(精选)线性代数-考研笔记
考研_线性代数_笔记精华_3打印
![考研_线性代数_笔记精华_3打印](https://img.taocdn.com/s3/m/08590803e87101f69e319524.png)
一章行列式一、重点1、理解:行列式的定义,余子式,代数余子式。
2、掌握:行列式的基本性质及推论。
3、运用:运用行列式的性质及计算方法计算行列式,用克莱姆法则求解方程组。
二、难点行列式在解线性方程组、矩阵求逆、向量组的线性相关性、求矩阵的特征值等方面的应用。
三、重要公式1、若A为n阶方阵,则│kA│= kn│A│2、若A、B均为n阶方阵,则│AB│=│A│·│B│3、若A为n阶方阵,则│A*│=│A│n-1若A为n阶可逆阵,则│A-1│=│A│-14、若A为n阶方阵,λi(i=1,2,…,n)是A的特征值,│A│=∏λi四、题型及解题思路1、有关行列式概念与性质的命题2、行列式的计算(方法)1)利用定义2)按某行(列)展开使行列式降阶3)利用行列式的性质①各行(列)加到同一行(列)上去,适用于各列(行)诸元素之和相等的情况。
②各行(列)加或减同一行(列)的倍数,化简行列式或化为上(下)三角行列式。
③逐次行(列)相加减,化简行列式。
④把行列式拆成几个行列式的和差。
4)递推法,适用于规律性强且零元素较多的行列式5)数学归纳法,多用于证明3、运用克莱姆法则求解线性方程组若D =│A│≠0,则Ax=b有唯一解,即x1=D1/D,x2= D2/D,…,xn= Dn/D其中Dj是把D中xj的系数换成常数项。
注意:克莱姆法则仅适用于方程个数与未知数个数相等的方程组。
4、运用系数行列式│A│判别方程组解的问题1)当│A│=0时,齐次方程组Ax=0有非零解;非齐次方程组Ax=b不是唯一解(可能无解,也可能有无穷多解)2)当│A│≠0时,齐次方程组Ax=0仅有零解;非齐次方程组Ax=b有唯一解,此解可由克莱姆法则求出第二章矩阵一、重点1、理解:矩阵的定义、性质,几种特殊的矩阵(零矩阵,上(下)三角矩阵,对称矩阵,对角矩阵,逆矩阵,正交矩阵,伴随矩阵,分块矩阵)2、掌握:1)矩阵的各种运算及运算规律2)矩阵可逆的判定及求逆矩阵的各种方法3)矩阵的初等变换方法二、难点1、矩阵的求逆矩阵的初等变换2、初等变换与初等矩阵的关系三、重要公式及难点解析1、线性运算1)交换律一般不成立,即AB≠BA2)一些代数恒等式不能直接套用,如设A,B,C均为n阶矩阵(A+B)2=A2+AB+BA+B2≠A2+2AB+B2(AB)2=(AB)(AB)≠A2B2(AB)k≠AkBk(A+B)(A-B)≠A2-B2以上各式当且仅当A与B可交换,即AB=BA时才成立。
线性代数知识点归纳
![线性代数知识点归纳](https://img.taocdn.com/s3/m/4f6d0edc4128915f804d2b160b4e767f5acf8027.png)
线性代数知识点归纳线性代数复习要点第一部分行列式1.排列的逆序数2.行列式按行(列)展开法则3.行列式的性质及行列式的计算行列式的定义行列式的计算:①(定义法)②(降阶法)行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.③(化为三角型行列式)上三角、下三角行列式等于主对角线上元素的乘积④若都是方阵(不必同阶)则⑤关于副对角线:⑦型公式:⑧(升阶法)在原行列式中增加一行一列,保持原行列式不变的方法.⑨(递推公式法)对阶行列式找出与或,之间的一种关系——称为递推公式,其中,,等结构相同,再由递推公式求出的方法称为递推公式法.(拆分法)把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算.⑩(数学归纳法)2.对于阶行列式,恒有:,其中为阶主子式;3.证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值.4.代数余子式和余子式的关系:第二部分矩阵矩阵的运算性质矩阵求逆矩阵的秩的性质矩阵方程的求解矩阵的定义由个数排成的行列的表称为矩阵.记作:或(同型矩阵:两个矩阵的行数相等、列数也相等.(矩阵相等:两个矩阵同型,且对应元素相等.(矩阵运算a.矩阵加(减)法:两个同型矩阵,对应元素相加(减).b.数与矩阵相乘:数与矩阵的乘积记作或,规定为.c.矩阵与矩阵相乘:设,,则,其中注:矩阵乘法不满足:交换律、消去律,即公式不成立.a.分块对角阵相乘:b.用对角矩阵乘一个矩阵相当于用的对角线上的各元素依次乘此矩阵的向量;用对角矩阵乘一个矩阵相当于用的对角线上的各元素依次乘此矩阵的向量d.两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,⑤矩阵的转置:把矩阵的行换成同序数的列得到的新矩阵,叫做的转置矩阵,记作.a.对称矩阵和反对称矩阵:是对称矩阵.是反对称矩阵.b.分块矩阵的转置矩阵:⑥伴随矩阵:,为中各个元素的代数余子式.,,.分块对角阵矩阵转置的性质:矩阵可逆的性质:伴随矩阵的性质:(无条件恒成立) 2.逆矩阵的求法方阵可逆.①伴随矩阵法:②初等变换法③分块矩阵的逆矩阵:④,⑤配方法或者待定系数法(逆矩阵的定义)行阶梯形矩阵可画出一条阶梯线,线的下方全为;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是时,称为行最简形矩阵初等变换与初等矩阵对换变换、倍乘变换、倍加(或消法)变换初等变换初等矩阵初等矩阵的逆初等矩阵的行列式 () () () ?矩阵的初等变换和初等矩阵的关系:(对施行一次初等变换得到的矩阵,等于用相应的初等矩阵乘;(对施行一次初等变换得到的矩阵,等于用相应的初等矩阵乘.注意:初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵.矩阵的秩关于矩阵秩的描述:①、,中有阶子式不为0,阶子式(存在的话)全部为0;②、,的阶子式全部为0;③、,中存在阶子式不为0;矩阵的秩的性质:①;;≤≤②③④⑤≤⑥若、可逆,则;即:可逆矩阵不影响矩阵的秩.⑦若;若⑧等价标准型.⑨≤,≤≤⑩,求秩矩阵方程的解法):设法化成第三部分线性方程组1.向量组的线性表示2.向量组的线性相关性3.向量组的秩4.向量空间5.线性方程组的解的判定6.线性方程组的解的结构(通解)(1)齐次线性方程组的解的结构(基础解系与通解的关系)(2)非齐次线性方程组的解的结构(通解)线性表示:对于给定向量组,若存在一组数使得,则称是的线性组合,或称称可由的线性表示.线性表示的判别定理:可由的线性表示由个未知数个方程的方程组构成元线性方程:①、有解②、③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数)2.设的列向量为的列向量为,,为的解可由线性表示.即:的列向量能由的列向量线性表示,为系数矩阵. 同理:的行向量能由的行向量线性表示,为系数矩阵. 即:线性相关性判别方法:法1法2法3推论线性相关性判别法(归纳)线性相关性的性质零向量是任何向量的线性组合零向量与任何同维实向量正交单个零向量线性相关;单个非零向量线性无关部分相关整体必相关;整体无关部分必无关原向量组无关接长向量组无关;接长向量组相关原向量组相关两个向量线性相关对应元素成比例;两两正交的非零向量组线性无关向量组中任一向量≤都是此向量组的线性组合若线性无关,而线性相关则可由线性表示且表示法一向量组的秩向量组的极大无关组所含向量的个数,称为这个向量组的秩.记作矩阵等价经过有限次初等变换化为向量组等价和可以相互线性表示记作:矩阵的行向量组的秩列向量组的秩阶梯形矩阵的秩等于它的非零行的个数矩阵的初等变换不改变矩阵的秩且不改变行向量间的线性关系向量组可由向量组线性表示且,则线性相关向量组线性无关且可由线性表示则.向量组可由向量组线性表示且则两向量组等价任一向量组和它的极大无关组等价向量组极大无关组若两个线性无关的向量组等价则它们包含的向量个数相等设是矩阵若,的行向量线性无关;线性方程组的矩阵式向量式(1)解得判别定理(2)线性方程组解的性质:判断是的基础解系的条件:①线性无关;②是的解;③.(4)求非齐次线性方程组Ax=b的通解的步骤(5)其他性质一个齐次线性方程组的基础解系不唯一.√若是的一个解,是的一个解线性无关√与同解(列向量个数相同):①它们的极大无关组相对应从而秩相等②它们对应的部分组有一样的线性相关性③它们有相同的内在线性关系与的行向量组等价齐次方程组与同解(左乘可逆矩阵);矩阵与的列向量组等价(右乘可逆矩阵).第四部分方阵的特征值及特征向量1.施密特正交化过程2.特征值、特征向量的性质及计算3.矩阵的相似对角化,尤其是对称阵的相似对角化1.(标准正交基个维线性无关的向量两两正交每个向量长度为1与的内积(.记为:④向量的长度⑤是单位向量的向量.2.内积的性质:①正定性:②对称性:③线性:(设A是一个n阶方阵,若存在数和n维非零列向量,使得,则称是方阵A的一个特征值,为方阵A的对应于特征值的一个特征向量.(的特征矩阵).(的特征多项式).④是矩阵的特征多项式⑤,称为矩阵的迹.⑥上三角阵、下三角阵、对角阵的特征值就是主对角线上的各元素若则为的的基础解系即为属于的线性无关的特征向量.⑧一定可分解为=、,从而的特征值为:,.为各行的公比,为各列的公比.⑨若的全部特征值,是多项式,则:①若满足的任何一个特征值必满足②的全部特征值为;.⑩与有相同的特征值,但特征向量不一定相同.特征值与特征向量的求法(1)写出矩阵A的特征方程,求出特征值.(2)根据得到A对应于特征值的特征向量.设的基础解系为其中.则A对应于特征值的全部特征向量为其中为任意不全为零的数.(与相似(为可逆矩阵)(与正交相似(为正交矩阵)(可以相似对角化与对角阵相似.(称是的相似标准形)6.相似矩阵的性质:①,从而有相同的特征值,但特征向量不一定相同.是关于的特征向量,是关于的特征向量.②③从而同时可逆或不可逆④⑤若与相似,则的多项式与的多项式相似.矩阵对角化的判定方法①n阶矩阵A可对角化(即相似于对角阵)的充分必要条件是A有n 个线性无关的特征向量.这时,为的特征向量拼成的矩阵,为对角阵,主对角线上的元素为的特征值.设为对应于的线性无关的特征向量,则有:.②可相似对角化,其中为的重数恰有个线性无关的特征向量.:当为的重的特征值时,可相似对角化的重数基础解系的个数.③若阶矩阵有个互异的特征值可相似对角化.实对称矩阵的性质:①特征值全是实数,特征向量是实向量;②不同特征值对应的特征向量必定正交;:对于普通方阵,不同特征值对应的特征向量线性无关;③一定有个线性无关的特征向量.若有重的特征值,该特征值的重数=;④必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形;⑤与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形;⑥两个实对称矩阵相似有相同的特征值.9.正交矩阵正交矩阵的性质①;②;③正交阵的行列式等于1或-1④是正交阵则也是正交阵⑤两个正交阵之积仍是正交阵⑥的行(列)向量都是单位正交向量组.10.11.施密特线性无关单位化:其中为对称矩阵,(与合同.()(正惯性指数二次型的规范形中正项项数负惯性指数二次型的规范形中负项项数符号差(为二次型的秩)④两个矩阵合同它们有相同的正负惯性指数他们的秩与正惯性指数分别相等.⑤两个矩阵合同的充分条件是:与等价⑥两个矩阵合同的必要条件是:2.经过化为标准形.(正交变换法(配方法(1)若二次型含有的平方项,则先把含有的乘积项集中,然后配方,再对其余的变量同样进行,直到都配成平方项为止,经过非退化线性变换,就得到标准形;若二次型中不含有平方项,但是(),则先作可逆线性变换,化二次型为含有平方项的二次型,然后再按(1)中方法配方.(初等变换法3. 正定二次型不全为零,.正定矩阵正定二次型对应的矩阵.4.为正定二次型(之一成立):(1),;(2)的特征值全大于;(3)的正惯性指数为;(4)的所有顺序主子式全大于;(5)与合同,即存在可逆矩阵使得;(6)存在可逆矩阵,使得;5.(1)合同变换不改变二次型的正定性.(2)为正定矩阵;.(3)为正定矩阵也是正定矩阵.(4)与合同,若为正定矩阵为正定矩阵(5)为正定矩阵为正定矩阵,但不一定为正定矩阵. 半正定矩阵的判定一些重要的结论:全体维实向量构成的集合叫做维向量空间.√关于:①称为的标准基,中的自然基,单位坐标向量;②线性无关;③;④;⑤任意一个维向量都可以用线性表示.7第1页共20页。
线性代数-考研笔记
![线性代数-考研笔记](https://img.taocdn.com/s3/m/0d4c7234dd88d0d232d46a42.png)
第一章行列式性质1 行列式与它的转置行列式相等。
性质2互换行列式的两行(列),行列式变号。
推论如果行列式的两行(列)完全相同,则此行列式等于零。
性质3行列式的某一行(列)中所以的元素都乘以同一个数,等于用数乘以此行列式。
第行(或者列)乘以,记作(或)。
推论行列式的某一行(列)的所有元素的公因子可以提到行列式记号的外面。
第行(或者列)提出公因子,记作(或)。
性质4行列式中如果两行(列)元素成比例,此行列式等于零。
性质5若行列式的某一列(行)的元素都是两数之和,例如第列的元素都是两数之和,则等于下列两个行列式之和:=性质 6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。
定义在阶行列式,把元所在的第行和第列划去后,留下来的阶行列式叫做元的余子式,记作;记,叫做元的代数余子式。
引理一个阶行列式,如果其中第行所有元素除元外都为零,那么这行列式等于与它的代数余子式的乘积,即定理3 (行列式按行按列展开法则) 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和,即或推论行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零。
范德蒙德行列式克拉默法则①如果线性方程组①的系数行列式不等于零,即,那么,方程组①有唯一解其中是把系数行列式矩阵中第列的元素用方程组右端的常数项代替后所得到的阶行列式,即定理4 如果非齐次线性方程组的系数行列式,则非齐次线性方程组一定有解,且解是唯一的。
定理如果非齐次线性方程组无解或有两个不同的解,则它的系数行列式必为零。
定理5 如果齐次线性方程组的系数行列式定理如果,则它的系数行列式必为零第二章矩阵级其运算定义1 由个数排成的行列的数表,称为行列矩阵;以数为元的矩阵可简记作或矩阵也记作。
行数和列数都等于的矩阵称为阶矩阵或阶方阵。
阶矩阵也记作。
特殊定义:两个矩阵的行数相等,列数也相等时,就称它们是同型矩阵同型矩阵和的每一个元素都相等,就称两个矩阵相等,;元素都是零的矩阵称为零矩阵,记作;注意不同型的零矩阵是不同的。
(完整版)线性代数笔记
![(完整版)线性代数笔记](https://img.taocdn.com/s3/m/0dd97789eefdc8d377ee32bd.png)
等行变换,则得到的是 。
对于第二类的可先转化为第一类的 ,即由
两边转置得
按上例的方法求出 进而求出 X
二.初等变换的性质
定理 2.5.1 设线性方程组的增广矩阵 经有限次的初等行变换化为 ,则以 与
为增广矩阵的方程组同解。 定理 2.5.2 任何矩阵都可以经有限次初等行变换化成行最简形式,经有限次初等变换 (包括行及列)化成等价标准形。且其标准形由原矩阵惟一确定,而与所做的初等变换无
3、矩阵的乘法 设 A=(aij)m×n,B=(bjk)n×l,则 A*B=C=(cik)m×l 其中 C=Σaijbjk(j=1,n) 注意;两个矩阵相乘必须第一个矩阵的列数等于第二个矩阵的行数;矩阵乘法不满足交换 律,即 AB 不一定等于 BA;矩阵乘法有零因子,即 A≠0(零矩阵),B≠0(零矩阵),但 有可能 A*B=0(零矩阵) 矩阵的乘法适合以下法则: (1)结合律:(AB)C=A(BC) (2)分配律(A+B)C=AC+BC
hing at a time and All things in their being are good for somethin
此处 0 表示与 A 同型的零矩阵,即 A=(aij)m×n ,0=0m×n (4)矩阵 A=(aij)m×n,规定-A=(-aij)m×n,(称之为 A 的负矩阵),则有 A+(-A)=(A)+A=0
如果 n 个未知数,n 个方程的线性方程组的系数行列式 D≠0,则方程组
定理 1.4.3 如果 n 个未知数 n 个方程的齐次方程组的系数行列式 D≠0,则该方程组只有零 解,没有非零解。 推论 如果齐次方程组有非零解,则必有系数行列式 D=0。
第二章 矩阵
一、矩阵的运算
考研数学线性代数手写笔记
![考研数学线性代数手写笔记](https://img.taocdn.com/s3/m/7f13aa794b73f242336c5fba.png)
隽卷轴对 埔
d
里
蝉 竹触 © 闭 C 八
哺
八
商愆酏 翅 癫 <娣榭蹊 八啪 一 夜娴© 蜘 t!枘碑堤 微
(· &i i t ój j j Éj & > 1 > t & , l s t ! d M
1
LJ; 1
1 1
AJ 1
A
八
月
A"
1
Aj
1
[
铀赫佴醐
,
F
k
wi f i q
&=
亡
创 制
Jill
@f q w Ê
觳入 罗耗僻 A W禾我让仟
苄 \
,
人0 4 入住°
A\
"
与 与
兼 多当A 吕 o 对不能弘 A · 荻8 - o 4 瓷A 和 却粼川 s o
> x -
a
2国
/ ¢i t h 1/ 14 ®Ptìi gM
a
\
77
3 虽t
八j乙肘 A
萨 八 八 良+ 9
男沫豹力毛亭泌 朗 荫 心
z3
黄 已知八 良 t 与沟司逐短 瞬 W掌硝
只 阳目 园国
k M' A0
j 0 0
1
11
巨
厂
:犍 ® f c 胪 时穿易患花 ( t i. j
r
M
0i L
豸
名 国
.
目届
零
卅车间
74 囤川 麟 9· Pl 花中
断腐元 囤
糙角囝闲 祥 不同 1爿啄盈凶钰 间闲
) ( 日 六 ' " 一
考研数学线性代数重点整理
![考研数学线性代数重点整理](https://img.taocdn.com/s3/m/e4697630f56527d3240c844769eae009581ba29a.png)
考研数学线性代数重点整理一、矢量空间矢量空间是线性代数的基础概念,它描述了一组对象(称为矢量)的性质及其之间的运算规则。
以下是矢量空间的一些重要性质和定义:1. 定义:矢量空间是满足以下8个条件的集合V,其中两个运算(加法和乘法)满足特定的性质。
2. 加法:对于任意的矢量u和v,它们的和u+v也是V中的一个矢量。
3. 加法交换律:对于任意的矢量u和v,有u+v = v+u。
4. 加法结合律:对于任意的矢量u、v和w,有(u+v)+w = u+(v+w)。
5. 加法单位元:存在一个称为零矢量的特殊矢量0,对于任意的矢量v,有v+0 = 0+v = v。
6. 加法逆元:对于任意的矢量v,存在一个称为负矢量的特殊矢量-u,使得v+(-u) = (-u)+v = 0。
7. 乘法定义:对于任意的矢量v和实数c,cv也是V中的一个矢量。
8. 乘法分配律:对于任意的矢量v和实数c和d,有c(dv) = (cd)v。
9. 乘法单位元:对于任意的矢量v,有1v = v。
二、矩阵与线性方程组矩阵是线性代数中另一个重要的概念,它可以用来表示线性方程组和线性变换。
以下是与矩阵和线性方程组相关的一些重要内容:1. 矩阵定义:将数按矩形排列成的矩形数表称为矩阵,其中行数和列数分别称为矩阵的行数和列数。
2. 矩阵运算:矩阵之间可以进行加法和乘法的运算,具体规则如下:- 矩阵加法:对应位置元素相加。
- 矩阵乘法:设A是一个m×n矩阵,B是一个n×p矩阵,那么它们的乘积AB是一个m×p矩阵,乘法规则为A的行乘以B的列。
3. 线性方程组:线性方程组是一组线性方程的集合,矩阵可以用来表示和求解线性方程组。
对于一个m×n矩阵A、一个n×1矩阵X和一个m×1矩阵B,线性方程组可以表示为AX=B。
4. 线性方程组的解:根据矩阵的性质,可以通过高斯消元法、矩阵求逆等方法求解线性方程组。
考研数学三必背知识点:线性代数
![考研数学三必背知识点:线性代数](https://img.taocdn.com/s3/m/1a57132ce2bd960590c677b9.png)
线性代数必考知识点一、行列式1、逆序数一个排列n i i i i ,,,321若有类似21i i >时,我们称21i i 组成一个逆序。
一个排列中逆序总的个数之和称为逆序数,记为)(21n i i i τ 2、行列式性质(1) 行列式行列互换,其值不变,即TAA =(2) 行列式两行或两列互换,其值反号。
(3) 行列式某行或某列乘以k 等于行列式乘以k 。
(4) 行列式某行货某列乘以k 加到另一行或列上,行列式值不变。
(5) 行列式两行或两列对应成比例,则行列式为零。
(6) 行列式某行或某列元素为零,则行列式为零。
(7) 上、下三角行列式其值为主对角线上元素乘积。
(8) 行列式值等于对应矩阵所有特征值的乘积,即n A λλλ 21= (9) 齐次线性方程组0=Ax有非零解n A r A <⇔=⇔)(03、行列式行列展开定理 (1) 余子式ijji ijA M +-=)1( (2) 代数余子式ijji ijMA +-=)1(4、三阶行列式展开公式332112322311312213322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++=二、矩阵1、矩阵运算(1) 矩阵加减法即是将对应元素进行加减。
(2) 矩阵乘法是将对应行与对应列元素相乘再相加。
(3) 矩阵除法是乘以逆矩阵。
(4) 矩阵加减法满足交换律、结合律,乘法满足结合律、分配率。
(5)n阶方阵一般可以有1*,,,-AA A A T 四大基本矩阵运算2、矩阵的行列式(1) A k kA A A n T ==, (2) A B B A BA AB === 3、矩阵转置(1) T T T T T T T T T T A B AB kA kA B A B A A A ==+=+=)(,)(,)(,)( (2) **11)()(,)()(T T T T A A A A ==--4、伴随矩阵(1) *1*****11*2****1*)(,)(,)()(,)(,,AkkA A B AB AA A AA E A A A AA A A A n n -----=======(2)1)(0)(1)(1)()()(***-<⇔=-=⇔==⇔=n A r A r n A r A r nA r n A r5、逆矩阵 (1)1111*111111*1)(,1)(,,)(,,1-----------=======ABAB A AA AAA AE A AAAA AA(2) 分块矩阵的逆矩阵 ①111---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭AO A O OB O B (主对角分块)② 111OA O BB O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭(副对角分块) ③11111AC A A C BO B OB-----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭(拉普拉斯)④ 11111A O A O C B B C A B -----⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭(拉普拉斯)6、矩阵初等变换(1) 交换矩阵两行或两列(2) 矩阵某行或某列乘以k(3) 矩阵某行或某列乘以k 并加到另一行或列 (4) 矩阵初等变换的实质是矩阵与初等矩阵相乘 ① 矩阵初等行变换=矩阵左乘初等矩阵 ② 矩阵初等列变换=矩阵右乘初等矩阵7、矩阵其他考点(1) 行列矩阵相乘:α为行矩阵),,(21n a a a ,β为列矩阵),,(21n b b b , 则βααβααβαβββαβαβαβα1)()()()())(()(-===k k(2) 矩阵n A 的求法:若A 可对角化,则有Λ=-AP P 1,于是1-Λ=P P A n n (3) 若n B r m A r ==)(,)(,则有m A r B A r =≤+)()(且n B r B A r =≤+)()(三、向量1、向量运算:βαβαλβαλβααββαk k k ±=±±±=±±±=±)(),()(,2、线性表示对于向量组s ααα ,,21和向量β,若存在一组数s k k k ,,21使得s s k k k αααβ+++= 2211 (1) 若s s k k k αααβ+++= 2211有唯一解,则β能由向量组s ααα ,,21唯一线性表示。
考研线性代数笔记
![考研线性代数笔记](https://img.taocdn.com/s3/m/780ce623ba68a98271fe910ef12d2af90342a84b.png)
考研线性代数笔记考研线性代数笔记1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-;将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -? -;③、上、下三角行列式(= ◥◣):主对角元素的乘积;④、◤和◢:副对角元素的乘积(1)2(1)n n -? -;⑤、拉普拉斯展开式:A O A C ABC B O B ==、(1)m n C A O AA B B O B C==- ⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nn k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-;②、反证法;③、构造齐次方程组0Ax =,证明其有非零解;④、利用秩,证明()r A n <;⑤、证明0是其特征值;2、矩阵1. A 是n 阶可逆矩阵:0A ≠(是非奇异矩阵);()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解;?n b R ?∈,Ax b =总有唯一解;A 与E 等价;A 可表示成若干个初等矩阵的乘积; ?A 的特征值全不为0;T A A 是正定矩阵;A 的行(列)向量组是n R 的一组基; ?A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3. 1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ?? ?= ? ??,则:Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----??= ? ? ??;②、111A O A O O B O B ---??=;(主对角分块)③、111O A O B B O A O ---??= ? ?;(副对角分块)④、11111A C A A CB O B OB -----??-??=;(拉普拉斯)⑤、11111A O A O C B B CA B -----??= ? ?-;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个m n ?矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nE OF OO= ;等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ? ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ??Λ= ? ??λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)Ei j Ei j -=,例如:1111111-= ? ? ? ?????;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11k k k -=≠ ? ? ? ???;⑤、倍加某行或某列,符号(())E i j k,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --???? ? ?=≠ ? ? ? ?????;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ?≤≤;②、()()T r A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩)⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※)⑥、()()()r A B r A r B +≤+;(※)⑦、()min((),())r AB r A rB ≤;(※)⑧、如果A 是m n ?矩阵,B 是n s ?矩阵,且0AB =,则:(※)Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)?行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ?? ?的矩阵:利用二项展开式;二项展开式:01110()nn nn m n m mn n n n m m n mn n n n n n m a b C a C a b C a b C a b C b C a b -----=+=++ ++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:11112---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ??==-??<-?;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ? =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0;③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ?矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ??+++= +++=?;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ?????? ??? ? ??? ?=?= ??? ? ??? ???????(向量方程,A 为m n ?矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β?? ? ?= ? ???(全部按列分块,其中12n b b b β?? ? ?= ? ???);④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数) 4、向量组的线性相关性1. m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ?矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ?矩阵12T T T m B βββ??= ? ? ???;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ?=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ?=是否有解;(线性方程组)③、向量组的相互线性表示 AX B ?=是否有解;(矩阵方程)3. 矩阵m n A ?与l n B ?行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5. n 维向量线性相关的几何意义:①、α线性相关?0α=;②、,αβ线性相关,αβ坐标成比例或共线(平行);③、,,αβγ线性相关?,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3)向量组A 能由向量组B 线性表示AX B ?=有解;()(,)r A r A B ?=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ? ==(85P 定理2推论)8. 方阵A 可逆?存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ?=(左乘,P 可逆)0Ax ?=与0Bx =同解②、矩阵列等价:~cA B AQ B ?=(右乘,Q 可逆);③、矩阵等价:~A B PAQ B ?=(P 、Q 可逆); 9. 对于矩阵m n A ?与l n B ?:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C =,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ? =只有零解;②、0Bx = 有非零解0ABx ? =一定存在非零解;12. 设向量组12:,,,n r r B b b b ?可由向量组12:,,,n s s A a a a ?线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ?,且A 线性无关,则B 组线性无关()r K r ?=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ?,存在n m Q ?,m AQ E = ()r A m ?=、Q 的列向量线性无关;(87P )②、对矩阵m n A ?,存在n m P ?,n PA E = ()r A n ?=、P 的行向量线性无关;14. 12,,,s ααα线性相关存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)1212(,,,)0s s x xx ααα?? ? ?= ? ???有非零解,即0Ax =有非零解;12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ?的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论) 5、相似矩阵和二次型1. 正交矩阵T A A E ?=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i ja a i j n i j=?==?≠?;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、A 与B 等价 ?A 经过初等变换得到B ;=PAQ B ,P 、Q 可逆; ()()?=r A r B ,A 、B 同型;②、A 与B 合同 ?=T C AC B ,其中可逆;T x Ax 与T x Bx 有相同的正、负惯性指数;③、A 与B 相似1-?=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =?A B ,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7. n 元二次型T x Ax 为正定:A ?的正惯性指数为n ;A ?与E 合同,即存在可逆矩阵C ,使TC AC E =; A ?的所有特征值均为正数; A ?的各阶顺序主子式均大于0;0,0ii a A ?>>;(必要条件)。
考研数学详细笔记
![考研数学详细笔记](https://img.taocdn.com/s3/m/3eccea55195f312b3069a556.png)
α
m
= =
0 0
;即
⎛ ⎜ ⎜ ⎜
α1T
α
T 2
⎞ ⎟ ⎟ ⎟
α1
α2
+ kmαmTαm = 0
⎜⎜⎝
α
T m
⎟⎟⎠
⎛ k1 ⎞
αm
⎜
)
⎜ ⎜
k2
⎟ ⎟ ⎟
=
0
⎜⎟ ⎝ km ⎠
令 A = (α1 α2
⎛ k1 ⎞
αm )
,即
AT
⎜
A
⎜ ⎜
k2
⎟ ⎟ ⎟
=
0
,因为
α1,α2 ,
⎜⎟ ⎝ km ⎠
,αm 线 性 无 关 ,
三、线性代数复习重点
大家知道,线性代数前后知识的联系非常紧密,所 以我们在这一部分复习的时候,一定 要抓住我们线性代数的前后联系的这样一些关键点, 把知识连贯起来,我们就会发现,掌 握起来是比较容易的。整个线性代数,我个人认为, 可以分成三大块内容。第一部分,行 列式和矩阵,是我们线性代数的基础部分,基础部分 一般来讲不考大题。以这个为基础,
方程组中解的判定、解的性质、解的结构这三部分要搞清楚 重要题型 1 判定向量组线性相关性; 2 向量组的线性表示 3 求向量组的秩与极大无关组 4 方程组(齐次,非齐次)解的判定与求解 5 方程组的公共解与同解。
例 5 设 向 量 组 α1,α2 ,α3 线 性 无 关 , 向 量 β1 能 由 α1,α2 ,α3 线 性 表 出 , 向 量 β2 不 能 由
⎧a11x1 + a12 x2 + ⎪⎪⎨a21x1 + a22 x2 + ⎪ ⎪⎩am1x1 + am2 x2 +
线性代数考研知识点总结
![线性代数考研知识点总结](https://img.taocdn.com/s3/m/19765562492fb4daa58da0116c175f0e7cd1193f.png)
线性代数考研知识点总结线性代数是数学的一个重要分支,它研究向量空间及其上的线性变换。
在计算机科学、物理学、工程学等领域中,线性代数都有着广泛的应用。
在考研中,线性代数是一个必考的科目,以下是线性代数考研的一些重要知识点总结。
1. 向量空间:向量空间是线性代数的基础概念,它包括一组向量和一些满足特定条件的运算规则。
向量空间中的向量可以进行加法和数乘运算,满足交换律、结合律和分配律。
2. 向量的线性相关性和线性无关性:如果向量可以通过线性组合表示为另一组向量的形式,那么这组向量就是线性相关的;如果向量不满足线性相关的条件,那么它们就是线性无关的。
3. 矩阵:矩阵是线性代数中的另一个重要概念,它是一个由数字排列成的矩形阵列。
矩阵可以用于表示线性变换、解线性方程组等。
常见的矩阵类型有方阵、对称矩阵、对角矩阵、单位矩阵等。
4. 行列式:行列式是一个用于刻画矩阵性质的重要工具。
行列式可以用来计算线性变换的缩放因子,判断矩阵是否可逆,以及计算矩阵的逆等。
5. 矩阵的相似和对角化:两个矩阵A和B,如果存在一个非奇异矩阵P,使得PAP^(-1)=B,那么矩阵A和B就是相似的。
相似的矩阵有着相同的特征值和特征向量。
对角化是指将一个矩阵通过相似变换变成对角矩阵的过程。
6. 线性变换:线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。
线性变换可以用矩阵表示,相应的矩阵称为线性变换的矩阵表示。
线性变换可以进行合成、求逆等操作。
7. 内积空间:内积空间是一个带有内积运算的向量空间。
内积运算满足对称性、线性性、正定性等性质。
内积空间可以用来定义向量的长度、夹角、正交性等概念。
8. 特征值和特征向量:对于一个线性变换,如果存在一个非零向量使得线性变换作用在该向量上等于该向量的某个常数倍,那么这个常数就是该线性变换的特征值,而对应的非零向量就是特征向量。
特征值和特征向量可以用来分析矩阵的性质,求解线性方程组等。
9. 奇异值分解:奇异值分解是矩阵分解的一种常用方法,它将一个矩阵分解为三个矩阵的乘积,其中一个矩阵是正交矩阵,另两个矩阵是对角矩阵。
考研数学《线性代数》考点知识点总结
![考研数学《线性代数》考点知识点总结](https://img.taocdn.com/s3/m/27a00b6784868762cbaed5cd.png)
记作: ri rj ( ci cj ) D D 0 .
3.行列式乘以 k 等于某行(列)所有元素都乘以 k. 推论:某一行(列)所有元素公因子可提到行列式的外面.
记作: kD ri k ( kD ci k ).
记作: kD ri k ( kD ci k ).
行列式的 性质:
a2i a2n
a21
a22
a2i a2n
an1 an2 (ani ani ) ann
an1 an2 ani ann an1 an2 ani ann
上式为列变换,行变换同样成立.
6.把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变.
记作: ci ci kcj ( ri ri krj ), D 不变.
n
aki Akj
k 1
Dij
D, 0,
当i 当i
j, n
j;
或
k 1
aik
Ajk
Dij
D, 0,
当i 当i
j, j; 其中ij
1, 0,
当i j, 当i j.
1 1 11
范德蒙德 行列式:
x1 Dn x12
x2 x22
x3 xn
x32 xn2 = (xi x j ) .证明用数学归纳法.
定理 2:
n 阶行列式可定义为 D (1)ta a p11 p2 2 apnn = (1)ta1p1a2 p2 anpn .
1.D=DT,DT 为 D 转置行列式.(沿副对角线翻转,行列式同样不变)
2.互换行列式的两行(列),行列式变号.
推论:两行(列)完全相同的行列式等于零.
记作: ri rj ( ci c j ) D D .
考研数学 线性代数(高等代数)重点知识整理总结
![考研数学 线性代数(高等代数)重点知识整理总结](https://img.taocdn.com/s3/m/a026fd7cde80d4d8d15a4ff1.png)
考研线性代数(高等代数)重点知识总结一、行列式(一)行列式概念和性质 1.(奇偶)排列、逆序数、对换逆序数:所有逆序的总数。
2、行列式定义:所有两个来自不同行不同列的元素乘积的代数和。
重点:二、三阶行列式的计算公式3. n 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和,121212(..)12(1)...n n nj j j ijj j nj nj j j a a a a τ=-∑.4.行列式的性质(主要用于行列式的化简和求值): (1)行列式行列互换,其值不变。
(转置行列式T D D =) (2)行列式中某两行(列)互换,行列式变号。
推论:若行列式中某两行(列)对应元素相等,则行列式等于零。
(3)常数k 乘以行列式的某一行(列),等于k 乘以此行列式。
(提公因式) 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。
(4)行列式具有分行(列)可加性。
行列式中如果某一行(列)的元素都是 两组数之和,那么这个行列式就等于两个行列式之和。
(5)将行列式某一行(列)的k 倍加到另一行(列)上,值不变。
余子式ij M 、代数余子式ij ji ij M A +-=)1(。
(6)行列式依行(列)展开:余子式ij M 、代数余子式ij ji ij M A +-=)1(。
定理:①任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值; ②行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0.(7)克莱姆法则:① 非齐次线性方程组:当系数行列式0≠D ,有唯一解:,(12)j j D x j n D==⋯⋯其中、;② 齐次线性方程组:当系数行列式0D ≠时,则只有零解。
逆否:若方程组存在非零解,则D 等于零。
③ 如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0。
④ 若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解; 如果方程组有非零解,那么必有0D =。
考研线代笔记(精华版)
![考研线代笔记(精华版)](https://img.taocdn.com/s3/m/116c52c9f18583d048645936.png)
4.求A逆方方法(4种)——公式法(伴随),行行行初等变换,定义法,分块矩阵
5.矩阵的公式P37(7个)
Note:与转置公式区分(4个)P36
五 初等矩阵
1.定义:单位矩阵经过一一次初等变换得来
Note:3种形式:数乘,倍加,互换
2.初等矩阵的性质:(5个)
1.初等矩阵转置后仍为初等矩阵
2.初等矩阵均为可逆矩阵,且其逆阵仍为同类型初等矩阵
Note:1.互换(不不变)2.倍加(相反数)3.倍乘(倒数)
3.左行行行右列列,注意:初等矩阵的n次方方
4.可逆矩阵A可表示为若干干初等矩阵的乘积(证明——基础笔记)
5.初等行行行变换的原理理(证明——基础笔记)
3.等价,B等价的充要条件:存在可逆矩阵P与Q,使PAQ=B
3.充要条件(秩相等(同型))
六 正交矩阵
1.定义
2.等价条件——转置等于逆
Note:A的行行行列列式为1或-1
3.几几何意义——单位化 与 垂直(内积为0)
七 秩
1.定义——非非零子子式的最高高阶数
3.AB=AC且A不不等于0推不不出B=C
4.对⻆角阵的乘法
! 有交换律律" 求逆(倒数)# n次方方(元素n次方方)
4.求A的n次方方
! 秩为1" 三阶只有三个不不为0为背景型(三阶,四阶的情况)# 相似
5.分块矩阵
1.根据题目目,有不不同的分块方方法
2.运算法则
! 加法" 乘法# 转置(注意副对⻆角线)$ 逆(两种形式)% AB=C两种分块(右行行行),两种表达 方方式& AB=0两种信息' n次方方
一一 概念
线性代数笔记
![线性代数笔记](https://img.taocdn.com/s3/m/f39dfb3eddccda38366baf18.png)
线性代数笔记Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】线性代数笔记第一章行列式1.3.1行列式的性质给定行列式,将它的行列互换所得的新行列式称为D的转置行列式,记为或。
性质1 转置的行列式与原行列式相等。
即(这个性质表明:行列式对行成立的性质,对列也成立,反之亦然)性质2 用数k乘行列式D的某一行(列)的每个元素所得的新行列式等于kD。
推论1 若行列式中某一行(列)的元素有公因数,则可将公因数提到行列式之外。
推论2 若行列式中某一行(列)的元素全为零,则行列式的值为0。
可以证明:任意一个奇数阶反对称行列式必为零。
性质3行列式的两行(列)互换,行列式的值改变符号。
以二阶为例推论3 若行列式某两行(列),完全相同,则行列式的值为零。
性质4 若行列式某两行(列)的对应元素成比例,则行列式的值为零。
性质5 若行列式中某一行(列)元素可分解为两个元素的和,则行列式可分解为两个行列式的和,注意性质中是指某一行(列)而不是每一行。
性质6 把行列式的某一行(列)的每个元素都乘以加到另一行(列),所得的行列式的值不变。
范德蒙德行列式例10 范德蒙行列式…….=(x2-x1)(x3-x1)(x3-x2)克莱姆法则定理1.4.1 对于n阶行列式定理如果n个未知数,n个方程的线性方程组的系数行列式D≠0,则方程组有惟一的解:定理如果n个未知数n个方程的齐次方程组的系数行列式D≠0,则该方程组只有零解,没有非零解。
推论如果齐次方程组有非零解,则必有系数行列式D=0。
第二章矩阵一、矩阵的运算1、矩阵的加法设A=(a ij)m×n ,B=(b ij)m×n,则A+B=(a ij+b ij)m×n矩阵的加法适合下列运算规则:(1)交换律:A+B=B+A(2)结合律:(A+B)+C=A+(B+C)(3)A+0=0+A=A此处0表示与A同型的零矩阵,即A=(a ij)m×n,0=0m×n(4)矩阵A=(a ij)m×n,规定-A=(-a ij)m×n,(称之为A的负矩阵),则有A+(-A)=(-A)+A=02、矩阵的数乘设A=(a ij)m×n,K为数,则KA=(Ka ij)m×n矩阵的数乘适合下列运算规则:(1)K(A+B)=KA+KB(2)(K+L)A=KA+LA(3)(KL)A=K(LA)(4)1*A=A(5)0*A=0(左端的零是指数0,而右端的“0”表示一个与A行数列数相同的零矩阵。
考研数学线性代数必考的知识点
![考研数学线性代数必考的知识点](https://img.taocdn.com/s3/m/7e4cacac4bfe04a1b0717fd5360cba1aa8118c10.png)
考研数学线性代数必考的知识点考研数学线性代数是考研数学中的重要一部分,是以线性代数为基础的高等数学课程。
线性代数在科学与工程中有着广泛的应用,而考研数学线性代数的知识点主要包括矩阵、行列式、线性方程组、特征值与特征向量、线性空间和线性变换等内容。
一、矩阵1.矩阵的基本运算:矩阵的加减法、数乘、乘法及其性质;2.矩阵的转置、对称与反对称矩阵、单位矩阵;3.矩阵的秩:元素型和行列型定义、秩的性质和计算方法;4.矩阵的逆:可逆矩阵与非奇异矩阵、矩阵的逆的存在性和计算方法;5.矩阵的秩公式和分块矩阵。
二、行列式1.行列式的定义:n阶行列式的定义、性质和计算方法;2.行列式的性质:行列式的性质和性质导出的定理;3.方阵的行列式的计算:按行(列)展开、对角线法则、拉普拉斯展开;4.计算商工差、计算行列式的特殊方法;5.行列式的应用:方阵可逆的判定、线性方程组的解的存在性与唯一性、向量线性相关与线性无关的判定。
三、线性方程组1.线性方程组的线性组合与线性相关性;2.齐次方程组与非齐次方程组的概念;3.齐次线性方程组的基础解系与通解;4.线性方程组的求解方法:初等变换法、高斯消元法、矩阵法;5.线性方程组的解的判别准则:齐次线性方程组有非零解的充分必要条件、非齐次线性方程组有解的充分必要条件。
四、特征值与特征向量1.特征值与特征向量的定义;2.特征值与特征向量的性质:特征值的性质、特征向量的性质;3.对角化与相似矩阵:矩阵的相似与相似矩阵的性质;4.对称矩阵的主轴定理和谱定理;5.特征值与特征向量的计算方法。
五、线性空间与线性变换1.线性空间的定义和性质;2.线性子空间的定义和性质;3.线性相关与线性无关性质的判定;4.线性空间的基与维数的概念;5.线性变换的定义和性质:线性变换的线性性质、线性变换的像与核。
以上就是考研数学线性代数必考的主要知识点。
掌握了这些知识点,可以帮助考生有效准备考研数学线性代数的复习和应对考试,为取得良好成绩打下坚实的基础。
考研线性代数知识点全面总结
![考研线性代数知识点全面总结](https://img.taocdn.com/s3/m/2439e20458fafab069dc0294.png)
《线性代数》复习提纲第一章、行列式1.行列式的定义:用2n 个元素ij a 组成的记号称为n 阶行列式。
(1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;◊行列式值为0的几种情况:Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同; Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。
3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:一个排列中任意两个元素对换,改变排列的奇偶性。
奇排列变为标准排列的对换次数为基数,偶排列为偶数。
n 阶行列式也可定义:n q q q na a a ⋯=∑21t211-D )(,t 为n q q q ⋯21的逆序数4.行列式性质:1、行列式与其转置行列式相等。
2、互换行列式两行或两列,行列式变号。
若有两行(列)相等或成比例,则为行列式0。
3、行列式某行(列)乘数k,等于k 乘此行列式。
行列式某行(列)的公因子可提到外面。
4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。
5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。
6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。
(按行、列展开法则)7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0. 5.克拉默法则::若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解DD D Dx D D n =⋯==n 2211x ,x ,,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)
定义 3 在 矩阵 中,任取 行与 列(
),位于这些行列交叉处的 个元素,不改变它们在 中所
处的位置次序而得的 阶行列式,称为矩阵 的 阶行列式。
定义 4 设在矩阵 中有一个不等于 的 阶子式 ,且所有 阶子式(如果存在的话)全等于 ,那么 称为矩阵 的最高阶非零子式,数 称为矩阵 的秩,记作 ;并规定零矩阵的秩序等于
推论 行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零。
范德蒙德行列式
克拉默法则
①
如果线性方程组①的系数行列式不等于零,即
, 那么,方程组①有唯一解
其中
是把系数行列式矩阵 中第 列的元素
用方程组右端的常数项代替后所得到的 阶行列式,即 定理 4 如果非齐次线性方程组的系数行列式 ,则非齐次线性方程组一定有解,且解是唯一的。 定理 如果非齐次线性方程组无解或有两个不同的解,则它的系数行列式必为零。
(i.) 对调两行(对调
两行,记作
);
(ii.) 以数 乘某一行中的所有元素(第 行乘 ,记作 );
(iii.) 把某一行所有元素的 倍加到另一行对应的元素上去(第 行的 倍加到第 行上,记作
;
把定义 1 中的“行”换成“列”,即得矩阵的初等列变换的定义(所用的记号是把“ ”换成“ ”) 矩阵的初等行变换与初等列变换,统称为初等变换
如果存在不全为零的数
则称向量组 A 是线性相关的,否则称它线性无关。
,使
定理 4 向量组 A:
线性相关的充分必要条件是它所构成的矩阵 A=
于向量个数 m;向量组线性无关的充分必要条件是
。
的秩小
定理 5
(1) 若量组 A:
线性无关,则向量组 B:
也线性相关。反言之,若向量
组 B 线性无关,则向量组 A 也线性无关。 (2) m 个 n 维向量组成的向量组,当维数 n 小于向量个数 m 时一定线性相关。特别地,n+1 个 n 维向量一定线性相
(v.)
设 为 阶矩阵,若 的分块矩阵只有在对角线上有非零子块,其余子块都为非零矩阵,且在对角线上的子 块都是方阵,即
其中
都是方阵,那么称 为分块对角矩阵
克拉默法则 对于 个变量、 个方程的线性方程组 如果它的系数行列式 ,则它有唯一解
第三章 矩阵的初等变换与线性方程组 定义 1 下面三种变换称为矩阵的初等行变换:
定 理 2 向 量 组 B:
能 由 向 量 组 A:
A=
的秩等于矩阵(A,B)=(
推论 向量组 A:
与向量组 B:
中 A 和 B 是向量组 A 和 B 所构成的矩阵。
线性表示的充分必要条件是矩阵
,
)
等价的充分必要条件是
,其
定 理 3 设 向 量 组 B:
能 由 向 量 组 A:
线性表示,则
定 义 4 给 定 向 量 组 A:
如果矩阵 经有限次初等行变换变成矩阵 ,就称 与 行等价,记作
;
如果矩阵 经有限次初等列变换变成矩阵 ,就称 与 列等价,记作 如果矩阵 经有限次初等变换变成矩阵 ,就称 与 列等价,记作
; ;
矩阵之间的等价关系具有下列性质:
(i.) 反身性
;
(ii.) 对称性 若
,则
;
(iii.) 传递性
,则 ;
性质 1 性质 2 推论 性质 3
第一章 行列式 行列式与它的转置行列式相等。 互换行列式的两行(列),行列式变号。 如果行列式的两行(列)完全相同,则此行列式等于零。 行列式的某一行(列)中所以的元素都乘以同一个数 ,等于用数 乘以此行列式。第 行(或者列)乘以 ,
记作 推论
(或 )。 行列式的某一行(列)的所有元素的公因子可以提到行列式记号的外面。第 行(或者列)提出公因子 ,
(i.)
=
(ii.) (iii.)
= =
伴随矩阵
det A;
定义: 性质:
的各个元素的代数余子式
定义 7 对于 阶矩阵 ,如果有一个 阶矩阵 ,使 阵,简称 逆阵 。
定理 1 若矩阵 可逆,则
,则说矩阵 是可逆的,并把矩阵 称为 的逆矩
定理 2 若
, 则矩阵 可逆,且
是可逆矩阵的充分必要条件是
推论 若
的解, 为实数,则
也是
的解。
齐次线性方程组的解集的最大无关组称为该齐次线性方程组的基础解系。
定理 7 设
矩阵 的秩
,则 元齐次线性方程组
的解集 的秩
性质 3 若
为
的解,则
为对应的齐次线性方程组
的解。
定义 6 设 为 维向量的集合,如果集合 非空,且集合 对于向量的加法及乘数两种运算封闭,那么就称集合 为向
关。
(3) 设向量组 A:
线性无关,而向量组 B:
组 A 线性表示,且表示式是惟一的。
,b 线性相关,则向量 b 必能由向量
定义 5 设有向量组 ,如果在 中能选出 个向量
,满足
i. 向量组 ii. 向量组 中任意
线性无关; 个向量(如果 中有
个向量的话)都线性相关
那么称向量组 是向量组 的一个最大线性无关组(简称最大无关组);最大无关组所含向量个数 称为向量组 的秩, 记作 。 只含零向量的向量组没有最大无关组,规定它的秩为 0. 定理 6 矩阵的秩等于它的列向量的秩,也等于它的行向量的秩。
推论(最大无关组的等价定义)设向量组 向量组 线性无关; 向量组 的任一向量都能由向量组 线性表示, 那么向量组 便是向量组 的一个最大无关组。
是向量组 的一个部分组,且满足
定理 向量组 =
能够由向量组
线性表示的充分必要条件是
定理 若向量组 能由向量组 线性表示,则
性质 1 若
为
的解,则
也是
的解。
性质 2 若 为
。也就是方程组
有解
定理 1 向量 b 能由向量组 A: 矩阵 B=
的秩。
线性表示的充分必要条件是矩阵 A=
的秩等于
定义 2 设有两个向量组 A:
及 B:
若 B 组中的每个向量都能由向量 A 线性表
示,则称向量组 B 能由向量组 A 线性表示,若向量组 A 与向量组 B 能相互线性表示,则称这两个向量组等价。
时,
维向量 的长度(或范数)。 ;
定理 1 若 维向量
是一组两两相交的非零向量,则
;
定义 3 设 维向量 位向量,则称
是量空间
的一个基,如果
是 的一个规范正交基。
两两正交,且都是单
规范正交化:
单位化
定义 4 如果 阶矩阵 满足
那么称 为正交矩阵,简称正交阵。
方阵 为正交阵的充分必要条件是 ① 的列向量都是单位向量,②且两两正交;
矩阵的乘法性质(不满足交换律)
(i.) (
(ii.) (iii.)
( )A =BA+CA
(iv.)
(v.)
;
矩阵的转置 定义 5 把矩阵 的行换成同序数的列得到一个新矩阵,叫做 的转置矩阵,记作 。 性质:
(i.)
;
(ii.) (iii.)
(iv.)
定义 6 由 阶方阵 的元素所构成的行列式(各元素的位置不变),称方阵 的行列式,记作 ( 为 阶方阵, 为数)
用矩阵记号表示,当 与 都是列向量时,有
内积具有下列性质(其中
i.
;
ii.
;
iii. iv.
为 维向量, 为实数): 当 时,
v.
施瓦茨不等式
定义 2 令
,
=1 时,称 为 单位向量 。
向量的长度具有下述性质:
i. 非负性 当 时,
;当
ii. 齐次性
;
iii. 三角不等式
iv. 当
时,称向量 与 正交。
数 称为第 i 个分量。 若干个同维数的列向量(或同维数的行向量)所组成的集合叫做向量组。
定义 2 给定向量组 A:
,对于任何一组实数
,表达式
称为向量组 A 的一个线性组合,给定向量组 A:
和向量 b,如果存在一组数
,
使得
则向量 b 是向量组 A 的线性组合,这时称向量 b 能由向量组 A 线性表示
量空间。
“封闭”,是指在集合 中可以进行向量的加法及乘数两种运算,具体说,就是:若
,则
;若
,,则
一般的,由向量组
所生成的向量空间为
定义 7 设 为向量空间,如果 个向量
i.
线性无关;
,且满足
ii.
中任一向量都可由
那么,向量组
线性表示, 就称为向量空间 的一个基, 称为向量空间 的维数,并称 为 维向量空间。
定理 2 若 ,则 推论 若可逆矩阵 使
,则
矩阵秩的基本性质 1.
2.
;
3. 若 4. 若 5.
6. 7.
,则 可逆,则
8. 若
,则
,特别地,当 为非零列向量时,有
定理 3 (i.) (ii.) (iii.)
元线性方程组 无解的充分必要条件是 有唯一解的充分必要条件是 有无限多解的充分必要条件是
求解线性方程组的步骤
矩阵加法满足运算律(设
矩阵)
(i.) (ii.)
定义 3 数与矩阵相乘
数乘矩阵满足下列运算规律(设
(i.) (ii.)
; ;
(iii.) (iv.)
定义 4 矩阵与矩阵相乘
设
是一个 矩阵,
矩阵, 为数) 是一个 矩阵,那么规定矩阵 与矩阵 的乘积是一个 矩阵
,其中
,
并把此乘积记作
注意:只有当第一个矩阵(左矩阵)的列数等于第二个矩阵(右矩阵)的行数时,两个矩阵才能相乘;