全国I卷2020高三最后一模数学(理)试题及答案

合集下载

2020届全国高考(ⅰ卷)高三新课标(一)卷数学(理)试题(解析版)

2020届全国高考(ⅰ卷)高三新课标(一)卷数学(理)试题(解析版)

2020届全国高考(ⅰ卷)高三新课标(一)卷数学(理)试题一、单选题1.已知集合{|12}A x x =-<,12{|log 1}B x x =>-,则A B =( )A .{|04}x x <<B .{|22}x x -<<C .{|02}x x <<D .{|13}x x <<【答案】C【解析】由题意得:{}|1x 3A x =-<<,{}|0x 2B x =<< ∴{}|02A B x x ⋂=<< 故选C2.以下判断正确的个数是( )①相关系数r ,||r 值越小,变量之间的相关性越强;②命题“存在x ∈R ,210x x +-<”的否定是“不存在x ∈R ,210x x +-≥”;③“p q ∨”为真是“p ⌝”为假的必要不充分条件;④若回归直线的斜率估计值是1.23,样本点的中心为(4,5),则回归直线方程是 1.230.08y x =+.A .4B .2C .3D .1【答案】B【解析】①相关系数r 值越小,变量之间的相关性越弱,故错误;②命题“存在x R ∈,210x x +-<”的否定是“任意x R ∈,210x x +-≥”,故错误;③“p q ∨”为真时,“p ⌝”为假不一定成立,故“p q ∨ q ”为真是“p ⌝”为假的不充分条件,“p ⌝”为假时,“p ”为真,“p q ∨”为真,故“p q ∨”为真是“p ⌝”为假的必要条件,故“p q ∨”为真是“p ⌝”为假的必要不充分条件,故正确;④若回归直线的斜率估计值是1.23,样本点的中心为()4,5,则5 1.2340.08a =-⨯=,则回归直线方程是 1.230.08y x =+,故正确;故选B.3.设,a b 是非零向量,则“存在实数λ,使得a b =λ”是“a b a b +=+”的 A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】由题意结合向量共线的性质分类讨论充分性和必要性是否成立即可. 【详解】存在实数λ,使得λab ,说明向量,a b 共线,当,a b 同向时,a b a b +=+成立, 当,a b 反向时,a b a b +=+不成立,所以,充分性不成立. 当a b a b +=+成立时,有,a b 同向,存在实数λ,使得λa b 成立,必要性成立,即“存在实数λ,使得λa b ”是“a b a b +=+”的必要而不充分条件.故选B . 【点睛】本题主要考查向量共线的充分条件与必要条件,向量的运算法则等知识,意在考查学生的转化能力和计算求解能力.4.已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z=-x+y 的取值范围是 A .(1-3,2) B .(0,2)C .(3-1,2)D .(0,1+3) 【答案】A【解析】试题分析:作出可行域如图中阴影部分所示,由题知C (13+,2),作出直线0l :0x y -+=,平移直线0l ,由图知,直线:l z x y =-+过C 时,min z =1-3,过B (0,2)时,max z =3-1=2,故z 的取值范围为(1-3,2),故选C.【考点】简单线性规划解法,数形结合思想5.在如图的程序框图中,()i f x '为()i f x 的导函数,若0()sin f x x =,则输出的结果是A .sin xB .cos xC .sin x -D .cos x -【答案】C【解析】∵()0sin f x x =, f 1(x )=cos x , f 2(x )=−sin x , f 3(x )=−cos x , f 4(x )=sin x , f 5(x )=cos x .∴题目中的函数为周期函数,且周期T =4, ∴f 2018(x )=f 2(x )= −sin x . 故选C.点睛:法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项. 6.使函数()3)cos(2)f x x x θθ=+++是偶函数,且在0,4⎡⎤⎢⎥⎣⎦π上是减函数的θ的一个值是( ) A .6π B .3πC .23π D .56π【解析】1())cos(2))cos(2))2sin(2)26f x x x x x x πθθθθθ=+++=+++=++,由于()f x 为偶函数,则(0)2sin()26f πθ=+=±,sin()1,662k πππθθπ+=±+=+,3k πθπ=+,当0k =时,3πθ=,()2sin(2)2sin(2)362f x x x πππ=++=+2cos2x =,当[0,]4x π∈时,2[0,]2x π∈,()2cos2f x x =为减函数,符合题意,所以选B.7.已知数列{}n a 的前n 项和为n S ,且满足1221,1n n a a S a +===-,则下列命题错误的是A .21n n n a a a ++=+B .13599100a a a a a ++++=C .2499a a a a +++=D .12398100100S S S S S ++++=-【答案】C【解析】21n n S a +=-,则111n n S a -+=-,两式相减得到A 正确;由A 选项得到13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=进而得到B 正确;同理可得到C 错误;由21n n S a +=-得到12398S S S S +++⋯+=123451002111......1a a a a a a +-+-+-+-++-=100100.S -进而D 正确.【详解】已知21n n S a +=-,则111n n S a -+=-,两式相减得到2121n n n n n n a a a a a a ++++=-⇒=+,故A 正确;根据A 选项得到13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=,故B正确;24698a a a a +++⋯+=2234569697a a a a a a a a ++++++⋯++=1234569697a a a a a a a a ++++++⋯++=97991S a =-,故C 不正确;根据2123981n n S a S S S S +=-+++⋯+=,123451002111......1a a a a a a +-+-+-+-++-= 100100.S -故D 正确. 故答案为C. 【点睛】这个题目考查了数列的应用,根据题干中所给的条件进行推广,属于中档题,这类题目不是常规的等差或者等比数列,要善于发现题干中所给的条件,应用选项中正确的结论进行其它条件的推广.8.某三棱锥的三视图如图所示,则下列说法中: ① 三棱锥的体积为16② 三棱锥的四个面全是直角三角形 ③ 三棱锥四个面的面积中最大的值是3 所有正确的说法是A .①B .①②C .②③D .①③【答案】D【解析】 由题意得,根据给定的三视图可知,该几何体表示底面是腰长为1的等腰直角三角形,高为1的三棱锥,即01,1,90,SA AB AC BAC SA ===∠=⊥平面ABC , 则三棱锥的体积为11111113326V Sh ==⨯⨯⨯⨯=,故①是正确的; 其中SBC ∆2的等边三角形,所以②不正确; 其中SBC ∆为面积最大的面,其面积为233(2)S =③是正确的, 故选D .9.如图阴影部分1C是曲线y x=与y x=所围成的封闭图形,A是两曲线在第一象限的交点,以原点O为圆心,OA为半径作圆,取圆的第一象限的扇形OCAB部分图形为2C,在2C内随机选取m个点,落在1C内的点有n个,则运用随机模拟的方法得到的π的近似值为()A.32nmB.3mnC.3nmD.23mn【答案】B【解析】分别求出1C的面积和2C的面积,利用几何概型,即可求出π的表达式.【详解】由题意联立y x=y x=得A(1,1),则OA2.所以2CS=214OAπ=2π,1CS=100xdx xdx-⎰=2132-=16,所以1211632CCSnm Sππ===,则π3mn=,故选B. 【点睛】本题考查了几何概型的知识,是基础题.10.已知双曲线22221(,0)x ya ba b-=>的左、右顶点分别为A,B,右焦点为F,过点F且垂直于x轴的直线l交双曲线于,M N两点,P为直线l上的一点,当APB△的外接圆面积达到最小值时,点P恰好在M(或N)处,则双曲线的离心率为()A2B3C.2 D5【答案】A【解析】设出点P的坐标,根据两角差的正切公式,结合基本不等式和正弦定理进行求解即可. 【详解】解:(,0)A a -,(,0)B a ,(c,0)F ,直线l 的方程为x c =, 设(,)P c m ,则,PA PB m m k k c a c a==+-, 22222tan 1m m a m ac a c a APB m m b m b m c a c a m-+-∴∠===+-⋅+++. 当且仅当2b m m+取得最小值时,即m b =时,tan APB ∠取得最大值,即APB ∠最大.根据正弦定理,此时APB ∆的外接圆半径达到最小值,即APB ∆的外接圆面积达到最小值.∴2b b a=,a b ∴=. 故选:A 【点睛】本题考查了双曲线的简单性质,不等式的性质,属于中档题. 11.已知函数21()ln (1)(0)2f x x ax a x a a =-+-+>的值域与函数()()f f x 的值域相同,则a 的取值范围为( ) A .(]0,1 B .()1,+∞C .40,3⎛⎤ ⎥⎝⎦D .4,3⎡⎫+∞⎪⎢⎣⎭【答案】D【解析】求导得到()f x 在(0,1)上递增,在(1,)+∞上递减,得到max 3()(1)12f x f a ==-,计算得到答案.【详解】1(1)(1)()1,1ax x f x ax a x x x+-'=-+-=>时,()0f x '<;01x <<,()0f x '>, ∴()f x 在(0,1)上递增,在(1,)+∞上递减,max 3()(1)12f x f a ==-,即()f x 的值域为3,12a ⎛⎤-∞- ⎥⎝⎦.令()f x t =,则3[()]()12y f f x f t ta ⎛⎫==- ⎪⎝⎭, ∵()f t 在(0,1)上递增,在(1,)+∞上递减,要使()y f t =的值域为3,12a ⎛⎤-∞- ⎥⎝⎦, 则3411,23a a -,∴a 的取值范围是4,3⎡⎫+∞⎪⎢⎣⎭, 故选:D . 【点睛】本题考查了根据函数值域求参数,意在考查学生的综合应用能力.12.将边长为5的菱形ABCD 沿对角线AC 折起,顶点B 移动至B '处,在以点B ',A ,C ,为顶点的四面体AB 'CD 中,棱AC 、B 'D 的中点分别为E 、F ,若AC =6,且四面体AB 'CD 的外接球球心落在四面体内部,则线段EF 长度的取值范围为( ) A .1423⎛⎫⎪⎪⎝, B .144⎛⎫⎪⎪⎝⎭, C .()323,D .()34,【答案】B【解析】由题意画出图形,可证AC ⊥平面B ′ED ,得到球心O 位于平面B ′ED 与平面ACF 的交线上,即直线EF 上,由勾股定理结合OA =OB ′,OE <EF ,EF <EB ′=4可得线段EF 长度的取值范围. 【详解】 如图所示:由已知可得,AC ⊥B ′E ,且AC ⊥DE , ∴AC ⊥平面B ′ED , ∵E 是AC 的中点,∴到点A 、C 的距离相等的点位于平面ACF 内,同理可知,到点B ′、D 的距离相等的点位于平面ACF 内, ∵球心O 到点A ,B ′,C ,D 的距离相等,∴球心O 位于平面B ′ED 与平面ACF 的交线上,即直线EF 上. ∴球心O 落在线段EF 上(不含端点E 、F ),显然EF ⊥B ′D ,由题意EA =3,EB ′=4,则OA 2=OE 2+9,且OB ′2=OF 2+FB ′2=OF 2+EB ′2﹣EF 2=(EF ﹣OE )2+16﹣EF 2=OE 2+16﹣2EF •OE . ∵OA =OB ′,∴OE 2+9=OE 2+16﹣2EF •OE ,则72OE EF=, 显然OE <EF ,∴72EF <EF ,即EF 2.又EF <EB ′=4,∴2EF <4. 故选:B . 【点睛】本题考查空间中点、线、面的位置关系以及距离计算,还考查了空间想象能力与转化思维能力,属难题.二、填空题13.已知()()421f x x =-,设()42340123421x a a x a x a x a x -=++++,则1234234a a a a +++=________.【答案】8【解析】把等式两边同时对x 求导数,再令1x = ,可得1234234a a a a +++的值. 【详解】解:已知()()421f x x =- ,设()42340123421x a a x a x a x a x -=++++ , 把等式两边同时对x 求导数,可得()32412348?21234x a a x a x a x -=+++ , 再令1x =,可得1234234=8a a a a +++, 故答案为8. 【点睛】本题主要考查求函数的导数,二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x 赋值,求展开式的系数和即可求出答案,属于基础题.14.已知A ,F ,P 分别为双曲线22221(0,0)x y a b a b-=>>的左顶点、右焦点以及右支上的动点,若2PFA PAF ∠=∠恒成立,则双曲线的离心率为__. 【答案】2.【解析】根据二倍角的正切公式和直线的斜率公式列恒等式,结合P 点在双曲线右支,化简得出a ,b ,c 的关系,从而得出双曲线的离心率. 【详解】解:(,0)A a -,(c,0)F ,设0(P x ,0)y ,00AP y k x a ∴=+,00FP y k x c=-, 2PFA PAF ∠=∠,tan AP k PAF =∠,tan FP k PFA =-∠,∴00002220000022()()()1y y x ay x a y x c y x a x a⨯++==--+-+, 222200000022222y x ax a x ax cx ac ∴---=+--, 即2220003(42)20y x a c x a ac ----+=,又0(P x ,0)y 在双曲线上,2222002b y x b a∴=-,222002(3)(42)20b x a c x ac c a ∴---+-=恒成立,∴2223042020b a a c ac c ⎧-=⎪⎪⎪-=⎨⎪-=⎪⎪⎩,2c a ∴=,即2e =. 故答案为:2. 【点睛】本题考查了双曲线的性质,直线的斜率,属于基础题目,15.已知数列{}n a 的前n 项和122n n n S a +=-,若不等式223(5)n n n a λ--<-,对n N +∀∈恒成立,则整数λ的最大值为______.【答案】4 【解析】【详解】当1n =时,21122S a =-,得14a =,当2n ≥时,122nn n S a -=-, 又122n n n S a +=-,两式相减得1222nn n n a a a -=--,得122nn n a a -=+,所以11122n n nn a a ---=. 又1122a =,所以数列2n n a ⎧⎫⎨⎬⎩⎭是以2为首项,1为公差的等差数列, 12n na n =+,即(1)2nna n =+⋅. 因为0n a >,所以不等式223(5)n n n a λ--<-,等价于2352nn λ-->. 记122311,,224n nn b b b -==-=, 2n ≥时,112121223462n n nnn b n n b n ++--==--. 所以3n ≥时,11,n nb b +< 综上,max 33()8n b b ==,所以33375,5888λλ-><-=,所以整数λ的最大值为4.【考点】1.数列的通项公式;2.解不等式.16.如图,在平面直角坐标系xOy 中,边长为2的正方形ABCD 沿x 轴滚动(无滑动滚动),点D 恰好经过坐标原点,设顶点(),B x y 的轨迹方程是()y f x =,则()19f =_____________.【答案】3【解析】根据正方形的运动,得到点(),B x y 的轨迹方程,然后根据函数的图象和性质分别进行判断即可. 【详解】由题意,当42x -≤<-时,顶点(),B x y 的轨迹是以点()2,0A -为圆心,以2为半径的14圆; 当22x -≤<时,顶点(),B x y 的轨迹是以点()0,0D 为圆心,以22为半径的14圆; 当24x ≤<时,顶点(),B x y 的轨迹是以点()2,0C 为圆心,以2为半径的14圆; 当46x ≤<,顶点(),B x y 的轨迹是以点()4,0A 为圆心,以2为半径的14圆, 与42x -≤<-的形状相同,因此函数()(y f x =的图象在[]4,4-恰好为一个周期的图象; 所以函数()y f x =的周期是8; ∴(19)(3)3f f ==,其图象如图:3【点睛】此题考查函数图象的变化,其中由已知画出正方形转动过程中的一个周期内的图象,利用数形结合的思想对本题进行分析是解本题的关键,属于较难题.三、解答题17.ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知12c =,b =O 为ABC ∆的外接圆的圆心.(1)若4cos 5A =,求ABC ∆的面积S ; (2)若D 为BC 边上任意一点,1124DO DA AB AC -=+,求sin B 的值.【答案】(1;(2【解析】(1)由4cos 5A =,得3sin 5A =,代入三角形面积公式求得ABC ∆的面积S ;(2)由1124DO DA AB AC -=+,利用余弦定理求出AO ,再由正弦定理求得sin B的值. 【详解】解:(1)由4cos 5A =,0A π<<,得3sin 5A =,∴113sin 12225S bc A ==⨯⨯=;(2)由1124DO DA AB AC -=+,所以1124AO AB AC =+, 于是11···24AO AO AB AO AC AO =+, 即211cos cos 24AO AB AO OAB AC AO OAC =∠+∠,① 又O 为ABC ∆的外接圆圆心,则1cos 2AO OAB AB ∠=,1cos 2AO OAC AC ∠=,②将(1)代入(2),得到2221111||14496484848AO AB AC =+=⨯+⨯=,所以43AO =由正弦定理得2sin b R B ==,得sin B =. 【点睛】本题考查平面向量的数量积运算,考查了平面向量基本定理及其意义,训练了正弦定理和余弦定理在求解三角形问题中的应用,属于中档题.18.图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B−CG−A 的大小.【答案】(1)见详解;(2) 30.【解析】(1)因为折纸和粘合不改变矩形ABED ,Rt ABC 和菱形BFGC 内部的夹角,所以//AD BE ,//BF CG 依然成立,又因E 和F 粘在一起,所以得证.因为AB 是平面BCGE 垂线,所以易证.(2)在图中找到B CG A --对应的平面角,再求此平面角即可.于是考虑B 关于GC 的垂线,发现此垂足与A 的连线也垂直于CG .按照此思路即证. 【详解】 (1)证://AD BE ,//BF CG ,又因为E 和F 粘在一起.∴//AD CG ,A ,C ,G ,D 四点共面.又,AB BE AB BC ⊥⊥.AB ∴⊥平面BCGE ,AB ⊂平面ABC ,∴平面ABC ⊥平面BCGE ,得证.(2)过B 作BH GC ⊥延长线于H ,连结AH ,因为AB ⊥平面BCGE ,所以AB GC ⊥ 而又BH GC ⊥,故GC ⊥平面HAB ,所以AH GC ⊥.又因为BH GC ⊥所以BHA ∠是二面角B CG A --的平面角,而在BHC △中90BHC ∠=,又因为60FBC ∠=故60BCH ∠=,所以sin 603BH BC ==.而在ABH 中90ABH ∠=,3tan 33AB BHA BH ∠===,即二面角B CG A --的度数为30.【点睛】很新颖的立体几何考题.首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的.再者粘合后的多面体不是直棱柱,建系的向量解法在本题中略显麻烦,突出考查几何方法.最后将求二面角转化为求二面角的平面角问题考查考生的空间想象能力. 19.已知函数()ln 1f x x x =++,()22g x x x =+.(Ⅰ)求函数()()y f x g x =-的极值;(Ⅱ)若实数m 为整数,且对任意的0x >时,都有()()0f x mg x -≤恒成立,求实数m 的最小值. 【答案】(Ⅰ)极大值为1ln 24-,无极小值;(Ⅱ)1. 【解析】(Ⅰ)由题意首先求得导函数的解析式,然后结合导函数的符号讨论原函数的单调性,从而可确定函数的极值;(Ⅱ)结合题意分离参数,然后构造新函数,研究构造的函数,结合零点存在定理找到隐零点的范围,最后利用函数值的范围即可确定整数m 的最小值. 【详解】(Ⅰ)设()()()2ln 1x f x g x x x x ϕ=-=--+,∴()()()211121x x x x x xϕ--+'=--=, 令()0x ϕ'>,则102x <<;()0x ϕ'<,则12x >;∴()x ϕ在10,2⎛⎫ ⎪⎝⎭上单调递增,1,2⎛⎫+∞⎪⎝⎭上单调递减, ∴()11=ln 224x ϕϕ⎛⎫=-⎪⎝⎭极大,无极小值.(Ⅱ)由()()0f x mg x -≤,即()2ln 120x x m x x ++-+≤在()0,∞+上恒成立,∴2ln 12x x m x x++≥+在()0,∞+上恒成立, 设()2ln 12x x h x x x ++=+,则()()()()2212ln 2x x x h x x x -++'=+, 显然10x +>,()2220x x+>设()()2ln t x x x =-+,则()210t x x ⎛⎫'=-+< ⎪⎝⎭,故()t x 在()0,∞+上单调递减 由()110t =-<,11112ln 2ln 202222t ⎛⎫⎛⎫=-+=->⎪ ⎪⎝⎭⎝⎭, 由零点定理得01,12x ⎛⎫∃∈⎪⎝⎭,使得()00t x =,即002ln 0x x += 且()00,x x ∈时,()0t x >,则()0h x '>,()0,x x ∈+∞时,()0t x <. 则()0h x '<∴()h x 在()00,x 上单调递增,在()0,x +∞上单调递减 ∴()()0002max 00ln 12x x h x h x x x ++==+, 又由002ln 0x x +=,01,12x ⎛⎫∈ ⎪⎝⎭,则()0002000ln 111,1222x x h x x x x ++⎛⎫==∈ ⎪+⎝⎭ ∴由()m h x ≥恒成立,且m 为整数,可得m 的最小值为1. 【点睛】本题主要考查导数研究函数的极值,导数研究函数的单调性,隐零点问题及其处理方法等知识,意在考查学生的转化能力和计算求解能力.20.已知点()10F -,,直线4l x P =-:,为平面内的动点,过点P 作直线l 的垂线,垂足为点M ,且11022PF PM PF PM ⎛⎫⎛⎫-⋅+= ⎪ ⎪⎝⎭⎝⎭. (1)求动点P 的轨迹C 的方程;(2)过点1F 作直线1l (与x 轴不重合)交C 轨迹于A ,B 两点,求三角形面积OAB 的取值范围.(O 为坐标原点)【答案】(1)22143x y +=;(2)3(0,]2 【解析】(1)处理向量等式,代入向量坐标,计算方程,即可.(2)分直线斜率是否存在考虑,设出直线l 的方程,代入椭圆方程,用m 表示三角形面积,换元,结合函数性质,计算范围,即可. 【详解】(1)设动点()P x y ,,则()4H y -, 由11022PF PM PF PM ⎛⎫⎛⎫-+= ⎪⎪⎝⎭⎝⎭2214PF PM ∴=即2214PF PM =()2221144x y x ∴++=+化简得22143x y +=(2)由(1)知轨迹C 的方程为22143x y +=,当直线1l 斜率不存在时31,2A ⎛⎫-- ⎪⎝⎭,31,2B ⎛⎫- ⎪⎝⎭1322DAB S AB OF ∆∴=⋅= 当直线1l 斜率存在时,设直线l 方程为1x my =- ()0m ≠,设()11,A x y ()22,B x y由221143x my x y =-⎧⎪⎨+=⎪⎩得()2234690m y my +--=.则21441440m ∆=+>,122634m y y m +=+,122934y y m -=+, 11212OAB S OF y y ∆=⋅- 112=⨯==令21(1)m t t +=>,则OAB S ∆===令()196f t t t =++,则()21'9f t t =-,当1t >时,()'0f t >,()196f t t t∴=++在()1,+∞上单调递增,()()116f t f ∴>=,32OAB S ∆∴<= 综上所述,三角形OAB 面积的取值范围是30,2⎛⎤ ⎥⎝⎦【点睛】本道题考查了曲线轨迹方程计算,考查了直线与椭圆位置关系,考查了函数的性质,属于综合性问题,难度偏难.21.某医药开发公司实验室有()*n n N∈瓶溶液,其中()m m N ∈瓶中有细菌R ,现需要把含有细菌R 的溶液检验出来,有如下两种方案: 方案一:逐瓶检验,则需检验n 次;方案二:混合检验,将n 瓶溶液分别取样,混合在一起检验,若检验结果不含有细菌R ,则n 瓶溶液全部不含有细菌R ;若检验结果含有细菌R ,就要对这n 瓶溶液再逐瓶检验,此时检验次数总共为1n +.(1)假设52n m ==,,采用方案一,求恰好检验3次就能确定哪两瓶溶液含有细菌R 的概率;(2)现对n 瓶溶液进行检验,已知每瓶溶液含有细菌R 的概率均为(01)P p ≤≤. 若采用方案一.需检验的总次数为ξ,若采用方案二.需检验的总次数为η. (i )若ξ与η的期望相等.试求P 关于n 的函数解析式()P f n =;(ii )若14P 1e -=-,且采用方案二总次数的期望小于采用方案一总次数的期望.求n 的最大值.参考数据:ln 20.69,ln3 1.10,ln5 1.61,ln 7 1.95≈≈≈=【答案】(1)310(2)(ⅰ)()1*11n P n n ⎛⎫=-∈ ⎪⎝⎭N (ii )8【解析】(1)对可能的情况分类:<1>前两次检验出一瓶含有细菌第三次也检验出一瓶含有细菌,<2>前三次都没有检验出来,最后就剩下两瓶含有细菌;(2)(i )根据()()E E ξη=,找到P 与n 的函数关系;(ii )根据()()E E ξη>得到关于n 的不等式式,构造函数解决问题. 【详解】解:(1)记所求事件为A ,“第三次含有细菌R 且前2次中有一次含有细菌R ”为事件B ,“前三次均不含有细菌R ”为事件C , 则A BC =,且,B C 互斥,所以111322333355113()()()51010A A A A P A PB PC A A =+=+=+= (2)()()i E n ξ=,η的取值为1,1n +,(1)(1),(1)1(1)n n P P P n P ηη==-=+=--,所以()(1)(1)1(1)1(1)n n nE P n P n n P η⎡⎤=-++--=+--⎣⎦, 由()()E E ξη=得1(1)nn n n P =+--,所以()1*11nP n n ⎛⎫=-∈ ⎪⎝⎭N ;(ii )141P e-=-,所以4()1n E n n eη-=+-⋅,所以4(1)nn n e n -+-⋅<,所以ln 0,4nn ->设()ln (0)4xf x x x =->, 114()44xf x x x-'=-=,当(0,4)x ∈时,()0,()f x f x '>在(0,4)上单调递增; 当(4,)x ∈+∞时,()0,()f x f x '<在(4,)+∞上单调递减 又9(8)ln820,(9)ln 904f f =->=-<, 所以n 的最大值为8 【点睛】本题考查离散型随机变量的均值以及随机事件的概率计算,难度较难.计算两个事件的和事件的概率,如果两个事件互斥,可将结果写成两个事件的概率之和;均值(或期望)的相关计算公式要熟记..22.以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为22cos2a ρθ=(a R ∈,a 为常数)),过点()2,1P 、倾斜角为30︒的直线l 的参数方程满足22x t =+,(t 为参数). (1)求曲线C 的普通方程和直线l 的参数方程;(2)若直线l 与曲线C 相交于A 、B 两点(点P 在A 、B 之间),且2PA PB ⋅=,求a 和PA PB -的值.【答案】(1)222x y a -=2(12x t t y ⎧=⎪⎪⎨⎪=+⎪⎩为参数); (2)2.【解析】(1)根据cos x ρθ=,sin y ρθ=,化曲线C 的极坐标方程为直角坐标方程,根据点斜式得直线l 的普通方程,代入2x =解得112y t =+,即得参数方程.(2)将直线参数方程代入曲线C 方程,根据参数几何意义得1212PA PB t t t t ⋅=⋅=⋅,解得a ,再根据1212PA PB t t t t -=-=+,利用韦达定理解得结果. 【详解】(1)由22cos2a ρθ=得()2222cos sin aρθθ-=,又cos x ρθ=,sin y ρθ=,得222x y a -=,∴C 的普通方程为222x y a -=, ∵过点()2,1P 、倾斜角为30︒的直线l的普通方程为)21y x =-+,由2x =+得112y t =+ ∴直线l的参数方程为212x t y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数);(2)将212x t y ⎧=+⎪⎪⎨⎪=+⎪⎩代入222x y a -=,得()()2221230t t a ++-=,依题意知()()2221830a ⎡⎤∆=-->⎣⎦则上方程的根1t 、2t 就是交点A 、B 对应的参数,∵()21223t t a ⋅=-,由参数t 的几何意义知1212PA PB t t t t ⋅=⋅=⋅,得122t t ⋅=,∵点P 在A 、B 之间,∴120t t ⋅<,∴122t t ⋅=-,即()2232a -=-,解得24a =(满足0∆>),∴2a =±,∵1212PA PB t t t t -=-=+,又()1221t t +=-,∴2PA PB -=.【点睛】本题考查直线的参数方程的标准形式的应用,考查基本分析应用求解能力,属基本题. 23.设函数f (x )=|2x ﹣1|+mx +2,m ∈R .(1)若m =1,解不等式f (x )<6;(2)若f (x )有最小值,且关于x 的方程2()1f x x x =-++有两个不等实根,求实数m 的取值范围.【答案】(1)5(3,)3-;(2)322m -≤<-【解析】(1)将1m =代入,分12x ≤及12x >解不等式即可; (2)由()f x 有最小值,可先得到m 的范围,并求得()f x 的最小值,要使方程()21f x x x =-++有两个不等实数根,则()y f x =与2()1g x x x =-++有两交点,数形结合,求得m 的取值范围.【详解】(1)当1m =时,()212f x x x =-++, 当12x ≤时,()1226f x x x =-++<,得3x >-,综合得132x ≤, 当12x >时,()2126f x x x =-++<,得53x <,综合得1523x <<, 综上,不等式的解集为5(3,)3-; (2)当12x ≤时,()122(2)3f x x mx m x =-++=-+, 当12x >时,()212(2)1f x x mx m x =-++=++,则1(2)3,2()1(2)1,2m x x f x m x x ⎧-+≤⎪⎪=⎨⎪++>⎪⎩,要使()f x 有最小值, 则2020m m -≤⎧⎨+≥⎩,解得22m -≤≤, 要使方程()21f x x x =-++有两个不等实数根, 则()y f x =与2()1g x x x =-++有两交点,易知当12x =时,()f x 有最小值122m +,()g x 有最大值54 作示意图如图所示:则122m +<54,得32m <-,综合得322m -≤<-. 【点睛】本题考查绝对值不等式的解法以及函数零点与方程根的关系,考查数形结合思想,属于中档题.。

2020年高考考试理科数学试卷 全国Ⅰ卷 (含答案)

2020年高考考试理科数学试卷 全国Ⅰ卷 (含答案)

2020年全国普通高等学校招生统一考试试卷 全国Ⅰ卷理科数学一、选择题1.若1i z =+,则22z z -=( ) A.0B.1C.2D.22.设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x ⋂=-≤≤,则a =( ) A.-4B.-2C.2D.43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )51-51- 51+51+4.已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A.2B.3C.6D.95.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据i i (,)(1,2,...,20)x y i =得到下面的散点图:由此散点图,在10C ︒至40C ︒之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( )A.y a bx =+B.2y a bx =+C.x y a be =+D.ln y a b x =+6.函数43()2f x x x =-的图像在点(1,(1))f 处的切线方程为( ) A.21y x =--B.21y x =-+C.23y x =-D.21y x =+7.设函数π()cos()6f x x ω=+在[]π,π-的图像大致如下图,则()f x 的最小正周期为( )A.10π9B.7π6C.4π3D.3π28.25()()y x x y x++的展开式中33x y 的系数为( )A. 5B. 10C. 15D. 209.已知(0,)α∈π,且3cos28cos 5αα-=,则sin α=( )B.23 C.1310.已知,,A B C 为球O 的球面上的三个点,1O 为ABC 的外接圆,若1O 的面积为14π,AB BC AC OO ===,则球O 的表面积为( )A.64πB.48πC.36πD.32π11.已知22:2220M x y x y +---=,直线:220l xy,P 为l 上的动点,过点P 作M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( ) A.210x y --=B.210x y +-=C.210x y -+=D.210x y ++=12.若242log 42log a b a b +=+,则( ) A.2a b > B.2a b < C.2a b > D.2a b <二、填空题13.若,x y 满足约束条件220,10,10,x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩则7z x y =+的最大值为____________.14.设,a b 为单位向量,且||1+=a b ,则||-=a b ___________.15.已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________.16.如图,在三棱锥–P ABC 的平面展开图中,1AC =,AB AD =AB AC ⊥,AB AD ⊥,30CAE ∠=︒,则cos FCB ∠=______________.三、解答题17.设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.18.如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC 是底面的内接正三角形,P 为DO 上一点,6PO DO =.(1)证明:PA ⊥平面PBC ;(2)求二面角B PC E --的余弦值.19.甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12. (1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.20.已知,A B 分别为椭圆()222:11x E y a a+=>的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线6x =上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程; (2)证明:直线CD 过定点. 21.已知函数2()e x f x ax x =+-. (1)当1a =时,讨论()f x 的单调性; (2)当0x ≥时,()3112f x x ≥+,求a 的取值范围. 22.在直角坐标系xOy 中,曲线1C 的参数方程为cos ,sin k kx t y t⎧=⎪⎨=⎪⎩(t为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=.(1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标. 23.已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集.参考答案1.答案:D2.答案:B3.答案:C解析:如图,设正四棱锥的高为h,底面边长为a,侧面三角形底边上的高为'h,则依题意有:222212'()2'h ahah h⎧=⎪⎪⎨⎪=-⎪⎩,因此有221'()22'ah ah-=,化简得2'4()2()1'h ha a--=,解得5'1ha+=.4.答案:C解析:设点A的坐标为()x y,,由点A到y轴的距离为9可得9x=,由点A到C的焦点的距离为12,可得122px+=,解得6p=.5.答案:D解析:用光滑的曲线把图中各点连接起来,由图像的大致走向判断,此函数应该是对数函数类型的,故应该选用的函数模型为lny a b x=+.6.答案:B解析:先求函数的导函数32()46'f x x x=-,则由导数的几何意义知在点(1,(1))f处的切线的斜率为(1)'2k f ==-,又因为(1)1f =-,由直线方程的点斜式得切线方程为:(1)2(1)y x --=--,化简得21y x =-+.7.答案:C解析:由图知4π4ππ()cos()0996f ω-=-+=,所以4ππππ()962k k ω-+=+∈Z ,化简得39()4kk ω+=-∈Z ,又因为2π2T T <<,即2π4π2π||||ωω<<,所以1||2ω<<,当且仅当1k =-时1||2ω<<,所以32ω=,最小正周期2π4π||3T ω==.故选C. 8.答案:C解析:5()x y +的通项公式为55(012345)r r r C x y r -=,,,,,,所以1r =时,21433555y C x y x y r x==,,时32333510xC x y x y =,所以33x y 的系数为15. 9.答案:A解析:原式化简得23cos 4cos 40αα--=,解得2cos 3α=-,或2(舍),又(0,π)α∈,所以sin α=10.答案:A解析:设1,AB a O =的半径为r ,球O 的半径为R ,所以2π4πr =,所以2r =,而1r O A ==,所以222114a R OO O A ==+=,所以球O 的表面积为24π64πR =,故选A. 11.答案:D解析:22:(1)(1)4M x y -+-=,因为1||||2||||2||2PAMB PAMS PM AB S PA AM PA =====所以||||PM AB ·最小,即||PM 最小,此时PM 与直线l 垂直,1122PM y x =+:, 直线PM 与直线l 的交点(10)P -,,过直线外一点P 作M 的切线所得切点弦所在直线方程为:210x y ++=,所以选D. 12.答案:B 13.答案:114.15.答案:2 16.答案:14-17.答案:(1)2q =-;(2)1(31)(2)99nn n S +-=-.解析:(1)设{}n a 的公比为q ,由题设得1232a a a =+,即21112a a q a q =+. 所以220q q +-=,解得1q =(舍去),2q =-. 故{}n a 的公比为2-. (2)记n S 为{}n na 的前n 项和.由(1)及题设可得,1(2)n n a -=-.所以112(2)(2)n n S n -=+⨯-++⨯-,21222(2)(1)(2)(2)n n n S n n --=-+⨯-++-⨯-+⨯-.可得2131(2)(2)(2)(2)n n n S n -=+-+-++--⨯-1(2)(2)3n n n --=-⨯-.所以1(31)(2)99nn n S +-=-.18.答案:(1)见解析;(2)25. 解析:(1)设DO a =,由题设可得63,,PO a AO a AB a ===, 2PA PB PC a ===. 因此222PA PB AB +=,从而PA PB ⊥. 又222PA PC AC +=,故PA PC ⊥. 所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得1(0,1,0),(0,1,0),,0,22E A C P ⎛⎫⎛- ⎪ ⎪ ⎝⎭⎝⎭.所以31,,0,0,2EC EP ⎛⎫⎛=--=- ⎪ ⎪ ⎝⎭⎝⎭. 设(,,)x y z =m 是平面PCE 的法向量,则 0,0,EP EC ⎧⋅=⎪⎨⋅=⎪⎩m m即0,210.2y y ⎧-+=⎪⎪⎨⎪-=⎪⎩可取⎛= ⎝m . 由(1)知AP ⎛= ⎝⎭是平面PCB 的一个法向量,记AP =n ,则cos ,||||⋅==⋅n m n m n m 所以二面角B PC E --. 19.答案:(1)116;(2)34;(3)716. 解析:(1)甲连胜四场的概率为116. (2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛. 比赛四场结束,共有三种情况: 甲连胜四场的概率为116;乙连胜四场的概率为116; 丙上场后连胜三场的概率为18.所以需要进行第五场比赛的概率为11131161684---=. (3)丙最终获胜,有两种情况:比赛四场结束且丙最终获胜的概率为18;比赛五场结束且丙最终获胜,则从第二场开始的四场比赛按照丙的胜、负、轮空结果有三种情况:胜胜负胜,胜负空胜,负空胜胜,概率分别为111,,1688. 因此丙最终获胜的概率为111178168816+++=.20.答案:(1)2219x y +=;(2)见解析.解析:(1)由题设得(,0),(,0),(0,1)A a B a G -.则(1)(1)AG a GB a ==-,,,.由8AG GB ⋅=得218a -=,即3a =. 所以E 的方程为2219x y +=.(2)设()()1122,,,,(6,)C x y D x y P t .若0t ≠,设直线CD 的方程为x my n =+,由题意可知33n -<<. 由于直线PA 的方程为(3)9t y x =+,所以()1139ty x =+.直线PB 的方程为(3)3t y x =-,所以()2233ty x =-.可得()()1221333y x y x -=+.由于222219x y +=,故()()2222339x x y +-=-,可得()()12122733y y x x =-++,即 ()()22121227(3)(3)0m y ym n y y n ++++++=.①将x my n =+代入2219x y +=得()2229290my mny n +++-=.所以212122229,99mn n y y y y m m -+=-=++. 代入①式得()()()22222792(3)(3)90m n m n mn n m +--++++=. 解得3n =-(舍去),32n =. 故直线CD 的方程为32x my =+,即直线CD 过定点3,02⎛⎫ ⎪⎝⎭. 若0t =,则直线CD 的方程为0y =,过点3,02⎛⎫⎪⎝⎭.综上,直线CD 过定点3,02⎛⎫⎪⎝⎭.21.答案:(1)见解析;(2)27e ,4⎡⎫-+∞⎪⎢⎣⎭. 解析:(1)当1a =时,2()e x f x x x =+-,)e (1'2x f x x =+-.故当(,0)x ∈-∞时,)'(0f x <;当(0,)x ∈+∞时,)'(0f x >.所以()f x 在(,0)-∞上单调递减,在(0,)+∞单调递增. (2)31()12f x x ≥+等价于3211e 12x x ax x -⎛⎫-++≤ ⎪⎝⎭. 设函数321()1e (0)2x g x x ax x x -⎛⎫=-++≥ ⎪⎝⎭,则32213()121'e 22x g x x ax x x ax -⎛⎫=--++-+- ⎪⎝⎭21(23)42e 2x x x a x a -⎡⎤=--+++⎣⎦ 1(21)(2)e 2x x x a x -=----.(i)若210a +≤,即12a ≤-,则当(0,2)x ∈时,)'(0g x >.所以()g x 在(0,2)单调递增,而(0)1g =,故当(0,2)x ∈时,()1g x >,不合题意.(ii)若0212a <+<,即1122a -<<,则当(0,21)(2,)x a ∈+⋃+∞时,)'(0g x <;当(21,2)x a ∈+时,)'(0g x >.所以()g x 在(0,21),(2,)a ++∞单调递减,在(21,2)a +单调递增.由于(0)1g =,所以()1g x ≤当且仅当2(2)(74)e 1g a -=-≤,即27e 4a -≥.所以当27e 142a -≤<时,()1g x ≤.(iii)若212a +≥,即12a ≥,则31()1e 2x g x x x -⎛⎫≤++ ⎪⎝⎭.由于27e 10,42⎡⎫-∈⎪⎢⎣⎭,故由()ii 可得311e 12x x x -⎛⎫++ ⎪⎝≤⎭. 故当12a ≥时,()1g x ≤.综上,a 的取值范围为27e [,)4-+∞.22.答案:(1)曲线1C 是圆心为坐标原点,半径为1的圆;(2)11,44⎛⎫⎪⎝⎭.解析:(1)当1k =时,1cos ,:sin ,x t C y t =⎧⎨=⎩消去参数t 得221x y +=,故曲线1C 是圆心为坐标原点,半径为1的圆.(2)当4k =时,414cos ,:sin ,x t C y t ⎧=⎨=⎩消去参数t 得1C 的直角坐标方程为1x y +=, 2C 的直角坐标方程为41630x y -+=.由1,41630x y x y ⎧+=⎪⎨-+=⎪⎩解得1,41.4x y ⎧=⎪⎪⎨⎪=⎪⎩故1C 与2C 的公共点的直角坐标为11()44,.23.答案:(1)见解析;(2)7,6⎛⎫-∞- ⎪⎝⎭.解析:(1)由题设知13(),31()51(1)33(1).x x f x x x x x ⎧--≤-⎪⎪⎪=--<≤⎨⎪+>⎪⎪⎩,,,,()y f x =的图像如图所示.(2) 函数()y f x =的图像向左平移1个单位长度后得到函数(1)y f x =+的图像.()y f x =的图像与(1)y f x =+的图像的交点坐标为711,66⎛⎫-- ⎪⎝⎭.由图像可知当且仅当76x <-时,()y f x =的图像在()1y f x =+的图像上方.故不等式()()1f x f x >+的解集为7,6⎛⎫-∞- ⎪⎝⎭.。

2020年全国卷Ⅰ理科数学含答案2020 数学 理科

2020年全国卷Ⅰ理科数学含答案2020 数学 理科

2020年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。

1.若z=1+i,则|z2–2z|=A.0 B.1 C.2D.22.设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=A.–4 B.–2 C.2 D.43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A 51-B51-C51+D51+4.已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p= A.2 B.3 C.6 D.95.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i ix y i=得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A .y a bx =+B .2y a bx =+C .e x y a b =+D .ln y a b x =+6.函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为A .21y x =--B .21y x =-+C .23y x =-D .21y x =+ 7.设函数()cos π()6f x x ω=+在[]π,π-的图像大致如下图,则f (x )的最小正周期为A .10π9 B .7π6 C .4π3 D .3π28.25()()x x y xy ++的展开式中x 3y 3的系数为 A .5 B .10 C .15 D .20 9.已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=AB .23C .13D10.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π11.已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=12.若242log 42log a ba b +=+,则A .2a b >B .2a b <C .2a b >D .2a b <二、填空题:本题共4小题,每小题5分,共20分。

2020年高考全国I卷理科数学试题(含解析)

2020年高考全国I卷理科数学试题(含解析)

6)
在[ ,
] 的图像大致如下图,则
f
( x)
的最小正周期为(

A.
10 9
C. 4 3
B.
7 6
D.
3 2
答案:C
解析:∵ cos(
4 9
6
)
0 ,∴
4
9
6
2k
2
(k
Z)


9k 2
3 2
,根据图像可知
2 | |
4 9
13 9

2 | |
,∴
18 13
|
|
2,
2 2 4
故取 k 0,则
()
A. y 2x 1
B. y 2x 1
C. y 2x 3
D. y 2x 1
答案:B
解答:由题可得 f (1) 1, f (x) 4x3 6x2 ,则 f (1) 2 ,
∴在点 (1, f (1))处的切线方程为 y 2(x 1) ,即 y 2x 1.
7.设函数
f
( x)
cos(x
底面正方形的边长的比值为
()
A. 5 1 4
B. 5 1 2
51
C.
4
答案:C
D. 5+1 2
1 2
ah ,
解答:设四棱锥的底面边长为a ,侧面三角形的高为h ,四棱锥的高为h,则有 h2
又 h
h2 ,(又12aha)2,0联,所立以两 式 可 得 (h)2
1 4
a2
1 2
ah
(
h )2 a
1 2
由圆 O 的面积为 4 1
,∴
OA 1

2020届普通高中教育教学质量监测考试全国i卷数学(理)(解析版)

2020届普通高中教育教学质量监测考试全国i卷数学(理)(解析版)
本题考查充分与必要条件;解题的关键是构造函数 ,利用函数的单调性进行判断;属于中档题.
4.已知函数 满足 ,则 ()
A.-1B.2C.1D.
【答案】D
【解析】由已知得出递推式: ,连续利用递推关系可得函数是周期函数且周期为6,这样利用周期性和递推关系可求得 和 .
【详解】
, , ,
所以 的周期为6, ,
A. B. C. D.
【答案】B
【解析】由若 知 的图象关于原点对称,从而它是奇函数, 是增函数,则 是减函数,利用奇函数变形不等式为 ,再由减函数得解.
【详解】
由题意知 为 上奇函数且为减函数,不等式 等价于 ,即 ,故 ,解得 .
故选:B.
【点睛】
本题考查函数的单调性与奇偶性,由函数 的定义与 的性质可得 的性质,从而可求解函数不等式.本题关键是确定 的性质.
,所以 .
故选:D.
【点睛】
本题考查函数的周期性,确定函数的周期是解题关键.在已知 或 等关系时,可得函数是周期函数,且 是其一个周期.
5.如图,在正方体 中,点M为 中点,则异面直线AM与 所成角的余弦值为()
A. B. C. D.
【答案】A
【解析】取AD的中点N,连结CN, ,易知 ,故 (或其补角)即为异面直线AM与 所成的角.在三角形中计算即可.
9.已知角 满足 ,若 ,则实数 的值为()
A.2B.3C.4D.6
【答案】A
【解析】利用两角和的正弦公式及二倍角公式展开化简,然后弦化切即可求解.
【详解】
由 可得, ,
两边同时除以 得 ,
即 ,所以 ,
由正余弦的二倍角公式可得, , ,
所以 ,等式右边的式子分子分母同除 可得,

2020年全国I卷理科数学高考试题及答案(word版)

2020年全国I卷理科数学高考试题及答案(word版)

2020年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若z=1+i,则|z2−2z|=A.0B.1C.√2D.22.设集合A={x|x2−4≤0},B={x|2x+a≤0},且A∩B={x|−2≤x≤1},则a=A.-4B.-2C.2D.43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A.√5−14B.√5−12C.√5+14D.√5+124.已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=A.2B.3C.6D.95.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i,y i)(i=1,2,...,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是A.y=a+bxB.y=a+bx2C.y=a+be xD.y=a+b ln x6.函数f(x)=x4−2x3的图像在点(1,f(1))处的切线方程为A.y=−2x−1B.y=−2x+1C.y=2x−3D.y=2x+1)在[−π,π]的图像大致如下图,则f(x)的最小正周期为7.设函数f(x)=cos(ωx+π6A.10π9B.7π6C.4π3D.3π2 8.(x +y 2x )(x +y)5的展开式中x 3y 3的系数为A.5B.10C.15D.209.已知α∈(0,π),且3cos 2α−8cos α=5,则sin α=A.√53B.23C.13D.√5910.已知A,B,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆,若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为A.64πB.48πC.36πD.32π11.已知⊙M:x 2+y 2−2x −2y −2=0,直线l:2x +y =0,p 为l 上的动点.过点p 作⊙M 的切线PA ,PB ,切点为A,B ,当|PM ||AB |最小时,直线AB 的方程为A.2x −y −1=0B.2x +y −1=0C.2x −y +1=0D.2x +y +1=012.若2a +log 2a =4b +2log 4b 则A. a >2bB.a <2bC. a >b 2D. a <b 2二、填空题:本题共4小题,每小题5分,共20分.13.若x,y 满足约束条件{2x +y −2≤0,x −y −1≥0,y +1≥0,则z =x +7y 的最大值为 114.设a,b 为单位向量,且|a +b |=1,则|a −b |= √315.已知F 为双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的右焦点,A 为C 的右顶点,B 为C 上的点,且BF垂直于x 轴,若AB 的斜率为3,则C 的离心率为____2____16.如图,在三棱锥P −ABC 的平面展开图中,AC =1,AB =AD =√3,AB ⊥AC ,AB ⊥AD ,∠CAE =30∘,则cos ∠FCB =___−14___三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题,共60分.17.(12分)设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项.(1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和.(1)q =−2;(2)S n =19−3n+19∙(−2)n . 18.(12分)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE=AD,ΔABC 是底面的内接正三角形,P 为DO 上一点,PO =√66DO . (1)证明:P A⊥平面PBC ;(2)求二面角B-PC-E 的余弦值.(1){PA ⊥PC(勾股定理)PA ⊥PB(勾股定理)PB ∩PC =P⇒PA ⊥平面PBC(2)2√55(建立空间直角坐标系) 19.(12分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一轮轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12. (1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.(1)116; (2) 34; (3) 38.20.(12分)已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a >1)的左、右顶点,G 为E 上顶点,AG ⃗⃗⃗⃗⃗ ⋅GB⃗⃗⃗⃗⃗ =8.P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程(2)证明:直线CD 过定点(1)x 29+y 2=1;(2)(32,0)21.(12分)已知函数f (x )=e x +ax 2−x .(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.(1)增区间为(0,+∞),减区间为(−∞,0);(2)[7−e 24,+∞)(二)选考题:共10分,请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 1的参数方程为{x =cos k t ,y =sin k t(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为4ρcos θ−16ρsin θ+3=0.(1)当k =1时,C 1是什么曲线?(2)当k =4时,求C 1与C 2的公共点的直角坐标.(1)以原点为圆心,1为半径的圆;(2)(14,14)23.[选修4—5:不等式选讲](10分)已知函数f(x)=|3x +1|−2|x -1|.(1)画出y =f (x )的图像;(2)求不等式f (x )>f(x +1)的解集. (1)(2){x|x <−76}。

全国I卷2020高三最后一模数学(理)试题及答案

全国I卷2020高三最后一模数学(理)试题及答案

全国I卷2020高三最后一模数学(理)试题及答案work Information Technology Company.2020YEAR2020年高考理科数学押题密卷(全国新课标I卷)说明:一、本试卷分为第Ⅰ卷和第Ⅱ卷.第Ⅰ卷为选择题;第Ⅱ卷为非选择题,分为必考和选考两部分.二、答题前请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.三、做选择题时,每小题选出答案后,用铅笔把答题卡上对应题目的标号涂黑.如需改动,用橡皮将答案擦干净后,再涂其他答案.四、考试结束后,将本试卷与原答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求.(1)已知集合A={ (x,y)|x,y为实数,且x2+y2=4},集合B={(x,y) |x,y为实数,且y=x-2},则A ∩ B的元素个数为()(A)0 (B)1(C)2 (D)3(2)复数z=1-3i1+2i,则(A)|z|=2 (B)z的实部为1(C)z的虚部为-i (D)z的共轭复数为-1+i(3)已知随机变量X服从正态分布N(1,σ2),若P(X≤2)=0.72,则P(X≤0)=(A)0.22 (B)0.28(C)0.36 (D)0.64(4)执行右面的程序框图,若输出的k=2,则输入x的取值范围是(A)(21,41) (B)[21,41](C)(21,41] (D)[21,41)(5)已知等比数列{a n }的前n 项和为S n , a 1+a 3= 5 2,且a 2+a 4= 5 4,则S na n =(A )4n -1 (B )4n -1 (C )2n -1(D )2n -1(6)过双曲线x 2a 2-y 2b2=1的一个焦点F 作一条渐近线的垂线,若垂足恰在线段OF(O 为原点)的垂直平分线上,则双曲线的离心率为 (A ) 2(B )2(C ) 5(D ) 3(7)已知函数f (x)=cos (2x +π 3),g (x)=sin (2x +2π3),将f (x)的图象经过下列哪种变换可以与g (x)的图象重合(A )向左平移 π12(B )向右平移π12(C )向左平移π 6 (D )向右平移 π6(8)某几何体的三视图如图所示,则该几何体的体积为 (A )1136(B ) 3 (C )533(D )433(9)已知向量a=(1, 2),b=(2,3)若(c+a )∥b ,c⊥(b+a ),则c=(A )( 79 , 73 ) (B )( 73,79) (C )( 73 , 79 ) (D )(- 79 ,- 73)(10)4名研究生到三家单位应聘,每名研究生至多被一家单位录用,则每家单位至少录用一名研究生的情况有 (A )24种 (B )36种 (C )48种(D )60种(11)函数,其图像的对称中心是俯视图正视图(A)(-1,1)(B)(1,-1)(C)(0,1)(D)(0,-1)(12)关于曲线C:x 12+y12=1,给出下列四个命题:①曲线C有且仅有一条对称轴;②曲线C的长度l满足l>2;③曲线C上的点到原点距离的最小值为24;④曲线C与两坐标轴所围成图形的面积是 1 6上述命题中,真命题的个数是(A)4 (B)3(C)2 (D)1第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中横线上.(13)在(1+x2)(1- 2x)5的展开式中,常数项为__________.(14)四棱锥P-ABCD的底面是边长为42的正方形,侧棱长都等于45,则经过该棱锥五个顶点的球面面积为_________.(15)点P在△ABC内部(包含边界),|AC|=3,|AB|=4,|BC|=5,点P到三边的距离分别是d1, d2,d 3 ,则d1+d2+d3的取值范围是_________.(16)△ABC的顶点A在y2=4x上,B,C两点在直线x-2y+5=0上,若|-AC |=2 5 ,则△ABC面积的最小值为_____.三、解答题:本大题共70分,其中(17)—(21)题为必考题,(22),(23),(24)题为选考题.解答应写出文字说明、证明过程或演算步骤.(17)(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,且a≥b,sin A+3cos A=2sin B.(Ⅰ)求角C的大小;(Ⅱ)求a+bc的最大值.(18)(本小题满分12分)某篮球队甲、乙两名队员在本赛季已结束的8场比赛中得分统计的茎叶图如下:(Ⅰ)比较这两名队员在比赛中得分的均值和方差的大小;(Ⅱ)以上述数据统计甲、乙两名队员得分超过..15分的频率作为概率,假设甲、乙两名队员在同一场比赛中得分多少互不影响,预测在本赛季剩余的2场比赛中甲、乙两名队员得分均超过...15分次数X的分布列和均值.(19)(本小题满分12分)如图,三棱柱ABC-A1B1C1的侧面ABB1A1为正方形,侧面BB1C1C为菱形,∠CBB1=60 ,AB⊥B1C.(Ⅰ)求证:平面ABB1A1⊥BB1C1C;(Ⅱ)求二面角B-AC-A1的余弦值.BCB1BAC1A1A(20)(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点M (-2,-1),离心率为22.过点M 作倾斜角互补的两条直线分别与椭圆C 交于异于M 的另外两点P 、Q . (Ⅰ)求椭圆C 的方程;(Ⅱ)证明:直线PQ 的斜率为定值,并求这个定值; (Ⅲ)∠PMQ 能否为直角?证明你的结论.(21)(本小题满分12分)已知函数 x 轴是函数图象的一条切线.(Ⅰ)求a ; (Ⅱ)已知;(Ⅲ)已知:请考生在第(22),(23),(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑. (22)(本小题满分10分)选修4-1:几何证明选讲 如图所示,AC 为⊙O 的直径,D 为BC ︵的中点,E 为BC 的中点.(Ⅰ)求证:DE∥AB ;(Ⅱ)求证:AC ·BC =2AD·CD .(23)(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系Ox 中,直线C 1的极坐标方程为ρsi n θ=2,M 是C 1上任意一点,点P 在射线OM 上,且满足|OP|·|OM|=4,记点P 的轨迹为C 2. (Ⅰ)求曲线C 2的极坐标方程;(Ⅱ)求曲线C 2上的点到直线ρcos (θ+4)=2距离的最大值.(24)(本小题满分10分)选修4-5:不等式选讲设f (x)=|x -3|+|x -4|. (Ⅰ)解不等式f (x)≤2;(Ⅱ)若存在实数x满足f(x)≤ax-1,试求实数a的取值范围.2020年高考理科数学押题密卷(全国新课标I卷)一、选择题:CDBCD ABCDD BA二、填空题:(13)41;(14)100π;(15)[ 125,4];(16)1.三、解答题:(17)解:(Ⅰ)sin A+3cos A=2sin B即2sin(A+π3)=2sin B,则sin(A+π3)=sin B.…3分因为0<A,B<π,又a≥b进而A≥B,所以A+π3=π-B,故A+B=2π3,C=π3.……………………………6分(Ⅱ)由正弦定理及(Ⅰ)得a+b c =sin A+sin Bsin C=23[sin A+sin(A+π3)]=3sin A+cos A=2sin(A+π6).…10分当A=π3时,a+bc取最大值2.……………………………12分(18)解:(Ⅰ)x-甲= 18(7+9+11+13+13+16+23+28)=15,x-乙= 18(7+8+10+15+17+19+21+23)=15,s2甲= 18[(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75,s2乙= 18[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25.甲、乙两名队员的得分均值相等;甲的方差较大(乙的方差较小).…4分(Ⅱ)根据统计结果,在一场比赛中,甲、乙得分超过15分的概率分别为p 1= 3 8,p 2= 1 2,两人得分均超过15分的概率分别为p 1p 2=316, 依题意,X ~B (2,316),P (X =k)=C k 2(316)k(1316)2-k ,k =0,1,2, …7分X 的分布列为…10分 X 的均值E (X)=2×316=8.……………………………12分(19)解:(Ⅰ)由侧面ABB 1A 1为正方形,知AB⊥BB 1.又AB⊥B 1C ,BB 1∩B 1C =B 1,所以AB⊥平面BB 1C 1C ,又AB ⊂平面ABB 1A 1,所以平面ABB 1A 1⊥BB 1C 1C .…………………………4分(Ⅱ)建立如图所示的坐标系O-xyz .其中O 是BB 1的中点,Ox∥AB ,OB 1为y 轴,OC 为z 轴.设AB =2,则A (2,-1,0),B (0,-1,0),C (0,0,3),A 1(2,1,0). AB →=(-2,0,0),AC →=(-2,1,3),AA 1→=(0,2,0).…6分设n 1=(x 1,y 1,z 1)为面ABC 的法向量,则n 1·AB →=0,n 1·AC →=0, 即⎩⎨⎧-2x 1=0,-2x 1+y 1+3z 1=0.取z 1=-1,得n 1=(0,3,-1).…8分设n 2=(x 2,y 2,z 2)为面ACA 1的法向量,则n 2·AA 1→=0,n 2·AC →=0, 即⎩⎨⎧2y 2=0,-2x 2+y 2+3z 2=0.取x 2=3,得n 2=(3,0,2).…………………10分所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-77.因此二面角B-AC-A 1的余弦值为-77.……………………………12分 (20)解:(Ⅰ)由题设,得4a 2+1b2=1,①且a 2-b 2a =22,②由①、②解得a 2=6,b 2=3,椭圆C 的方程为x 26+y 23=1. …………………………………………………3分(Ⅱ)记P (x 1,y 1)、Q (x 2,y 2).设直线MP 的方程为y +1=k(x +2),与椭圆C 的方程联立,得 (1+2k 2)x 2+(8k 2-4k)x +8k 2-8k -4=0,-2,x 1是该方程的两根,则-2x 1=8k 2-8k -41+2k 2,x 1=-4k 2+4k +21+2k 2.设直线MQ 的方程为y +1=-k(x +2),同理得x 2=-4k 2-4k +21+2k 2. (6)分因y 1+1=k(x 1+2),y 2+1=-k(x 2+2),故k PQ =y 1-y 2x 1-x 2=k(x 1+2)+k(x 2+2)x 1-x 2=k(x 1+x 2+4)x 1-x 2=8k1+2k28k1+2k 2=1,因此直线PQ 的斜率为定值. ……………………………………………………9分(Ⅲ)设直线MP 的斜率为k ,则直线MQ 的斜率为-k , 假设∠PMQ 为直角,则k·(-k)=-1,k =±1. 若k =1,则直线MQ 方程y +1=-(x +2), 与椭圆C 方程联立,得x 2+4x +4=0,该方程有两个相等的实数根-2,不合题意; 同理,若k =-1也不合题意. 故∠PMQ 不可能为直角.…………………………………………………………12分(21)解:(Ⅰ)f '(x) =当x∈(0,a)时,f '(x)<0,f (x)单调递减, 当x∈(a ,+∞)时,f '(x)>0,f (x)单调递增. ∵ x 轴是函数图象的一条切线,∴切点为(a ,0).f (a)=lna +1=0,可知a=1. ……………………………4分 (Ⅱ)令1+,由x>0得知t>1,,于是原不等式等价于: .取,由(Ⅰ)知:当t∈(0,1)时,g '(t)<0,g (t)单调递减, 当t∈(1,+∞)时,g '(t)>0,g (t)单调递增. ∴ g (t)> g (1)=0,也就是.∴ . ……………………………8分 (Ⅲ)由(Ⅱ)知:x 是正整数时,不等式也成立,可以令: x=1,2,3,…,n-1,将所得各不等式两边相加,得: 即. ……………………………12分(22)证明:(Ⅰ)连接OE ,因为D 为BC ︵的中点,E 为BC 的中点,所以OED 三点共线.因为E 为BC 的中点且O 为AC 的中点,所以OE∥AB ,故DE∥AB . ………………………… …5分OA(Ⅱ)因为D 为BC ︵的中点,所以∠BAD =∠DAC ,又∠BAD =∠DCB ⇒∠DAC =∠DCB . 又因为AD ⊥DC ,DE ⊥CE ⇒△DAC∽△ECD . ⇒AC CD =AD CE ⇒AD ·CD =AC ·CE ⇒ 2AD ·CD =AC ·2CE ⇒ 2AD ·CD =AC ·BC . ……………………………10分 (23)解: (Ⅰ)设P (ρ,θ),M (ρ1,θ),依题意有 ρ1sin θ=2,ρρ1=4.……………………………3分 消去ρ1,得曲线C 2的极坐标方程为ρ=2sin θ.……………………………5分 (Ⅱ)将C 2,C 3的极坐标方程化为直角坐标方程,得 C 2:x 2+(y -1)2=1,C 3:x -y =2.……………………………7分C 2是以点(0,1)为圆心,以1为半径的圆,圆心到直线C 3的距离d =322, 故曲线C 2上的点到直线C 3距离的最大值为1+322. ……………………………10分(24)解: (Ⅰ)f (x)=|x -3|+|x -4|=⎩⎨⎧7-2x ,x <3,1,3≤x≤4,2x -7,x >4. ……………………………2分作函数y =f (x)的图象,它与直线y =2交点的横坐标为 5 2和 9 2,由图象知 不等式f (x)≤2的解集为[ 5 2, 9 2].……………………………5分(Ⅱ)函数y =ax -1的图象是过点(0,-1)的直线. 当且仅当函数y =f (x)与直线y =ax -1有公共点时,存在题设的x . 由图象知,a 取值范围为(-∞,-2)∪[ 1 2,+∞). ………………………10分 =12。

高考理科数学(1卷):答案详细解析(最新)

高考理科数学(1卷):答案详细解析(最新)

2020年普通高等学校招生全国统一考试理科数学(I 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(复数)若1z i =+,则22z z -=A.0B.1 D.2【解析】∵1z i =+,∴222(2)(1)(1)12z z z z i i i -=-=+-=-=-,∴2=22z z -.【答案】D2.(集合)设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤ ,则a =A.-4B.-2C.2D.4【解析】由已知可得{}22A x x =-≤≤,2a B x x ⎧⎫=≤-⎨⎬⎩⎭,∵{}21A B x x =-≤≤ ,∴12a -=,解得2a =-.【答案】B 3.(立体几何,同文3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A.14- B.12 C.14+ D.12+【解析】如图A3所示,设正四棱锥底面的边长为a ,则有22221212h am a h m ⎧=⎪⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩整理得22420m am a --=,令m t a =,则有24210t t --=,∴114t +=,214t -=(舍去),即14m a +=.图A3【答案】C4.(解析几何)已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .9【解析】设A 点的坐标为(m ,n ),∵点A 到C 的焦点的距离为12,∴m =9,∵点A 到C 的焦点的距离为12,∴122p m +=,解得6p =.【答案】C5.(概率统计,同文5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C )的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据,)(i i x y i =(1,2,…,20)得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A.y a bx =+B.2y a bx =+C.x y a be =+D.ln y a b x=+【解析】根据散点图的趋势和已学函数图象可知,本题的回归方程类型为对数函数,故选D 选项.【答案】D6.(函数)函数43()2f x x x =-的图像在点(1,(1))f 处的切线方程为A .21y x =--B .21y x =-+C .23y x =-D .21y x =+【解析】32()46f x x x '=-,∴函数()f x 的图像在点(1,(1))f 处的切线斜率为(1)2k f '==-,又∵(1)1f =-,∴所求的切线方程为12(1)y x +=--,化简为21y x =-+.【答案】B7.(三角函数,同文7)设函数()cos()6f x x πω=+在[]ππ-,的图像大致如下图,则()f x 的最小正周期为A.109πB.76πC.43πD.32π【解析】∵函数过点4π,09⎛⎫- ⎪⎝⎭,∴4ππcos()=096x ω-+,∴4πππ=962x ω-+-,解得23=ω,∴()f x 的最小正周期为3π4π2==ωT .【答案】C 8.(概率统计)25()()y x x y x++的展开式中33x y 的系数为A.5 B.10 C.15 D.20【解析】∵5()x y +展开式的通项公式为55C r r r x y -(r =0,1,2,3,4,5),∴1r =时,2141335C 5y x y x y x=,∴3r =时,323335C 10x x y x y =,∴展开式中的33x y 系数为5+10=15.【答案】C9.(三角函数)已知(0,)α∈π,且3cos28cos 5αα-=,则sin α=A.53 B.23 C.13 D.59【解析】应用二倍角公式2cos22cos 1αα=-,将3cos28cos 5αα-=化简为,23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又∵(0,)α∈π,∴5sin 3α=.【答案】A 10.(立体几何,同文12)已知A ,B ,C 为球O 的球面上的三个点,1O 为△ABC 的外接圆.若 1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【解析】由题意可知, 1O 为的半径r =2,由正弦定理可知,24sin ==AB r C,则14sin 4sin 60==== OO AB C ,∴球O 的半径4R ==,∴球O 的表面积为24π64πR =.图A10【答案】A11.(解析几何)已知22:2220M x y x y +---= ,直线:20+=l x y ,p 为l 上的动点.过点p 作M 的切线PA ,PB ,切点为,A B ,当PM AB 最小时,直线AB 的方程为A.210x y --= B.210x y +-=C.210x y -+= D.210x y ++=【解析】222:(1)(1)2-+-= M x y , M 的半径r =2,圆心(1,1)M ,由几何知识可知,⊥PM AB ,故1||||=2=||||2||2∆=⋅⋅==四边形APM APBM S PM AB S AP AM AP ,∴⋅PM AB 最小,即PM 最小,此时直线PM ⊥l ,即直线PM 的斜率为12=m k ,故直线PM 的方程为11(1)2-=-y x ,化简为1122=+y x ,∴直线PM 与l 的交点P 的坐标为(1,0)-P ,直线AB 为过点P 作 M 的切线所得切点弦AB 所在的直线,其方程为(11)(1)(01)(1)4---+--=x y ,化简得210++=x y .图A11【答案】D注:过圆外一点00(,)P x y 作222:()()O x a y b r -+-= 的切线所得切点弦所在直线方程为200()()()()x a x a y b y b r --+--=.特别当0a b ==时,切点弦所在直线方程为200x x y y r +=.(具体推到过程,可到百度搜索)12.(函数)若242log 42log +=+a b a b 则A.a >2bB.a <2bC.a >b 2D.a <b 2【解析】由指数和对数运算性质,原等式可化为2222log 2log a b a b +=+,∵222log 1log log 2b b b <+=,∴22222log 2log 2b b b b +<+,∴2222log 2log 2a b a b +<+,设2()2log x f x x =+,则有()(2)f a f b <,由指数函数和对数函数的单调性可知()f x 在(0,)+∞单调递增,∴2a b <.【答案】B二、填空题:本题共4小题,每小题5分,共20分。

2020年高考数学试题全国Ⅰ卷(理科)(纯word版)

2020年高考数学试题全国Ⅰ卷(理科)(纯word版)

2020年高考数学试题全国Ⅰ卷理科试题及其解答一、选择题:(本题有12小题,每小题5分,共60分。

)1.(2020全国Ⅰ理)若z=1+i ,则 |z 2-2z| = ( D ) A.0 B.1 C. 2 D.22.(2020全国Ⅰ理)设集合A={x|x 2-4≤0},B={x|2x+a ≤0},且A ∩B={x|-2≤x ≤1},则 a= ( B )A.-4B.-2C. 2D.4 3.(2020全国Ⅰ理)埃及胡夫金字塔是古代世界建筑奇迹之 一,它的形状可视为一个正四棱锥,以该四棱锥的高为 边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比为 ( C )A.514 B.512 C.514 D. 512解析:如图,设四棱锥的高为h ,底面边长为a , 侧面三角形底边上的高为b ,则22221,2(),2h ab a h b 221(),22a ab b 24()2()10,b b a a 即 51=.4b a 解得4.(2020全国Ⅰ理)已知A 为抛物线C:y 2=2px(p>0)上一点,点A 到C 的焦点的距离为9,则p=( C )A.-2B.3C.6D.9解析:设A(x 0,y 0),则x 0=9,且x 0+2p=12,解得p=6. 5.(2020全国Ⅰ理) 某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃) 的关系,在20个不同的温度条件下进行种子发芽实验,与实验 数据(x i ,y i )(i=1,2,…,20) 得到下面的散点图:和温度x 的回归方程类型的是 ( D ) A.y=a+bx B.y=a+bx 2 C.y=a+be x D.y=a+blnx解析:用光滑曲线顺次连结图中各点,观察图象的大致走向,可知此函数是对数 函数类型,故选D.6.(2020全国Ⅰ理)函数f(x)=x 4-2x 3的图像在点(1,f(1))处的切线方程为 ( B ) A.y=-2x-1 B.y=-2x+1 C.y=2x-3 D.y=2x+1解析:∵f ′(x)=4x 3-6x 2,∴切线斜率为k= f ′(1)= -2. 又f(1)=-1,∴切线方程为y+1=-2(x-1)即y=-2x+1. 7.(2020全国Ⅰ理)设函数()cos()6f x x的图像大致如下图,则()f x 的最小正周期为 ( C ) A.109B.76C.43D. 32解析:44()cos()0,996f 4(),962k k Z3+9().4kk Z 即 2422,2,1||2,||||TT 即3241,.2||3k T 由此可知,周期 8.(2020全国Ⅰ理)25()()y x x y x的展开式中33x y 的系数为 ( C )A.-5B.10 C15 D.20解析:555()(0,1,2,3,4,5),r rrx y C xy r的通项为 21413351=5y rC x y x y x时,,233353=10rx C x y x y 时,, ∴3x y 的系数为5+10=15.9.(2020全国Ⅰ理)已知α∈(0,π),且3cos2α-8cos α=5,则sin α= ( A ) A.53 B.23 C.13D. 59 解析:由原式可得3cos 2α-4cos α-4=0,解得cos α=-2/3或cos α=2(舍去), 又α∈(0,π),∴sin α=5/3.10.(2020全国Ⅰ理)已知A,B,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆,若⊙O 1的面积为4π,AB=BC=AC= O O 1,则球O 的表面积为 ( A ) A.64π B.48π C.36π D.32π 解析:设AB=a ,⊙O 1的半径为r ,球O 的半径为R ,则πr=4π,∴r=2. 13,23rAO a a 又,2222214,=464.R AO OO S R 球11.(2020全国Ⅰ理)已知⊙M :x 2+y 2-2x-2y-2=0,直线l :2x+y+2=0,P 为l 上的动点,过点P 作⊙M 的切线PA,PB ,且切点为A,B ,当|PM|·|AB|最小时,直线AB 的方程为 ( D ) A.2x-y-4=0 B. 2x+y-1=0 C. 2x-y+1=0 D. 2x+y+1=0解析:∵⊙M :(x-1)2+(y-1)2=4,∴圆心M(1,1),半径r=2.2PAMB 1=||||2||||2||2||4,2PAMS PM AB SPA MA PA PM当|PM|·|AB|最小时, |PM|有最小值,此时PM ⊥l ,||5,5PM22||||||1PA PM AM .设PM ⊥AB 于D ,则22||||||||||==.||5AM AM MD MP MD MP ,∴AB//l ,∴可设AB 的方程为2x+y+c=0,||,55MD 解得c=1,∴直线AB 的方程为2x+y+1=0.方法2:∵⊙M :(x-1)2+(y-1)2=4,∴圆心M(1,1),半径r=2.2PAMB 1=||||2||||2||2||4,2PAMS PM AB SPA MA PA PM当|PM|·|AB|最小时, |PM|有最小值,此时PM ⊥l ,PM 的方程为x-2y+1=0, ∴可得PM 与l 的交点为P(-1,0),由此易得直线AB 的方程为2x+y+1=0.12.(2020全国Ⅰ理)若2a +log 2a=4b +2log 4b ,则 ( B ) A.a>2b B.a<2b C.a>b 2 D.a<b 2解析:由题设知a,b 均为正数,且2a +log 2a=22b +log 2b=22b +log 2(2b)-1<22b +log 2(2b). 设函数f(x)=2x +log 2x ,则上式等价于f(a)<f(2b).易知f(x)是(0,+∞)的增函数, ∴a<2b ,∴答案为B.二、填空题:本题共4小题,每小题5分,共20分。

2020年高考理科数学(1卷):答案详细解析(客观题 最新)

2020年高考理科数学(1卷):答案详细解析(客观题 最新)

2020年普通高等学校招生全国统一考试理科数学(I 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(复数)若1z i =+,则22z z -=A.0B.1 D.2【解析】∵1z i =+,∴222(2)(1)(1)12z z z z i i i -=-=+-=-=-,∴2=22z z -.【答案】D2.(集合)设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤ ,则a =A.-4B.-2C.2D.4【解析】由已知可得{}22A x x =-≤≤,2a B x x ⎧⎫=≤-⎨⎬⎩⎭,∵{}21A B x x =-≤≤ ,∴12a -=,解得2a =-.【答案】B 3.(立体几何,同文3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A.514- B.512 C.514+ D.512+【解析】如图A3所示,设正四棱锥底面的边长为a ,则有22221212h am a h m ⎧=⎪⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩整理得22420m am a --=,令m t a =,则有24210t t --=,∴114t +=,214t -=(舍去),即14m a +=.图A3【答案】C4.(解析几何)已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .9【解析】设A 点的坐标为(m ,n ),∵点A 到C 的焦点的距离为12,∴m =9,∵点A 到C 的焦点的距离为12,∴122p m +=,解得6p =.【答案】C5.(概率统计,同文5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C )的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据,)(i i x y i =(1,2,…,20)得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A.y a bx =+B.2y a bx =+C.x y a be =+D.ln y a b x=+【解析】根据散点图的趋势和已学函数图象可知,本题的回归方程类型为对数函数,故选D 选项.【答案】D6.(函数)函数43()2f x x x =-的图像在点(1,(1))f 处的切线方程为A .21y x =--B .21y x =-+C .23y x =-D .21y x =+【解析】32()46f x x x '=-,∴函数()f x 的图像在点(1,(1))f 处的切线斜率为(1)2k f '==-,又∵(1)1f =-,∴所求的切线方程为12(1)y x +=--,化简为21y x =-+.【答案】B7.(三角函数,同文7)设函数()cos()6f x x πω=+在[]ππ-,的图像大致如下图,则()f x 的最小正周期为A.109π B.76π C.43π D.32π【解析】∵函数过点4π,09⎛⎫- ⎪⎝⎭,∴4ππcos()=096x ω-+,∴4πππ=962x ω-+-,解得23=ω,∴()f x 的最小正周期为3π4π2==ωT .【答案】C 8.(概率统计)25()y x x y x++的展开式中33x y 的系数为A.5 B.10 C.15 D.20【解析】∵5()x y +展开式的通项公式为55C r r r x y -(r =0,1,2,3,4,5),∴1r =时,2141335C 5y x y x y x=,∴3r =时,323335C 10x x y x y =,∴展开式中的33x y 系数为5+10=15.【答案】C9.(三角函数)已知(0,)α∈π,且3cos28cos 5αα-=,则sin α=A.53 B.23 C.13 D.59【解析】应用二倍角公式2cos22cos 1αα=-,将3cos28cos 5αα-=化简为,23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又∵(0,)α∈π,∴5sin 3α=.【答案】A10.(立体几何,同文12)已知A ,B ,C 为球O 的球面上的三个点, 1O 为△ABC 的外接圆.若 1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【解析】由题意可知, 1O 为的半径r =2,由正弦定理可知,24sin ==AB r C,则14sin 4sin 60==== OO AB C ,∴球O 的半径4R ==,∴球O 的表面积为24π64πR =.图A10【答案】A11.(解析几何)已知22:2220M x y x y +---= ,直线:20+=l x y ,p 为l 上的动点.过点p 作M 的切线PA ,PB ,切点为,A B ,当PM AB 最小时,直线AB 的方程为A.210x y --= B.210x y +-=C.210x y -+= D.210x y ++=【解析】222:(1)(1)2-+-= M x y , M 的半径r =2,圆心(1,1)M ,由几何知识可知,⊥PM AB ,故1||||=2=||||2||2∆=⋅⋅==四边形APM APBM S PM AB S AP AM AP ,∴⋅PM AB 最小,即PM 最小,此时直线PM ⊥l ,即直线PM 的斜率为12=m k ,故直线PM 的方程为11(1)2-=-y x ,化简为1122=+y x ,∴直线PM 与l 的交点P 的坐标为(1,0)-P ,直线AB 为过点P 作 M 的切线所得切点弦AB 所在的直线,其方程为(11)(1)(01)(1)4---+--=x y ,化简得210++=x y .图A11【答案】D注:过圆外一点00(,)P x y 作222:()()O x a y b r -+-= 的切线所得切点弦所在直线方程为200()()()()x a x a y b y b r --+--=.特别当0a b ==时,切点弦所在直线方程为200x x y y r +=.(具体推到过程,可到百度搜索)12.(函数)若242log 42log +=+a b a b 则A.a >2bB.a <2bC.a >b 2D.a <b 2【解析】由指数和对数运算性质,原等式可化为2222log 2log a b a b +=+,∵222log 1log log 2b b b <+=,∴22222log 2log 2b b b b +<+,∴2222log 2log 2a b a b +<+,设2()2log x f x x =+,则有()(2)f a f b <,由指数函数和对数函数的单调性可知()f x 在(0,)+∞单调递增,∴2a b <.【答案】A二、填空题:本题共4小题,每小题5分,共20分。

2020年高考理科数学 (全国I卷)-(含答案解析word)

2020年高考理科数学 (全国I卷)-(含答案解析word)

2020年高考理科数学 (全国I卷)一、单选题本大题共12小题,每小题5分,共60分。

在每小题给出的4个选项中,有且只有一项是符合题目要求。

1. 若,则()A、0B 、1C 、D 、22.设集合,,且,则()A 、-4 B、-2 C、2 D、43. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A、B、C、D、4.已知A为抛物线上一点,点A到C的焦点的距离为12,到y轴的距离为9,则P=()A、2B、3C、6D、95.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A、B、C、D、6.函数的图像在点处的切线方程为()A、B、C、D、7.设函数在的图像大致如下图,则的最小正周期为()A、B、C、D、8. 的展开式中的系数为()A、5B、10C、15D、209. 已知,且,则=()A、B、C、D、10. 已知A、B、C为球O的球面上的三个点,⊙O1为∆ABC的外接圆,若⊙O1的面积为4π,AB=BC=AC=O O1,则球O的表面积为()A、64πB、48πC、36πD、32π11. 已知⊙M:x2+y2-2x-2y-2=0,直线l:2x+y=0,P为l上的动点.过点P作⊙M的切线PA、PB切点为A,B,当|PM|●|AB|最小时,直线AB的方程为()A 、B 、C 、 D、12.若则()A 、a>2bB 、a<2bC 、a>b 2D 、a< b 2二、填空题 本大题共4小题,每小题5分,共20分。

把答案填写在题中横线上。

13.若x ,y 满足约束条件则z=x+7y 的最大值为 。

2020年全国I卷理科数学试卷(含答案)

2020年全国I卷理科数学试卷(含答案)

2020年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 若1z i =+,则22z z -= A.0 B.1 C.2 D.22.设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤,则a =A.-4B.-2C.2D.43. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A. 514-B. 512-C. 514+D. 512+ 4.已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y轴的距离为9,则p =A .2B .3C .6D .95.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C ο)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据i i (,)x y (1,2,...,20)i =得到下面的散点图: 由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A .y a bx =+B .2y a bx =+C .x y a be =+D .ln y a b x =+6.函数43()2f x x x =-的图像在点(1,(1))f 处的切线方程为 A .21y x =-- B .21y x =-+ C .23y x =- D .21y x =+7.设函数()cos()6f x x πω=+在[]-ππ,的图像大致如下图,则()f x 的最小正周期为A.109π B. 76π C. 43π D. 32π 8. 25()()y x x y x++的展开式中33x y 的系数为 A. 5 B. 10 C. 15 D. 209. 已知(0,)α∈π,且3cos28cos 5αα-=,则sin α=A. 53B. 23C. 13D. 5910. 已知,,A B C 为球O 的球面上的三个点,1O 为ABC 的外接圆,若1O 的面积为14,AB BC AC OO π===,则球O 的表面积为A. 64πB. 48πC. 36πD. 32π11. 已知22:2220M x y x y +---=,直线:20,l x y p +=为l 上的动点.过点p作M 的切线PA ,PB ,切点为,A B ,当PM AB 最小时,直线AB 的方程为A. 210x y --=B. 210x y +-=C. 210x y -+=D. 210x y ++=12.若a 242log 42log b a b +=+则A.a>2bB.a<2bC.a>2bD.a<2b二、填空题:本题共4小题,每小题5分,共20分。

2020年普通高等学校招生全国统一考试理科数学(全国卷Ⅰ)(含答案)

2020年普通高等学校招生全国统一考试理科数学(全国卷Ⅰ)(含答案)

绝密★启用前2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190cm5.函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D二、填空题:本题共4小题,每小题5分,共20分。

2020届高考理科数学(理数)高三模拟试卷(全国1卷)pdf参考答案

2020届高考理科数学(理数)高三模拟试卷(全国1卷)pdf参考答案

理科数学答案全解全析一、选择题1. 【答案】D【解析】集合 A 满足: x2  3x  4  0 ,( x  4)( x  1)  0 , x  4 或x  1 , A  {x | x  4 或 x  1} , CU A={x | 1„ x „ 4} , y  2x  2  2 , B  {y | y  2} ,可知 (CU A)  B  {x | 2  x „ 4} .故选 D. 2. 【答案】A【解析】 z  1  i  (1  i)(1  2i)  1  3i ,复数 z 的虚部为  3 ,1 2i555故错误;② | z | ( 1)2  ( 3)2  10 ,故错误;③复数 z 对应的555点为 ( 1 , 3) 为第三象限内的点,故正确;④复数不能比较大小, 55故错误.故选 A.3. 【答案】C【解析】 Sn  2an  4 ,可得当 n  1 时, a1  2a1  4 , a1  4 ,当n…2时,S n 12 an 14与已知相减可得an an 12,可知数列{ an } 是首项为 4,公比为 2 的等比数列, a5  4  24  64 .故选 C.4. 【答案】D【解析】可知降落的概率为pA22 A55 A661 3.故选D.5. 【答案】C【解析】函数 f (x)  2 020x  sin 2x 满足 f (x)  2 020x  sin 2x  f (x) ,且 f (x)  2 020  2cos 2x  0 ,可知函数 f (x) 为单调递增的奇函数, f (x2  x)  f (1  t) 0 可以变为 f (x2  x)  f (1  t) f (t  1) ,可知 x2  x t  1 ,t „ x2  x  1 ,x2  x  1  (x  1)2 2 3 3 ,可知实数 t „ 3 ,故实数 t 的取值范围为 (∞,3] .故选 C.44446. 【答案】A【解析】双曲线的渐近线方程为 y   3x ,可得双曲线的方程为x2  y2   ,把点 P(2,3) 代入可得 4  3= ,   1 ,双曲线的 3方程为 x2  y2  1,c2  1  3  4,c  2,F(2,0) ,可得 A(2,2 3) , 3B(2, 23),可得SAOB1 224343 .故选 A.7. 【答案】B【解析】 f (x)  sin(x  π )sin x  cos2 x3 (sin x cos π  cos x sin π )sin x  1  cos 2x332 3 sin 2x  1 cos 2x  3  1 ( 3 sin 2x  1 cos 2x)  3444 2224 1 sin(2x  π )  3264把函数 f (x) 的图象向右平移 π 单位,再把横坐标缩小到原来的一 6半,得到函数 g(x) ,可得 g (x)  1 sin(4x  π )  3 ,最小正周期为2642π  π ,故选项 A 错误; x  π , 4x  π  4  π  π  π ,故选426666 2项 B 正确;最大值为 1  3  5 ,故选项 C 错误;对称中心的方程 244为 (kπ  π ,3)(k  Z) ,故选项 D 错误.故选 B. 4 24 48. 【答案】D【解析】可知 BDC  120°,且 AD  3 ,BD  DC  1 ,在 BDC中,根据余弦定理可得 BC 2  1  1  2 11 cos120° 3, BC  3 ,据正弦定理可得 BC  2r , sin120°3 32r,r 1 , O1 为 BDC2的外心,过点 O1 作 O1O  平面 BDC , O 为三棱锥 A  BCD 的外 接球的球心,过点 O 作 OK  AD , K 为 AD 的中点,连接 OD 即为外接球的半径 R  12  ( 3 )2  7 ,可得外接球的表面积为22S  4πR2  4π  ( 7 )2  7π .故选 D. 29. 【答案】C【解析】二项式 (x  y)n 的展开式的二项式项的系数和为 64 ,可得 2n  64 ,n  6 ,(2x  3)n  (2x  3)6 ,设 x  1  t ,2x  3  2t  1 ,(2x  3)n  (2x  3)6  (2t  1)6  a 0  a1t  a 2t 2   a 6t 6 ,可得 Tr1  C64 (2t)6414  C64 22t 2  60t 2 ,可知 a2  60 .故选 C. 10.【答案】A【解析】设点 P(x0 ,y0) ,则 x0  y0  6  0 ,则过点 P 向圆 C 作切 线,切点为 A,B ,连接 AB ,则直线 AB 的方程为 xx0  yy0  4 ,可得y0x06,代入可得(xy) x06y40,满足 x y 0 6y  4  0 x 2 3,故过定点为M(2,2).故选A. y2 33311.【答案】B【解析】f (x)  log2 (x2  e|x|) ,定义域为 R ,且满足 f ( x)  f (| x |) ,当 x  0 时,单调递增,而 (5)0.2  1 , 0  (1)0.3  1 , b  a ,42cf(log 125)  4f( log25) 4f(log25 4),而0log25 4 log221, 2( 1 )0.3 21 2,  log 25 4 (1)0.3 , 2f(log25)  4f(( 1 )0.3 ) 2,故 c a,故 c  a  b .故选 B.12.【答案】D【解析】f (x1)  f (x2 ) x1  x21 x1x2,不妨设 x1x2 ,则f( x1) f (x2 ) 1 x21 x1,整理可得f (x1) 1 x1f (x2 ) 1 x2,设函数 h(x) f (x) 1 xa ln xx1 x在[e2 ,e4 ]上单调递减,可知 h'(x)a(1  ln x2x)1 x2„0,可知 a…1 1  lnx,而函数F ( x)1 1 lnx在[e2,e4 ]单调递增,F (x)maxF (4)11 41 3,可知实数a…1 3.故选D.二、填空题13.【答案】 9 5 5【解析】向量 a b在 a上的投影为| a b|cos (a b)  a|a| (1,5)  (1,2)  9 5 .5514.【答案】 5  2 6【解析】首先作出可行域,把 z  ax  by(a  0,b  0) 变形为 y  a x  z ,根据图象可知当目标函数过点 A 时,取最大值为 1, bb理科数学答案第 1 页(共 4 页) x 2x y 1 0 y40A(3,2),代入可得3a2b1,则1 a1 b3a a2b 3a  2b  3  2b  3a  2 5  2 2b  3a  5  2 6 ,当且仅当bababb  6 a 取等号,可知最小值为 5  2 6 .故选 C. 215.【答案】 4 3【解析】 cos A  cos B  2 3 sin C ,根据正弦定理 sin B cos A ab3asin Acos B  2 3 sin B sin C ,可知 sin( A  B)  2 3 sin B sin C ,33sin C  2 3 sin B sin C ,sin B  3 ,在 ABC 内,可知 B  π 或3232π ,因为锐角 ABC ,可知 B  π ,利用余弦定理可得 b2  a2  c2 332ac cos B  a2  c2  ac 2ac  ac  ac ,可知 ac „ 16 ,则 ABC 的面积的最大值 1 ac sin B „ 1 16  3  4 3 ,当且仅当 a  c 时,取222等号,故面积的最大值为 4 3 .16.【答案】 4 5【解析】抛物线 C :y2  2 px( p  0) 的准线方程为 x  2 ,可知抛物线 C 的方程为:y2  8x ,设点 A(x1 ,y1) ,B(x2 ,y2 ) ,AB 的中点为 M (x0 ,y0 ) ,则 y12  8x1 ,y22  8x2 两式相减可得 ( y1  y2 )( y1  y2 ) 8(x1 x2 ),y1  y2  x1  x2 8 y1  y2 ,可知    8  (1)  1 2 y0 x0  y0  6  0,解得  x0 y02 4,可得 M(2,4),则 OA  OB  2OM  2(2,4)  (4,8) ,可得 | OA  OB |  | (4,8) |  42  82  4 5 .三、解答题17.【解析】(1) a1  1,an1  2an  1 ,可得 an1  1  2(an  1) ,{an  1} 是首项为 2,公比为 2 的等比数列.--------------- 2 分  an  1  2  2n1  2n , an  2n  1 .即数列 { an } 的通项公式 an  2n  1 .--------------- 4 分数列 { bn } 的前 n 项的和为 Sn  n2 ,可得 b1  S1  1 ,当 n 2 时, bn  Sn  Sn1  n2  (n  1)2  2n  1 ,故数列 { bn } 的通项公式为 bn  2n  1 .--------------- 6 分(2)可知 cn  bn  an  (2n  1)  (2n  1) (2n  1)  2n  (2n  1) --------------- 7 分设 An  1 2  3 22  5  23   (2n  1)  2 n , 2 An  1 22  3  23    (2n  3)  2 n  (2n 1)  2 n 1 , 两式相减可得  An  2  2(22  23   2 n)  (2n  1)  2 n 1 ,可得 An  6  (2n  1)  2n1  2n2 ,--------------- 10 分而数列 {2n 1}的前n项的和为Bn(1 2n 1)  2nn2,所以 Tn  6  (2n  1)  2n1  2n2  n2 .--------------- 12 分 18.【解析】(1)证明: PD  面 ABCD , PD  BC ,在梯形 ABCD 中,过 B 作 BH  DC 交 DC 于 H , BH  1 ,BD  DH 2  BH 2  1  1  2 ,BC  2 ,( 2)2  ( 2)2  22 ,即 DB2  BC 2  DC 2 ,即 BC  DB .--------------- 2 分  BC  DB , PD  BD  D , BC  平面 PDB ,  BC  平面 EBC 平面 PBC  平面 PDB .--------------- 4 分 (2)连接 PH , BH  面 PDC ,BPH 为 PB 与面 PDC 所成的角, tan BPH  BH  1 , BH  1 , PH  2 , PH 2 PD2  DH 2  PH 2 , PD2  1  2 , PD  1 ,--------------- 6 分以 D 为原点,分别以 DA , DC 与 PD 为 x ,y ,z 轴,建立如图所示的E(空0间,2直,角12)坐,标可系知,则PBP(0(1,,01,,1) ,1)A,(A1,B0,(00),,1B,(01),1,,0) ,C (0,2,0) ,设平面PAB 可知 PB  a AB  a 设平面 PEB的法向量为 a  (x,y,z) , 0 0  xy y z 00,可取 a(1,0,1),-----------的法向量为 b(x,y ,z ) ,BE(1,1,1),8分2可知 PB BE  b b 0 0 x x y y z 1 2 z0 0 ,可取 b(3,1,4),-----10分可知两向量的夹角的余弦值为 cos  a  b  1 3  0 11 4| a || b | 1 1 32 1  42 7 13 ,可知两平面所成的角为钝角,可知两平面所成角的余弦 26值为  7 13 .--------------- 12 分 2619.【解析】(1)完成 2  2 列联表, 满意 不满意总计男生302555女生50合计80156540120 ----------- 4 分根据列联表中的数据,得到 K 2  120  (30 15  25  50)2 55 65 80  40 960  6.713  6.635 ,所以有 99% 的把握认为对“线上教育是否 143满意与性别有关”.--------------- 6 分(2)由(1)可知男生抽 3 人,女生抽 5 人,   0,1,2,3 .P(0)C53 C835 ,P( 28 1)C52C31 C8315 28,P(2)C51C32 C8315 ,P( 563)C33 C831 56.---------------8分可得分布列为0123P515152828561------------ 10 分56可得 E( )  0  5  1 15  2  15  3 1  9 .--------------- 12 分 28 28 56 56 820.【解析】(1)x2  4 y ,焦点 F (0 , 1) ,代入得 b 1,e  c  2 , a2a2  b2  c2 ,解得 a2  2,b2  1 , x2  y2  1 ,-------------- 2 分 2 直线的斜率为 1,且经过 (1,0) ,则直线方程为 y  x 1 ,联立   x2 2y2 1,解得y  x 1,x y 0 1或 x y 4 3 1 3, ,C(0,1) ,D( 4 ,1) ,--------------- 4 分 33理科数学答案第 2 页(共 4 页)| CD |  4 2 ,又原点 O 到直线 y  x 1 的距离 d 为 2 ,32 SCOD1 2| CD|d1 242 32  2 .--------------- 6 分 23(2)根据题意可知直线 m 的斜率存在,可设直线 m 的方程为: y  kx  t,ykxt,联立  x2  2y2 1,(2k 2 1)x24ktx2t 220,可得   (4kt)2  4(2k 2  1)(2t 2  2)  0 ,整理可得 t 2  2k 2  1 ,可知 F2 (1,0) , A(1,k  t),B(2,2k  t) ,--------------- 8 分则 | AF2 |  (1 1)2  (k  t  0)2 k 2  2kt  t2| BF2 | (2 1)2  (2k  t  0)2 1  (4k 2  4kt  t2) k 2  2kt  t2  2 为定值.--------------- 12 分 2k 2  4kt  2t 2 221.【解析】(1)函数 f (x) 的定义域为 (0, ∞) ,f (x)  x  a  1  x2  ax  1 ,设 h(x)  x2  ax  1 ,xx函数 h(x) 在 (1,3) 内有且只有一个零点,满足 h(1)  h(3)  0 ,可得 (1  a  1)(9  3a  1)  0 ,解得 2  a  10 , 3故实数 a 的取值范围为 (2,10) .--------------- 4 分3(2) 2 f (x)  2x  2 „ (a 1)x2 ,可以变形为 2ln x  2x  2 „a(x22x),因为x0,可得a…2ln x x2 2x   2x2,--------------6分设g(x)2ln x  2x  x2  2x2,g' ( x)2(x  1)(2ln x (x2  2x)2x).设 h(x)  2 ln x  x ,h(x) 在 (0, ∞) 单调递增,h(1 )  2ln 2  1  0 , h(1)  1  0 .22故存在一点 x0  (0.5,1) ,使得 h(x0 )  0 ,--------------- 8 分当 0  x  x0 时, h(x)  0,g'(x)  0 ,函数 g(x) 单调递增;当 x  x0 时, h(x)  0,g'(x)  0 ,函数 g(x) 的最大值为 g(x0) ,且 2 ln x0  x0  0 ,--------------- 10 分g (x)max g(x0) 2ln x0  2x0  2  x02  2x01 x0,可知 a 1 x0,又1 x0 (1,2) ,可得整数 a 的最小值为 2.--------------- 12 分22.【解析】(1)由题可知:2 2   2 cos2   6 , 2(x2  y2 )  x2  6 ,曲线 C 的直角坐标方程为 y2  x2  1 , 32直线 l 的普通方程为 3x  4 y  4  3a  0 ,--------------- 3 分两方程联立可得 33x2  6  (4  3a)x  (4  3a)2  48  0 ,可知   [6  (4  3a)]2  4  33  [(4  3a)2  48]  0 ,解得 a  66  4 或 a   66  4 .--------------- 6 分33(2)曲线 C 的方程y2x21,可设x 2 cos ,32 y  3 sin则 2x  3y  2 2 cos  3 3 sin  (2 2)2  (3 3)2 sin(  ) ,其中 tan  2 6 ,可知最大值为 9(2 2)2  (3 3)2  35 .--------------- 10 分 23.【解析】(1)当 a  1 时, f (x)  | 3x  6 |  | x  1 |  x 10 ,当 x  1时, (3x  6)  (x  1)  x 10 ,解得 x „ 1 , 可得 x  1;--------------- 2 分 当 1„ x „ 2 时, (3x  6)  (x  1)  x 10 ,解得 x „ 1 , 可得 x  1; 当 x  2 时, (3x  6)  (x 1)  x 10 ,解得 x 5 , 综上可得 {x | x 5或x „ 1} .--------------- 4 分 (2)由 f (x)  0 可知, f (x)  | 3x  6 |  | x 1| ax  0 , | 3x  6 |  | x 1|  ax ,设 g(x)  | 3x  6 |  | x 1| , h(x)  ax , 同一坐标系中作出两函数的图象如图所示,--------------- 6 分 4x  5,x  1, g(x)  2x  7,1„ x „ 2,可得 A(2,3) , 4x  5,x  2, 当函数 h(x) 与函数 g (x) 的图象有两个交点时,方程 f (x)  0 有两 个不同的实数根,--------------- 8 分由函数图象可知,当 3  a  4 时,有两个不同的解,故实数 a 的 2取值范围为 ( 3 ,4) .--------------- 10 分 2理科数学答案第 3 页(共 4 页)理科数学答案第 4 页(共 4 页)。

【2020高 考全国Ⅰ卷理数真题】2020年普通高等学校招生全国统一考试(Ⅰ卷)理科数学试卷含答案解析

【2020高 考全国Ⅰ卷理数真题】2020年普通高等学校招生全国统一考试(Ⅰ卷)理科数学试卷含答案解析

绝密★启用前2020年普通高等学校招生全国统一考试I 卷数 学(理)★祝考试顺利★本试卷共5页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效。

5.考试结束后,请将本试卷和答题卡一并上交。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若则1,z i =+2|2|z z -=A . B. D.0122.设集合且则{}2|40,A x x =-≤{}|20,B x x a =+≤{}|21,A B x x =-≤≤ a =A . B. C. D.4-2-243.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,已该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为ABC4.已知A 为抛物线上一点,点A 到C 的焦点的距离为到轴的距离为则 ()2:20C y px p =>12,y 9,p =A . B. C. D.23695.某校一个课外学习小组为研究某作物种子的发芽率和温度(单位:℃)的关系,在20个不同的温度条件下y x 进行某种发芽实验,由实验数据得到下面的散点图:()(),1,2,,20i i x y i =由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率和温度的回归方程类型的是y x A . B. C. D.y a bx =+2y a bx =+x y a be =+ln y a b x =+6.函数的图像在点处的切线方程为 43()2f x x x =-()()1,1f A . B. C. D.21y x =--21y x =-+23y x =-21y x =+7.设函数在的图像大致如下图,则的最小正周期为 ()cos 6f x x πω⎛⎫=+ ⎪⎝⎭[],ππ-()f x A . 109πB . 76πC . 43πD .32π8.的展开式中的系数为 ()25y x x y x ⎛⎫++ ⎪⎝⎭33x y A . B. C. D.51015209.已知且则()0,,a π∈3cos 28cos 5,αα-=sin α=AC.231310.已知A ,B ,C 为球的球面上的三个点,为的外接圆.若的面积为,O 1O :ABC :1O :4π则球的表面积为1,AB BC AC O ===:O A . B. C. D.64π48π36π32π11.已知直线为上的动点,过点作的切线PA ,PB , 22:2220,M x y x y +---=::220,l x y ++=P l P M :切点为A ,B,当最小时,直线AB 的方程为||||PM AB ⋅A . B.210x y --=210x y +-=C. D.210x y -+=210x y ++=12.若则242log 42log ,a b a b +=+A . B. C. D.2a b >2a b <2a b >2a b <二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

说明:一、本试卷分为第Ⅰ卷和第Ⅱ卷.第Ⅰ卷为选择题;第Ⅱ卷为非选择题,分为必考和选考两部分.二、答题前请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题. 三、做选择题时,每小题选出答案后,用铅笔把答题卡上对应题目的标号涂黑.如需改动,用橡皮将答案擦干净后,再涂其他答案.四、考试结束后,将本试卷与原答题卡一并交回. 第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求. (1)已知集合A={ (x ,y)|x ,y 为实数,且x 2+y 2=4},集合B={(x ,y) |x ,y 为实数,且y=x -2}, 则A ∩ B 的元素个数为( ) (A )0 (B )1 (C )2(D )3(2)复数z =1-3i1+2i ,则(A )|z|=2(B )z 的实部为1(C )z 的虚部为-i(D )z 的共轭复数为-1+i(3)已知随机变量X 服从正态分布N (1,σ2),若P (X≤2)=,则P (X≤0)=(A ) (B ) (C )(D )(4)执行右面的程序框图,若输出的k =2,则输入x的取值范围是 (A )(21,41) (B )[21,41] (C )(21,41](D )[21,41)(5)已知等比数列{a n }的前n 项和为S n , a 1+a 3= 52,且a 2+a 4= 5 4,则S na n =(A )4n -1 (B )4n -1 (C )2n -1(D )2n -1(6)过双曲线x 2a 2-y 2b 2=1的一个焦点F 作一条渐近线的垂线,若垂足恰在线段OF (O为原点)的垂直平分线上,则双曲线的离心率为 (A ) 2(B )2(C ) 5(D )3(7)已知函数f (x)=cos (2x + π 3),g (x)=sin (2x +2π3),将f (x)的图象经过下列哪种变换可以与g (x)的图象重合 (A )向左平移 π12(B )向右平移 π12(C )向左平移 π 6 (D )向右平移 π6 (8)某几何体的三视图如图所示,则该几何体的体积为 (A )1136 (B )3(C )533 (D )433 (9)已知向量a=(1, 2),b=(2,3)若(c+a )∥b ,c ⊥(b+a ),则c=(A )( 79 , 73 ) (B )( 73 , 79 )(C )( 73 , 79 ) (D )(- 79 ,- 73 )(10)4名研究生到三家单位应聘,每名研究生至多被一家单位录用,则每家单位至少录用一名研究生的情况有 (A )24种 (B )36种 (C )48种 (D )60种(11)函数,其图像的对称中心是(A )(-1,1) (B )(1,-1) (C )(0,1)(D )(0,-1)(12)关于曲线C :x 1 2 +y 12 =1,给出下列四个命题:①曲线C 有且仅有一条对称轴; ②曲线C 的长度l 满足l >2;③曲线C 上的点到原点距离的最小值为24 ;④曲线C 与两坐标轴所围成图形的面积是 16 上述命题中,真命题的个数是 (A )4 (B )3俯视图(C)2 (D)1第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中横线上.(13)在(1+x2)(1- 2x)5的展开式中,常数项为__________.(14)四棱锥P-ABCD的底面是边长为42的正方形,侧棱长都等于45,则经过该棱锥五个顶点的球面面积为_________.(15)点P在△ABC内部(包含边界),|AC|=3,|AB|=4,|BC|=5,点P到三边的距离分别是d1, d2, d3 ,则d1+d2+d3的取值范围是_________.(16)△ABC的顶点A在y2=4x上,B,C两点在直线x-2y+5=0上,若|AB-AC|=2 5 ,则△ABC面积的最小值为_____.三、解答题:本大题共70分,其中(17)—(21)题为必考题,(22),(23),(24)题为选考题.解答应写出文字说明、证明过程或演算步骤.(17)(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,且a≥b,sin A+3cos A=2sin B.(Ⅰ)求角C的大小;(Ⅱ)求a+bc的最大值.(18)(本小题满分12分)某篮球队甲、(Ⅰ(Ⅱ)以上述数据统计甲、乙两名队员得分超过..15分的频率作为概率,假设甲、乙两名队员在同一场比赛中得分多少互不影响,预测在本赛季剩余的2场比赛中甲、乙两名队员得分均超过...15分次数X的分布列和均值.(19)(本小题满分12分)如图,三棱柱ABC-A1B1C1的侧面ABB1A1为正方形,侧面BB1C1C为菱形,∠CBB1=B CB1C160,AB⊥B1C.(Ⅰ)求证:平面ABB1A1⊥BB1C1C;(Ⅱ)求二面角B-AC-A1的余弦值.(20)(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点M (-2,-1),离心率为22.过点M 作倾斜角互补的两条直线分别与椭圆C 交于异于M 的另外两点P 、Q . (Ⅰ)求椭圆C 的方程;(Ⅱ)证明:直线PQ 的斜率为定值,并求这个定值; (Ⅲ)∠PMQ 能否为直角证明你的结论.(21)(本小题满分12分)已知函数 x 轴是函数图象的一条切线.(Ⅰ)求a ; (Ⅱ)已知;(Ⅲ)已知:请考生在第(22),(23),(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑. (22)(本小题满分10分)选修4-1:几何证明选讲如图所示,AC 为⊙O 的直径,D 为BC ︵的中点,E 为BC 的中点.(Ⅰ)求证:DE ∥AB ; (Ⅱ)求证:AC·BC =2AD·CD .(23)(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系Ox 中,直线C 1的极坐标方程为ρsi n θ=2,M 是C 1上任意一点,点P 在射线OM 上,且满足|OP|·|OM|=4,记点P 的轨迹为C 2. (Ⅰ)求曲线C 2的极坐标方程;(Ⅱ)求曲线C 2上的点到直线ρcos (θ+4)=2距离的最大值.(24)(本小题满分10分)选修4-5:不等式选讲设f (x)=|x -3|+|x -4|. (Ⅰ)解不等式f (x)≤2;(Ⅱ)若存在实数x 满足f (x)≤ax -1,试求实数a 的取值范围.ABD EO2020年高考理科数学押题密卷(全国新课标I 卷)一、选择题:CDBCD ABCDD BA 二、填空题:(13)41;(14)100;(15)[ 125 ,4];(16)1.三、解答题: (17)解:(Ⅰ)sin A +3cos A =2sin B 即2sin (A + 3)=2sin B ,则sin (A +3)=sin B . …3分因为0<A ,B <,又a≥b 进而A≥B ,所以A + 3=-B ,故A +B =23,C =3. (6)分(Ⅱ)由正弦定理及(Ⅰ)得 a +b c =sin A +sin B sin C =23[sin A +sin (A + 3)]=3sin A +cos A =2sin (A +6).…10分当A =3时,a +b c 取最大值2. ……………………………12分 (18)解:(Ⅰ)x -甲= 1 8(7+9+11+13+13+16+23+28)=15, x -乙= 1 8(7+8+10+15+17+19+21+23)=15, s 2甲= 1 8[(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=, s 2乙= 1 8[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=. 甲、乙两名队员的得分均值相等;甲的方差较大(乙的方差较小). …4分 (Ⅱ)根据统计结果,在一场比赛中,甲、乙得分超过15分的概率分别为p 1= 3 8,p 2= 1 2,两人得分均超过15分的概率分别为p 1p 2=316,依题意,X ~B (2,316),P (X =k)=C k 2(316)k (1316)2-k,k =0,1,2, …7分X 的分布列为X 0 1 2P 169256 78256 9256…10分X 的均值E (X)=2×316= 38. ……………………………12分(19)解:(Ⅰ)由侧面ABB 1A 1为正方形,知AB ⊥BB 1.又AB ⊥B 1C ,BB 1∩B 1C =B 1,所以AB ⊥平面BB 1C 1C ,又AB 平面ABB 1A 1,所以平面ABB 1A 1⊥BB 1C 1C .…………………………4分(Ⅱ)建立如图所示的坐标系O-xyz .其中O 是BB 1的中点,Ox ∥AB ,OB 1为y 轴,OC 为z 轴.设AB =2,则A (2,-1,0),B (0,-1,0),C (0,0,3),A 1(2,1,0). AB →=(-2,0,0),AC →=(-2,1,3),AA 1→=(0,2,0). …6分 设n 1=(x 1,y 1,z 1)为面ABC 的法向量,则n 1·AB →=0,n 1·AC →=0, 即⎩⎨⎧-2x 1=0,-2x 1+y 1+3z 1=0.取z 1=-1,得n 1=(0,3,-1). …8分设n 2=(x 2,y 2,z 2)为面ACA 1的法向量,则n 2·AA 1→=0,n 2·AC →=0, 即⎩⎨⎧2y 2=0,-2x 2+y 2+3z 2=0.取x 2=3,得n 2=(3,0,2). …………………10分 所以cos n 1,n 2=n 1·n 2|n 1||n 2|=-77.因此二面角B-AC-A 1的余弦值为-77. ……………………………12分 (20)解:(Ⅰ)由题设,得4a 2+1b 2=1,①且a 2-b 2a =22, ② 由①、②解得a 2=6,b 2=3,椭圆C 的方程为x 26+y 23=1. …………………………………………………3分BCB 1BAC 1A 1xz yO(Ⅱ)记P(x1,y1)、Q(x2,y2).设直线MP的方程为y+1=k(x+2),与椭圆C的方程联立,得(1+2k2)x2+(8k2-4k)x+8k2-8k-4=0,-2,x1是该方程的两根,则-2x1=8k2-8k-41+2k2,x1=-4k2+4k+21+2k2.设直线MQ的方程为y+1=-k(x+2),同理得x2=-4k2-4k+21+2k2.………………………………………………………6分因y1+1=k(x1+2),y2+1=-k(x2+2),故k PQ=y1-y2x1-x2=k(x1+2)+k(x 2+2)x1-x2=k(x1+x2+4)x1-x2=8k1+2k28k1+2k2=1,因此直线PQ的斜率为定值.……………………………………………………9分(Ⅲ)设直线MP的斜率为k,则直线MQ的斜率为-k,假设∠PMQ为直角,则k·(-k)=-1,k=±1.若k=1,则直线MQ方程y+1=-(x+2),与椭圆C方程联立,得x2+4x+4=0,该方程有两个相等的实数根-2,不合题意;同理,若k=-1也不合题意.故∠PMQ不可能为直角.…………………………………………………………12分(21)解:(Ⅰ)f(x) =当x∈(0,a)时,f(x)<0,f(x)单调递减,当x∈(a,+∞)时,f(x)>0,f(x)单调递增.∵ x轴是函数图象的一条切线,∴切点为(a,0).f(a)=lna+1=0,可知a=1. ……………………………4分(Ⅱ)令1+,由x>0得知t>1,,于是原不等式等价于:.取,由(Ⅰ)知:当t∈(0,1)时,g(t)<0,g(t)单调递减,当t∈(1,+∞)时,g(t)>0,g(t)单调递增.∴ g (t)> g (1)=0,也就是.∴. ……………………………8分(Ⅲ)由(Ⅱ)知:x是正整数时,不等式也成立,可以令:x=1,2,3,…,n-1,将所得各不等式两边相加,得:即. ……………………………12分(22)证明:(Ⅰ)连接OE ,因为D 为BC ︵的中点,E 为BC 的中点,所以OED 三点共线.因为E 为BC 的中点且O 为AC 的中点,所以OE ∥AB ,故DE ∥AB . ………………………… …5分(Ⅱ)因为D 为BC ︵的中点,所以∠BAD =∠DAC ,又∠BAD =∠DCB ∠DAC =∠DCB .又因为AD ⊥DC ,DE ⊥CE △DAC ∽△ECD . AC CD =ADCE AD·CD =AC·CE 2AD·CD =AC·2CE 2AD·CD =AC·BC . ……………………………10分 (23)解:(Ⅰ)设P (ρ,θ),M (ρ1,θ),依题意有 ρ1sin θ=2,ρρ1=4. ……………………………3分 消去ρ1,得曲线C 2的极坐标方程为ρ=2sin θ. ……………………………5分 (Ⅱ)将C 2,C 3的极坐标方程化为直角坐标方程,得 C 2:x 2+(y -1)2=1,C 3:x -y =2. ……………………………7分C 2是以点(0,1)为圆心,以1为半径的圆,圆心到直线C 3的距离d =322,故曲线C 2上的点到直线C 3距离的最大值为1+322. ……………………………10分 (24)解:(Ⅰ)f (x)=|x -3|+|x -4|=⎩⎪⎨⎪⎧7-2x ,x <3,1,3≤x≤4,2x -7,x >4.……………………………2分作函数y =f (x)的图象,它与直线y =2交点的横坐标为 5 2和 92,由图象知不等式f (x)≤2的解集为[ 5 2, 92]. ……………………………5分E AD(0,-1)的直线.当且仅当函数y=f(x)与直线y=ax-1有公共点时,存在题设的x.由图象知,a取值范围为(-∞,-2)∪[ 12,+∞).………………………10分:=1 2。

相关文档
最新文档