02x <≤.由题意可知()(]0,0,2t ⊆,02t ∴<≤,因此,正实数t 的取值范围是(]0,2;【变式训练】设函数. ()ln ,k R kf x x x=+∈(1)若曲线在点处的切线与直线垂直,求的单调递减区间和极小值(其中为自然对数的底数);(2)若对任何恒成立,求的取值范围. 【解析】(2)条件等价于对任意恒成立,设. 则在上单调递减, 则在上恒成立,得恒成立,∴(对仅在时成立),故的取值范围是 【变式训练】已知函数f (x )=x +xlnx .(Ⅰ)求函数f (x )的图象在点(1,1)处的切线方程;(Ⅱ)若k ∈Z ,且k (x −1)<f (x )对任意x >1恒成立,求k 的最大值; (Ⅲ)当n >m ≥4时,证明:(mn n )m >(nm m )n . 【解析】(Ⅰ)∵f ′(x)=lnx +2,∴f ′(1)=2,函数f(x)的图象在点(1,1)处的切线方程y =2x −1;(Ⅱ)由(Ⅰ)知,f(x)=x +xlnx,∴k(x −1)<f(x),对任意x >1恒成立,即k <x+xlnx x−1对任意x >1恒成立. 令g(x)=x+xlnx x−1,则g′(x)=x−lnx−2(x−1)2,令ℎ(x)=x −lnx −2(x >1),则ℎ′(x)=1−1x =x−1x>0,所以函数ℎ(x)在(1,+∞)上单调递增.∵ℎ(3)=1−ln3〈0,ℎ(4)=2−2ln2〉0,∴方程ℎ(x)=0在(1,+∞)上存在唯一实根x 0,且满足x 0∈(3,4).当1<x <x 0时,ℎ(x)<0,即g′(x)<0,当x >x 0时,ℎ(x)>0,即g′(x)>0, 所以函数g(x)=x+xlnx x−1在(1,x 0)上单调递减,在(x 0,+∞)上单调递增.∴[g(x)]min =g(x 0)=x 0(1+lnx 0)x 0−1=x 0(1+x 0−2)x 0−1=x 0∈(3,4),∴k <[g(x)]min =x 0∈(3,4),故整数k 的最大值是3. (Ⅲ)由(Ⅱ)知,g(x)=x+xlnx x−1是[4,+∞)上的增函数,()y f x =()(),e f e 20x -=()f x e ()()1212120,x x f x f x x x >>-<-k ()()1211220,x x f x x f x x >>-<-()()()ln 0kh x f x x x x x x=-=+->()h x ()0,+∞()2110k h x x x '=--≤()0,+∞()2211024k x x x x ⎛⎫≥-+=--+> ⎪⎝⎭14k ≥()1,04k h x '==12x =k 1,4⎡⎫+∞⎪⎢⎣⎭∴当n >m ≥4时,n+nlnn n−1>m+mlnm m−1. 即n(m −1)(1+lnn)>m(n −1)(1+lnm).整理,得mnlnn +mlnm >mnlnm +nlnn +(n −m). ∵n >m,∴mnlnn +mlnm >mnlnm +nlnn . 即lnn mn +lnm m >lnm mn +lnn n .即ln(n mn m m )>ln(m mn n n ).∴(mn n )m >(nm m )n . (五)把其中一个看作自变量,另一个看作参数【例】 已知a R ∈,函数()()2ln 12f x x x ax =+-++(Ⅰ)若函数()f x 在[)2,+∞上为减函数,求实数a 的取值范围;(Ⅱ)设正实数121m m +=,求证:对)1()(f x f ≥上的任意两个实数1x ,2x ,总有()()()11221122f m x m x m f x m f x +≥+成立【分析】(Ⅰ)将问题转化为()0f x '≤在[)+∞∈,2x 上恒成立,可得112+-≤x x a ,令()121h x x x =-+, 可判断出()h x 在[)2,+∞上单调递增,即()()min 2h x h =,从而可得a 的范围;(Ⅱ)构造函数()()()122122()F x f m x m x m f x m f x =+--,(]21,x x ∈-,且121x x -<≤;利用导数可判断出()F x 在(]21,x x ∈-上是减函数,得到()()2F x F x ≥,经验算可知()20F x =,从而可得()()()122122f m x m x m f x m f x +≥+,从而可证得结论.【解析】(Ⅰ)由题意知:()121f x x a x '=-++ 函数()f x 在[)2,+∞上为减函数,即()0f x '≤在[)+∞∈,2x 上恒成立 即112+-≤x x a 在[)+∞∈,2x 上恒成立,设()121h x x x =-+ 当2≥x 时,11=+y x 单调递减,2=y x 单调递增()h x ∴在[)2,+∞上单调递增 ()()min 1112433h x h ∴==-=,113a ∴≤,即a 的取值范围为11,3⎛⎤-∞ ⎥⎝⎦(Ⅱ)设121x x -<≤,令:()()()122122()F x f m x m x m f x m f x =+--,(]21,x x ∈-则()()()()21221220F x f m m x m m f x =+-+=⎡⎤⎣⎦()()()()()112211122F x m f m x m x m f x m f m x m x f x '''''∴=+-=+-⎡⎤⎣⎦()()1221222222210m x m x x x m m x m x m x m x x +-=-+=-+=-≥,122m x m x x ∴+≥()121f x x a x '=-++,令()()g x f x =',则()()21201g x x '=--<+ ()f x ∴'在()1,x ∈-+∞上为减函数,()()122f m x m x f x ''∴+≤()()11220m f m x m x f x ''∴+-≤⎡⎤⎣⎦,即()0F x '≤()F x ∴在(]21,x x ∈-上是减函数,()2()0F x F x ∴≥=,即()0F x ≥ ()()()1221220f m x m x m f x m f x ∴+--≥(]21,x x ∴∈-时,()()()122122f m x m x m f x m f x +≥+121x x -<≤ ,()()()11221122f m x m x m f x m f x ∴+≥+【变式训练】 已知函数f(x)=e x −x ,g(x)=(x +k)ln(x +k)−x .(1)若k =1,f ′(t)=g ′(t),求实数t 的值.(2)若a,b ∈R +,f(a)+g(b)≥f(0)+g(0)+ab ,求正实数k 的取值范围. 【解析】(1)由题意,得f ′(x)=e x −1,g ′(x)=ln(x +k),由k =1,f ′(t)=g ′(t)…①,得e t −ln(t +1)−1=0, 令φ(t)=e t −ln(t +1)−1,则φ′(t)=e t −1t+1,因为φ″(t)=e t +1(t+1)2>0,所以φ′(t)在(−1,+∞)单调递增, 又φ′(0)=0,所以当−1<x <0时,φ′(t)>0,φ(t)单调递增; 当x >0时,φ′(t)<0,φ(t)单调递减;所以φ(t)≤φ(0)=0,当且仅当t =0时等号成立. 故方程①有且仅有唯一解t =0,实数t 的值为0.(2)解法一:令ℎ(x)=f(x)−bx +g(b)−f(0)−g(0)(x >0),则ℎ′(x)=e x −(b +1),所以当x >ln(b +1)时,ℎ′(x)>0,ℎ(x)单调递增; 当0<x <ln(b +1)时,ℎ′(x)<0,ℎ(x)单调递减;故ℎ(x)≥ℎ(ln(b +1)) =f(ln(b +1))+g(b)−f(0)−g(0)−bln(b +1) =(b +k)ln(b +k)−(b +1)ln(b +1)−klnk .令t(x)=(x +k)ln(x +k)−(x +1)ln(x +1)−klnk (x >0),则t ′(x)=ln(x +k)−ln(x +1). (i )若k >1时,t ′(x)>0,t(x)在(0,+∞)单调递增,所以t(x)>t(0)=0,满足题意. (ii )若k =1时,t(x)=0,满足题意.(iii )若0<k <1时,t ′(x)<0,t(x)在(0,+∞)单调递减,所以t(x)<t(0)=0.不满足题意.综上述:k ≥1.(六)利用根与系数的关系,把两变量用另一变量表示 【例】(2020山西高三期末)设函数1()ln ()f x x a x a R x=--∈ (1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x 和2x ,记过点1122(,()),(,())A x f x B x f x 的直线的斜率为k ,问:是否存在a ,使得2k a =-若存在,求出a 的值,若不存在,请说明理由. 【解析】(1)()f x 定义域为()0,∞+,()22211'1a x ax f x x x x -+=+-=,令()221,4g x x ax a =-+∆=-,①当22a -≤≤时,0∆≤,()'0f x ≥,故()f x 在()0,∞+上单调递增, ②当2a <-时,>0∆,()0g x =的两根都小于零,在()0,∞+上,()'0f x >, 故()f x 在()0,∞+上单调递增,③当2a >时,>0∆,()0g x =的两根为1222a a x x +==, 当10x x <<时,()'0f x >;当12x x x <<时,()'0f x <;当2x x >时,()'0f x >; 故()f x 分别在()()120,,,x x +∞上单调递增,在()12,x x 上单调递减. (2)由(1)知,2a >,因为()()()()1212121212ln ln x x f x f x x x a x x x x --=-+--.所以()()1212121212ln ln 11f x f x x x k a x x x x x x --==+⋅--,又由(1)知,121=x x ,于是1212ln ln 2x x k ax x -=--,若存在a ,使得2k a =-,则1212ln ln 1x x x x -=-,即1212ln ln x x x x -=-,亦即222212ln 0(1)x x x x --=> 再由(1)知,函数()12ln h t t t t=--在()0,∞+上单调递增, 而21>x ,所以22212ln 112ln10x x x -->--=,这与上式矛盾,故不存在a ,使得2k a =-. 【变式训练】 已知函数21()2ln 2f x x x a x =-+,其中0a >. (1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x ,2x ,证明:123()()2f x f x -<+<-.【解析】(1)解:由题得22'()2a x x af x x x x-+=-+=,其中0x >,考察2()2g x x x a =-+,0x >,其中对称轴为1x =,44a ∆=-. 若1a ≥,则,此时()0g x ≥,则'()0f x ≥,所以()f x 在(0,)+∞上单调递增;若,则∆>0,此时220x x a -+=在R 上有两个根111x a =--,211x a =+-,且1201x x <<<, 所以当时,()0g x >,则'()0f x >,()f x 单调递增;当12(,)x x x ∈时,()0g x <,则'()0f x <,()f x 单调递减; 当2(,)x x ∈+∞时,()0g x >,则'()0f x >,()f x 单调递增, 综上,当1a ≥时,()f x 在(0,)+∞上单调递增;当时,()f x 在(0,11)a --上单调递增,在(11,11)a a --+-上单调递减,在(11,)a +-+∞上单调递增.(2)证明:由(1)知,当时,()f x 有两个极值点1x ,2x ,且122x x +=,12x x a =,所以()()2212111222112ln 2ln 22fx f x x x a x x x a x +=-++-+ ()()()2212121212ln ln 2x x x x a x x =+-+++ ()()()212121212122ln 2x x x x x x a x x ⎡⎤=+--++⎣⎦()21224ln ln 22a a a a a a =--+=--. 令()ln 2h x x x x =--,01x <<,则只需证明3()2h x -<<-, 由于'()ln 0h x x =<,故()h x 在(0,1)上单调递减,所以()(1)3h x h >=-.又当01x <<时,ln 11x -<-,(ln 1)0x x -<,故()ln 2(ln 1)22h x x x x x x =--=--<-, 所以,对任意的01x <<,3()2h x -<<-. 综上,可得()()1232fx f x -<+<-.【变式训练】已知函数21ln 02f x ax x a x=-+≥()(). (1)讨论函数f (x )的极值点的个数;(2)若f (x )有两个极值点1x ,2x ,证明:1234ln 2f x f x +>-()(). 【解析】(1)由题意,函数221ln ln 22f x ax x x ax x x=-+=--+(), 得2121'21ax x f x ax x x -+-=--+=(),0x ∈+∞(,), (i )若0a =时;1x f x x-'=(), 当01x ∈(,)时,()0f x '<,函数()f x 单调递减;当),(∞+∈1x 时,()0f x '>, 函数()f x 单调递增,所以当1x =,函数()f x 取得极小值,1x =是()f x 的一个极小值点; (ii )若0a >时,则180a ∆=-≤,即18a ≥时,此时0f x '≤(),()f x 在(0,)+∞是减函数,()f x '无极值点,当108a <<时,则180a ∆=->,令0=')(x f ,解得1x =214x a+=, 当10x x ∈(,)和2x x ∈+(,)∞时,0f x '<(),当12x x x ∈(,)时,0>')(x f ,∴()f x 在1x 取得极小值,在2x 取得极大值,所以()f x 有两个极值点, 综上可知:(i )0a =时,()f x 仅有一个极值点;(ii).当18a ≥时,()f x 无极值点; (iii)当108a <<,()f x 有两个极值点. (2)由(1)知,当且仅当108a ∈(,)时,()f x 有极小值点1x 和极大值点2x ,且1x ,2x 是方程2210ax x 的两根,∴1212x x a +=,1212x x a=, 则222121121211ln ln 22f x f x ax x ax x x x +=-++-+()() 22121212ln 2ln 2x x a x x x x =-+-+++()()()22111ln[]42a a a a a=---+ 11ln 1242a a a =++-1ln 1ln 24a a=+--,设1ln ln 24g a a a =++-()1,1(0,)8a ∈,则221141044a g a a a a -'=-=<(), ∴10,8a ∈()时,()a g 是减函数,1()()8g a g >,∴1ln 3ln 234ln 28g a >+-=-(), ∴1234ln 2f x f x +>-()(). 三、跟踪训练 1.已知函数1()ln ()f x x a x a R x=-+∈. (1)讨论函数()y f x =的单调性; (2)若10<<b ,1()()g x f x bx x=+-,且存在不相等的实数1x ,2x ,使得()()12g x g x =,求证:0a <且2211a x x b ⎛⎫> ⎪-⎝⎭. 【解析】(1)由题意,函数1()ln ()f x x a x a R x=-+∈,可得22211'()1(0)a x ax f x x x x x++=++=>, 当0a ≥时,因为0x >,所以210x ax ++>,所以'()0f x >,故函数()f x 在(0,)+∞上单调递增; 当20a -≤<时,240a ∆=-≤,210x ax ++≥,所以'()0f x >, 故函数()f x 在(0,)+∞单调递增;当2a <-时,'()0f x >,解得0x <<或x >,'()0f x <x <<, 所以函数()f x在区间⎛⎫⎪ ⎪⎝⎭上单调递减,在区间⎛⎫⎪ ⎪⎝⎭和区间⎫+∞⎪⎪⎝⎭上单调递增. 综上所述,当2a ≥-时,函数()f x 在(0,)+∞上单调递增,当2a <-时,函数()f x在区间22a a ⎛⎫---+⎪ ⎪⎝⎭上单调递减,在区间⎛⎫⎪ ⎪⎝⎭和区间⎫+∞⎪⎪⎝⎭上单调递增. (2)由题知()(1)ln g x b x a x =-+,则'()1ag x b x=-+. 当0a ≥时,0)('>x g ,所以()g x 在(0,)+∞上单调递增, 与存在不相等的实数1x ,2x ,使得12()()g x g x =矛盾,所以0a <. 由12()()g x g x =,得1122(1)ln (1)ln b x a x b x a x -+=-+, 所以()()2121ln ln (1)a x x b x x --=--,不妨设120x x <<,因为10<<b ,所以212101ln ln x x a b x x -=>--,欲证2121a x x b ⎛⎫< ⎪-⎝⎭,只需证2211221ln ln x x x x x x ⎛⎫-> ⎪-⎝⎭,只需证2121ln ln x x x x ->-21x t x =,1t >,等价于证明1ln t t->ln 0t -<,令()ln 1)h t t t =->,2'()0h t =<,所以)(t h 在区间(1,)+∞上单调递减,所以()(1)0h t h <=,从而ln 0t <得证,于是2211a x x b ⎛⎫> ⎪-⎝⎭. 2.【2020河北省衡水市高三期末】已知函数f(x)=alnx −x 2.(1)令g(x)=f(x)+ax ,若y =g(x)在区间(0,3)上不单调,求a 的取值范围;(2)当a =2时,函数ℎ(x)=f(x)−mx 的图象与x 轴交于两点A (x 1,0),B (x 2,0),且0<x 1<x 2,又ℎ′(x)是ℎ(x)的导函数.若正常数α,β满足条件α+β=1,β≥α.试比较ℎ′(αx 1+βx 2)与0的关系,并给出理由【解析】(1)因为g (x )=a ln x −x 2+ax ,所以g ′(x )=ax −2x +a , 因为g (x )在区间(0,3)上不单调,所以g ′(x )=0在(0,3)上有实数解,且无重根, 由g ′(x )=0,有a =2x 2x+1=2(x +1+1x+1)−4,x ∈(0,3),令t=x+1>4 则y=2(t+1t )−4在t>4单调递增,故a ∈(0,92)(2)∵ℎ′(x )=2x −2x −m ,又f (x )−mx =0有两个实根x 1,x 2,∴{2lnx 1−x 12−mx 1=02lnx 2−x 22−mx 2=0,两式相减,得2(ln x 1−ln x 2)−(x 12−x 22)=m (x 1−x 2), ∴m =2(ln x 1−ln x 2)x 1−x 2−(x 1+x 2),于是ℎ′(αx 1+βx 2)=2αx 1+βx 2−2(αx 1+βx 2)−2(ln x 1−ln x 2)x 1−x 2+(x 1+x 2)=2αx1+βx 2−2(ln x 1−ln x 2)x 1−x 2+(2α−1)(x 2−x 1).∵β≥α,∴2α≤1,∴(2α−1)(x 2−x 1)≤0. 要证:ℎ′(αx 1+βx 2)<0,只需证:2αx1+βx 2−2(ln x 1−ln x 2)x 1−x 2<0,只需证:x 1−x 2αx1+βx 2−lnx 1x 2>0.(*)令x1x 2=t ∈(0,1),∴(*)化为1−tαt+β+ln t <0,只需证u (t )=ln t +1−tαt+β<0u ′(t )=1t−1(αt+β)2>0∵u (t )在(0,1)上单调递增,u (t )<u (1)=0,∴ln t +1−t αt+β<0,即x 1−x 2αt+β+ln x1x 2<0. ∴ℎ′(αx 1+βx 2)<0.2.(2020·江苏金陵中学高三开学考试)已知函数f (x )=12ax 2+lnx ,g (x )=-bx ,其中a ,b ∈R ,设h (x )=f (x )-g (x ),(1)若f (x )在x=√22处取得极值,且f′(1)=g (-1)-2.求函数h (x )的单调区间;(2)若a=0时,函数h (x )有两个不同的零点x 1,x 2 ①求b 的取值范围; ②求证:x 1x 2e 2>1.【答案】(1)在区间(0,1)上单调增;在区间(1,+)上单调减.(2)①(−1e ,0)②详见解析【解析】试题分析:(1)先确定参数:由f ′(1)=g(−1)−2可得a=b-3. 由函数极值定义知f ′(√22)=√22a +√2=0所以a=" -2,b=1" .再根据导函数求单调区间(2)①当a =0时,ℎ(x )=lnx +bx ,原题转化为函数φ(x )=−lnx x与直线y =b 有两个交点,先研究函数φ(x )=−lnx x图像,再确定b 的取值范围是(−1e ,0).②x 1x 2e 2>1⇔x 1x 2>e 2⇔lnx 1x 2>2,由题意得lnx 1+bx 1=0,lnx 2+bx 2=0,所以lnx 1x 2lnx2−lnx 1=x 1+x 2x 2−x 1,因此须证lnx 2−lnx 1>2(x 2−x 1)x 2+x 1,构造函数F(t)=lnt −2(t−1)t+1,即可证明试题解析:(1)因为f ′(x)=ax +1x ,所以f ′(1)=a +1, 由f ′(1)=g(−1)−2可得a=b-3.又因为f(x)在x =√22处取得极值,所以f ′(√22)=√22a +√2=0,所以a=" -2,b=1" .所以ℎ(x)=−x 2+lnx +x ,其定义域为(0,+)ℎ′(x )=−2x +1x +1=−2x 2+x +1x =−(2x +1)(x −1)x令ℎ′(x )=0得x 1=−12,x 2=1,当x ∈(0,1)时,ℎ′(x )>0,当x ∈(1,+)ℎ′(x )<0,所以函数h (x )在区间(0,1)上单调增;在区间(1,+)上单调减. (2)当a =0时,ℎ(x )=lnx +bx ,其定义域为(0,+). ①由ℎ(x )=0得b =-lnx x ,记φ(x )=−lnx x,则φ′(x )=lnx−1x 2,所以φ(x )=−lnx x在(0,e)单调减,在(e,+∞)单调增,所以当x =e 时φ(x )=−lnx x取得最小值−1e .又φ(1)=0,所以x ∈(0,1)时φ(x )>0,而x ∈(1,+∞)时φ(x )<0,所以b 的取值范围是(−1e ,0). ②由题意得lnx 1+bx 1=0,lnx 2+bx 2=0,所以lnx 1x 2+b (x 1+x 2)=0,lnx 2−lnx 1+b (x 2−x 1)=0, 所以lnx 1x 2lnx2−lnx 1=x 1+x 2x 2−x 1,不妨设x1<x2,要证x 1x 2>e 2, 只需要证lnx 1x 2=x 1+x2x 2−x 1(lnx 2−lnx 1)>2.即证lnx 2−lnx 1>2(x 2−x 1)x 2+x 1,设t =x2x 1(t >1),则F(t)=lnt −2(t−1)t+1=lnt +4t+1−2,所以F′(t)=1t −4(t+1)2=(t−1)2t(t+1)2>0,所以函数F(t)在(1,+)上单调增,而F(1)=0,所以F(t)>0即lnt>2(t−1)t+1,所以x1x2>e2.考点:函数极值,构造函数利用导数证明不等式3.【福建省2020高三期中】已知函数f(x)=e x(e x−ax+a)有两个极值点x1,x2.(1)求a的取值范围;(2)求证:2x1x2<x1+x2.【解析】(1)因为f(x)=e x(e x−ax+a),所以f′(x)=e x(e x−ax+a)+e x(e x−a)=e x(2e x−ax),令f′(x)=0,则2e x=ax,当a=0时,不成立;当a≠0时,2a =xe x,令g(x)=xe x,所以g′(x)=1−xe x,当x<1时,g′(x)>0,当x>1时,g′(x)<0,所以g(x)在(−∞,1)上单调递增,在(1,+∞)上单调递减,又因为g(1)=1e,当x→−∞时,g(x)→−∞,当x→+∞时,g(x)→0,因此,当0<2a <1e时,f(x)有2个极值点,即a的取值范围为(2e,+∞).(2)由(1)不妨设0<x1<1<x2,且{2e x1=ax12e x2=ax2,所以{ln2+x1=lna+lnx1ln2+x2=lna+lnx2,所以x2−x1=lnx2−lnx1,要证明2x1x2<x1+x2,只要证明2x1x2(lnx2−lnx1)<x22−x12,即证明2ln(x2x1)<x2x1−x1x2,设x2x1=t(t>1),即要证明2lnt−t+1t<0在t∈(1,+∞)上恒成立,记ℎ(t)=2lnt−t+1t (t>1),ℎ′(t)=2t−1−1t2=−t2+2t−1t2=−(t−1)2t2<0,所以ℎ(t)在区间(1,+∞)上单调递减,所以ℎ(t)<ℎ(1)=0,即2lnt−t+1t<0,即2x1x2<x1+x2.4.【安徽省示范高中皖北协作区2020届高三模拟】已知函数f(x)=−12x2+2x−2alnx.(1)讨论函数f(x)的单调性;(2)设g(x)=f′(x),方程g(x)=c(其中c为常数)的两根分别为α,β(α<β),证明:g′(α+β2)< 0.注:f′(x),g′(x)分别为f(x),g(x)的导函数.【解析】(1)函数f(x)的定义域为(0,+∞),f′(x)=−x+2−2ax =−x2+2x−2ax,令ℎ(x)=−x22a−2a,Δ=4−8a,①当Δ≤0时,即a ≥12时,恒有ℎ(x )≤0,即f ′(x )≤0, ∴函数f (x )在(0,+∞)上单调减区间.②当Δ>0时,即a <12时,由ℎ(x )=0,解得x 1=1−√1−2a,x 2=1+√1−2a , (i )当0<a <12时,当x ∈(0,x 1),(x 2,+∞)时,ℎ(x )<0,即f ′(x )<0, 当x ∈(x 1,x 2)时,ℎ(x )>0,即f ′(x )>0,∴函数f (x )在(0,x 1),(x 2,+∞)单调递减,在(x 1,x 2)上单调递增. (ii )当a ≤0时,ℎ(0)=−2a ≥0, 当x ∈(x 2,+∞)时,ℎ(x )<0,即f ′(x )<0, 当x ∈(0,x 2)时,ℎ(x )>0,即f ′(x )>0,∴函数f (x )在(x 2,+∞)单调递减,在(0,x 2)上单调递增. 证明(2)由条件可得g (x )=−x +2-2a x,x >0,∴g ′(x )=−1+2a x 2,∵方程g (x )=c (其中c 为常数)的两根分别为α,β(α<β), ∴{g (α)=c g (β)=c可得αβ=2c , ∴g ′(α+β2)=−1+8α(α+β)2=−1+4αβ(α+β)2=−1+4αβ+βα+2,∵0<α<β, ∴0<αβ<1, ∴αβ+βα>2,∴g ′(α+β2)=−1+4αβ+βα+2<−1+1=0.5.(2020江苏徐州一中高三期中)设函数()ln 1nf x x m x =+-,其中n ∈N *,n ≥2,且m ∈R . (1)当2n =,1m =-时,求函数()f x 的单调区间;(2)当2n =时,令()()22g x f x x =-+,若函数()g x 有两个极值点1x ,2x ,且12x x <,求()2g x 的取值范围;【答案】(1)见解析;(2)12ln 2,04-⎛⎫⎪⎝⎭;(3)见解析【解析】 【分析】(1)将2n =,1m =-代入解析式,求出函数的导数,从而即可得到函数()f x 的单调区间; (2)由题意知()221ln g x x x m x =-++,求导,从而可得2220x x m -+=,由方程2220x x m -+=有两个不相等的正数根1x ,2x (12x x <)可得102m <<,由方程得2x =,且2112x <<,由此分析整理即可得到答案;(3)求出函数的导数,得到()f x 的单调性,求出()f x 的最小值,通过构造函数结合零点存在性定理判断函数的零点即可. 【详解】(1)依题意得,()2ln 1f x x x =--,()0,x ∈+∞,∴ ()21212x f x x x x='-=-.令()0f x '>,得x >()0f x '<,得0x << 则函数()f x在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)由题意知:()221ln g x x x m x =-++.则()22222m x x mg x x x x='-+=-+,令()0g x '=,得2220x x m -+=,故方程2220x x m -+=有两个不相等的正数根1x ,2x (12x x <),则()412002m m⎧∆=->⎪⎨>⎪⎩,, 解得102m <<.由方程得2x =2112x <<. 由222220x x m -+=,得22222m x x =-+.()()222222222122ln g x x x x x x =-++-+,2112x <<. ()22214ln 02g x x x ⎛'⎫=--> ⎪⎝⎭,即函数()2g x 是1,12⎛⎫ ⎪⎝⎭上的增函数,所以()212ln204g x -<<,故()2g x 的取值范围是12ln2,04-⎛⎫⎪⎝⎭. 6.(2019·江苏徐州一中高三月考)已知函数()alnxf x x=,g (x )=b (x ﹣1),其中a ≠0,b ≠0 (1)若a =b ,讨论F (x )=f (x )﹣g (x )的单调区间;(2)已知函数f (x )的曲线与函数g (x )的曲线有两个交点,设两个交点的横坐标分别为x 1,x 2,证明:()12122x x g x x a++>. 【答案】(1)见解析(2)见解析 【解析】 【分析】(1)求导得()()222111lnx aF x a x lnx x x-⎛⎫'=-=--⎪⎝⎭,按照a >0、 a <0讨论()F x '的正负即可得解; (2)设x 1>x 2,转化条件得()1212112122x x x x x g x x ln a x x x +++=⋅-,令121x t x =>,()121t p t lnt t -=-⋅+,只需证明()0p t >即可得证. 【详解】(1)由已知得()()()1lnx F x f x g x a x x ⎛⎫=-=-+⎪⎝⎭,∴()()222111lnx a F x a x lnx x x-⎛⎫'=-=-- ⎪⎝⎭, 当0<x <1时,∵1﹣x 2>0,﹣lnx >0,∴1﹣x 2﹣lnx >0,; 当x >1时,∵1﹣x 2<0,﹣lnx <0,∴1﹣x 2﹣lnx <0.故若a >0,F (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 故若a <0,F (x )在(0,1)上单调递减,在(1,+∞)上单调递增. (2)不妨设x 1>x 2,依题意()1111lnx a b x x =-, ∴()2111alnx b x x =-①,同理得()2222alnx b x x =-②由①﹣②得,∴()()()2211122121221x alnb x x x x b x x x x x =--+=-+-,∴()()1212121x lnx bx x a x x +-=-,∴()()()121211212121221x x x x x bg x x x x x x ln a a x x x +++=+⋅⋅+-=⋅-, 故只需证1211222x x x ln x x x +⋅->,取∴121xt x =>,即只需证明121t lnt t +⋅>-,1t ∀>成立, 即只需证()1201t p t lnt t -=-⋅>+,1t ∀>成立, ∵()()()()222114011t p t t t t t -'=-=++>,∴p (t )在区间[1,+∞)上单调递增,∴p (t )>p (1)=0,∀t>1成立,故原命题得证.【点睛】本题考查了导数的综合运用,考查了转化化归思想与计算能力,属于难题. 7.(2020·广西南宁二中高三(文))已知函数()()2ln 1,f x x ax x =++-()()21ln ln 12g x a x x ax x x=--+-+(Ⅰ)若0a >,讨论函数()f x 的单调性;(Ⅱ)设()()()h x f x g x =+,且()h x 有两个极值点12,x x ,其中11(0,]x e∈,求()()12h x h x -的最小值.(注:其中e 为自然对数的底数) 【答案】(Ⅰ)见解析;(Ⅱ)最小值为4e. 【解析】 【分析】(Ⅰ)对函数()f x 求导,对a 分情况讨论即可确定()f x 的单调区间;(Ⅱ)先对()h x 求导,令导数式等于0由韦达定理求出两个极值点12,x x 的关系1212,1x x a x x +=-= ,所以211111,x a x x x ==--,整理()()12h x h x -,构造关于1x 的函数()x ϕ ,求导根据单调性确定最值即可。
专题24 利用导数解决双变量问题(解析版)
专题24利用导数解决双变量问题一、单选题1.设函数()311433f x x x =-+,函数()221g x x bx =-+,若对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,则实数b 的取值范围是()A .7,2⎡⎫+∞⎪⎢⎣⎭B .5,8⎡⎫+∞⎪⎢⎣⎭C .7,2⎛⎤-∞ ⎝⎦D .5,8⎛⎤-∞ ⎥⎝⎦【答案】A 【分析】由题意只需()()min min f x g x ≥,对函数()f x 求导,判断单调性求出最小值,对函数()g x 讨论对称轴和区间[]0,1的关系,得到函数最小值,利用()()min min f x g x ≥即可得到实数b 的取值范围.【详解】若对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,只需()()min min f x g x ≥,因为()311433f x x x =-+,所以()24f x x '=-,当[]1,2x ∈时,()0f x '≤,所以()f x 在[]1,2上是减函数,所以函数()f x 取得最小值()25f =-.因为()()222211g x x bx x b b =-+=-+-,当0b ≤时,()g x 在[]0,1上单调递增,函数取得最小值()01g =,需51-≥,不成立;当1b ≥时,()g x 在[]0,1上单调递减,函数取得最小值()122g b =-,需522b -≥-,解得72b ≥,此时72b ≥;当01b <<时,()g x 在[]0,b 上单调递减,在(],1b 上单调递增,函数取得最小值()21g b b =-,需251b -≥-,解得b ≤或b ≥综上,实数b 的取值范围是7,2⎡⎫+∞⎪⎢⎣⎭,故选:A .【点睛】本题考查利用导数研究函数的最值,考查二次函数在区间的最值的求法,考查分类讨论思想和转化思想,属于中档题.2.已知函数1()ln f x x a x x=-+,且()f x 有两个极值点12,x x ,其中(]11,2x ∈,则()()12f x f x -的最小值为()A .35ln 2-B .34ln 2-C .53ln 2-D .55ln 2-【答案】A 【分析】()f x 的两个极值点12,x x 是()0f x '=的两个根,根据韦达定理,确定12,x x 的关系,用1x 表示出2x ,()()12f x f x -用1x 表示出,求该函数的最小值即可.【详解】解:()f x 的定义域()0,∞+,22211()1a x ax f x x x x '++=++=,令()0f x '=,则210x ax ++=必有两根12,x x ,2121240010a x x a x x ⎧->⎪+=->⎨⎪=>⎩,所以2111112,,a x a x x x ⎛⎫<-==-+ ⎪⎝⎭,()()()11211111111111ln ln f x f x f x f x a x x a x x x x ⎛⎫⎛⎫∴-=-=-+--+ ⎪ ⎪⎝⎭⎝⎭,1111111111122ln 22ln x a x x x x x x x ⎛⎫⎛⎫⎛⎫=-+=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(]11()22ln ,1,2h x x x x x x x ⎛⎫⎛⎫=--+∈ ⎪ ⎪⎝⎭⎝⎭,22211112(1)(1)ln ()2121ln x x x h x x x x x x x x ⎡⎤+-⎛⎫⎛⎫⎛⎫'∴=+--++⋅= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,当(]1,2x ∈时,()0h x '<,()h x 递减,所以()()min 235ln 2h x h ==-()()12f x f x -的最小值为35ln 2-故选:A.【点睛】求二元函数的最小值通过二元之间的关系,转化为求一元函数的最小值,同时考查运算求解能力和转化化归的思想方法,中档题.3.已知函数()e ,()ln x f x x g x x x ==,若()()12f x g x t ==,其中0t >,则12ln tx x 的最大值为()A .1eB .2eC .21e D .24e 【答案】A 【分析】由题意转化条件2ln 2ln x ex t ⋅=,通过导数判断函数()f x 的单调性,以及画出函数的图象,数形结合可知12ln x x =,进而可得12ln ln t t x x t =,最后通过设函数()()ln 0th t t t=>,利用导数求函数的最大值.【详解】由题意,11e x x t ⋅=,22ln x x t ⋅=,则2ln 2e ln xx t ⋅=,()()1x x x f x e xe x e '=+=+,当(),1x ∈-∞-时,()0f x '<,()f x 单调递减,当()1,x ∈-+∞时,()0f x '>,()f x 单调递增,又(),0x ∈-∞时,()0f x <,()0,x ∈+∞时,()0f x >,作函数()e xf x x =⋅的图象如下:由图可知,当0t >时,()f x t =有唯一解,故12ln x x =,且1>0x ,∴1222ln ln ln ln t t tx x x x t==⋅⋅,设ln ()t h t t =,0t >,则21ln ()th t t-'=,令()0h t '=,解得e t =,易得当()0,e t ∈时,()0h t '>,函数()h t 单调递增,当()e,t ∈+∞时,()0h t '<,函数()h t 单调递减,故()()1e e h t h ≤=,即12ln t x x ⋅的最大值为1e.故选:A .【点睛】本题考查利用导数求函数的最值,重点考查转化与化归的思想,变形计算能力,数形结合思想,属于中档题,本题可得关键是判断12ln x x =.4.设函数()12ln 133f x x x x=-+-,函数()25212g x x bx =--,若对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,则实数b 的取值范围是()A .1,2⎡⎫+∞⎪⎢⎣⎭B .5,8⎡⎫+∞⎪⎢⎣⎭C .1,2⎛⎤-∞ ⎥⎝⎦D .5,8⎛⎤-∞⎥⎝⎦【答案】A 【分析】根据对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,用导数法求得()f x 的最小值,用二次函数的性质求得()g x 的最小值,再解不等式即可.【详解】因为()12ln 133f x x x x =-+-,所以()211233'=--f x x x,211233=--x x,22323-+=-x x x,()()2123--=-x x x ,当12x <<时,()0f x '>,所以()f x 在[]1,2上是增函数,所以函数()f x 取得最小值()213f =-.因为()()2225521212=--=---g x x bx x b b ,当0b ≤时,()g x 取得最小值()0251=-g ,因为对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,所以()()10≥f g ,不成立;当1b ≥时,()g x 取得最小值()71212=-g b ,因为对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,所以722123-≤-b ,解得58≥b ,此时1b ≥;当01b <<时,()g x 取得最小值()2512=--g b b ,因为对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,所以221352--≤-b ,解得12b ≥,此时112b ≤<;综上:实数b 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.故选:A 【点睛】本题主要考查双变量问题以及导数与函数的最值,二次函数的性质,还考查了分类讨论的思想和运算求解的能力,属于中档题.5.已知函数()224x x f x x ++=-,()111323x xxx g x -⋅-=,实数a ,b 满足0a b <<.若[]1,x a b ∀∈,[]21,1x ∃∈-,使得()()12f x g x =成立,则b a -的最大值为()A .3B .4C .5D .【答案】A 【分析】首先化简函数()42,0f x x x x ⎛⎫=--+< ⎪⎝⎭,和()11233xx g x ⎛⎫=- ⎪⎝⎭,[]1,1x ∈-,并判断函数的单调性,由条件转化为子集关系,从而确定,a b 值.【详解】()42f x x x ⎛⎫=--+⎪⎝⎭,0x <()241f x x '=-+,0x <,当()0f x '>时,解得:20x -<<,当()0f x '<时,解得:2x <-,所以()f x 在(),0-∞的单调递增区间是()2,0-,单调递减区间是(),2-∞-,当2x =-时取得最小值,()22f -=()11233xx g x ⎛⎫=- ⎪⎝⎭,函数在[]1,1-单调递增,()3116g -=-,()13g =,所以,()3136g x -≤≤,令()3f x =,解得:1x =-或4x =-,由条件可知()[],,,0f x x a b a b ∈<<的值域是()[],1,1g x x ∈-值域的子集,所以b 的最大值是1-,a 的最小值是4-,故b a -的最大值是3.故选:A 【点睛】本题考查函数的性质的综合应用,以及双变量问题转化为子集问题求参数的取值范围,重点考查转化与化归的思想,计算能力,属于中档题型.二、解答题6.已知函数()2x f x x e =-.(Ⅰ)求函数()f x 的图象在点()()0,0f 处的切线方程;(Ⅱ)若存在两个不相等的数1x ,2x ,满足()()12f x f x =,求证:122ln 2x x +<.【答案】(Ⅰ)1y x =-;(Ⅱ)证明见解析.【分析】(Ⅰ)首先求函数的导数,利用导数的几何意义,求函数的图象在点()()0,0f 处的切线方程;(Ⅱ)首先确定函数零点的区间,构造函数()()()ln 2ln 2F x f x f x =+--,利用导数判断函数()F x 的单调性,并得到()()ln 2ln 2f x f x +<-在()0,∞+上恒成立,并利用单调性,变形得到122ln 2x x +<.【详解】(Ⅰ)()2e x f x '=-,所以()f x 的图象在点()()0,0f 处的切线方程为1y x =-.(Ⅱ)令()2e 0xf x '=-=,解得ln 2x =,当ln 2x =时()0f x '>,()f x 在(),ln 2-∞.上单调递增;当ln 2x >时,()0f x '<,()f x 在()ln 2,+∞上单调递减.所以ln 2x =为()f x 的极大值点,不妨设12x x <,由题可知12ln 2x x <<.令()()()ln 2ln 242e 2e xxF x f x f x x -=+--=-+,()42e 2e x x F x -'=--,因为e e 2x x -+,所以()0F x ',所以()F x 单调递减.又()00F =,所以()0F x <在()0,∞+上恒成立,即()()ln 2ln 2f x f x +<-在()0,∞+上恒成立.所以()()()()()()()12222ln 2ln 2ln 2ln 22ln 2f x f x f x f x f x ==+-<--=-,因为1ln 2x <,22ln 2ln 2x -<,又()f x 在(),ln 2-∞上单调递增,所以122ln 2x x <-,所以122ln 2x x +<.【点睛】思路点睛:本题是典型的极值点偏移问题,需先分析出原函数的极值点,找到两个根的大致取值范围,再将其中一个根进行对称的转化变形,使得x 与ln 2x -在同一个单调区间内,进而利用函数的单调性分析.7.已知函数()()3ln f x x k x k R =+∈,()f x '为()f x 的导函数.(1)当6k =时,(i )求曲线()y f x =在点()()1,1f 处的切线方程;(ii )求函数()()()9g x f x f x x'=-+的单调区间和极值;(2)当3k ≥-时,求证:对任意的[)12,1,x x ∈+∞且12x x >,有()()()()1212122f x f x f x f x x x ''+->-.【答案】(1)(i )98y x =-;(ii )递减区间为()0,1,递增区间为()1,+∞;极小值为()11g =,无极大值;(2)证明见解析.【分析】(1)(i )确定函数()f x ,求出()f x ',然后利用导数的几何意义求出切线方程即可;(ii )确定函数()g x ,求出()g x ',利用导数研究函数()g x 的单调性与极值即可;(2)求出()f x ',对要证得不等式进行等价转换后,构造新函数,利用导数研究新函数的单调性,结合等价转换后的结果即可证明结论成立.【详解】(1)(i )当6k =时,()36ln f x x x =+,故()263f x x x'=+.可得()11f =,()19f '=,所以曲线()y f x =在点()()1,1f 处的切线方程为()191y x -=-,即98y x =-.(ii )依题意,323()36ln g x x x x x =-++,()0,x ∈+∞,从而求导可得2263()36g x x x x x'=-+-,整理可得323(1)(1)()x x g x x'-+=.令()0g x '=,解得1x =.当x 变化时,()g x ',()g x 的变化情况如下表:x()0,11()1,+∞()g x '-+()g x极小值所以,函数()g x 的单调递减区间为()0,1,单调递增区间为()1,+∞;()g x 的极小值为()11g =,无极大值.(2)证明:由()3ln f x x k x =+,得()23k f x x x'=+.对任意的[)12,1,x x ∈+∞,且12x x >,令12(1)x t t x =>,则()()()()()()()1212122x x f x f x f x f x ''-+--()22331121212122332ln x k k x x x x x x k x x x ⎛⎫⎛⎫=-+++--+ ⎪ ⎪⎝⎭⎝⎭3322121121212212332ln x x x x x x x x x k k x x x ⎛⎫=--++-- ⎪⎝⎭()332213312ln x t t t k t t t ⎛⎫=-+-+-- ⎪⎝⎭.①令1()2ln h x x x x=--,[)1,x ∈+∞.当1x >时,22121()110h x x x x '⎛⎫=+-=-> ⎪⎝⎭,由此可得()h x 在[)1,+∞单调递增,所以当1t >时,()()1h t h >,即12ln 0t t t-->,因为21x ≥,323331(1)0t t t t -+-=->,3k ≥-,所以()()332322113312ln 33132ln x t t t k t t t t t t t tt⎛⎫⎛⎫-+-+-->-+---- ⎪ ⎪⎝⎭⎝⎭32336ln 1t t t t=-++-.②由(1)(ii )可知,当1t >时,()()1g t g >,即32336ln 1t t t t-++>,故32336ln 10t t t t-++->.③由①②③可得()()()()()()()12121220x x fx f x f x f x ''-+-->.所以,当3k ≥-时,对任意的[)12,1,x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-.【点睛】结论点睛:本题考查不等式的恒成立问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.8.已知函数21()ln 2f x x a x =-.其中a 为常数.(1)若函数()f x 在定义域内有且只有一个极值点,求实数a 的取值范围;(2)已知1x ,2x 是函数()f x 的两个不同的零点,求证:12x x +>.【答案】(1)0a >;(2)证明见解析.【分析】(1)求出导函数()'f x ,分类讨论确定()'f x 的正负,得()f x 的单调性,从而得极值点个数,由此可得结论;(2)结合(1)求得函数有两个零点时a 的范围,设12x x <,则(1x ∈,)2x ∈+∞,引入函数()))(0g x fx fx x =-≤≤,由导数确定它是减函数,得))f x f x <-,然后利用()()))()21111f x f x f x f x f x ⎤⎤==>=-⎦⎦,再结合()f x 的单调性得出证明.【详解】(1)()2(0)a x ax x x xf x --'==>,当0a ≤时,()0f x '>,()f x 在()0,∞+上单调递增,不符合题意,当0a >时,令()0f x '=,得x =,当(x ∈时,()0f x '<,()f x 单调递减,当)x ∈+∞时,()0f x '>,()f x 单调递增,所以此时()f x 只有一个极值点.a ∴>(2)由(1)知当0a ≤时,()0f x '>,()f x 在(0,)+∞上单调递增,函数()f x 至多有一个零点,不符合题意,当0a >时,令()0f x '=,得x =当x ∈时,()0f x '<,()f x 单调递减,当)x ∈+∞时,()0f x '>,()f x 单调递增,故当x =()f x 取得最小值()1ln 2a fa =-,当0a e <<时,1ln 0a ->,0f>,函数()f x 无零点,不合题意,当a e =时,1ln 0a -=,0f =,函数()f x 仅有一个零点,不合题意,当a e >时,1ln 0a -<,0f <,又()1102f =>,所以()f x 在(x ∈上只有一个零点,令()ln 1p x x x =-+,则()11p x x'=-,故当01x <<时,()0p x '>,()p x 单调递增,当1x >时,()0p x '<,()p x 单调递减,所以()()10p x p ≤=,即ln 1≤-x x ,所以ln 221a a ≤-,所以22(2)2ln 22(21)0f a a a a a a a a =-≥--=>,又2a >,所以()f x 在)x ∈+∞上只有一个零点.所以a e >满足题意.不妨设12x x <,则(1x ∈,)2x ∈+∞,令()))(0g x f x fx x =+--≤≤,则()))ln ln g x a x a x =-+-,()22x ag x ='=-,当0x <<时,()0g x '<,所以()g x在(上单调递减,所以当(x ∈时,()()00g x g <=,即))fx fx +<-,因为(1x ∈(1x ∈,所以()()))()21111f x f x f x f x f x ⎤⎤==>=⎦⎦,又)2x ∈+∞,)1x -∈+∞,且()f x在)+∞上单调递增,所以21x x >-,故12x x +>>.【点睛】关键点点睛:本题考查用导数研究函数的极值点、零点,证明不等式.难点是不等式的证明,首先由零点个数得出参数范围,在不妨设12x x <,则(1x ∈,)2x ∈+∞后关键是引入函数()))(0g x fx f x x =-≤≤,同样用导数得出它的单调性,目的是证得))f x f x +<-,然后利用这个不等关系变形()f x 的单调性得结论.9.已知函数ln ()xf x x=,()g x ax b =+,设()()()F x f x g x =-.(1)若1a =,求()F x 的最大值;(2)若()F x 有两个不同的零点1x ,2x ,求证:()()12122x x g x x ++>.【答案】(1)最大值为1b --;(2)证明见解析.【分析】(1)首先求出函数的导函数,再判断()F x '的符号,即可得到函数的单调区间,从而求出函数的最大值;(2)由题知,121212ln ln x x ax b ax b x x =+=+,,即2111ln x ax bx =+,2222ln x ax bx =+,要证()()12122x x g x x ++>,即可212112ln ln 2x x x x x x ->-+,令21x t x =,则只需证2(1)ln (1)1t t t t ->>+.构造函数2(1)()ln (1)1t t t t t ϕ-=->+,利用导数说明其单调性即可得证;【详解】解:ln ()()()xF x f x g x ax b x =-=--(1)解:当1a =时,ln ()xF x x b x=--所以21ln ()1xF x x -'=-.注意(1)0F '=,且当01x <<时,()0F x '>,()F x 单调递增;当1x >时,()0F x '<,()F x 单调递增减.所以()F x 的最大值为(1)1F b =--.(2)证明:由题知,121212ln ln x xax b ax b x x =+=+,,即2111ln x ax bx =+,2222ln x ax bx =+,可得212121ln ln ()[()]x x x x a x x b -=-++.121212122()()2()x x g x x a x x b x x ++>⇔++>+212112ln ln 2x x x x x x -⇔>-+.不妨120x x <<,则上式进一步等价于2211212()ln x x x x x x ->+.令21x t x =,则只需证2(1)ln (1)1t t t t ->>+.设2(1)()ln (1)1t t t t t ϕ-=->+,22(1)()0(1)t t t t ϕ-'=>+,所以()t ϕ在(1+)∞,上单调递增,从而()(1)0t ϕϕ>=,即2(1)ln (1)1t t t t ->>+,故原不等式得证.【点睛】本题考查导数在最大值、最小值问题中的应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,属于难题.10.已知函数1()ln f x a x x x=-+,其中0a >.(1)若()f x 在(2,)+∞上存在极值点,求a 的取值范围;(2)设()10,1x ∈,2(1,)x ∈+∞,若()()21f x f x -存在最大值,记为()M a ,则当1a e e≤+时,()M a 是否存在最大值?若存在,求出其最大值;若不存在,请说明理由【答案】(1)5(2a ∈,)+∞;(2)M (a )存在最大值,且最大值为4e.【分析】(1)求出函数()f x 的导数,将题意转换为1a x x =+在(2,)x ∈+∞上有解,由1y x x=+在(2,)x ∈+∞上递增,得15(2x x +∈,)+∞,求出a 的范围即可;(2)求出函数()f x 的导数,得到21[()()]()()max f x f x f n f m -=-,求出M (a )11()()()()n f n f m alnm n m n m=-=+-+-,根据函数的单调性求出M (a )的最大值即可.【详解】解:(1)2221(1)()1a x ax f x x x x--+'=--=,(0,)x ∈+∞,由题意得,210x ax -+=在(2,)x ∈+∞上有根(不为重根),即1a x x =+在(2,)x ∈+∞上有解,由1y x x=+在(2,)x ∈+∞上递增,得15(2x x +∈,)+∞,检验,52a >时,()f x 在(2,)x ∈+∞上存在极值点,5(2a ∴∈,)+∞;(2)210x ax -+=中2=a 4∆-,若02a <,即2=a 40∆-≤22(1)()x ax f x x --+∴'=在(0,)+∞上满足()0f x ',()f x ∴在(0,)+∞上递减,12x x < ()()12f x f x ∴>21()()0f x f x ∴-<,21()()f x f x ∴-不存在最大值,则2a >;∴方程210x ax -+=有2个不相等的正实数根,令其为m ,n ,且不妨设01m n <<<,则01m n a mn +=>⎧⎨=⎩,()f x 在(0,)m 递减,在(,)m n 递增,在(,)n +∞递减,对任意1(0,1)x ∈,有1()()f x f m ,对任意2(1,)x ∈+∞,有2()()f x f n ,21[()()]()()max f x f x f n f m ∴-=-,M ∴(a )11()()()()n f n f m alnm n m n m=-=+-+-,将1a m n n n =+=+,1m n=代入上式,消去a ,m 得:M (a )112[()()]n lnn n n n =++-,12a e e <+,∴11n e n e++,1n >,由1y x x=+在(1,)x ∈+∞递增,得(1n ∈,]e ,设11()2()2()h x x lnx x x x =++-,(1x ∈,]e ,21()2(1h x lnx x'=-,(1x ∈,]e ,()0h x ∴'>,即()h x 在(1,]e 递增,[()]max h x h ∴=(e )4e =,M ∴(a )存在最大值为4e.【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道综合题.11.已知函数()ln(1)ax f x e x =+,2()ln g x x a x=+-,其中a R ∈.(1)若函数()y f x =的图象与直线y x =在第一象限有交点,求a 的取值范围.(2)当2a <时,若()y g x =有两个零点1x ,2x ,求证:12432x x e <+<-.【答案】(1)1(0,)2;(2)证明见解析.【分析】(1)根据题意设()()(1)ln ax g x f x x e x x =-=+-,问题转化为方程()0g x =,在(0,)+∞有解,求导,分类讨论①若0a ,②若102a <<,③若12a 时,分析单调性,进而得出结论.(2)运用分析法和构造函数法,结合函数的单调性,不等式的性质,即可得证.【详解】解:(1)设()()(1)ln ax g x f x x e x x =-=+-,则由题设知,方程()0g x =,在(0,)+∞有解,而1()()1[ln(1)]1()11axax g x f x e a x e F x x '='-=++-=-+.设()()1ax h x e F x =-,则22221()[()()][(1)](n 1)l ax ax ax a h x e aF x F x e a x x +-'=+'=+++.①若0a ,由0x >可知01ax e <,且11()ln(1)111F x a x x x =++<++,从而()()10ax g x e F x '=-<,即()g x 在(0,)+∞上单调递减,从而()(0)0g x g <=恒成立,因而方程()0g x =在(0,)+∞上无解.②若102a <<,则221(0)0(1)a h x -'=<+,又x →+∞时,()h x '→+∞,因此()0h x '=,在(0,)+∞上必存在实根,设最小的正实根为0x ,由函数的连续性可知,0(0,)x x ∈上恒有()0h x '<,即()h x 在0(0,)x 上单调递减,也即()0g x '<,在0(0,)x 上单调递减,从而在0(0,)x 上恒有()(0)0g x g '<'=,因而()g x 在0(0,)x 上单调递减,故在0(0,)x 上恒有()(0)0g x g <=,即0()0g x <,注意到ax e ax >,因此()(1)ln(1)ln [ln(1)1]ax g x e x x ax x x x a x =+->+-=+-,令1ax e=时,则有()0>g x ,由零点的存在性定理可知函数()y g x =在0(x ,1)a e 上有零点,符合题意.③若12a时,则由0x >可知,()0h x '>恒成立,从而()h x 在(0,)+∞上单调递增,也即()g x '在(0,)+∞上单调递增,从而()(0)0g x g >=恒成立,故方程()0g x =在(0,)+∞上无解.综上可知,a 的取值范围是1(0,2.(2)因为()f x 有两个零点,所以f (2)0<,即21012ln a a ln +-<⇒>+,设1202x x <<<,则要证121244x x x x +>⇔-<,因为1244x <-<,22x >,又因为()f x 在(2,)+∞上单调递增,所以只要证明121(4)()()0f x f x f x -<==,设()()(4)g x f x f x =--(02)x <<,则222222428(2)()()(4)0(4)(4)x x x g x f x f x x x x x ----'='-'-=+=-<--,所以()g x 在(0,2)上单调递减,()g x g >(2)0=,所以124x x +>,因为()f x 有两个零点,1x ,2x ,所以12()()0f x f x ==,方程()0f x =即2ln 0ax x x --=构造函数()2ln h x ax x x =--,则12()()0h x h x ==,()1ln h x a x '=--,1()0a h x x e -'=⇒=,记12(1ln 2)a p e a -=>>+,则()h x 在(0,)p 上单调递增,在(,)p +∞上单调递减,所以()0h p >,且12x p x <<,设2()()ln ln x p R x x p x p-=--+,22214()()0()()p x p R x x x p x x p -'=-=>++,所以()R x 递增,当x p >时,()()0R x R p >=,当0x p <<时,()()0R x R p <=,所以11111112(2ln )x x p ax x lnx x p x p--=<++,即22111111(2)()22l l n n ax x p x px x p x p p -+<-++,211(2ln )(22ln )20p a x ap p p p x p +-+--++>,1(a p e -=,1)lnp a =-,所以21111(23)20a a x e x e --+-+>,同理21122(23)20a a x ex e --+-+<,所以2112111111(23)2(23)2a a a a x e x e x e x e ----+-+<+-+,所以12121()[(23)]0a x x x x e --++-<,所以12123a x x e -+<-+,由2a <得:1122332a x x e e -+<-+<-,综上:12432x x e <+<-.【点睛】本题考查导数的综合应用,不等式的证明,关键是运用分类讨论,构造函数的思想去解决问题,属于难题.12.已知函数()2211ln 24f x x ax x x ax ⎛⎫=--+ ⎪⎝⎭.(1)若()f x 在()0,+¥单调递增,求a 的值;(2)当1344a e <<时,设函数()()f x g x x=的最小值为()h a ,求函数()h a 的值域.【答案】(1)1;(2)0,4e ⎛⎫ ⎪⎝⎭.【分析】(1)由()f x 在()0,+¥单调递增,利用导数知()0f x ¢³在()0,+¥上恒成立即可求参数a 的值;(2)由()()f x g x x =有()11ln 24g x x a x x a ⎛⎫=--+ ⎪⎝⎭,利用二阶导数可知()g x '在()0,+¥上单调递增,进而可知()01,x e ∃∈,使得()00g x '=,则有()g x 的单调性得最小值()()000011ln 24g x x a x x a h a ⎛⎫=--+= ⎪⎝⎭,结合1344a e <<并构造函数可求0x 取值范围,进而利用导数研究()000031ln ln 42h a x x x x ⎛⎫=- ⎪⎝⎭的单调性即可求范围;【详解】(1)()()ln f x x a x '=-,又()f x 在()0,+¥单调递增,∴()0f x ¢³,即()ln 0x a x -≥在()0,+¥上恒成立,(i )当1x >时,ln 0x >,则需0x a -≥,故min a x ≤,即1a ≤;(ii )当1x =时,ln 0x =,则a R ∈;(iii )当01x <<时,ln 0x <,则需0x a -≤,故max a x ≥,即1a ≥;综上所述:1a =;(2)()()11ln 24f x g x x a x x a x ⎛⎫==--+ ⎪⎝⎭,()11ln 24a g x x x '=-+,()212a g x x x ''=+,∵1344a e <<,有()0g x ''>,∴()g x '在()0,+¥上单调递增,又()1104g a '=-+<,()304a g e e '=-+>,∴()01,x e ∃∈,使得()00g x '=,当()00,x x ∈时,()0g x ¢<,函数()g x 单调递减,当()0,x x ∈+∞时,()0g x ¢>,函数()g x 单调递增,故()g x 的最小值为()()000011ln 24g x x a x x a h a ⎛⎫=--+=⎪⎝⎭,由()00g x '=得00011ln 24a x x x =+,因此()000031ln ln 42h a x x x x ⎛⎫=- ⎪⎝⎭,令()11ln 24t x x x x =+,()1,x e ∈,则()13ln 024t x x '=+>,∴()t x 在()1,e 上单调递增,又1344a e <<,()114t =,()34t e e =,∴0x 取值范围为()1,e ,令()31ln ln 42x x x x x ϕ⎛⎫=-⎪⎝⎭(1x e <<),则()()()21131ln ln 2ln 3ln 102444x x x x x ϕ'=--+=-+->,∴函数()ϕx 在()1,e 上单调递增,又()10ϕ=,()4ee ϕ=,∴()04e x ϕ<<,即函数()h a 的值域为0,4e ⎛⎫ ⎪⎝⎭.【点睛】本题考查了利用导数研究函数的单调性求参数,由原函数得到最值,构造中间函数并根据其导数讨论单调性,求最值的取值范围;中间函数需要根据步骤中的研究对象及目的确定;13.已知函数2()22ln ()f x x ax x a R =-+∈.(1)讨论函数()f x 的单调性;(2)若()f x 存在两个极值点()1221,x x x x >,求证:()()()2121(2)f x f x a x x -<--.【答案】(1)答案不唯一,具体见解析;(2)证明见解析.【分析】(1)求出导函数,根据二次函数的∆与0的关系来分类讨论函数的单调性,并注意一元二次方程根的正负与定义域的关系;(2)由()1212,x x x x <是两个极值点得到对应的韦达定理形式,然后利用条件将()()21f x f x -转变为关于12x x ,函数,再运用12x x ,的关系将不等式转化为证22212ln 0x x x -->,构造函数1()2ln (1)g x x x x x=-->,分析函数()g x 的单调性,得出最值,不等式可得证.【详解】(1)解:函数()f x 的定义域为(0,)+∞,()2'212()22x ax f x x a x x-+=-+=,则24a ∆=-.①当0a ≤时,对(0,),()0x f x '∀∈+∞>,所以函数()f x 在(0,)+∞上单调递增;②当02a <≤时,0∆≤,所以对(0,),()0x f x '∀∈+∞≥,所以函数()f x 在(0,)+∞上单调递增;③当2a >时,令()0f x '>,得02a x <<或42a x >,所以函数()f x在0,2a ⎛- ⎪⎝⎭,⎫+∞⎪⎪⎝⎭上单调递增;令'()0f x <,得4422a a x +<<,所以()f x 在4422a a ⎛+ ⎪⎝⎭上单调递减.(2)证明:由(1)知2a >且1212,1,x x a x x +=⎧⎨=⎩,所以1201x x <<<.又由()()()()222122211122ln 22ln f x f x x ax x x ax x -=-+--+()()()()()()22222222221212121212111122ln22ln 2ln x x x x x a x x x x x x x x x x x x x =---+=--+-+=--+.又因为()()()()()()()()222121212121212121(2)222a x x x x a x x x x x x x x x x x x --=---=--+-=---.所以要证()()()2121(2)f x f x a x x -<--,只需证()22112ln2x x x x <-.因为121=x x ,所以只需证22221ln x x x <-,即证22212ln 0x x x -->.令1()2ln (1)g x x x x x =-->,则2'2121()110g x x x x ⎛⎫=+-=-> ⎪⎝⎭,所以函数()g x 在(1,)+∞上单调递增,所以对1,()(1)0x g x g ∀>>=.所以22212ln 0x x x -->.所以若()f x 存在两个极值点()1221,x x x x >,则()()()2121(2)f x f x a x x -<--.【点睛】本题考查函数与导数的综合应用,属于较难题.导数中通过双极值点求解最值或证明不等式时,可通过双极值点对应的等式将待求的式子或待证明的式子转变为关于同一变量(注意变量的范围)的式子,然后通过构造新函数,分析新函数的单调性后从而达到求解最值或证明不等式的目的.14.已知函数2()(2)()x f x xe a x x a R =-+∈.(1)当1a =时,求函数()f x 的单调区间;(2)当1a e >时,函数()f x 有三个不同的零点1x ,2x ,3x ,求证:1232x x x lna ++<.【答案】(1)增区间为(,1)-∞-,(2,)ln +∞;减区间为(1,2)ln -;(2)证明见解析.【分析】(1)求出原函数的导函数,得到函数零点,由导函数零点对定义域分段,再由导函数在不同区间段内的符号得到原函数的单调区间;(2)由(0)0f =,可得0x =是函数的一个零点,不妨设30x =,把问题转化为证122x x lna +<,即证122x x a e+>.由()0f x =,得(2)0x e a x -+=,结合1x ,2x 是方程(2)0x e a x -+=的两个实根,得到1212x x e e a x x -=-,代入122x x a e +>,只需证1212212x x x x e e e x x +->-,不妨设12x x >.转化为证1212212()10x x x x ex x e----->.设122x x t -=,则等价于2210(0)t t e te t -->>.设2()21(0)t t g t e te t =-->,利用导数证明()0g t >即可.【详解】(1)解:()(22)(1)(2)x x x f x e xe x x e '=+-+=+-,令()0f x '=,得11x =-,22x ln =.当1x <-或n 2>x l 时,()0f x '>;当12x ln -<<时,()0f x '<.()f x ∴增区间为(,1)-∞-,(2,)ln +∞;减区间为(1,2)ln -;(2)证明:(0)0f = ,0x ∴=是函数的一个零点,不妨设30x =,则要证122x x lna +<,只需证122x x a e +>.由()0f x =,得(2)0x e a x -+=,1x ,2x 是方程(2)0x e a x -+=的两个实根,∴11(2)x e a x =+,①22(2)x e a x =+,②,①-②得:1212x x e e a x x -=-,代入122x x a e+>,只需证1212212x x x x e e e x x +->-,不妨设12x x >.120x x -> ,∴只需证1212212()x x x x e e x x e+->-.20x e >,∴只需证1212212()10x x x x e x x e ----->.设122x x t -=,则等价于2210(0)t t e te t -->>.设2()21(0)t t g t e te t =-->,只需证()0g t >,又()2(1)t t g t e e t =--',设()1(0)t t e t t ϕ=-->,则()10t t e ϕ'=->,()t ϕ∴在(0,)+∞上单调递增,则()(0)0t ϕϕ>=.()0g t ∴'>,从而()g t 在(0,)+∞上是增函数,()(0)0g t g ∴>=.综上所述,1232x x x lna ++<.【点睛】本题考查利用导数研究函数的单调性,考查利用导数求函数的极值,考查数学转化思想方法,属难题.15.已知函数()223x xe f x e -+=,其中e 为自然对数的底数.(1)证明:()f x 在(),0-∞上单调递减,()0,∞+上单调递增;(2)设0a >,函数()212cos cos 3g x x a x a =+--,如果总存在[]1,x a a ∈-,对任意2x R ∈,()()12f x g x 都成立,求实数a 的取值范围.【答案】(1)证明见解析;(2)ln 2a ≥.【分析】(1)直接对函数求导,判断导函数在对应区间上的符号即可证明;(2)总存在1[x a ∈-,](0)a a >,对任意2x R ∈都有12()()f x g x ,即函数()y f x =在[a -,]a 上的最大值不小于()y g x =,x ∈R 的最大值;借助单调性换元法,结合二次函数的性质分别求最值列不等式求解即可【详解】(1)证明:()()23x xe ef x -='-令()0f x '>,解得0x >,∴()f x 在()0,∞+上单调递增令()0f x '<,解得0x <,∴()f x 在(),0-∞上单调递减(2)总存在1[x a ∈-,](0)a a >,对任意2x R ∈都有12()()f x g x ,即函数()y f x =在[a -,]a 上的最大值不小于()y g x =,x ∈R 的最大值()()()()max 23a af x f a f a e e -=-==+令[]()cos 1,1t x t =∈-,∴()2123g t t at a =+--,对称轴02a t =-<∴()()max 513g t g ==∴()2533a a e e -+≥,52a a e e -+≥,令(),0ae m m =>,∴152m m +≥,∴2m ≥∴2a e ≥,∴ln 2a ≥【点睛】本题考查利用导数研究函数的单调性,考查三角函数的有界性,二次函数的最值以及恒成立问题的转化,考查转化思想以及计算能力,属于中档题.16.已知函数()()21ln 212h x x b x =+-,()21ln 2f x x a x =-.其中a ,b 为常数.(1)若函数()h x 在定义域内有且只有一个极值点,求实数b 的取值范围;(2)已知1x ,2x 是函数()f x 的两个不同的零点,求证:12x x +>.【答案】(1)(),0-∞;(2)证明见解析.【分析】(1)首先求函数的导数,根据题意转化为222y x x b =-+在1,2⎛⎫+∞⎪⎝⎭内有且仅有一个变号零点,根据二次函数的单调性,列式求解b 的取值范围;(2)求出当函数()f x 有两个零点时,求出a e >,再构造函数()))(0g x fx f x x =-≤≤,利用导数判断函数的单调性,得到))f x f x +<-,再通过构造得到()()21f x f x >-,利用函数的单调性证明结论.【详解】(1)()2222121212'b x x b x x x x h x -+⎛⎫=+=> ⎪--⎝⎭,因为函数()h x 在定义域有且仅有一个极值点,所以222y x x b =-+在1,2⎛⎫+∞⎪⎝⎭内有且仅有一个变号零点,由二次函数的图象和性质知21122022b ⎛⎫⨯-+< ⎪⎝⎭,解得0b <,即实数b 的取值范围为(),0-∞.(2)()2'(0)a x ax x x xf x -=-=>,当0a ≤时,()'0f x >,()f x 在()0,∞+上单调递增,函数()f x 至多有一个零点,不符合题意,当0a >时,令()'0f x =,得x =当(x ∈时,()'0f x <,()f x 单调递减,当)x ∈+∞时,()'0f x >,()f x 单调递增,故当x =()f x 取得最小值()1ln 2afa =-,当0a e <<时,1ln 0a ->,0f>,函数()f x 无零点,不合题意,当a e =时,1ln 0a -=,0f =,函数()f x 仅有一个零点,不合题意,当a e >时,1ln 0a -<,0f <,又()1102f =>,所以()f x 在(x ∈上只有一个零点,令()ln 1p x x x =-+,则()1'1p x x=-,故当01x <<时,()'0p x >,()p x 单调递增,当1x >时,()'0p x <,()p x 单调递减,所以()()10p x p ≤=,即ln 1≤-x x ,所以ln 221a a ≤-,所以22(2)2ln 22(21)0f a a a a a a a a =-≥--=>,又2a >,所以()f x 在)x ∈+∞上只有一个零点.所以a e >满足题意.不妨设12x x <,则(1x ∈,)2x ∈+∞,令()))(0g x f x f x x =+--≤≤,则()))ln ln g x a x a x =-+-,()22'g x x a==-,当0x <<时,()'0g x <,所以()g x 在(上单调递减,所以当(x ∈时,()()00g x g <=,即))fx fx +<-,因为(1x ∈(1x ∈,所以()()))()21111f x f x f x f x f x ⎤⎤==-->+-=-⎦⎦,又)2x ∈+∞,)1x -∈+∞,且()f x 在)+∞上单调递增,所以21x x >,故12x x +>>【点睛】本题考查利用导数证明函数的单调性,极值,最值,零点,函数与方程,不等式的综合应用,重点考查逻辑推理,转化与变形,计算能力,属于难题.17.已知函数()()()1xxf x ae ea x a R -=--+∈,()f x 既存在极大值,又存在极小值.(1)求实数a 的取值范围;(2)当01a <<时,1x ,2x 分别为()f x 的极大值点和极小值点.且()()120f x kf x +>,求实数k 的取值范围.【答案】(1)()()0,11,+∞ ;(2)1k ≤-.【分析】(1)求出函数的导数,结合函数的单调性确定a 的范围即可;(2)求出函数的极值点,问题转化为11(1)1a lna k a -<++ ,设11()(1))1x g x lnx k x -=-++ ,根据函数的单调性确定k 的范围即可.【详解】解:(1)由()()1xxf x ae e a x -=--+得()()'1x x f x ae e a -=+-+,即()()()1'1xxx f ee x ea -=--,由题意,若()f x 存在极大值和极小值,则()'0f x =必有两个不相等的实数根,由10x e -=得0x =,所以10x ae -=必有一个非零实数根,∴0a ≠,1xe a =,∴10a>且11a ≠,∴01a <<或1a >.综上,实数a 的取值范围为()()0,11,+∞ .(2)当01a <<时,由(1)可知()f x 的极大值点为10x =,极小值点为2ln x a =-,此时()11f x a =-,()()211ln f x a a a =-++,依题意得()()111ln 0a k a a a -+-++>对任意01a <<恒成立,由于此时()()210f x f x <<,所以k 0<;所以()()()1ln 11k a a a k +>--,即11ln 11a a k a -⎛⎫<-⎪+⎝⎭,设()11ln 11x x k x g x -⎛⎫=--⎪+⎝⎭,()0,1x ∈,则()()()()2221121112111'x x k x k x x x g x ⎛⎫+-- ⎪⎛⎫⎝⎭=--= ⎪⎝⎭++()22211x x k x x ++=+,令()2210*x x k ++=,判别式244k∆=-.①当1k ≤-时,0∆≤,所以()'0g x ≥,()g x 在()0,1单调递增,所以()()10g x g <=,即11ln 11a a k a -⎛⎫<-⎪+⎝⎭,符合题意;②当10k -<<时,>0∆,设()*的两根为3x ,4x ,且34x x <,则3420x x k+=->,341x x =,因此3401x x <<<,则当31x x <<时,()'0g x <,()g x 在()3,1x 单调递减,所以当31x a <<时,()()10g a g >=,即11ln 11a a k a -⎛⎫>- ⎪+⎝⎭,所以()()120f x kf x +<,矛盾,不合题意;综上,k 的取值范围是1k ≤-.【点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法,考查了推理能力与计算能力,属于难题.18.已知函数()()22ln xg x x t t R e =-+∈有两个零点1x ,2x .(1)求实数t 的取值范围;(2)求证:212114x x e+>.【答案】(1)ln 21t >-;(2)证明见解析.【分析】(1)写出函数()g x 定义域并求导,从而得到函数的单调性,根据单调性得到函数的最大值,要使()g x 有两个零点,只需最大值202e g ⎛⎫> ⎪⎝⎭即可.(2)函数()g x 有两个零点1x ,2x ,可得1122222ln 02ln 0x x t e x x t e ⎧-+=⎪⎪⎨⎪-+=⎪⎩,两式相减得21221ln ln 2x x e x x -=-,欲证212114x x e +>,即证()2112212ln ln 11x x x x x x -+>-,设21(1)x t t x =>,构造函数1()2ln (1)f t t t t t=-->,通过函数()f t 的单调性即可得到证明.【详解】(1)函数()()22ln x g x x t t R e =-+∈定义域为()0,∞+,()222122=x e x xe g x e -=-'.令()0g x '=得22ex =,可得()g x 在20,2e ⎛⎫ ⎪⎝⎭上单调递增,在2,2e ⎛⎫+∞ ⎪⎝⎭上单调递减,又0x →时,()g x →-∞,x →+∞时,()g x →-∞,故欲使()g x 有两个零点,只需22ln 11ln 2022e e g t t ⎛⎫=-+=-+> ⎪⎝⎭,即ln 21t >-.(2)证明:不妨设12x x <,则由(1)可知21202e x x <<<,且1122222ln 02ln 0x x t e x x t e ⎧-+=⎪⎪⎨⎪-+=⎪⎩,两式相减可得21221ln ln 2x x e x x -=-.欲证212114x x e +>,即证()2112212ln ln 11x x x x x x -+>-,设21(1)x t t x =>,则即证12ln (1)t t t t->>,构造函数1()2ln (1)f t t t t t=-->,则()22212(1)10t t t tf t -=+-=>',所以()f t 在()1,+∞上单调递增,故()()10f t f >=,所以12ln (1)t t t t->>,原不等式得证.【点睛】本题考查利用导数研究函数的零点,单调性以及最值问题,考查利用变量集中的思想解决不等式的证明,考查构造函数的思想,属于中档题.19.已知函数()1ln f x x x=-,()g x ax b =+.(1)若函数()()()h x f x g x =-在()0,+¥上单调递增,求实数a 的取值范围;(2)当0b =时,若()f x 与()g x 的图象有两个交点()11,A x y ,()22,B x y ,试比较12x x 与22e 的大小.(取e 为2.8,取ln 2为0.7为1.4)【答案】(1)(],0-∞;(2)2122x x e >.【分析】(1)根据条件得到()0h x '≥对()0,x ∈+∞恒成立,由此得到关于a 的不等式,采用分离常数的方法求解出a 的取值范围;(2)根据交点坐标列出对应的方程组,用关于12,x x 的式子表示出a ,由此得到关于12,x x 的等式,通过设变量21x t x =得到关于t 的函数,利用导数分析出关于t 的函数的最值,再借助基本不等式以及构造函数()G x 并利用()G x 的单调性分析出12x x 与22e 的关系.【详解】。
导数中的双变量问题
1、设函数 f(x) (2 a)lnx __ (ax(1)讨论函数f (x)在定义域内的单调性;⑵ 当 a ( 3, 2)时,任意 X i ,X 2 [1,3] , (m In 3)a 2l n3 | f(xj f(x 2)| 恒成立,求实数 m 的取值范围.2、已知二次函数g(x)对xR 都满足 g(x 1) g(1 x) x 2 2x 1 且 g(1)1,设函数19f (x) g(x ) ml nx ( mR , x 0).(I)求g(x)的表达式;(H)若 x R ,使f(x) 0成立,求实数m 的取值范围;(皿)设1 m e ,H(x) f(x) (m 1)x ,求证:对于 x b x ? [1,m],恒有 | H (xj H(X 2)| 1 . 3、 设x 3是函数f x x 2 ax b e 3 x , x R 的一个极值点. (1) 求a 与b 的关系式(用a 表示b ),并求f x 的单调区间;25(2) 设ao, g x a— e,若存在1, 20,4,使得f1g 21成立,求a的取值范围.4、 f (x) (x 2 ax b)e x (x R). (1)若a 2,b 2,求函数f(x)的极值;(2) 若x 1是函数f(x)的一个极值点,试求出a 关于b 的关系式(用a表示b ), 并确定f(x)的单调区间;(3) 在(2)的条件下,设a 0,函数g(x) (a 2 14)e x 4 .若存在1, 2 [0,4]使得 | f( 1)f( 2)l 1成立,求a 的取值范围.5、已知函数f x ax 3 bx 2 3x a,b R 在点1, f 1处的切线方程为y 2 0 . ⑴求函数f x 的解析式;导数 0) •⑵若对于区间2,2上任意两个自变量的值x1,x2都有f x1c,求实数c的最小值;⑶若过点M 2,m m 2可作曲线y f x的三条切线,求实数m的取值范围.16、设函数f(x) x aln x(a R).x⑴讨论函数f(x)的单调性;⑵若f(x)有两个极值点X i,X2,记过点A(X i, f(G), B(X2, f(X2))的直线斜率为k,问:是否存在a,使得k 2 a ?若存在,求出a的值;若不存在,请说明理由.7、已知函数f(x) ln x — ax2(a 1)x(a R, a 0).2⑴求函数f(x)的单调增区间;⑵记函数F(x)的图象为曲线C ,设点A(x1,y1),B(x2,y2)是曲线C上两个不同点,如果曲线C上存在点M(x0,y0),使得:①x0X2;②曲线C在点M处的切线平行于直2线AB,贝S称函数F(x)存在“中值相依切线”.试问:函数f(x)是否存在中值相依切线,请说明理由.&已知函数 f (x) (a 1)lnx ax .⑴试讨论f(x)在定义域内的单调性;⑵当a V—1时,证明:N,X2 (0,1),⑴:1)1.求实数m的取值范围.I X1 x2 |9、已知函数f(x) (a 1)lnx ax2 1.⑴讨论函数f(x)的单调性;⑵设a 1,如果对任意X1,X2 (0, ) , |f(xj f(x2) |> 4|X1 X2 |,求a的取值范围.1 210、已知函数f(x)=§x —ax+(a—1) lnx , a 1 .(1)讨论函数f(x)的单调性;11、 已知函数 f(x) x 1 aln x(a 0). (1) 确定函数y f(x)的单调性; (2)若对任意x 1,x 2 0,1,且x 1 x 2,都有| f (x 1) f(x 2)| 4|— — |,求实数a 的取 X ] x 2值范围。
专题10 利用导数研究双变量问题(全题型压轴题)试题含解析
专题10利用导数研究双变量问题(全题型压轴题)目录①12()()f x g x =型......................................................1②12()()f x g x ≥型(或12()()f x g x ≤型) (2)③构造函数法 (5)①12()()f x g x =型②12()()f x g x ≥型(或12()()f x g x ≤型)6.(2023春·河南信阳·高一校考期中)已知函数()()2log 221x f x a x ⎡⎤=-+-⎣⎦,函数()22x x g x t -=-⋅.(1)若()g x 是偶函数,求实数t 的值,并用单调性的定义判断()g x 在[)0,∞+上的单调性;(2)在(1)的条件下,若对于[)10,x ∀∈+∞,2x R ∀∈,都有()()1222log 2f x g x a +≤+成立,求实数a 的取值范围.③构造函数法专题10利用导数研究双变量问题(全题型压轴题)目录①12()()f x g x =型......................................................1②12()()f x g x ≥型(或12()()f x g x ≤型) (8)③构造函数法 (15)①12()()f x g x =型对于D 选项,由上述分析可知,()21,x ∈+∞,则()[)2e,f x ∈+∞,1R x ∈,()1g x a ≥,要使“对1x ∀∈R ,()21,x ∃∈+∞,使得()1g x f =则需e a ≥,所以D 选项正确.故选:BD.4.(2023·全国·高二专题练习)已知函数()f x②12()()f x g x ≥型(或12()()f x g x ≤型)③构造函数法。
导数双变量专题
导数-双变量问题1.构造函数利用单调性证明2.任意性与存在性问题3.整体换元—双变单4.极值点偏移5.赋值法构造函数利用单调性证明形式如:1212|()()|||f x f x m x x -≥-方法:将相同变量移到一边,构造函数1. 已知函数239()()(24f x x x =++)对任意[]12,1,0x x ∈-,不等式12|()()|f x f x m -≤恒成立,试求m 的取值范围。
2.已知函数2()(1)ln 1f x a x ax =+++.设1a <-,如果对12,(0,)x x ∀∈+∞,有1212|()()|4||f x f x x x -≥-,求实数a 的取值范围.3.已知函数2)1ln()(x x a x f -+=区间)1,0(内任取两个实数q p ,,且q p ≠时,若不等式1)1()1(>-+-+qp q f p f 恒成立,求实数a 的取值范围。
4.已知函数21()2ln (2),2f x x a x a x a R =-+-∈.是否存在实数a ,对任意的 ()12,0,x x ∈+∞,且21x x ≠,有2121()()f x f x a x x ->-,恒成立,若存在求出a 的取值范围,若不存在,说明理由.练习1:已知函数2()ln =+f x a x x ,若0>a ,且对任意的12,[1,]∈x x e ,都有121211|()()|||-<-f x f x x x ,求实数a 的取值范围.练习2.设函数.若对任意恒成立, 求的取值范围.()ln ,m f x x m R x =+∈()()0,1f b f a b a b a->><-m5.已知函数()21()1ln ,12f x x ax a x a =-+-> (1)讨论函数的单调性(2)证明:若5a <,则对任意的()12,0,x x ∈+∞,且21x x ≠,有2121()()1f x f x x x ->--恒成立6.设函数()2mx f x e x mx =+-(1)证明:()f x 在(),0-∞单调递减,在()0,+∞单调递增;(2)若对于任意[]12,1,1x x ∈-,都有12|()()|e 1f x f x -≤-,求m 的取值范围。
导数中的双变量问题解题策略(史上最全题型)
h(m)
(x
1)m
x2
1在m [2, 2]时的函数值恒为非负值
h(2) 0 h(2) 0
x
3或x
1
★对任意n N , 恒有(1 1 )2na e2 ,求实数a 的最大值. n
(1 1 )2na e2 ln(1 1 )2na ln e2 (2n a) ln(1 1 ) 2 (n a ) ln(1 1) 1
n
n
n
2
n
a 2
1 ln(1
1
)
n, 设G (
x)
1 ln(1
x)
1 x
,
x
0,1
n
G '(x)
(1
1 x) ln2 (1
x)
1 x2
(1 x) ln2 (1 x) x2 x2 (1 x) ln2 (1 x)
, 设h( x)
(1
x) ln2 (1
x) x2
h '(x) ln2 (1 x) 2ln(1 x) 2x, h ''(x) 2ln(1 x) x ,易得G(x)在0,1上单调递减
构造函数f (x) exm ln(m 1) 1 ln(x 1), x (m, ), m 0 f (x) exm 1 ex 1 (x 1)ex em 0在x (m, )上恒成立,
x 1 em x 1 (x 1)em f (x)在(m, )上递增 f (x) f (m) 0 当0 m n时,即f (n) enm ln(m 1) 1 ln(n 1) 0 enm ln(m 1) 1 ln(n 1)
要题设中的不等式恒成立,只需a ln a e 1成立便可,于是构造(a) a ln a e 1,
导数压轴题双变量问题题型归纳总结
导数应用之双变量问题(一)构造齐次式,换元【例】已知函数()2ln f x x ax b x =++,曲线()y f x =在点()()1,1f 处的切线方程为2y x =.(1)求实数,a b 的值;(2)设()()()()21212,,0F x f x x mx m R x x x x =-+∈<<分别是函数()F x的两个零点,求证:0F '<.【解析】(1)1,1a b ==-;(2)()2ln f x x x x =+-,()()1ln F x m x x =+-,()11F x m x'=+-, 因为12,x x 分别是函数()F x 的两个零点,所以()()11221ln 1ln m x x m x x +=⎧⎪⎨+=⎪⎩, 两式相减,得1212ln ln 1x x m x x -+=-,1212ln ln 1x x F m x x -'=+=-0F '<,只需证1212ln ln x x x x -<-. 思路一:因为120x x <<,只需证1122ln ln ln 0x x x x ->⇔>.令()0,1t =,即证12ln 0t t t -+>. 令()()12ln 01h t t t t t =-+<<,则()()22212110t h t t t t-'=--=-<, 所以函数()h t 在()0,1上单调递减,()()10h t h >=,即证12ln 0t t t-+>.由上述分析可知0F '<.【规律总结】这是极值点偏移问题,此类问题往往利用换元把12,x x 转化为t 的函数,常把12,x x 的关系变形为齐次式,设12111222,ln ,,x x x xt t t x x t e x x -===-=等,构造函数来解决,可称之为构造比较函数法. 思路二:因为120x x <<,只需证12ln ln 0x x -, 设())22ln ln 0Q x x x x x =-<<,则()2110Q x xx '===<, 所以函数()Q x 在()20,x 上单调递减,()()20Q x Q x >=,即证2ln ln xx -. 由上述分析可知0F '<.【规律总结】极值点偏移问题中,由于两个变量的地位相同,将待证不等式进行变形,可以构造关于1x (或2x )的一元函数来处理.应用导数研究其单调性,并借助于单调性,达到待证不等式的证明.此乃主元法.【变式训练】 已知函数()()21f x x axlnx ax 2a R 2=-++∈有两个不同的极值点x 1,x 2,且x 1<x 2. (1)求实数a 的取值范围;(2)求证:x 1x 2<a 2.【分析】(1)先求导数,再根据导函数有两个不同的零点,确定实数a 所需满足的条件,解得结果,(2)先根据极值点解得a ,再代入化简不等式x 1x 2<a 2,设21x x t =,构造一元函数,利用导数研究函数单调性,最后构造单调性证明不等式.【解析】(1)略(2)f′(x )=x-a lnx ,g (x )=x-a lnx ,由x 1,x 2是g (x )=x-a lnx=0的两个根,则2211lnx x lnx x a a =⎧⎨=⎩,两式相减,得a (lnx 2-lnx 1)=x 2-x 1),即a =2121x x lnx lnx --,即证x 1x 2<221221(x x )x (ln )x -,即证22221121x (x x )(ln )x x x -<=2112x x 2x x -+,由x 1<x 2,得21x x =t >1,只需证ln 2t-t-120t +<,设g (t )=ln 2t-t-12t+,则g′(t )=221lnt 1t t -+=112lnt t t t ⎛⎫-+ ⎪⎝⎭,令h (t )=2lnt-t+t1,∴h′(t )=2211t t --=-(11t -)2<0,∴h(t )在(1,+∞)上单调递减,∴h(t )<h (1)=0,∴g′(t )<0,即g (t )在(1,+∞)上是减函数,∴g(t )<g (1)=0,即ln 2t <t-2+t1在(1,+∞)上恒成立,∴x 1x 2<a 2. 【变式训练】 已知函数()12ln f x x a x x=-+⋅. (1)讨论()f x 的单调性;(2)设()2ln g x x bx cx =--,若函数()f x 的两个极值点()1212,x x x x <恰为函数()g x 的两个零点,且()12122x x y x x g +⎛⎫'=-⋅ ⎪⎝⎭的范围是2ln 2,3⎡⎫-+∞⎪⎢⎣⎭,求实数a 的取值范围.【解析】(1)()f x 的定义域为()0,∞+,()22212211a x ax f x x x x--+'=-+=-. (i )若1a ≤,则()0f x '≤,当且仅当1a =,1x =时,()0f x '=(ii )若1a >,令()0f x '=得12x a x a ==当(()20,x a a a ∈++∞时,()0f x '<;当(x a a ∈时,()0f x '>,所以,当1a ≤时,()f x 单调递减区间为()0,∞+,无单调递增区间;当1a >时,()f x 单调递减区间为(()0,,a a +∞;单调递增区间为(a a .(2)由(1)知:1a >且12122,1x x a x x +==.又()12g x b cx x'=--, ∴()12121222x x g b c x x x x +⎛⎫'=--+⎪+⎝⎭, 由()()120g x g x ==得()()22112122lnx b x x c x x x =-+-, ()()()()1222121212121222-+⎛⎫'=-=---- ⎪+⎝⎭x x x x y x x g b x x c x x x x .()121112212122212ln ln 1⎛⎫- ⎪-⎝⎭=-=-++x x x x x x x x x x x x ,令12(0,1)x t x =∈,∴2(1)ln 1t y t t -=-+, ∴22(1)0(1)t y t t --'=<+,所以y 在()0,1上单调递减. 由y 的取值范围是2ln 2,3⎡⎫-+∞⎪⎢⎣⎭,得t 的取值范围是10,2⎛⎤ ⎥⎝⎦,∵122x x a +=,∴()222222211221212112212212(2)242x x x x x xa x x x x x x a x x x x ++=+=++===++,∴2122119422,2x x a t x x t ⎡⎫=++=++∈+∞⎪⎢⎣⎭,又∵1a >,故a的取值范围是4⎡⎫+∞⎪⎢⎪⎣⎭.(二)各自构造一元函数【例】 已知函数f (x )=lnx ﹣ax +1(a ∈R ). (1)求f (x )的单调区间; (2)设g (x )=lnx 344x x-+,若对任意的x 1∈(0,+∞),存在x 2∈(1,+∞),使得f (x 1)<g (x 2)成立,求实数a 的取值范围.【分析】(1)函数求导得()11'axf x a x x-=-=,然后分a ≤0和a >0两种情况分类求解. (2)根据对任意的x 1∈(0,+∞),存在x 2∈(1,+∞),使得f (x 1)<g (x 2)成立,等价于f (x )max <g (x )max ,然后分别求最大值求解即可. 【详解】(1) 略(2)()()()222213113143'4444x x x x g x x x x x-+--+-=--⨯==, 在区间(1,3)上,g ′(x )>0,g (x )单调递增,在区间(3,+∞)上,g ′(x )<0,g (x )单调递减,所以g (x )max =g (3)=ln 312-, 因为对任意的x 1∈(0,+∞),存在x 2∈(1,+∞),使得f (x 1)<g (x 2)成立, 等价于f (x )max <g (x )max ,由(1)知当a ≤0时,f (x )无最值,当a >0时,f (x )max =f (1a )=﹣lna ,所以﹣lna <ln 312-,所以lna >,解得a 【变式训练】【广东省2020届高三期末】设函数2()()e ()xf x x ax a a -=+-⋅∈R .(1)当0a =时,求曲线()y f x =在点(1,(1))f --处的切线方程;(2)设2()1g x x x =--,若对任意的[0,2]t ∈,存在[0,2]s ∈使得()()f s g t ≥成立,求a 的取值范围.【解析】 (1)当0a =时,因为()2xf x x e -=⋅,所以()()()2'2,'13xf x x x e f e -=-+⋅-=-,又因为()1f e -=,所以曲线()y f x =在点()()1,1f --处的切线方程为()31y e e x -=-+,即320ex y e ++=.(2)“对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立”等价于“在区间[]0,2上,()f x 的最大值大于或等于()g x 的最大值”.因为()2215124g x x x x ⎛⎫=--=-- ⎪⎝⎭,所以()g x 在[]0,2上的最大值为()21g =. ()()()2'2xx f x x a ex ax a e --=+⋅-+-⋅ ()222x e x a x a -⎡⎤=-+--⎣⎦()()2x e x x a -=--+,令()'0f x =,得2x =或x a =-.①当0a -≤,即0a ≥时,()'0f x ≥在[]0,2上恒成立,()f x 在[]0,2上为单调递增函数,()f x 的最大值大为()()2124f a e =+⋅,由()2141a e+⋅≥,得24a e ≥-; ②当02a <-<,即20a -<<时,当()0,x a ∈-时,()()'0,f x f x <为单调递减函数,当(),2x a ∈-时,()()'0,f x f x >为单调递增函数,所以()f x 的最大值大为()0f a =-或()()2124f a e=+⋅.由1a -≥,得1a ≤-;由()2141a e+⋅≥,得24a e ≥-,又因为20a -<<,所以21a -<≤-; ③当2a -≥,即2a ≤-时,()'0f x ≤在[]0,2上恒成立,()f x 在[]0,2上为单调递减函数,所以()f x 的最大值大为()0f a =-,由1a -≥,得1a ≤-,又因为2a ≤-,所以2a ≤-, 综上所述,实数a 的取值范围是1a ≤-或24a e ≥-. (三)消元构造一元函数【例】已知函数f (f )={e −f +1,f ≤0,2√f , f >0.函数f =f (f (f )+1)−f (f ∈f )恰有两个零点f 1和f 2. (1)求函数f (f )的值域和实数f 的最小值;(2)若f 1<f 2,且ff 1+f 2≥1恒成立,求实数f 的取值范围. 【解析】(1)当f ≤0时,f (f )=e −f +1≥2.当f >0时,f (f )=2√f >0.∴ f (f )的值域为(0,+∞).令f (f (f )+1)=f ,∵ f (f )+1>1,∴ f (f (f )+1)>2,∴ f >2. 又f (f )的单调减区间为(−∞,0],增区间为(0,+∞).设f (f )+1=f 1,f (f )+1=f 2,且f 1<0,f 2>1.∴ f (f )=f 1−1无解.从而f(f)=f2−1要有两个不同的根,应满足f2−1≥2,∴f2≥3.∴f(f2)=f(f(f)+1)≥2√3.即f≥2√3.∴f的最小值为2√3.(2) f=f(f(f)+1)−f有两个零点f1、f2且f1<f2,设f(f)=f,f∈[2,+∞),∴e−f1+1=f,∴f1=−ln(f−1).2√f2=f,∴f2=f24.∴−f ln(f−1)+f24≥1对f∈[2,+∞)恒成立设f(f)=−f ln(f−1)+f24−1,f′(f)=−ff−1+f2=f2−f−2f2(f−1).∵f∈[2,+∞),∴f2−f∈[2,+∞)恒成立.∴当2f≤2,即f≤1时,f′(f)≥0,∴f(f)在[2,+∞)上单调递增.∴f(f)≥f(2)=−f ln1+1−1=0成立.当f>1时,设f(f)=f2−f−2f.由f(2)=4−2−2f=2−2f<0.∴∃f0∈(2,+∞),使得f(f0)=0.且当f∈(2,f0)时,f(f)<0,f∈(f0,+∞)时,f(f)>0.∴当f∈(2,f0)时,f(f)单调递减,此时f(f)<f(2)=0不符合题意.综上,f≤1.【变式训练】f(f)=f2+ff−f ln f.(1)若函数f(f)在[2,5]上单调递增,求实数f的取值范围;(2)当f=2时,若方程f(f)=f2+2f有两个不等实数根f1,f2,求实数f的取值范围,并证明f1f2<1.【解析】(1)f′(f)=2f+f−ff,∵函数f(f)在[2,5]上单调递增,∴f′(f)≥0在f∈[2,5]恒成立,即2f+f−ff≥0对f∈[2,5]恒成立,∴f≥−2f2f−1对f∈[2,5]恒成立,即f≥(−2f2f−1)max,f∈[2,5],令f(f)=−2f2f−1(f∈[2,5]),则f′(f)=−2f2+4f(f−1)2≤0(f∈[2,5]),∴f (f )在[2,5]上单调递减,∴f (f )在[2,5]上的最大值为f (2)=−8. ∴f 的取值范围是[−8,+∞).(2)∵当f =2时,方程f (f )=f 2+2f ⇔f −ln f −f =0,令f (f )=f −ln f −f (f >0),则f′(f )=1−1f ,当f ∈(0,1)时,f′(f )<0,故f (f )单调递减,当f ∈(1,+∞)时,f′(f )>0,故f (f )单调递增,∴f (f )min =f (1)=1−f .若方程f (f )=f 2+2f 有两个不等实根,则有f (f )min <0,即f >1, 当f >1时,0<f −f <1<f f ,f (f −f )=f −f >0,f (f f )=f f −2f ,令f (f )=f f −2f (f >1),则f′(f )=f f −2>0,f (f )单调递增,f (f )>f (1)=f −2>0, ∴f (f f )>0,∴原方程有两个不等实根,∴实数f 的取值范围是(1,+∞).不妨设f 1<f 2,则0<f 1<1<f 2,0<1f 2<1,∴f 1f 2<1⇔f 1<1f 2⇔f (f 1)>f (1f 2),∵f (f 1)=f (f 2)=0,∴f (f 1)−f (1f 2)=f (f 2)−f (1f 2)=(f 2−ln f 2−f )−(1f 2−ln1f 2−f ),=f 2−1f 2−2ln f 2.令f (f )=f −1f−2ln f (f >1),则f′(f )=1+1f 2−2f =(1f −1)2>0,∴f (f )在(1,+∞)上单调递增,∴当f >1时,f (f )>f (1)=0,即f 2−1f 2−2ln f 2>0,∴f (f 1)>f (1f 2),∴f 1f 2<1.(四)独立双变量,化为两边同函数形式【例】 已知函数()()1ln f x kx x =-,其中k 为非零实数.(1)求()f x 的极值;(2)当4k =时,在函数()()22g x f x x x =++的图象上任取两个不同的点()11,M x y 、()22,N x y .若当120x x t <<<时,总有不等式()()()12124g x g x x x -≥-成立,求正实数t 的取值范围: 【详解】(1) 略;(2)当4k =时,()4ln f x x =-',()224ln g x x x x =+-,当120x x t <<<时,总有不等式()()()12124g x g x x x -≥-成立,即()()112244g x x g x x -≥-,构造函数()()2424ln F x g x x x x x =-=--,由于120x x t <<<,()()12F x F x ≥,则函数()y F x =在区间()0,t 上为减函数或常函数,()()()221422x x F x x x x='-+=--,0x,解不等式()0F x '≤,解得02x <≤.由题意可知()(]0,0,2t ⊆,02t ∴<≤,因此,正实数t 的取值范围是(]0,2;【变式训练】设函数. (1)若曲线在点处的切线与直线垂直,求的单调递减区间和极小值(其中为自然对数的底数);(2)若对任何恒成立,求的取值范围. 【解析】(2)条件等价于对任意恒成立,设. 则在上单调递减, ()ln ,k R kf x x x=+∈()y f x =()(),e f e 20x -=()f x e ()()1212120,x x f x f x x x >>-<-k ()()1211220,x x f x x f x x >>-<-()()()ln 0kh x f x x x x x x=-=+->()h x ()0,+∞则在上恒成立,得恒成立,∴(对仅在时成立),故的取值范围是 【变式训练】已知函数f (f )=f +f ln f .(Ⅰ)求函数f (f )的图象在点(1,1)处的切线方程;(Ⅱ)若f ∈f ,且f (f −1)<f (f )对任意f >1恒成立,求f 的最大值; (Ⅲ)当f >f ≥4时,证明:(ff f )f >(ff f )f . 【解析】(Ⅰ)∵f ′(f )=ln f +2,∴f ′(1)=2,函数f (f )的图象在点(1,1)处的切线方程f =2f −1;(Ⅱ)由(Ⅰ)知,f (f )=f +f ln f ,∴f (f −1)<f (f ),对任意f >1恒成立,即f <f +f ln ff −1对任意f >1恒成立. 令f (f )=f +f ln ff −1,则f′(f )=f −ln f −2(f −1)2, 令f (f )=f −ln f −2(f >1),则f ′(f )=1−1f =f −1f>0,所以函数f (f )在(1,+∞)上单调递增.∵f (3)=1−ln 3〈0,f (4)=2−2ln 2〉0,∴方程f (f )=0在(1,+∞)上存在唯一实根f 0,且满足f 0∈(3,4).当1<f <f 0时,f (f )<0,即f′(f )<0,当f >f 0时,f (f )>0,即f′(f )>0, 所以函数f (f )=f +f ln ff −1在(1,f 0)上单调递减,在(f 0,+∞)上单调递增. ∴[f (f )]min =f (f 0)=f 0(1+ln f 0)f 0−1=f 0(1+f 0−2)f 0−1=f 0∈(3,4),∴f <[f (f )]min =f 0∈(3,4),故整数f 的最大值是3.()2110k h x x x '=--≤()0,+∞()2211024k x x x x ⎛⎫≥-+=--+> ⎪⎝⎭14k ≥()1,04k h x '==12x =k 1,4⎡⎫+∞⎪⎢⎣⎭(Ⅲ)由(Ⅱ)知,f (f )=f +f ln ff −1是[4,+∞)上的增函数, ∴当f >f ≥4时,f +f ln ff −1>f +f ln ff −1. 即f (f −1)(1+ln f )>f (f −1)(1+ln f ).整理,得ff ln f +f ln f >ff ln f +f ln f +(f −f ). ∵f >f ,∴ff ln f +f ln f >ff ln f +f ln f .即ln f ff +ln f f >ln f ff +ln f f .即ln (f ff f f )>ln (f ff f f ).∴(ff f )f >(ff f )f . (五)把其中一个看作自变量,另一个看作参数【例】 已知a R ∈,函数()()2ln 12f x x x ax =+-++(Ⅰ)若函数()f x 在[)2,+∞上为减函数,求实数a 的取值范围;(Ⅱ)设正实数121m m +=,求证:对)1()(f x f ≥上的任意两个实数1x ,2x ,总有()()()11221122f m x m x m f x m f x +≥+成立【分析】(Ⅰ)将问题转化为()0f x '≤在[)+∞∈,2x 上恒成立,可得112+-≤x x a ,令()121h x x x =-+, 可判断出()h x 在[)2,+∞上单调递增,即()()min 2h x h =,从而可得a 的范围;(Ⅱ)构造函数()()()122122()F x f m x m x m f x m f x =+--,(]21,x x ∈-,且121x x -<≤;利用导数可判断出()F x 在(]21,x x ∈-上是减函数,得到()()2F x F x ≥,经验算可知()20F x =,从而可得()()()122122f m x m x m f x m f x +≥+,从而可证得结论.【解析】(Ⅰ)由题意知:()121f x x a x '=-++ 函数()f x 在[)2,+∞上为减函数,即()0f x '≤在[)+∞∈,2x 上恒成立即112+-≤x x a 在[)+∞∈,2x 上恒成立,设()121h x x x =-+当2≥x 时,11=+y x 单调递减,2=y x 单调递增()h x ∴在[)2,+∞上单调递增 ()()min 1112433h x h ∴==-=,113a ∴≤,即a 的取值范围为11,3⎛⎤-∞ ⎥⎝⎦(Ⅱ)设121x x -<≤,令:()()()122122()F x f m x m x m f x m f x =+--,(]21,x x ∈-则()()()()21221220F x f m m x m m f x =+-+=⎡⎤⎣⎦()()()()()112211122F x m f m x m x m f x m f m x m x f x '''''∴=+-=+-⎡⎤⎣⎦()()1221222222210m x m x x x m m x m x m x m x x +-=-+=-+=-≥,122m x m x x ∴+≥()121f x x a x '=-++,令()()g x f x =',则()()21201g x x '=--<+ ()f x ∴'在()1,x ∈-+∞上为减函数,()()122f m x m x f x ''∴+≤()()11220m f m x m x f x ''∴+-≤⎡⎤⎣⎦,即()0F x '≤()F x ∴在(]21,x x ∈-上是减函数,()2()0F x F x ∴≥=,即()0F x ≥ ()()()1221220f m x m x m f x m f x ∴+--≥(]21,x x ∴∈-时,()()()122122f m x m x m f x m f x +≥+121x x -<≤ ,()()()11221122f m x m x m f x m f x ∴+≥+【变式训练】 已知函数f (f )=f f −f ,f (f )=(f +f )ln (f +f )−f .(1)若f =1,f ′(f )=f ′(f ),求实数f 的值.(2)若f ,f ∈f +,f (f )+f (f )≥f (0)+f (0)+ff ,求正实数f 的取值范围.【解析】(1)由题意,得f′(f)=f f−1,f′(f)=ln(f+f),由f=1,f′(f)=f′(f)…①,得f f−ln(f+1)−1=0,,令f(f)=f f−ln(f+1)−1,则f′(f)=f f−1f+1>0,所以f′(f)在(−1,+∞)单调递增,因为f″(f)=f f+1(f+1)2又f′(0)=0,所以当−1<f<0时,f′(f)>0,f(f)单调递增;当f>0时,f′(f)<0,f(f)单调递减;所以f(f)≤f(0)=0,当且仅当f=0时等号成立.故方程①有且仅有唯一解f=0,实数f的值为0.(2)解法一:令f(f)=f(f)−ff+f(f)−f(0)−f(0)(f>0),则f′(f)=f f−(f+1),所以当f>ln(f+1)时,f′(f)>0,f(f)单调递增;当0<f<ln(f+1)时,f′(f)<0,f(f)单调递减;故f(f)≥f(ln(f+1))=f(ln(f+1))+f(f)−f(0)−f(0)−f ln(f+1)=(f+f)ln(f+f)−(f+1)ln(f+1)−f ln f.令f(f)=(f+f)ln(f+f)−(f+1)ln(f+1)−f ln f(f>0),则f′(f)=ln(f+f)−ln(f+1).(i)若f>1时,f′(f)>0,f(f)在(0,+∞)单调递增,所以f(f)>f(0)=0,满足题意.(ii)若f=1时,f(f)=0,满足题意.(iii)若0<f<1时,f′(f)<0,f(f)在(0,+∞)单调递减,所以f(f)<f(0)=0.不满足题意.综上述:f≥1.(六)利用根与系数的关系,把两变量用另一变量表示【例】(2020山西高三期末)设函数1()ln ()f x x a x a R x=--∈ (1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x 和2x ,记过点1122(,()),(,())A x f x B x f x 的直线的斜率为k ,问:是否存在a ,使得2k a =-若存在,求出a 的值,若不存在,请说明理由. 【解析】(1)()f x 定义域为()0,∞+,()22211'1a x ax f x x x x-+=+-=, 令()221,4g x x ax a =-+∆=-,①当22a -≤≤时,0∆≤,()'0f x ≥,故()f x 在()0,∞+上单调递增, ②当2a <-时,>0∆,()0g x =的两根都小于零,在()0,∞+上,()'0f x >, 故()f x 在()0,∞+上单调递增,③当2a >时,>0∆,()0g x =的两根为12x x ==,当10x x <<时,()'0f x >;当12x x x <<时,()'0f x <;当2x x >时,()'0f x >; 故()f x 分别在()()120,,,x x +∞上单调递增,在()12,x x 上单调递减.(2)由(1)知,2a >,因为()()()()1212121212ln ln x x f x f x x x a x x x x --=-+--. 所以()()1212121212ln ln 11f x f x x x k a x x x x x x --==+⋅--,又由(1)知,121=x x ,于是1212ln ln 2x x k a x x -=--,若存在a ,使得2k a =-,则1212ln ln 1x x x x -=-,即1212ln ln x x x x -=-,亦即222212ln 0(1)x x x x --=> 再由(1)知,函数()12ln h t t t t=--在()0,∞+上单调递增,而21>x ,所以22212ln 112ln10x x x -->--=,这与上式矛盾,故不存在a ,使得2k a =-. 【变式训练】 已知函数21()2ln 2f x x x a x =-+,其中0a >. (1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x ,2x ,证明:123()()2f x f x -<+<-.【解析】(1)解:由题得22'()2a x x af x x x x-+=-+=,其中0x >,考察2()2g x x x a =-+,0x >,其中对称轴为1x =,44a ∆=-. 若1a ≥,则,此时()0g x ≥,则'()0f x ≥,所以()f x 在(0,)+∞上单调递增;若,则∆>0,此时220x x a -+=在R 上有两个根111x a =--,211x a =+-,且1201x x <<<,所以当时,()0g x >,则'()0f x >,()f x 单调递增;当12(,)x x x ∈时,()0g x <,则'()0f x <,()f x 单调递减;当2(,)x x ∈+∞时,()0g x >,则'()0f x >,()f x 单调递增,综上,当1a ≥时,()f x 在(0,)+∞上单调递增;当时,()f x 在(0,11)a --上单调递增,在(11,11)a a --+-上单调递减,在(11,)a +-+∞上单调递增.(2)证明:由(1)知,当时,()f x 有两个极值点1x ,2x ,且122x x +=,12x x a =,所以()()2212111222112ln 2ln 22fx f x x x a x x x a x +=-++-+ ()()()2212121212ln ln 2x x x x a x x =+-+++ ()()()212121212122ln 2x x x x x x a x x ⎡⎤=+--++⎣⎦()21224ln ln 22a a a a a a =--+=--. 令()ln 2h x x x x =--,01x <<,则只需证明3()2h x -<<-, 由于'()ln 0h x x =<,故()h x 在(0,1)上单调递减,所以()(1)3h x h >=-.又当01x <<时,ln 11x -<-,(ln 1)0x x -<,故()ln 2(ln 1)22h x x x x x x =--=--<-, 所以,对任意的01x <<,3()2h x -<<-. 综上,可得()()1232fx f x -<+<-.【变式训练】已知函数21ln 02f x ax x a x=-+≥()(). (1)讨论函数f (x )的极值点的个数;(2)若f (x )有两个极值点1x ,2x ,证明:1234ln 2f x f x +>-()(). 【解析】(1)由题意,函数221ln ln 22f x ax x x ax x x=-+=--+(), 得2121'21ax x f x ax x x -+-=--+=(),0x ∈+∞(,), (i )若0a =时;1x f x x-'=(), 当01x ∈(,)时,()0f x '<,函数()f x 单调递减;当),(∞+∈1x 时,()0f x '>,函数()f x 单调递增,所以当1x =,函数()f x 取得极小值,1x =是()f x 的一个极小值点;(ii )若0a >时,则180a ∆=-≤,即18a ≥时,此时0f x '≤(),()f x 在(0,)+∞是减函数,()f x '无极值点,当108a <<时,则180a ∆=->,令0=')(x f ,解得114x a =,214x a+=,当10x x ∈(,)和2x x ∈+(,)∞时,0f x '<(),当12x x x ∈(,)时,0>')(x f , ∴()f x 在1x 取得极小值,在2x 取得极大值,所以()f x 有两个极值点, 综上可知:(i )0a =时,()f x 仅有一个极值点;(ii).当18a ≥时,()f x 无极值点; (iii)当108a <<,()f x 有两个极值点. (2)由(1)知,当且仅当108a ∈(,)时,()f x 有极小值点1x 和极大值点2x ,且1x ,2x 是方程2210ax x 的两根,∴1212x x a +=,1212x x a=, 则222121121211ln ln 22f x f x ax x ax x x x +=-++-+()() 22121212ln 2ln 2x x a x x x x =-+-+++()()()22111ln[]42a a a a a=---+11ln 1242a a a =++-1ln 1ln 24a a =+--,设1ln ln 24g a a a =++-()1,1(0,)8a ∈,则221141044a g a a a a -'=-=<(),∴10,8a ∈()时,()a g 是减函数,1()()8g a g >,∴1ln 3ln 234ln 28g a >+-=-(), ∴1234ln 2f x f x +>-()(). 三、跟踪训练1.已知函数1()ln ()f x x a x a R x=-+∈. (1)讨论函数()y f x =的单调性; (2)若10<<b ,1()()g x f x bx x=+-,且存在不相等的实数1x ,2x ,使得()()12g x g x =,求证:0a <且2211a x x b ⎛⎫> ⎪-⎝⎭. 【解析】(1)由题意,函数1()ln ()f x x a x a R x =-+∈,可得22211'()1(0)a x ax f x x x x x++=++=>, 当0a ≥时,因为0x >,所以210x ax ++>,所以'()0f x >,故函数()f x 在(0,)+∞上单调递增;当20a -≤<时,240a ∆=-≤,210x ax ++≥,所以'()0f x >, 故函数()f x 在(0,)+∞单调递增;当2a <-时,'()0f x >,解得02a x -<<或2a x ->,'()0f x <,解得22a a x ---<<,所以函数()f x 在区间⎛⎫⎪ ⎪⎝⎭上单调递减,在区间⎛⎫⎪ ⎪⎝⎭和区间⎫+∞⎪⎪⎝⎭上单调递增. 综上所述,当2a ≥-时,函数()f x 在(0,)+∞上单调递增,当2a <-时,函数()f x 在区间⎛⎫⎪ ⎪⎝⎭上单调递减,在区间0,2a ⎛⎫-- ⎪ ⎪⎝⎭和区间⎫+∞⎪⎪⎝⎭上单调递增. (2)由题知()(1)ln g x b x a x =-+,则'()1ag x b x=-+.当0a ≥时,0)('>x g ,所以()g x 在(0,)+∞上单调递增,与存在不相等的实数1x ,2x ,使得12()()g x g x =矛盾,所以0a <.由12()()g x g x =,得1122(1)ln (1)ln b x a x b x a x -+=-+, 所以()()2121ln ln (1)a x x b x x --=--,不妨设120x x <<,因为10<<b ,所以212101ln ln x x a b x x -=>--,欲证2121a x x b ⎛⎫< ⎪-⎝⎭,只需证2211221ln ln x x x x x x ⎛⎫-> ⎪-⎝⎭,只需证2121ln ln x x x x ->-21x t x =,1t >,等价于证明1ln t t->ln 0t -<,令()ln 1)h t t t =->,'()0h t =<,所以)(t h 在区间(1,)+∞上单调递减,所以()(1)0h t h <=,从而ln 0t <得证,于是2211a x x b ⎛⎫> ⎪-⎝⎭. 2.【2020河北省衡水市高三期末】已知函数f (f )=f ln f −f 2.(1)令f (f )=f (f )+ff ,若f =f (f )在区间(0,3)上不单调,求f 的取值范围;(2)当f =2时,函数f (f )=f (f )−ff 的图象与f 轴交于两点f (f 1,0),f (f 2,0),且0<f 1<f 2,又f ′(f )是f (f )的导函数.若正常数f ,f 满足条件f +f =1,f ≥f .试比较f ′(ff 1+ff 2)与0的关系,并给出理由【解析】(1)因为f (f )=f ln f −f 2+ff ,所以f ′(f )=ff −2f +f , 因为f (f )在区间(0,3)上不单调,所以f ′(f )=0在(0,3)上有实数解,且无重根, 由f ′(f )=0,有f =2f 2f +1=2(f +1+1f +1)−4,f ∈(0,3),令t=x+1>4则y=2(t+1f )−4在t>4单调递增,故f ∈(0,92)(2)∵f ′(f )=2f −2f −f ,又f (f )−ff =0有两个实根f 1,f 2,∴{2fff 1−f 12−ff 1=02fff 2−f 22−ff 2=0,两式相减,得2(ln f 1−ln f 2)−(f 12−f 22)=f (f 1−f 2), ∴f =2(ln f 1−ln f 2)f 1−f 2−(f 1+f 2),于是f ′(ff 1+ff 2)=2ff 1+ff 2−2(ff 1+ff 2)−2(ln f 1−ln f 2)f 1−f 2+(f 1+f 2)=2ff 1+ff 2−2(ln f 1−ln f 2)f 1−f 2+(2f −1)(f 2−f 1).∵f ≥f ,∴2f ≤1,∴(2f −1)(f 2−f 1)≤0. 要证:f ′(ff 1+ff 2)<0,只需证:2ff1+ff 2−2(ln f 1−ln f 2)f 1−f 2<0,只需证:f 1−f 2ff 1+ff 2−ln f1f 2>0.(*)令f 1f 2=f ∈(0,1),∴(*)化为1−fff +f +ln f <0,只需证f (f )=ln f +1−fff +f <0f ′(f )=1f −1(ff +f )2>0∵f (f )在(0,1)上单调递增,f (f )<f (1)=0,∴ln f +1−fff +f<0,即f 1−f 2ff +f +ln f 1f 2<0.∴f ′(ff 1+ff 2)<0.2.(2020·江苏金陵中学高三开学考试)已知函数f (x )=12ax 2+lnx ,g (x )=-bx ,其中a ,b∈R,设h (x )=f (x )-g (x ),(1)若f (x )在x=√22处取得极值,且f′(1)=g (-1)-2.求函数h (x )的单调区间;(2)若a=0时,函数h (x )有两个不同的零点x 1,x 2 ①求b 的取值范围;②求证:x 1x 2e 2>1.【答案】(1)在区间(0,1)上单调增;在区间(1,+)上单调减.(2)①(−1f ,0)②详见解析【解析】试题分析:(1)先确定参数:由f ′(1)=f (−1)−2可得a=b-3. 由函数极值定义知f ′(√22)=√22f +√2=0所以a=" -2,b=1" .再根据导函数求单调区间(2)①当f =0时,f (f )=ln f +ff ,原题转化为函数f (f )=−ln ff与直线f =f 有两个交点,先研究函数f (f )=−ln ff图像,再确定b 的取值范围是(−1f ,0). ②f 1f 2f 2>1⇔f 1f 2>f 2⇔ln f 1f 2>2,由题意得ln f 1+ff 1=0,ln f 2+ff 2=0,所以ln f 1f 2ln f 2−ln f 1=f 1+f2f 2−f 1,因此须证ln f 2−ln f 1>2(f 2−f 1)f 2+f 1,构造函数f (f )=ln f −2(f −1)f +1,即可证明 试题解析:(1)因为f ′(f )=ff +1f ,所以f ′(1)=f +1,由f ′(1)=f (−1)−2可得a=b-3.又因为f (f )在f =√22处取得极值,所以f ′(√22)=√22f +√2=0,所以a=" -2,b=1" .所以f (f )=−f 2+ln f +f ,其定义域为(0,+)f′(f )=−2f +1f +1=−2f 2+f +1f =−(2f +1)(f −1)f令f′(f )=0得f 1=−12,f 2=1,当f ∈(0,1)时,f′(f )>0,当f ∈(1,+)f′(f )<0,所以函数h (x )在区间(0,1)上单调增;在区间(1,+)上单调减.(2)当f =0时,f (f )=ln f +ff ,其定义域为(0,+).①由f (f )=0得f =-ln ff,记f (f )=−ln ff,则f′(f )=ln f −1f 2,所以f (f )=−ln ff在(0,f )单调减,在(f ,+∞)单调增,所以当f =f 时f (f )=−ln ff取得最小值−1f .又f (1)=0,所以f ∈(0,1)时f (f )>0,而f ∈(1,+∞)时f (f )<0,所以b 的取值范围是(−1f ,0). ②由题意得ln f 1+ff 1=0,ln f 2+ff 2=0,所以ln f 1f 2+f (f 1+f 2)=0,ln f 2−ln f 1+f (f 2−f 1)=0, 所以ln f 1f 2ln f2−ln f 1=f 1+f 2f 2−f 1,不妨设x1<x2,要证f 1f 2>f 2, 只需要证ln f 1f 2=f 1+f2f 2−f 1(ln f 2−ln f 1)>2.即证ln f 2−ln f 1>2(f 2−f 1)f 2+f 1,设f =f2f 1(f >1),则f (f )=ln f −2(f −1)f +1=ln f +4f +1−2, 所以f′(f )=1f −4(f +1)2=(f −1)2f (f +1)2>0,所以函数f (f )在(1,+)上单调增,而f (1)=0,所以f (f )>0即ln f >2(f −1)f +1,所以f 1f 2>f 2.考点:函数极值,构造函数利用导数证明不等式3.【福建省2020高三期中】已知函数f (f )=f f (f f −ff +f )有两个极值点f 1,f 2. (1)求f 的取值范围;(2)求证:2f 1f 2<f 1+f 2.【解析】(1)因为f (f )=f f (f f −ff +f ),所以f ′(f )=f f (f f −ff +f )+f f (f f −f )=f f (2f f −ff ),令f ′(f )=0,则2f f =ff ,当f =0时,不成立;当f ≠0时,2f =ff f ,令f (f )=f ef,所以f ′(f )=1−ff f ,当f <1时,f ′(f )>0,当f >1时,f ′(f )<0,所以f (f )在(−∞,1)上单调递增,在(1,+∞)上单调递减,又因为f (1)=1f ,当f →−∞时,f (f )→−∞,当f →+∞时,f (f )→0, 因此,当0<2f <1f 时,f (f )有2个极值点,即f 的取值范围为(2f ,+∞).(2)由(1)不妨设0<f 1<1<f 2,且{2f f 1=ff 12f f 2=ff 2,所以{ff2+f 1=fff +fff 1ff2+f 2=fff +fff 2,所以f 2−f 1=ln f 2−ln f 1,要证明2f 1f 2<f 1+f 2,只要证明2f 1f 2(ln f 2−ln f 1)<f 22−f 12,即证明2ln (f 2f 1)<f 2f 1−f 1f 2,设f 2f 1=f (f >1),即要证明2ln f −f +1f <0在f ∈(1,+∞)上恒成立,记f (f )=2ln f −f +1f (f >1),f ′(f )=2f −1−1f 2=−f 2+2f −1f 2=−(f −1)2f 2<0,所以f (f )在区间(1,+∞)上单调递减,所以f (f )<f (1)=0,即2ln f −f +1f <0,即2f 1f 2<f 1+f 2.4.【安徽省示范高中皖北协作区2020届高三模拟】已知函数f (f )=−12f 2+2f −2f ln f . (1)讨论函数f (f )的单调性;(2)设f (f )=f ′(f ),方程f (f )=f (其中f 为常数)的两根分别为f ,f (f <f ),证明:f ′(f +f2)<0.注:f ′(f ),f ′(f )分别为f (f ),f (f )的导函数.【解析】(1)函数f (f )的定义域为(0,+∞),f ′(f )=−f +2−2f f=−f2+2f −2ff,令f (f )=−f 22f −2f ,f =4−8f ,①当f ≤0时,即f ≥12时,恒有f (f )≤0,即f ′(f )≤0, ∴函数f (f )在(0,+∞)上单调减区间.②当f >0时,即f <12时,由f (f )=0,解得f 1=1−√1−2f ,f 2=1+√1−2f , (i )当0<f <12时,当f ∈(0,f 1),(f 2,+∞)时,f (f )<0,即f ′(f )<0, 当f ∈(f 1,f 2)时,f (f )>0,即f ′(f )>0,∴函数f (f )在(0,f 1),(f 2,+∞)单调递减,在(f 1,f 2)上单调递增.(ii )当f ≤0时,f (0)=−2f ≥0,当f ∈(f 2,+∞)时,f (f )<0,即f ′(f )<0, 当f ∈(0,f 2)时,f (f )>0,即f ′(f )>0,∴函数f (f )在(f 2,+∞)单调递减,在(0,f 2)上单调递增. 证明(2)由条件可得f (f )=−f +2-2ff,f >0,∴f ′(f )=−1+2ff 2,∵方程f (f )=f (其中f 为常数)的两根分别为f ,f (f <f ),∴{f (f )=f f (f )=f可得ff =2f ,∴f ′(f +f2)=−1+8f (f +f )2=−1+4ff (f +f )2=−1+4ff +f f+2,∵0<f <f , ∴0<ff <1, ∴ff +f f >2,∴f ′(f +f2)=−1+4ff +ff+2<−1+1=0.5.(2020江苏徐州一中高三期中)设函数()ln 1nf x x m x =+-,其中n ∈N *,n ≥2,且m ∈R .(1)当2n =,1m =-时,求函数()f x 的单调区间;(2)当2n =时,令()()22g x f x x =-+,若函数()g x 有两个极值点1x ,2x ,且12x x <,求()2g x 的取值范围;【答案】(1)见解析;(2)12ln 2,04-⎛⎫⎪⎝⎭;(3)见解析【解析】 【分析】(1)将2n =,1m =-代入解析式,求出函数的导数,从而即可得到函数()f x 的单调区间;(2)由题意知()221ln g x x x m x =-++,求导,从而可得2220x x m -+=,由方程2220x x m -+=有两个不相等的正数根1x ,2x (12x x <)可得102m <<,由方程得2x =,且2112x <<,由此分析整理即可得到答案;(3)求出函数的导数,得到()f x 的单调性,求出()f x 的最小值,通过构造函数结合零点存在性定理判断函数的零点即可. 【详解】(1)依题意得,()2ln 1f x x x =--,()0,x ∈+∞,∴ ()21212x f x x x x='-=-.令()0f x '>,得x >()0f x '<,得0x << 则函数()f x在0,2⎛⎫⎪ ⎪⎝⎭上单调递减,在,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增. (2)由题意知:()221ln g x x x m x =-++.则()22222m x x mg x x x x='-+=-+,令()0g x '=,得2220x x m -+=,故方程2220x x m -+=有两个不相等的正数根1x ,2x (12x x <),则()412002m m⎧∆=->⎪⎨>⎪⎩,, 解得102m <<.由方程得2x =2112x <<.由222220x x m -+=,得22222m x x =-+.()()222222222122ln g x x x x x x =-++-+,2112x <<. ()22214ln 02g x x x ⎛'⎫=--> ⎪⎝⎭,即函数()2g x 是1,12⎛⎫ ⎪⎝⎭上的增函数, 所以()212ln204g x -<<,故()2g x 的取值范围是12ln2,04-⎛⎫⎪⎝⎭. 6.(2019·江苏徐州一中高三月考)已知函数()alnxf x x=,g (x )=b (x ﹣1),其中a ≠0,b ≠0 (1)若a =b ,讨论F (x )=f (x )﹣g (x )的单调区间;(2)已知函数f (x )的曲线与函数g (x )的曲线有两个交点,设两个交点的横坐标分别为x 1,x 2,证明:()12122x x g x x a++>. 【答案】(1)见解析(2)见解析 【解析】 【分析】(1)求导得()()222111lnx aF x a x lnx x x-⎛⎫'=-=--⎪⎝⎭,按照a >0、 a <0讨论()F x '的正负即可得解; (2)设x 1>x 2,转化条件得()1212112122x x x x x g x x ln a x x x +++=⋅-,令121x t x =>,()121t p t lnt t -=-⋅+,只需证明()0p t >即可得证. 【详解】(1)由已知得()()()1lnx F x f x g x a x x ⎛⎫=-=-+⎪⎝⎭,∴()()222111lnx a F x a x lnx x x-⎛⎫'=-=-- ⎪⎝⎭,当0<x <1时,∵1﹣x 2>0,﹣lnx >0,∴1﹣x 2﹣lnx >0,; 当x >1时,∵1﹣x 2<0,﹣lnx <0,∴1﹣x 2﹣lnx <0.故若a >0,F (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 故若a <0,F (x )在(0,1)上单调递减,在(1,+∞)上单调递增.(2)不妨设x 1>x 2,依题意()1111lnx ab x x =-, ∴()2111alnx b x x =-①,同理得()2222alnx b x x =-②由①﹣②得,∴()()()2211122121221x alnb x x x x b x x x x x =--+=-+-, ∴()()1212121x lnx bx x a x x +-=-,∴()()()121211212121221x x x x x bg x x x x x x ln a a x x x +++=+⋅⋅+-=⋅-, 故只需证1211222x x x ln x x x +⋅->,取∴121x t x =>,即只需证明121t lnt t +⋅>-,1t ∀>成立, 即只需证()1201t p t lnt t -=-⋅>+,1t ∀>成立, ∵()()()()222114011t p t t t t t -'=-=++>,∴p (t )在区间[1,+∞)上单调递增,∴p (t )>p (1)=0,∀t >1成立,故原命题得证.【点睛】本题考查了导数的综合运用,考查了转化化归思想与计算能力,属于难题. 7.(2020·广西南宁二中高三(文))已知函数()()2ln 1,f x x ax x =++-()()21ln ln 12g x a x x ax x x=--+-+(Ⅰ)若0a >,讨论函数()f x 的单调性;(Ⅱ)设()()()h x f x g x =+,且()h x 有两个极值点12,x x ,其中11(0,]x e∈,求()()12h x h x -的最小值.(注:其中e 为自然对数的底数)【答案】(Ⅰ)见解析;(Ⅱ)最小值为4e. 【解析】 【分析】(Ⅰ)对函数()f x 求导,对a 分情况讨论即可确定()f x 的单调区间;(Ⅱ)先对()h x 求导,令导数式等于0由韦达定理求出两个极值点12,x x 的关系1212,1x x a x x +=-= ,所以211111,x a x x x ==--,整理()()12h x h x -,构造关于1x 的函数()x ϕ ,求导根据单调性确定最值即可。
导数双变量处理方法汇总
导数双变量处理方法汇总导数是微积分中的重要概念,用于描述函数在某一点处的变化率。
在双变量函数中,导数也有着重要的应用。
本文将介绍双变量函数中的导数处理方法,帮助读者更好地理解和应用导数。
一、偏导数首先,介绍双变量函数中的偏导数。
偏导数是指在函数中只对其中一个变量求导,而将另一个变量视为常数。
比如,如果有双变量函数f(x,y),那么f对x的偏导数表示为∂f/∂x,f对y的偏导数表示为∂f/∂y。
求偏导数的方法与一元函数相同,只需要将其中一个变量视为常数,对另一个变量求导即可。
同时,偏导数在给定点处代表了函数在该点处关于该变量的变化率。
另外,求偏导数时需要注意一些常见的数学符号和规律,如链式法则、求导法则等。
二、全微分全微分是指双变量函数的所有偏导数的线性和,在微积分中常用符号为df。
全微分描述了函数在一个点处的微小变化量,对于函数的极值和曲线斜率的研究也有着重要的作用。
求解全微分的方法,可以利用偏导数定义进行求解。
对于双变量函数f(x,y),其全微分df为:df = ∂f/∂x dx + ∂f/∂y dy其中dx和dy分别是x和y的微小增量。
可以看出,全微分描述了函数在一个点处的微小变化,因此可以用来判断该函数在该点处的极值和曲线斜率的方向。
三、梯度梯度是指一个向量,该向量的方向是函数在某一点上升最快的方向,而该向量的模长为函数在该点处沿着该方向的增长率。
在双变量函数中,梯度可以表示为一个二维向量:grad f = (∂f/∂x, ∂f/∂y)同时,梯度处理方法可以用来求解函数在特定点处的最大值和最小值。
具体可采用以下步骤:1. 求出函数在该点的梯度向量。
2. 确定梯度向量的方向,即函数在该点上升最快的方向。
3. 沿着梯度向量的反方向进行搜寻,直到寻找到函数的最小值为止。
四、拉格朗日乘数法最后,介绍双变量函数中的拉格朗日乘数法。
该方法用于在一些带约束条件的问题中找到函数的极值点,在实际应用中有着广泛的应用。
导数中的双变量问题
故 f(x)在0,b+1 1上单调递增,在b+1 1,+∞上单调递减. 综上,当 b≤-1 时,f(x)在(0,+∞)上单调递增;当 b>-1 时,f(x)在0,b+1 1
上单调递增,在b+1 1,+∞上单调递减.
(2)若 0<a<2,b=1,实数 x1,x2 为方程 f(x)=m-ax2 的两个不等实根,求证:
令 h(x)=f(x)-mx =ln x+x2-3x-mx ,x∈[1,10], 所以 h′(x)=1x+2x-3+xm2≤0 在[1,10]上恒成立, 则m≤-2x3+3x2-x在[1,10]上恒成立. 设F(x)=-2x3+3x2-x(x∈[1,10]), 则 F′(x)=-6x2+6x-1=-6x-122+21. 当x∈[1,10]时,F′(x)<0,所以函数F(x)在[1,10]上单调递减, 所以F(x)min=F(10)=-2×103+3×102-10=-1 710, 所以m≤-1 710, 故实数m的取值范围为(-∞,-1 710].
近年高考应考,常涉及“双变量”或“双参”相关问题,能力要求高,破解问 题的关键:一是转化,即由已知条件入手,寻找双变量满足的关系式,并把含 双变量问题转化为含单变量的问题,二是巧妙构造函数,再借用导数,判断函 数的单调性,从而求其最值.
考向1 与双变量有关的恒成立问题
【典例1】 已知函数f(x)=ln x+ax2-3x.
点津突破
1.利用 f′(1)=0,得 a 的方程,解方程求 a 的值,再求 f′(x)=0 的实数解,并判断 在实数解的两侧 f(x)的导数值符号,得 f(x)的极值. 2.“ 双 变 量 不 等 式 ” 变 “ 单 变 量 不 等 式 ” : 双 变 量 不 等 式 “f(x1) - f(x2)>m(xx21-x2x1)”可化为“f(x1)-xm1>f(x2)-xm2”,只需构造函数 h(x)=f(x)- mx ,判断其在[1,10]上单调递减,从而转化为单变量不等式“h′(x)=1x+2x-3+ xm2≤0 在[1,10]上恒成立”.分离参数 m,构造新函数,借助函数最值求 m 的取 值范围.
导数中的双变量
导数中的双变量问题1.已知函数1)(+=x ax ϕ,a 为正常数.⑴若)(ln )(x x x f ϕ+=,且a29=,求函数)(x f 的单调增区间;⑵在⑴中当0=a 时,函数)(x f y =的图象上任意不同的两点()11,y x A ,()22,y x B ,线段AB 的中点为),(00y x C ,记直线AB 的斜率为k ,试证明:)(0x f k '>.⑶若)(ln )(x x x g ϕ+=,且对任意的(]2,0,21∈x x ,21x x ≠,都有1)()(1212-<--x x x g x g ,求a 的取值范围.解:⑴222)1(1)2()1(1)(++-+=+-='x x x a x x a x x f ∵a 29=,令0)(>'x f 得2>x 或210<<x ,∴函数)(x f 的单调增区间为),2(),21,0(+∞.⑵证明:当0=a 时x x f ln )(=∴x x f 1)(=', ∴210021)(x x x x f +==',又121212121212ln ln ln )()(x x x x x x x x x x x f x f k -=--=--= 不妨设12x x > , 要比较k 与)(0x f '的大小,即比较1212lnx x x x -与212x x +的大小,又∵12x x >,∴ 即比较12lnx x 与1)1(2)(212122112+-=+-x x x x x x x x 的大小.令)1(1)1(2ln )(≥+--=x x x x x h ,则0)1()1()1(41)(222≥+-=+-='x x x x x x h , ∴)(x h 在[)+∞,1上位增函数.又112>x x ,∴0)1()(12=>h x x h , ∴1)1(2ln 121212+->x x x x x x,即)(0x f k '>⑶∵ 1)()(1212-<--x x x g x g ,∴[]0)()(121122<-+-+x x x x g x x g 由题意得x x g x F +=)()(在区间(]2,0上是减函数.︒1 当x x a x x F x +++=≤≤1ln )(,21, ∴ 1)1(1)(2++-='x a x x F 由313)1()1(0)(222+++=+++≥⇒≤'x x x x x x a x F 在[]2,1∈x 恒成立.设=)(x m 3132+++x x x ,[]2,1∈x ,则0312)(2>+-='xx x m∴)(x m 在[]2,1上为增函数,∴227)2(=≥m a .︒2 当x x a x x F x +++-=<<1ln )(,10,∴ 1)1(1)(2++--='x a x x F 由11)1()1(0)(222--+=+++-≥⇒≤'x x x x x x a x F 在)1,0(∈x 恒成立设=)(x t 112--+xx x ,)1,0(∈x 为增函数,∴0)1(=≥t a综上:a 的取值范围为227≥a .2.设函数1()ln ().f x x a x a R x =--∈⑴讨论函数()f x 的单调性;⑵若()f x 有两个极值点12,x x ,记过点11(,()),A x f x 22(,())B x f x 的直线斜率为k ,问:是否存在a ,使得2k a =-?若存在,求出a 的值;若不存在,请说明理由.解:⑴()f x 的定义域为(0,).+∞22211'()1a x ax f x x x x-+=+-= 令2()1,g x x ax =-+其判别式2 4.a =-①当||2,0,'()0,a f x ≤≤≥时故()(0,)f x +∞在上单调递增.②当2a <-时,>0,g(x)=0的两根都小于0,在(0,)+∞上,'()0f x >,故()(0,)f x +∞在上单调递增.③当2a >时,>0,g(x)=0的两根为12x x ==,当10x x <<时, '()0f x >;当12x x x <<时,'()0f x <;当2x x >时,'()0f x >,故()f x 分别在12(0,),(,)x x +∞上单调递增,在12(,)x x 上单调递减. ⑵由⑴知,若()f x 有两个极值点12,x x ,则只能是情况③,故2a >. 因为1212121212()()()(ln ln )x x f x f x x x a x x x x --=-+--, 所以1212121212()()ln ln 11f x f x x x k a x x x x x x --==+---1212ln ln 2x x k ax x -=--若存在a ,使得2.k a =-则1212ln ln 1x x x x -=-.即1212ln ln x x x x -=-.再由⑴知,函数1()2ln h t t t t=--在(0,)+∞上单调递增,而21x >,所以222112ln 12ln10.1x x x -->--=这与(*)式矛盾.故不存在a ,使得2.k a =- 3.已知函数)0)(ln()(2>=a ax x x f .(1)若2)('x x f ≤对任意的0>x 恒成立,求实数a 的取值范围;(2)当1=a 时,设函数x x f x g )()(=,若1),1,1(,2121<+∈x x e x x ,求证42121)(x x x x +<解:(1)x ax x x f +=)ln(2)(',2)ln(2)('x x ax x x f ≤+=,即x ax ≤+1ln 2在0>x 上恒成立 设x ax x u -+=1ln 2)(,2,012)('==-=x xx u ,2>x 时,单调减,2<x 单调增,所以2=x 时,)(x u 有最大值.212ln 2,0)2(≤+≤a u ,所以20ea ≤<.(2)当1=a 时,x x xx f x g ln )()(==,e x x x g 1,0ln 1)(==+=,所以在),1(+∞e 上)(x g 是增函数,)1,0(e上是减函数. 因为11211<+<<x x x e,所以111212121ln )()ln()()(x x x g x x x x x x g =>++=+ 即)ln(ln 211211x x x x x x ++<,同理)ln(ln 212212x x x x x x ++<. 所以)ln()2()ln()(ln ln 2112212112122121x x x xx x x x x x x x x x x x +++=++++<+ 又因为,421221≥++x x x x 当且仅当“21x x =”时,取等号. 又1),1,1(,2121<+∈x x ex x ,0)ln(21<+x x , 所以)ln(4)ln()2(21211221x x x x x x x x +≤+++,所以)ln(4ln ln 2121x x x x +<+,所以:42121)(x x x x +<.4.设a R ∈,函数()ln f x x ax =-.(Ⅰ)若2a =,求曲线()y f x =在()1,2P -处的切线方程;(Ⅱ)若()f x 无零点,求实数a 的取值范围;(Ⅲ)若()f x 有两个相异零点12,x x ,求证: 212x x e ⋅>.解:在区间()0,+∞上,11()axf x a x x-'=-=. (1)当2a =时,(1)121f '=-=-,则切线方程为(2)(1)y x --=--,即10x y ++= (2)①若0a =,()ln f x x =有唯一零点1x =.②若0a <,则()0f x '>,()f x 是区间()0,+∞上的增函数,(1)0f a =->Q ,()(1)0a a a f e a ae a e =-=-<,(1)()0a f f e ∴⋅<,函数()f x 在区间()0,+∞有唯一零点.③若0a >,令()0f x '=得: 1x a=. 在区间1(0,)a上, ()0f x '>,函数()f x 是增函数;在区间1(,)a+∞上, ()0f x '<,函数()f x 是减函数; 故在区间()0,+∞上, ()f x 的极大值为11()ln 1ln 1f a a a=-=--. 由1()0,f a <即ln 10a --<,解得:1a e>. 故所求实数a 的取值范围是1(,)e+∞. (3) 设120,x x >>12()0,()0,f x f x ==Q 1122ln 0,ln 0x ax x ax ∴-=-=1212ln ln ()x x a x x ∴+=+,1212ln ln ()x x a x x -=-原不等式21212ln ln 2x x e x x ⋅>⇔+>12()2a x x ⇔+>121212ln ln 2x x x x x x -⇔>-+1122122()ln x x x x x x -⇔>+令12x t x =,则1t >,于是1122122()2(1)ln ln 1x x x t t x x x t -->⇔>++. 设函数2(1)()ln 1t g t t t -=-+(1)t >,求导得: 22214(1)()0(1)(1)t g t t t t t -'=-=>++ 故函数()g t 是()1,+∞上的增函数,()(1)0g t g ∴>=,即不等式2(1)ln 1t t t ->+成立, 故所证不等式212x x e ⋅>成立.5.已知函数32()(63)xf x x x x t e =-++,t R ∈.(1)若函数()y f x =依次在,,()x a x b x c a b c ===<<处取到极值.①求t 的取值范围;②若22a c b +=,求t 的值. (2)若存在实数[]0,2t ∈,使对任意的[]1,x m ∈,不等式 ()f x x ≤恒成立.求正整数m 的最大值.解:(1)①23232()(3123)(63)(393)xxxf x x x e x x x t e x x x t e '=-++-++=--++32()3,39303,,.f x x x x t a b c ∴--++=有个极值点有个根 322()393,'()3693(1)(3)g x x x x t g x x x x x =--++=--=+-令()(-,-1),(3,+)(-1,3)g x ∞∞在上递增,上递减. ()3824.(3)0g x t g ⎧∴∴-<<⎨<⎩g(-1)>0有个零点②,,()a b c f x 是的三个极值点3232393(x-a)(x-b)(x-c)=x ()()x x x t a b c x ab bc ac x abc ∴--++=-+++++-393a b c ab ac bc t abc++=⎧⎪∴++=-⎨⎪+=-⎩31(b (-1,3))2b ∴=-∈或舍1181a b t c ⎧=-⎪∴=∴=⎨⎪=+⎩. (2)不等式 ()f x x ≤,即32(63)x x x x t e x -++≤,即3263x t xe x x x -≤-+-. 转化为存在实数[]0,2t ∈,使对任意[]1,x m ∈,不等式3263x t xe x x x -≤-+-恒成立,即不等式32063x xe x x x -≤-+-在[]1,x m ∈上恒成立。
高考专题 导数双变量问题
导数专题——导数背景下双变量问题(内含极值点偏移)类型一 消参构造)(21x x f ±或者)(21x x f 化二元函数为一元函数处理 【例1】已知函数()()1ln a f x a x x a x+=--∈R . (1)求函数()f x 的单调区间;(2)当e a <<x 的方程()1a f ax ax+=-有两个不同的实数解12,x x ,求证:22124x x x x +<.【解析】(1)()f x 的定义域为(0)+∞,,()21a a f x x x +'=-221x ax ax -+++=()()211x x a x -+-+⎡⎤⎣⎦=.①当10a +>,即1a >-时,)1(0x a ∈+,,()0f x '>,1()x a ∈++∞,,()0f x '<, ∴函数()f x 的单调递增区间是(0)1a +,,单调递减区间是(1)a ++∞,. ②当10a +≤,即1a ≤-时,0()x ∈+∞,,()0f x '<,∴函数()f x 单调递减区间是(0)+∞,,无单调递增区间.(2)设()()1a g x f ax ax+=+()ln ln a a x x =+-, ()()()10a x g x x x-'∴=>. 当01x <<时,()0g x '>,函数()g x 在区间(0)1,上单调递增; 当1x >时,()0g x '<,函数()g x 在区间(1)+∞,上单调递减;()g x ∴在1x =处取得最大值.方程()1a f ax ax+=-有两个不同的实数解12x x ,. ∴函数()g x 的两个不同的零点12,x x ,一个零点比1小,一个零点比1大.不妨设1201x x <<<,由()10g x =,且()20g x =,得()11ln x ax =,且()22ln x ax =,则111x x e a =,221x x e a =,121221x x x x e a +∴=, 1212212121x x x x e x x a x x +∴=⋅++, 令12x x t +=,()te h t t=,()()221tt t e t e t e h t t t -⋅-'==. 12t x x =+,1201x x <<<,1t ∴>.()0h t '>.函数()h t 在区间(1)+∞,上单调递增,()()1h t h e >=,()12122212121x xx x e ex x a x x a+∴=⋅>++. e a <<2144e e a e ∴>=,121214x x x x ∴>+. 又120x x +>,12124x x x x ∴+<.【例2】已知函数)()(a ax e e x f x x +-=有两个极值点21,x x . (1)求a 的取值范围; (2)求证:21212x x x x +<.【解析】(1)因为)2()(ax e e x f x x -=',令0)(='x f ,即ax e x =2①当0=a 时,无解 ②当0≠a 时,x e x a =2,令x e x x g =)(,则x ex x g -='1)( 易得)(x g 在)1,(-∞上单调递增,在),1(+∞上单调递减又因为0)(,)(,,1)1(→+∞→-∞→-∞→=x g x x g x eg 时,时所以当ea 120<<,即e a 2>时,)(x f 有两个极值点.(2)由(1)设2110x x <<<,且有⎪⎩⎪⎨⎧==212122ax e ax e x x即1212x x e x x =-,两边取对,得1212ln x xx x =- 要证21212x x x x +<,即证))((ln212211221x x x x x x x x -+<,即211212ln 2x xx x x x -< 令)1(12>=t t x x ,只需证明01ln 2)(<+-=tt t t h 在),1(+∞上恒成立即可 由于0)1(112)(222<--=--='tt t t t h ,所以)(t h 在),1(+∞上单调递减, 即0)1()(=<h t h ,原式得证. 【例3】已知函数()ln )R (f x x ax a a =-+∈. (1)求函数()f x 的单调区间;(2)当1a =时,对任意的0m n <<,求证:()()()1n m f m m f n m--<+. 【解析】(1)()()110axf x a x xx-'=-=>. 当0a ≤时,()0f x '>恒成立,()f x ∴的单调递增区间为(0)+∞,,无单调递减区间;当0a >时,由()0f x '>得10x a<<,由()0f x '<,得1x a>,()f x ∴的单调递增区间为10,a ⎛⎫ ⎪⎝⎭单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭.(2)1a =时,()()ln 10f x x x x =-+>,由(1)知()f x 在()0,1上为增函数,在()1+∞,上为减函数,()()ln 110f x x x f ∴=-+≤=,ln 1x x ∴≤-,当且仅当1x =时,取“=”.()()f n f m -()()ln 1ln 1n n m m =-+--+()ln nn m m=--. ()11n m n m nm m m m--=-++ 0m n <<,11m ∴+>,0n m ->,1nm>.()1n m n m m -∴--<-+,∴只要证明ln1n nm m<-即可. 又1nm>,∴上式成立()()()1n m f n f m m m -∴-<+. 技巧二 借助极值点偏移处理双变量问题【例4】已知函数()2x af x e x c⎛⎫=-- ⎪⎝⎭,其定义域为(0)+∞,.(其中常数 2.71828e =…,是自然对数的底数)(1)求函数()f x 的单调递增区间;(2)若函数()f x 为定义域上的增函数,且()()124f x f x e +=-,证明:122x x +≥.【解析】(1)函数()2xa f x e x x ⎛⎫⎪⎝=-⎭-的定义域是()0,+∞,()()()221x e x x a f x x --'=.①若0a ≤,由()0f x '>,得1x >,∴函数()f x 的单调递增区间是()1,+∞.②若01a <<,由()0f x '>,得1x >或0x <<∴函数()f x 的单调递增区间是和.()1,+∞. ③若1a =,()()()22110x e x x f x x+-'=≥,∴函数()f x 的单调递增区间是()0,+∞.④若1a >,由()0f x '>,得x >01x <<,∴函数()f x 的单调递增区间是(0)1,和)+∞.综上,若0a ≤,函数()f x 的单调递增区间是(1)+∞,;若01a <<,函数()f x 的单调递增区间是和(1)+∞,; 若1a =,函数()f x 的单调递增区间是()0,+∞;若1a >,函数()f x 的单调递增区间是(0)1,和)+∞ (2)函数()f x 为定义域()0,+∞上的增函数,由(1)可知,1a =,()12x f x e x x ⎛⎫∴=--⎪⎝⎭. ()12f e =-,()()()12421f x f x e f ∴+=-=.不妨设1201x x <≤≤,欲证122x x +≥,只需证212x x ≥-, 即证()()212f x f x ≥-,又只需证()()1142e f x f x --≥-,即证()()1124f x f x e +-≤-令()()()2g x f x f x =+-,01x <≤,只需证()()1g x g ≤,()()()()2222221312x xe x x g x ex x x --⎡⎤+-'=--⎢⎥-⎢⎥⎣⎦, 1x e x ≥+.()()22221211x x e e x x --∴=≥-+=.()()2222132x e x xx x -+-∴--()2312xx x -≥+--()322312x x x x -++=-()()()2212102x x x x ---=≥-. ()()()()22222213102x xe x x g x ex x x --⎡⎤+-'∴=--≥⎢⎥-⎢⎥⎣⎦. ()g x ∴单调递增,即()()1g x g ≤,从而122x x +≥得证.【例5】已知函数2()(2)e (1)x f x x a x =-+-有两个零点. (1)求a 的取值范围;(2)设12,x x 是()f x 的两个零点,证明:122x x +<.【解析】(1)()0,+∞(2)当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <.从而22()(2)0g x f x =-<,故122x x +<.解析:(1)'()(1)e 2(1)(1)(e 2)x x f x x a x x a =-+-=-+. ①设0a =,则()(2)e ,()x f x x f x =-只有一个零点,②设0a >,则当(,1)x ∈-∞时,'()0f x <;当()1,x ∈+∞时,'()0f x >,所以()f x 在(),1-∞上单调递减,在()1,+∞上单调递增.又(1)e,(2)f f a =-=,取b 满足0b <且ln 2ab <,则223()(2)(1)022a f b b a b a b b ⎛⎫>-+-=-> ⎪⎝⎭, 故()f x 存在两个零点.③设0a <,由'()0f x =得1x =或ln(2)x a =-.若e 2a ≥-,则ln(2)1a -≤,故当()1,x ∈+∞时,'()0f x >,因此()f x 在()1,+∞上单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.若e 2a <-,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增。
导数双变量专题说课讲解
导数-双变量问题1.构造函数利用单调性证明2.任意性与存在性问题3.整体换元—双变单4.极值点偏移5.赋值法构造函数利用单调性证明形式如:1212|()()|||f x f x m x x -≥-方法:将相同变量移到一边,构造函数1. 已知函数239()()(24f x x x =++)对任意[]12,1,0x x ∈-,不等式12|()()|f x f x m -≤恒成立,试求m 的取值范围。
2.已知函数2()(1)ln 1f x a x ax =+++.设1a <-,如果对12,(0,)x x ∀∈+∞,有1212|()()|4||f x f x x x -≥-,求实数a 的取值范围.3.已知函数2)1ln()(x x a x f -+=区间)1,0(内任取两个实数q p ,,且q p ≠时,若不等式1)1()1(>-+-+qp q f p f 恒成立,求实数a 的取值范围。
4.已知函数21()2ln (2),2f x x a x a x a R =-+-∈.是否存在实数a ,对任意的 ()12,0,x x ∈+∞,且21x x ≠,有2121()()f x f x a x x ->-,恒成立,若存在求出a 的取值范围,若不存在,说明理由.练习1:已知函数2()ln =+f x a x x ,若0>a ,且对任意的12,[1,]∈x x e ,都有121211|()()|||-<-f x f x x x ,求实数a 的取值范围.练习2.设函数()ln ,m f x x m R x =+∈.若对任意()()0,1f b f a b a b a->><-恒成立, 求m 的取值范围.5.已知函数()21()1ln ,12f x x ax a x a =-+-> (1)讨论函数的单调性(2)证明:若5a <,则对任意的()12,0,x x ∈+∞,且21x x ≠,有2121()()1f x f x x x ->--恒成立6.设函数()2mx f x e x mx =+-(1)证明:()f x 在(),0-∞单调递减,在()0,+∞单调递增;(2)若对于任意[]12,1,1x x ∈-,都有12|()()|e 1f x f x -≤-,求m 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数-双变量问题
1.构造函数利用单调性证明
2.任意性与存在性问题
3.整体换元—双变单
4.极值点偏移
5.赋值法
构造函数利用单调性证明
形式如:1212|()()|||f x f x m x x -≥-
方法:将相同变量移到一边,构造函数
1. 已知函数239()()(24
f x x x =++)对任意[]12,1,0x x ∈-,不等式12|()()|f x f x m -≤恒成立,试求m 的取值范围。
2.已知函数2()(1)ln 1f x a x ax =+++.设1a <-,如果对12,(0,)x x ∀∈+∞,有1212|()()|4||f x f x x x -≥-,求实数a 的取值范围.
3.已知函数2)1ln()(x x a x f -+=区间)1,0(内任取两个实数q p ,,且q p ≠时,若不等式
1)1()1(>-+-+q
p q f p f 恒成立,求实数a 的取值范围。
4.已知函数21()2ln (2),2
f x x a x a x a R =-+-∈.是否存在实数a ,对任意的 ()12,0,x x ∈+∞,且21x x ≠,有
2121()()f x f x a x x ->-,恒成立,若存在求出a 的取值范围,若不存在,说明理由.
练习1:已知函数2
()ln =+f x a x x ,若0>a ,且对任意的12,[1,]∈x x e ,都有121211|()()||
|-<-f x f x x x ,求实数a 的取值范围.
练习2.设函数.若对任意恒成立, 求的取值范围.
()ln ,m f x x m R x =+∈()()0,1f b f a b a b a
->><-m
5.已知函数()21()1ln ,12
f x x ax a x a =-+-> (1)讨论函数的单调性
(2)证明:若5a <,则对任意的()12,0,x x ∈+∞,且21x x ≠,有2121
()()1f x f x x x ->--恒
成立
6.设函数()2mx f x e x mx =+-
(1)证明:()f x 在(),0-∞单调递减,在()0,+∞单调递增;
(2)若对于任意[]12,1,1x x ∈-,都有12|()()|e 1f x f x -≤-,求m 的取值范围。
任意与存在性问题
1. 已知函数()2
a f x x x
=+,()ln g x x x =+,其中0a >. (1)若函数()x f y =在[]e ,1上的图像恒在()x g y =的上方,求实数a 的取值范围.
(2)若对任意的[]12,1x x e ∈,(e 为自然对数的底数)都有()1f x ≥()2g x 成立,
求实数a 的取值范围.
2.已知函数321()313f x x x x =+-+,
2()2g x x x a =-++ (1)讨论方程()f x k =(k 为常数)的实根的个数。
(2)若对任意
[]0,2x ∈,恒有()f x a ≥成立,求a 的取值范围。
(3)若对任意
[]0,2x ∈,恒有()()f x g x ≥成立,求a 的取值范围。
(4)若对任意
[]10,2x ∈,存在[]20,2x ∈,恒有()12()f x g x ≥成立,求a 的取值范围。
整体换元——双变单
1. 已知函数2()ln .f x ax x =+
(Ⅰ)求()f x 的单调区间;
(Ⅱ)当0a =时,设斜率为k 的直线与函数()y f x =相交于两点1122(,)(,)A x y B x y 、 21()x x >,求证:121x x k <
<.
练习1. 已知函数为常数其中且a a a x x g x x x f a ),1,0(log )(,22
1)(2≠>=-=,如果 )()()(x g x f x h +=在其定义域上是增函数,
且存在零点(的导函数). (I )求的值;
(II )设是函数()y g x =的图象上两点,
0()()()g n g m g x n m
-'=
-0(()()),:.g x g x m x n '<<为的导函数证明
()h x '()()h x h x '为a (,()),(,())()A m g m B n g n m n <
练习2. 已知函数21()ln 1,()2
a f x x ax g x x -=-+=,a R ∈; (1)已知2a <,()()()h x f x g x =+,求()h x 的单调区间;
(2)已知1a =,若1201x x <<<,211221()()()()f x f x f t x t x x x -'=
<<-,求证:122
x x t +<
练习3.已知函数(),x
f x e x R =∈,设a b <,比较()()2f a f b +与()()f b f a b a --的大小,并说明理由。
2. 已知函数()()x a x x f -+=ln 有且只有一个零点,其中a >0.
(Ⅰ)求a 的值;
(II )设,对任意,证明:不等式
恒成立.
3.已知2()2ln f x x x ax =-+在(0,)+∞内有两个零点12,x x ,求证:'12(
)02
x x f +<。
练习.已知函数f (x )=ln x -mx (m ∈R ),若函数f (x )有两个不同的零点x 1,x 2,求证:x 1x 2>e 2.
()()x x f x h +=()()2121,1,x x x x ≠+∞-∈()()121212
121+++--x x x x x h x h x x >
4.已知函数()()2
()ln 0f x x ax a => (1)若()2'f x x ≤对任意的0x >恒成立,求a 的取值范围
(2)当1a =时,设函数()g()f x x x =
,若12121,,1,1x x x x e ⎛⎫∈+< ⎪⎝⎭
,求证:()41212x x x x <+。
对称轴问题12x x +的证明
1.已知函数()x f x xe -=.
(1)求函数()f x 的单调区间和极值;
(2)已知函数()x g y =的图象与函数()y f x =的图象关于直线1x =对称.证明:当1x >时,()()f x g x >;
(3)如果21x x ≠,且()()12f x f x =,证明:122x x +>
2.已知函数()()
2ln 0,1x f x a x x a a a =+->≠
(1)求函数()f x 的单调区间; (2)1a >,证明:当()0,x ∈+∞时,()()f x f x >-
(3)若对任意21x x ≠,且当()()12f x f x =时,有120x x +<,求a 的取值范围.
练习. 已知函数()ln f x x x =.
(1)求函数()f x 的单调区间和极值;
(2) 如果21x x ≠,且()()12f x f x =,证明:122x x e
+>
赋值法
1. 已知函数()()()10r f x rx x r x =-+->,其中r 为有理数,且01r <<
(1)求()f x 的最小值;
(2)试用(1)的结果证明:若12120,0,,a a b b ≥≥为正有理数,若121b b +=,则12121122b b a a a b a b ≤+
(3)将(2)中的命题推广到一般形式,并用数学归纳法证明。
2. 已知函数()()()()ln ,ln 1ln ,0,1f x x g x x x λλλλ==+--∈;
(1)证明:()[1,),g 0x x ∈+∞≥恒成立
(2)若正数12,λλ满足121λλ+=,证明:对于任意正数12x x ≥,都有()()()11221122f x x f x f x λλλλ+≥+
(3)若正数123,,λλλ满足1231λλλ++=,试类比(2)的结论,写出一个正确的结论,并证明。