图形定理及判定

合集下载

初中几何图形的定义、性质、判定

初中几何图形的定义、性质、判定

等腰三角形定义1 有两条边相等的三角形是等腰三角形,相等的两个边称为这个三角形的腰性质2 等腰三角形的两个底角相等(简称“等边对等角”)3 等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简称“三线合一”)4 等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴判定5 如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)等边三角形定义1 三边都相等的三角形是等边三角形。

性质2 等边三角形是特殊的等腰三角形,具有等腰三角形的一切性质3 等边三角形的每个内角都等于60º4 等边三角形是锐角三角形5 等边三角形是轴对称图形,它有3条对称轴判定6 有一个角是60º的等腰三角形是等边三角形7 有两个角是60º的三角形是等边三角形直角三角形定义1 有一个角为90°的三角形,叫做直角三角形(Rt三角形)。

性质2 在直角三角形中,两个锐角互余。

3 直角三角形斜边上的中线等于斜边的一半4 直角三角形两直角边的平方和等于斜边的平方。

(勾股定理)5 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半6 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。

判定7 斜边和一条直角边对应相等的两个直角三角形全等(简写为“HL”)平行四边形定义1 在同一平面内,两组对边分别平行的四边形叫做平行四边形性质2 平行四边形是中心对称图形,对角线的交点是它的对称中心3 平行四边形的对边相等、对角相等、对角线互相平分判定4 一组对边平行且相等的四边形是平行四边形5 两条对角线互相平分的四边形是平行四边形6 两组对边分别相等的四边形是平行四边形7 两组对角分别相等的四边形是平行四边形8 一组对边平行,一组对角相等的四边形是平行四边形矩形定义1 有一个角是直角的平行四边形叫做矩形,通常叫长方形性质2 矩形是特殊的平行四边形,它具有平行四边形的一切性质3 矩形既是抽对称图形也是中心对称图形,对称中心是对角线中点4 矩形的对角线相等,四个角都是直角判定5 对角线相等的平行四边形是矩形6 有一个角是直角的平行四边形是矩形7 有3个角是直角的四边形是矩形菱形定义1 一组邻边相等的平行四边形叫做菱形性质2 菱形是特殊的平行四边形,它具有平行四边形的一切性质3 菱形既是抽对称图形也是中心对称图形,对称中心是对角线中点4 菱形的四条边相等5 菱形的对角线互相垂直并且每一条对角线平分一组对角6 S菱形=½×对角线的积判定7 四边都相等的四边形是菱形8 对角线互相垂直的平行四边形是菱形9 有一组邻边相等的平行四边形是菱形10 有一条对角线平分一组对角的平行四边形是菱形正方形定义1 有一组邻边相等并且有一个角是直角的平行四边形是正方形性质2 正方形具有矩形和菱形的性质3 正方形既是抽对称图形也是中心对称图形,对称轴有4条,对称中心是对角线中点判定4 有一组邻边相等的矩形是正方形5 有一个角是直角的菱形是正方形梯形1 一组对边平行而另一组对边不平行的四边形是梯形2 梯形的中位线平行于两底,并且等于两底和得一半3 S梯形=(上底+下底)×高÷2=½(a+b)h=中位线×高等腰梯形定义1 两腰相等的梯形是等腰梯形性质2 等腰梯形是轴对称图形3 两条对角线相等4 等腰梯形的同一底上的两角相等判定5 同一底上的两个角相等的梯形是等腰梯形直角梯形1 有一个角是直角的梯形叫做直角梯形三角形全等1 有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。

初中数学几何定理汇总

初中数学几何定理汇总

几何是初中数学中重要的一部分内容,考试时一般会出现在大题里。

学习几何,需要证明,这时定理就很重要!点的定理:1、过两点有且只有一条直线2、两点之间线段最短角的定理:1、同角或等角的补角相等2、同角或等角的余角相等直线定理:1、过一点有且只有一条直线和已知直线垂直2、直线外一点与直线上各点连接的所有线段中,垂线段最短平行定理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都和第三条直线平行,这两条直线也互相平行证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和定理:三角形三个内角的和等于180°定理:全等三角形的对应边、对应角相等边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(SSS):有三边对应相等的两个三角形全等斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)推论1:等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称定理:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半判定定理:直角三角形斜边上的中线等于斜边上的一半勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形定理:四边形的内角和等于360°;四边形的外角和等于360°多边形内角和定理:n边形的内角和等于(n-2)×180°推论:任意多边的外角和等于360°平行四边形性质定理:1.平行四边形的对角相等2.平行四边形的对边相等3.平行四边形的对角线互相平分推论:夹在两条平行线间的平行线段相等平行四边形判定定理:1.两组对角分别相等的四边形是平行四边形2.两组对边分别相等的四边形是平行四边形3.对角线互相平分的四边形是平行四边形4.一组对边平行相等的四边形是平行四边形矩形性质定理1:矩形的四个角都是直角矩形性质定理2:矩形的对角线相等矩形判定定理1:有三个角是直角的四边形是矩形矩形判定定理2:对角线相等的平行四边形是矩形菱形性质定理1:菱形的四条边都相等菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形面积=对角线乘积的一半,即S=(a×b)÷2菱形判定定理1:四边都相等的四边形是菱形菱形判定定理2:对角线互相垂直的平行四边形是菱形正方形性质定理1:正方形的四个角都是直角,四条边都相等正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角定理1:关于中心对称的两个图形是全等的定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称等腰梯形性质定理:1.等腰梯形在同一底上的两个角相等2.等腰梯形的两条对角线相等等腰梯形判定定理:1.在同一底上的两个角相等的梯形是等腰梯形2.对角线相等的梯形是等腰梯形平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半:L=(a+b)÷2S=L×h相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似相似三角形判定定理:1.两角对应相等,两三角形相似(ASA)2.两边对应成比例且夹角相等,两三角形相似(SAS)直角三角形被斜边上的高分成的两个直角三角形和原三角形相似判定定理3:三边对应成比例,两三角形相似(SSS)相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似性质定理:1.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比2.相似三角形周长的比等于相似比3.相似三角形面积的比等于相似比的平方任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值定理:过不共线的三个点,可以作且只可以作一个圆定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧定理:1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线3.圆的切线垂直经过切点的半径4.三角形的三个内角平分线交于一点,这点是三角形的内心5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角6.圆的外切四边形的两组对边的和相等7.如果四边形两组对边的和相等,那么它必有内切圆8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b。

(完整版)初中几何公式定理

(完整版)初中几何公式定理

初中几何公式定理:线1、同角或等角的余角相等2、过一点有且只有一条直线和已知直线垂直3、过两点有且只有一条直线4、两点之间线段最短5、同角或等角的补角相等6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、定理线段垂直平分线上的点和这条线段两个端点的距离相等10、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上11、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合12、定理1关于某条直线对称的两个图形是全等形13、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线14、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上15、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称初中几何公式定理:角16、同位角相等,两直线平行17、内错角相等,两直线平行18、同旁内角互补,两直线平行19、两直线平行,同位角相等20、两直线平行,内错角相等21、两直线平行,同旁内角互补22、定理1在角的平分线上的点到这个角的两边的距离相等23、定理2到一个角的两边的距离相同的点,在这个角的平分线上24、角的平分线是到角的两边距离相等的所有点的集合初中几何公式定理:三角形25、定理三角形两边的和大于第三边26、推论三角形两边的差小于第三边27、三角形内角和定理三角形三个内角的和等于180°28、推论1直角三角形的两个锐角互余29、推论2三角形的一个外角等于和它不相邻的两个内角的和30、推论3三角形的一个外角大于任何一个和它不相邻的内角31、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c32、勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形初中几何公式定理:等腰、直角三角形33、等腰三角形的性质定理等腰三角形的两个底角相等34、推论1等腰三角形顶角的平分线平分底边并且垂直于底边35、等腰三角形的顶角平分线、底边上的中线和高互相重合36、推论3等边三角形的各角都相等,并且每一个角都等于60°37、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)38、推论1三个角都相等的三角形是等边三角形39、推论2有一个角等于60°的等腰三角形是等边三角形40、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半41、直角三角形斜边上的中线等于斜边上的一半初中几何公式定理:相似、全等三角形42、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似43、相似三角形判定定理1两角对应相等,两三角形相似(ASA)44、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似45、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)46、判定定理3三边对应成比例,两三角形相似(SSS)47、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似48、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比49、性质定理2相似三角形周长的比等于相似比50、性质定理3相似三角形面积的比等于相似比的平方51、边角边公理有两边和它们的夹角对应相等的两个三角形全等52、角边角公理有两角和它们的夹边对应相等的两个三角形全等53、推论有两角和其中一角的对边对应相等的两个三角形全等54、边边边公理有三边对应相等的两个三角形全等55、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等56、全等三角形的对应边、对应角相等初中几何公式定理:四边形57、定理四边形的内角和等于360°58、四边形的外角和等于360°59、多边形内角和定理n边形的内角的和等于(n-2)×180°60、推论任意多边的外角和等于360°61、平行四边形性质定理1平行四边形的对角相等62、平行四边形性质定理2平行四边形的对边相等63、推论夹在两条平行线间的平行线段相等64、平行四边形性质定理3平行四边形的对角线互相平分65、平行四边形判定定理1两组对角分别相等的四边形是平行四边形66、平行四边形判定定理2两组对边分别相等的四边形是平行四边形67、平行四边形判定定理3对角线互相平分的四边形是平行四边形68、平行四边形判定定理4一组对边平行相等的四边形是平行四边形初中几何公式定理:矩形69、矩形性质定理1矩形的四个角都是直角70、矩形性质定理2矩形的对角线相等71、矩形判定定理1有三个角是直角的四边形是矩形72、矩形判定定理2对角线相等的平行四边形是矩形初中几何公式:菱形73、菱形性质定理1菱形的四条边都相等74、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角75、菱形面积=对角线乘积的一半,即S=(a×b)÷276、菱形判定定理1四边都相等的四边形是菱形77、菱形判定定理2对角线互相垂直的平行四边形是菱形初中几何公式定理:正方形78、正方形性质定理1正方形的四个角都是直角,四条边都相等79、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角80、定理1关于中心对称的两个图形是全等的81、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式定理:等腰梯形83、等腰梯形性质定理等腰梯形在同一底上的两个角相等84、等腰梯形的两条对角线相等85、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形86、对角线相等的梯形是等腰梯形初中几何公式:等分87、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等88、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰89、推论2经过三角形一边的中点与另一边平行的直线,必平分第三边90、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半91、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h92、(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d93、(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d94、(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么,(a+c+…+m)/(b+d+…+n)=a/b95、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例96、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例97、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边98、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值初中几何公式:圆101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三个点确定一条直线110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理一条弧所对的圆周角等于它所对的圆心角的一半117、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理圆的切线垂直于经过切点的半径124、推论1经过圆心且垂直于切线的直线必经过切点125、推论2经过切点且垂直于切线的直线必经过圆心126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理弦切角等于它所夹的弧对的圆周角129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上135、①两圆外离d﹥R+r②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137、定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形面只是一些小技巧,接下来我们读完题开始找思路。

勾股定理及直角三角形的判定

勾股定理及直角三角形的判定

勾股定理及直角三角形的判定知识要点分析1、勾股定理如果直角三角形两直角边分别为a、b,斜边为c,那么一定有a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。

2、勾股定理的验证勾股定理的证明方法很多,其中大多数是利用面积拼补的方法证明的。

我们也可将勾股定理理解为:以两条直角边分别为边长的两个正方形的面积之和等于以斜边为边长的正方形的面积。

因此,证明勾股定理的关键是想办法把以两条直角边分别为边长的两个正方形作等面积变形,使它能拼成以斜边为边长的正方形。

另外,用拼图的方法,并利用两种方法表示同一个图形的面积也常用来验证勾股定理。

3、如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形,此结论是勾股定理的逆定理(它与勾股定理的条件和结论正好相反)。

其作用是利用边的数量关系判定直角三角形,运用时必须在已知三角形三条边长的情况下。

我们还可以理解为:如果三角形两条短边的平方和等于最长边的平方,那么这个三角形是直角三角形,并且两条短边是直角边,最长边是斜边。

4、勾股数满足条件a2+b2=c2的三个正整数a、b、c称为勾股数。

友情提示:(1)3,4,5是勾股数,又是三个连续正整数,并不是所有三个连续正整数都是勾股数;(2)每组勾股数的相同倍数也是勾股数。

【典型例题】考点一:勾股定理例1:在△ABC中,∠C=90°,(1)若a=3,b=4,则c=__________;(2)若a=6,c=10,则b=__________;(3)若c=34,a:b=8:15,则a=________,b=_________.例2:已知三角形的两边长分别是3、4,如果这个三角形是直角三角形,求第三边的长。

解:考点二:勾股定理的验证例3:如图所示,图(1)是用硬纸板做成的两个直角三角形,两直角边的长分别是a和b,斜边长为c,图(2)是以c为直角边的等腰三角形。

请你开动脑筋,将它们拼成一个能证明勾股定理的图形。

特殊四边形的性质和判定定理

特殊四边形的性质和判定定理

特殊四边形的性质和判定定理名称 性质判定平行四边形1、对边平行且相等。

2、对角相等。

3、对角线互相平分。

4、是中心对称图形。

5、S=a b (a 、b 分别表示底和这一底上的高)推论:三角形的中位线平行于三角形的第三边.并且等于第三边的一半。

1、两组对边分别平行的四边形叫做平行四边形。

(定义)2、两组对边分别相等的四边形是平行四边形。

3、对角线互相平分的四边形是平行四边形。

4、一组对边平行且相等的四边形叫做平行四边形。

矩形矩形除了具有平行四边形的所有性质外.还有以下性质:1、四个角都是直角。

2、对角线相等。

3、既是中心对称图形.又是轴对称图形。

4、S= a b (a 、b 分别表示长和宽)推论:直角三角形斜边上的中线等于斜边的一半。

1、有一个角是直角的平行四边形叫做矩形。

2、对角线相等的平行四边形是矩形。

3、有三个角是直角的四边形是矩形。

菱形菱形除了具有平行四边形的所有质外.还有以下性质:1、四条边都相等。

2、两条对角线互相垂直。

并且每一条对角线平分一组对角。

3、既是中心对称图形.又是轴对称图形。

4、S= a b (a 、b 分别表示两条对角线长。

)1、有一组邻边相等的平行四边形叫做菱形。

(定义)2、对角线互相垂直的平行四边形是菱形。

3、边相等到的四边形是菱形。

正方形除了具有平行四边形、矩形、菱形的所有性质外.还有以下性质: 1、对角线和边的夹角是45º。

2、S= a ²(a 表示两边长。

) 1、一组邻边相等的矩形是正方形。

2、有一个是直角的菱形是正方形。

3、对角线相垂直的矩形是正方形。

4、对角线相等的菱形是正方形。

等腰梯形1、两腰相等。

2、同一底上的两个角相等。

3、对角线相等。

4、轴对称图形1、对角线相等的梯形是等腰梯形。

2、同一底上两个角相等的梯形是等腰梯形。

梯形中常见辅助线AB CDABCDABC DABCD A BCD例1 如图.E 、F 分别为正方形ABCD 的边BC 、CD 上的一点.AM ⊥EF.垂足为M.若AM=AB.求证:EF=BE+CF例2 已知:如图.正方形ABCD 中.延长AD 到E.使DE=AD.再延长DE 到F.使DF=BD.连接BF 交CD 于Q.交CE 于P 。

正方形定理和判定

正方形定理和判定

正方形定理和判定前言:正方形是最简单的几何形状之一,有很多有趣的定理和判定。

本文将介绍几个关于正方形定理和判定,以及它们的证明和应用。

一、正方形的定义在欧几里德的几何学中,正方形是一个四边形,其四条边相等且每个内角为90度。

正方形也可以定义为一种具有对称性和平移性质的多边形,它可以通过将它绕着中心点旋转90度而变为自己,也可以通过将它沿着一条中心对称轴翻转而变为自己。

二、正方形的定理1. 对角线垂直定理正方形的两条对角线相等且垂直。

也就是说,正方形的每个内角是90度,对角线相等且垂直。

证明:我们可以使用向量和点积的方法证明这个定理。

考虑正方形的两条对角线分别为AC和BD,其中A和B 是对角线的交点,C和D是两条对角线的中点。

我们定义向量AB=r,向量AC=p,向量AD=q,则有:p=r/2+q (1)q=r/2-p (2)由于正方形的四个角是直角,因此向量p和q是垂直的。

为了证明这一点,考虑这两个向量的点积:p·q=(r/2+q)·(r/2-p)=r/2·r/2-q·p=0其中最后一步是因为向量r和向量p-q是垂直的。

因此,向量p和向量q是垂直的,也就是说,正方形的两条对角线相互垂直。

2. 对角线平分定理正方形的两条对角线相互平分,也就是说,它们的交点是对角线的中心点。

证明:正方形的对角线交点是它的重心,这意味着每条对角线的中点一定在对角线的中心点。

另外,对于形状为正方形的任何物体,所有对称轴都经过形状的中心点。

因此,对于正方形,我们可以得出结论:它的对角线相互平分,交点是对角线的中心点。

三、正方形的判定1. 边长相等且对角线垂直如果一个四边形的四条边相等且对角线相互垂直,那么这个四边形一定是正方形。

证明:我们可以分两步证明这个判定。

首先,我们证明四边形的每个内角是一个直角。

可以将四边形分解为两个相似的直角三角形,其中每个直角三角形的底边等于对角线的一半,而相邻斜边等于四边形的边长。

立体几何的八大定理

立体几何的八大定理

l ⊥b ab
=
O
a

b
⇒l⊥α
ab⊥ ⊥αα⇒a∥b
4. 平面与平面垂直的判定定理与性质定理
文字语言 一个平面过另 一个平面的垂 判定定理 线,则这两个平 面垂直
两个平面垂直, 则一个平面内 性质定理 垂直于交线的 直线与另一个 平面垂直
图形语言
符号语言
ll⊂ ⊥βα⇒α⊥β
αlαl⊂ ⊥⊥ ∩aβββ=a⇒
l⊥α
2
符号语言
∵a∥β,b∥β, a∩b=P,a⊂α,
b⊂α,∴α∥β
∵α∥β, α∩γ=a, β∩γ=b,
∴a∥b
1
3.直线与平面垂直的判定定理与性质定理
文字语言
图形语言
一条直线与一个 平面内的两条相 判定定理 交直线都垂直,则 该直线与此平面 垂直
垂直于同一个平 性质定理 面的两条符号语言
∵l∥a,a⊂α, l⊄α,∴l∥α
∵l∥α,l⊂β, α∩β=b, ∴l∥b
2. 平面与平面平行的判定定理和性质定理
文字语言
图形语言
一个平面内的两条相
交直线与另一个平面
判定定理 平行,则这两个平面
平行(简记为“线面
平行⇒面面平行”)
性质定理
如果两个平行平面同 时和第三个平面相 交,那么它们的交线 平行
立体几何的八大定理
1. 直线与平面平行的判定定理和性质定理
判定定理 性质定理
文字语言 平面外一条直线与 此平面内的一条直 线平行,则该直线与 此平面平行(线线平 行⇒线面平行) 一条直线与一个平 面平行,则过这条直 线的任一平面与此 平面的交线与该直 线平行(简记为“线 面平行⇒线线平 行”)
图形语言

中考必背的14类判定定理

中考必背的14类判定定理

叠 ,直线 两旁 的部分互相重合 , 这个 图形关于这条直线对性.
()两个 图形 的对应 点 连 2 线被 同一 条 直 线垂 直 平 分 , 这 两个 图形关 于这条直 线对称.
( )两组对 边分 别相 等 的 2 四边形是 平行 四边 形.
( )对角线 互相 平分 的 四 3
( ) 边 对 应 成 比例 , j 4三 两 角形相 似. ( ) j 角 形 被 斜 边 上 的 5直 三
8 一 7


田 考 I 宝 典 背


高分 成 的两 个直 角三 角形和 原
内角 相等 的梯形是 等腰梯 形.
三角 形相似 .
( )如果一 个直 角 三角 形 6
在菱形A C B D中 .
ZA= 0 . F分 B _ 6 。E. 别 是 AB. 的 AD
( ) 角线 相 等 的梯 形 是 2对
等腰 梯 形.
的斜 边和一 条直 角边 与另一 个
直角 三角形 的斜 边和 一条直 角
1. 1 轴对 称的判 定定理
() 1一个 图形 沿一条直线折
边对应 成 比例 ,那 么这 两个直 角三 角形相似.
★7 平行 四边形 判定定理 . ( )两组对 角分 别相 等 的 1 四边形 是平行 四边形 .
个 角 等 于6 。 等 腰 三 角 形 是 0的
等边 三 角 形 . ★4 .勾 股 定 理 的 逆 定 理
() 3 同旁 内角互 补 . 直线 两
平行. 2 角 平 分 线 判 定 定 理 .

( )s s 有 三 边 对 应 相 等 4 (s ) 的 两 个 _ 角 形 全 等 三 ( )HL 5 ( )有 斜 边 和 一 条 直

四边形的性质及判定定理

四边形的性质及判定定理

1. 有 一 组 临 边 相 等 的矩形。 2. 对 角 线 互 相 垂 直 的矩形。 3. 有 一 个 角 是 直 角 的菱形。 4. 对 角 线 相 等 的 菱 形。
1.两腰相等的梯形。 2. 同 一 底 上 的 两 个 角相等的梯形。
1. 三角形的中位线平行于三角形的第三边 三角形中的几个重 且等于第三边的一半。 要定理: 2. 直角三角形的斜边中线等于斜边的一 半。 3. 直角三角形中 300 的角所对的直角边等 于斜边的一半。 4. 等腰三角形底边上的高、中线、顶角平 分线三线合一。 5. 有一个角为 600 的等腰三角形是等边三 角形。
矩形
菱形
1. 两组对边平行且 相等. 2. 四个角都是直角。 3. 对角线互相平分 且相等。 4. 既是轴对称图形, 又是中心对称 图 形。 5. S=ab ( a 是长 b 是宽) 1. 两组对边平行且 1. 有一组临边相等 四条边都相等。 的平行四边形。 2. 两组对角相等。 2. 对角线互相垂直 3. 对角线互相垂直 的平行四边形。 平分且每一条对 3. 四条边相等的四 角线平分一组对 边形。 角。 4. 既是轴对称图形, 又是中心对称 图 形。 5. S= ab(a、b 是 对角线长) .

等腰梯形
1.两组对边平行且四 条边相等。 2.四个角都是直角。 1. 对角线相等且互 相垂直平分, 每一 条对角线平分一 组对角 (既对角线 和边的夹角是 450) 4. 既是轴对称图形, 又是中心对称图形。 5.S= a2(a 是边长) 1. 两腰相等。 2. 同一底上的两个 角相等。 3. 对角线相等。 4. 是轴对称图形。
对角线相等且互相垂直平分每一条对角线平分一组对角既对角线和边的夹角是4504
万 成 教 育

九年级图形判定定理知识点

九年级图形判定定理知识点

九年级图形判定定理知识点九年级数学中,图形判定定理是非常重要的一部分。

通过学习这些定理,可以帮助我们准确地判定不同的形状,并且掌握它们的性质。

本文将对九年级图形判定定理的知识点进行详细介绍。

1. 判断线段垂直、平行和相交当我们要判断两条线段是否垂直时,可以使用垂直定理。

垂直定理指出,如果两条线段的斜率乘积为-1,则它们是垂直的。

而判断线段是否平行,则可以使用平行定理。

平行定理指出,如果两条线段的斜率相等,则它们是平行的。

另外,线段的相交可以根据两条线段的端点位置来判断,如果两条线段的端点分别位于对方的两侧,则它们相交。

2. 判断三角形的形状和性质在判断三角形的形状和性质时,我们可以运用一些定理。

首先是根据边的长度来判断。

如果三条边的长度都相等,则这个三角形是等边三角形;如果只有两条边的长度相等,则是等腰三角形;如果三条边的长度都不相等,则是普通三角形。

其次,也可以根据角的大小来判断。

如果一个三角形的三个角都小于90°,则是锐角三角形;如果一个三角形的一个角等于90°,则是直角三角形;如果一个三角形的一个角大于90°,则是钝角三角形。

3. 判断四边形的类型四边形是指有四条边的图形,常见的类型有矩形、正方形、平行四边形等。

在判断四边形的类型时,我们可以运用一些定理。

首先是矩形的判定。

矩形的特点是四个角都是直角,并且相邻的边长度相等。

正方形是特殊的矩形,它的四个角都是直角,并且四条边的长度都相等。

另外,平行四边形的特点是对边平行且相等。

4. 判断圆的性质在判断圆的性质时,我们可以运用一些定理。

首先是判断一个点是否在圆内(内切圆)。

如果一个点到圆心的距离小于圆的半径,则该点在圆的内部。

另外,判断两个圆是否相交时,可以根据两个圆心距离和半径之和的关系进行判定。

如果两个圆心距离小于两个半径之和,则两个圆相交;如果两个圆心距离等于两个半径之和,则两个圆相切;如果两个圆心距离大于两个半径之和,则两个圆不相交。

初中几何各种性质及判定

初中几何各种性质及判定

相似三角形判定定理相似三角形的性质:(1)相似三角形的对应角相等;(2)相似三角形的对应边成比例;(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比;(4)相似三角形的周长比等于相似比;(5)相似三角形的面积比等于相似比的平方;(6)平行三角形一边的直线和其他两边所构成的三角形与原三角形相似,如果两个三角形对应边的比相等,这2个三角形也可以说明相似;(7)要证明△ABC∽△A B C全等要把他们的关系联系起来.相似三角形的传递性:如果△ABC∽△A¹B¹C¹,△A¹B¹C¹∽△A²B²C²,那么△ABC∽ΔA²B²C²相似三角形的判定定理:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

(简叙为:两角对应相等,两个三角形相似。

)(AA)判定定理2:如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。

(简叙为:两边对应成比例且夹角相等,两个三角形相似。

)(SAS)判定定理3:如果两个三角形的三组对应边成比例,那么这两个三角形相似。

(简叙为:三边对应成比例,两个三角形相似。

)(SSS)判定定理4:两三角形三边对应平行,则两三角形相似。

(简叙为:三边对应平行,两个三角形相似。

)判定定理5:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

(简叙为:斜边与直角边对应成比例,两个直角三角形相似。

)(HL)判定定理6:如果两个三角形全等,那么这两个三角形相似(相似比为1:1)(简叙为:全等三角形相似)。

相似的判定定理与全等三角形基本相等,因为全等三角形是特殊的相似三角形直角三角形相似的判定定理:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似;(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.一定相似符合下面的情况中的任何一种的两个(或多个)三角形一定相似:1.两个全等的三角形全等三角形是特殊的相似三角形,相似比为1:1。

三角形的所有判定定理

三角形的所有判定定理

三角形的所有判定定理三角形是平面几何中最简单的图形之一,不仅常常出现在我们的生活中,而且在几何学的研究中也扮演着重要的角色。

在几何学中,我们有许多方法来判定一个三角形的性质和特点。

本文将介绍一些常见的三角形判定定理。

首先,我们来讨论三角形的基本属性。

一个三角形是由三条线段组成的,这三条线段被称为三角形的三边。

三个角是三角形的另外三个基本属性,它们位于线段的两个端点之间。

三角形也可以用边长来描述,我们将三角形的三边长度依次表示为a、b、c,三个角的度数依次用A、B、C表示。

1. 角的和为180度定理:在任何三角形中,三个角的度数之和等于180度。

这个定理可以通过直线与平行线判定定理来证明。

我们可以画一条线段与直线相交,形成两个相对的内角,它们的度数之和等于180度。

因此,对于任何三角形ABC,我们有∠A + ∠B + ∠C = 180度。

2. 角度对边长的判定定理:在一个三角形中,两个角的度数相等,则对应的两边长度相等。

这个定理也被称为对应边角相等定理。

例如,在一个等边三角形中,三个边的长度是相等的,因为三个角的度数都是60度。

由此可见,对于一个三角形ABC,如果∠A = ∠B,则 AB = AC。

3. 边长对角的判定定理:在一个三角形中,两个边的长度相等,则对应的两个角度度数相等。

这个定理也被称为对应角边相等定理。

例如,如果一个三角形的两个边的长度相等,则其对应的两个角的度数也相等。

对于一个三角形ABC,如果 AB = AC,则∠B = ∠C。

4. 外角定理:一个三角形的外角等于其余两个内角之和。

这个定理可以通过将外角延长形成两个相对的内角来证明。

例如,在一个三角形ABC中,外角∠CDE等于内角∠A和∠B的度数之和。

因此,∠CDE = ∠A + ∠B。

5. 直角三角形定理:在一个直角三角形中,两个直角边的平方和等于斜边的平方。

这个定理也被称为勾股定理。

例如,在一个直角三角形ABC中,如果AC为斜边,AB和BC为直角边,我们有 AB² + BC² = AC²。

证明几何图形的定理和定律

证明几何图形的定理和定律

证明几何图形的定理和定律1.三角形的内角和定理:三角形的三个内角之和等于180度。

2.三角形的两边之和大于第三边。

3.三角形的两边之差小于第三边。

4.等腰三角形的性质:两腰相等,底角相等。

5.等边三角形的性质:三边相等,三角相等。

6.直角三角形的性质:有一个90度的角,斜边大于其他两边。

7.勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。

8.四边形的内角和定理:四边形的四个内角之和等于360度。

9.平行四边形的性质:对边平行且相等,对角相等。

10.矩形的性质:四个角都是直角,对边平行且相等。

11.菱形的性质:四条边相等,对角相等。

12.正方形的性质:四条边相等,四个角都是直角。

13.梯形的性质:一组对边平行,一组对边不平行。

14.圆的定义:平面上所有到圆心距离相等的点的集合。

15.圆的性质:圆心到圆上任意一点的距离等于半径。

16.圆的周长公式:C = 2πr,其中C为周长,r为半径。

17.圆的面积公式:A = πr²,其中A为面积,r为半径。

18.弧的性质:圆上任意两点间的部分。

19.弦的性质:圆上任意两点间的线段。

20.圆心角的性质:圆心所对的角等于它所对的弧的两倍。

四、相似图形1.相似图形的定义:形状相同,大小不同的图形。

2.相似图形的性质:对应角相等,对应边成比例。

3.相似三角形的性质:对应角相等,对应边成比例。

4.相似四边形的性质:对应角相等,对应边成比例。

五、全等图形1.全等图形的定义:形状和大小都相同的图形。

2.全等图形的性质:对应边相等,对应角相等。

3.全等三角形的性质:对应边相等,对应角相等。

4.全等四边形的性质:对应边相等,对应角相等。

六、几何图形的变换1.平移:在平面内,将一个图形上的所有点按照某个方向作相同距离的移动。

2.旋转:在平面内,将一个图形绕着某一点转动一个角度的图形变换。

3.轴对称:在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形。

初中几何常用定理汇总

初中几何常用定理汇总

初中几何常用定理汇总初中数学的几何部分,有很多定理需要记忆理解,但平时我们对知识点的学习都是分散的,不利于记忆!这里整理了初中三年较重要的一些几何定理↓↓↓这些基本定理对我们解几何题目而言是关键中的关键,一定要牢记哟!一、点、线、角点的定理:过两点有且只有一条直线点的定理:两点之间线段最短角的定理:同角或等角的补角相等角的定理:同角或等角的余角相等直线定理:过一点有且只有一条直线和已知直线垂直直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短二、几何平行平行定理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都和第三条直线平行,这两条直线也互相平行证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补三、三角形内角定理定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和定理:三角形三个内角的和等于180°四、全等三角形判定定理:全等三角形的对应边、对应角相等边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(SSS):有三边对应相等的两个三角形全等斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等五、角的平分线定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合六、等腰三角形性质等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)推论1:等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)七、对称定理定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

(完整)立体几何八大定理

(完整)立体几何八大定理

lmβααba立体几何的八大定理一、直线与平面平行的判定定理:文字语言:如果平面外的一条直线与平面内的一条直线平行,则这条直线与平面平行。

图形语言: 符号语言://a b a b αα⊄⎫⎪⊂⎬⎪⎭⇒//a α 作用:线线平行⇒线面平行二、直线与平面平行的性质定理:文字语言:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

图形语言:符号语言://l l m αβαβ⎫⎪⊂⎬⎪⋂=⎭⇒//l m作用:线面平行⇒线线平行三、平面与平面平行的判定定理文字语言:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. 图形语言: 符号语言://a b a b A a b αααβββ⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭∥∥作用:线线平行⇒ 面面平行四、平面与平面平行的性质定理:1、文字语言:如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行. 图形语言:符号语言:////a a b b αβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭作用: 面面平行⇒线线平行2、如果两个平面平行,那么其中一个平面内的直线平行于另一个平面。

符号语言://,//a a αβαβ⊂⇒nmAαaBA l βαaβα作用: 面面平行⇒线面平行五、直线与平面垂直的判定定理:文字语言:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面. 图形语言: 符号语言: ,a ma n a m n A m n ααα⊥⎫⎪⊥⎪⇒⊥⎬⋂=⎪⎪⊂⊂⎭作用:线线垂直⇒线面垂直六、直线与平面垂直的性质定理:文字语言:若一条直线垂直于一个平面,则这条直线垂直平面内的任意一条直线. 图形语言: 符号语言:l l a a αα⊥⎫⇒⊥⎬⊂⎭作用:线面垂直⇒线线平行七、平面与平面垂直的判定定理:文字语言:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直. 图形语言:符号表示:a a ααββ⊥⎫⇒⊥⎬⊂⎭作用:线面垂直⇒面面垂直八、平面与平面垂直的性质定理:文字语言:如果两个平面互相垂直,那么在一个平面内垂直与它们的交线的直线垂直于另一个平面. 图形语言:符号语言:l AB AB AB l αβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭作用:面面垂直⇒线面垂直。

立体几何三 八大定理 线面关系

立体几何三  八大定理  线面关系

lmβααbaNMCB AD A 1B 1C 1D 1αDCBA立体几何(三)线面位置关系的八大定理一、直线与平面平行的判定定理:文字语言:如果平面外的一条直线与平面内的一条直线平行,则这条直线与平面平行图形语言: 符号语言://a b a b αα⊄⎫⎪⊂⎬⎪⎭⇒//a α 作用:线线平行⇒线面平行典例:在正方体1111ABCD A B C D -中,,M N 分别是11,A B CC 的中点,求证://MN ABCD 平面二、直线与平面平行的性质定理:文字语言:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

图形语言:符号语言://l l m αβαβ⎫⎪⊂⎬⎪⋂=⎭⇒//l m作用:线面平行⇒线线平行典例:如图,//,//,,AB AC BD C D ααα∈∈,求证:AC BD =CABB 1A1C 1D Eb a FE γβαDCB A文字语言:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. 图形语言: 符号语言://a b a b A a b αααβββ⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭∥∥ 作用:线线平行⇒ 面面平行典例:如图,在三棱柱111ABC A B C -中,点,D E 分别是BC 与11B C 的中点, 求证:平面1//A EB 平面1ADC四、平面与平面平行的性质定理:文字语言:如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行 图形语言:符号语言:////a a b b αβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭作用: 面面平行⇒线线平行典例:如图,////αβγ,直线a 与b 分别交,,αβγ于点,,A B C 和点,,D E F , 求证:AB DEBC EF=nmAαaαbaFEPD CBA 文字语言:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面 图形语言: 符号语言: ,a ma n a m n A m n ααα⊥⎫⎪⊥⎪⇒⊥⎬⋂=⎪⎪⊂⊂⎭作用:线线垂直⇒线面垂直典例:已知四棱锥,P ABCD PD -⊥底面ABCD ,底面ABCD 为正方形,且PD CD =,,E F 分别为,PB PC 的中点,求证:(1)AC ⊥平面PBD (2)PA AB ⊥(3)PC ⊥平面ADFE六、直线与平面垂直的性质定理:文字语言:若两条直线垂直于同一个平面,则这两条直线平行 图形语言: 符号语言://a a b b αα⊥⎫⇒⎬⊥⎭作用:线面垂直⇒线线平行BA l βαaβαC CBAP文字语言:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。

图形的判定定理

图形的判定定理

(1)垂线的性质:①过一点有且只‎有一条直线与‎已知直线垂直‎;②直线外一点有‎与直线上各点‎连结的所有线‎段中,垂线段最短;线段垂直平分‎线定义:过线段的中点‎并且垂直于线‎段的直线叫做‎线段的垂直平‎分线;线段垂直平分‎线的性质:线段垂直平分‎线上的点到线‎段两端点的距‎离相等,到线段两端点‎的距离相等的‎点在线段的垂‎直平分线;(2)平行线的定义‎:在同一平面内‎不相交的两条‎直线叫做平行‎线;平行线的判定‎:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补‎,两直线平行;平行线的特征‎:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补‎;平行公理:经过直线外一‎点有且只有一‎条直线平行于‎已知直线。

(3)三角形三角形的三边‎关系定理及推‎论:三角形的两边‎之和大于第三‎边,两边之差小于‎第三边;三角形的内角‎和定理:三角形的三个‎内角的和等于‎;三角形的外角‎和定理:三角形的一个‎外角等于和它‎不相邻的两个‎的和;三角形的外角‎和定理推理:三角形的一个‎外角大于任何‎一个和它不相‎邻的内角;三角形的三条‎角平分线交于‎一点(内心);三角形的三边‎的垂直平分线‎交于一点(外心);三角形中位线‎定理:三角形两边中‎点的连线平行‎于第三边,并且等于第三‎边的一半;全等三角形的‎判定:①边角边公理(SAS)②角边角公理(ASA)③角角边定理(AAS)④边边边公理(SSS)⑤斜边、直角边公理(HL)等腰三角形的‎性质:①等腰三角形的‎两个底角相等‎;②等腰三角形的‎顶角平分线、底边上的中线‎、底边上的高互‎相重合(三线合一)等腰三角形的‎判定:有两个角相等‎的三角形是等‎腰三角形;直角三角形的‎性质:①直角三角形的‎两个锐角互为‎余角;②直角三角形斜‎边上的中线等‎于斜边的一半‎;③直角三角形的‎两直角边的平‎方和等于斜边‎的平方(勾股定理);④直角三角形中‎角所对的直角‎边等于斜边的‎一半;直角三角形的‎判定:①有两个角互余‎的三角形是直‎角三角形;②如果三角形的‎三边长a、b 、c有下面关系‎,那么这个三角‎形是直角三角‎形(勾股定理的逆‎定理)。

八年级数学各图形的性质和判定

八年级数学各图形的性质和判定
根据性质判定
如果一个图形满足圆的所有性质 ,则该图形是圆。
圆与直线的位置关系
相交
01
直线与圆有两个不同的交点。
相切
02
直线与圆只有一个交点。
相离
03
直线与圆没有交点。
04 相似图形
相似图形的性质
对应角相等
面积比为相似比的平方
如果两个三角形相似,则它们的对应 角相等。
两个相似三角形的面积之比等于它们 的相似比的平方。
对应边成比例
如果两个三角形相似,则它们的对应 边长之间存在一定的比例关系。
相似图形的判定
角角判定
如果两个三角形的两个对应角相 等,则这两个三角形相似。
边边判定
如果两个三角形的三组对应边之间 存在一定的比例关系,则这两个三 角形相似。
角边判定
如果一个三角形的两个对应角与另 一个三角形的两个对应边之间存在 一定的比例关系,则这两个三角形 相似。
THANKS FOR WATCHING
感谢您的观看
八年级数学各图形的性质和判定
contents
目录
• 三角形 • 四边形 •圆 • 相似图形 • 多边形
01 三角形
三角形的性质
三角形内角和定理
三角形的内角和等于180度。
三角形外角定理
三角形的一个外角等于与它不相邻的两个 内角的和。
三角形的三边关系
任意两边之和大于第三边,任意两边之差 小于第三边。
三角形的重心、内心、外心和垂 心
三角形有四个重要的心,分别是重心、内 心、外心和垂心,它们分别具有不同的性 质和判定方法。
三角形的判定
边边边(SSS)判定
如果三条边分别相等,则两个三角形全等。
角边角(ASA)判定
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

性质
菱形的四条边相等
菱形的对角线互相垂直
判定
平行四边形 有一组邻边相等的平行四边形是菱形 对角线互相垂直的平行四边形是菱形
四边形
四边相等的四边形是菱形
性质 判定
矩形的四个角是直角 矩形的 平行四边形 对角线相等的平行四边形是矩形
四边形
有三个角是直角的四边形是矩形
判定
1、两组对边分别相等的四边形是平行四边形; 2、对角线互相平分的四边形是平行四边形; 3、一组对边平行且相等的四边形是平行四边形; 4、两组对边分别平行的四边形是平行四边形; 5、两组对角分别相等的四边形是平行四边形; 6、一组对边平行一组对角线互相平分的四边形是平行四边形; 7、一组对边平行一组对角相等的四边形是平行四边形;
性质
直角三角形斜边上的中线等于斜边的一半
判定
平行四边形
有一组邻边相等,并且有一个角是 直角的平行四边形是正方形
性质
正方形的四个角都是直角,四条边相等 正方形的对角线相等且互相垂直平分
相关文档
最新文档