玻璃钢拉挤成型机——成型部设计

合集下载

我国玻璃钢拉挤成型工艺、产品应用及

我国玻璃钢拉挤成型工艺、产品应用及

我国玻璃钢拉挤成型工艺、产品应用及现状一、概述拉挤成型工艺是将浸透胶液的连续无捻粗纱、毡、带或布等增强材料,在牵引力的作用下,通过模具加热挤拉成型、固化,连续不断地生产长度不限的玻璃钢型材。

2008年,拉挤成型工艺用不饱和聚酯树脂消费量4万吨,过氧化物消费量约为600吨。

拉挤成型工艺是玻璃钢成型工艺中的一种特殊工艺,适于生产各种断面形状的玻璃钢型材,如棒、管、实体型材(工字形、槽形、方形型材)和空腹型材等。

其优点是:1、生产过程连续进行,制品质量稳定,重复性好;2、增强材料含量可根据要求进行调整,产品强度高;3、能够调整制品的纵向强度和横向强度,满足不同的使用要求;4、能够生产截面形状复杂的制品,满足特殊场合使用的要求;5、制品具有良好的整体性,原材料的利用率高;6、设备的投资费用低。

二、拉挤工艺用原材料1、树脂基体在拉挤工艺中,应用最多的是不饱和聚酯树脂,还有环氧树脂、乙烯基树脂、热固性甲基丙烯酸树脂、改性酚醛树脂、阻燃性树脂等。

(1)不饱和聚酯树脂用作拉挤的基本上是邻苯和间苯型。

间苯型树脂有较好的力学性能、坚韧性、耐热性和耐腐蚀性能。

目前国内使用的较多的是邻苯型,因其价格较间苯型有优势,但质量因生产厂家不同差距较大,使用时要根据不同的产品慎重选择。

(2)乙烯基树脂乙烯基树脂具有较好的综合性能,可提高耐化学性能和耐水解稳定性。

(3)环氧树脂环氧树脂和不饱和聚酯树脂、酚醛树脂相比,具有优良的力学性能、高介电性能、耐表面漏电、耐电弧,是优良绝缘材料。

(4)酚醛树脂它是最早的一类热固性树脂。

具有突出的瞬时耐高温烧蚀性能,目前酚醛树脂已成功应用在拉挤成型工艺中。

2、增强材料拉挤工艺用的增强材料主要是玻璃纤维及其制品,如无捻粗纱、玻璃纤维毡等。

为了满足制品的特殊性能要求,可用芳纶纤维、碳纤维、超高分子量聚乙烯纤维及玄武岩纤维等。

(1)玻璃纤维用于拉挤工艺的玻璃纤维主要有无碱、中碱和高强玻璃纤维。

玻璃纤维制品的品种有:①无捻粗纱无捻粗纱有并股纱和直接纱,线密度为1100(1200)号到4400(4800)号。

玻璃钢拉挤成型工艺以及玻璃钢拉挤成型工艺产品的应用

玻璃钢拉挤成型工艺以及玻璃钢拉挤成型工艺产品的应用

玻璃钢拉挤成型工艺以及玻璃钢拉挤成型工艺产品的应用玱璃钢拉挤成型工艺以及玱璃钢拉挤成型工艺产品的应用玱璃钢拉挤成型工艺目前已经成为新型产业群,产品具有耐腐蚀性强,能耐各种稀酸、碱、盐介质的腐蚀等特点,阻燃性好,潍坊科林环保已经经国家与业测试机构检测,材料的氧指数可达到28%以上。

可放心选购。

一、工艺及控制1、拉挤工艺拉挤成型工艺过程是由送纱、浸胶、预成型、固化定型、牵引、切断等工序组成。

无捻粗纱从纱架引出后,经过导纱装置进入树脂槽浸透树脂胶液,然后进入预成型模,将多余树脂和气泡排出,再进入成型模凝胶、固化。

固化后的制品由牵引机连续不断地从模具拉出,最后由切断机定长切断。

拉挤成型工艺中除立式和卧式机组外,尚有弯曲形制品拉挤成型工艺,反应注射拉挤工艺等。

增强热塑性塑料拉挤工艺在最近几年也取得了一定的突破。

最近美国道化学公司采用聚氨酯不玱纤经过拉挤制成强度、韧性、抗损伤性能均很优良的型材。

其拉挤速度可达到热固性塑料拉挤速度的10倍。

2、工艺控制拉挤成型工艺控制的参数主要包括成型温度、固化时间、牵引张力及牵引速度等。

(1)成型温度在拉挤成型过程中,材料在穿越模具时发生的变化是最关键的。

玱璃纤维浸胶后通过加热的金属模具,一般将连续拉挤过程分为预热区、胶凝区和固化区。

在模具上使用加热板戒加热套来加热。

树脂在加热过程中,温度逐渐升高,粘度降低。

通过预热区后,树脂体系开始胶凝、固化,在固化区内产品受热继续固化,以保证出模时有足够的固化度。

模具的加热条件是根据树脂体系来确定的。

以聚酯树脂配方为例,一般来讲,模具温度应大于树脂的放热峰值,温度上限为树脂的降解温度。

温度、胶凝时间、拉速应当匹配。

预热区温度可以较低,胶凝区不固化区温度相似。

温度分布应使产品固化放热峰出现在模具中部靠前,胶凝固化分离点应控制在模具中部。

温度梯度不宜过大。

(2)拉挤速度的确定拉挤模具的长度一般为0.6-1.2m。

在一定的温度条件下,树脂体系的胶凝时间对工艺参数速度的确定是非常重要的。

玻璃钢拉挤成型机——成型部设计要点

玻璃钢拉挤成型机——成型部设计要点

目录前言 (2)第一章玻璃钢的发展与应用 (3)1.1 玻璃钢的发展概况 (3)1.2 玻璃钢应用 (4)第二章成型部工作原理 (4)第三章成型部的设计内容 (5)3.1 送纱装置的设计 (5)3.1.1 送纱过程分析 (5)3.1.2 前纤维梳板的设计 (6)3.1.3 刮胶板与刮胶圈的设计 (6)3.1.4 后纤维梳板的设计 (7)3.2 浸胶装置的设计 (7)3.2.1 浸胶装置的设计原理 (7)3.2.2 浸胶升降气缸的确定 (8)4.1 预成型装置的设计 (9)4.1.1 预成型原理分析 (9)4.1.2 钢芯的选择 (9)4.1.3 钢芯的作用 (9)4.1.4 钢芯座的设计 (9)4.1.5 加热座I的设计 (10)4.2 束纱管及喂纱嘴的设计 (11)4.2.1 束纱管及喂纱嘴的设计的设计原理 (11)4.2.2 束纱管与喂纱嘴的结构设计 (12)4.3 加热座Ⅱ的设计 (12)5.1 成型装置的设计 (12)5.1.1 成型装置设计原理 (12)5.1.2 传动方案的设计........................ 错误!未定义书签。

5.1.3 传动比的确定.......................... 错误!未定义书签。

5.1.4 齿轮的设计............................ 错误!未定义书签。

5.1.5 轴的设计.............................. 错误!未定义书签。

5.1.6 轴强度的校核.......................... 错误!未定义书签。

5.2 轴承座的选择............................... 错误!未定义书签。

5.3 绕纹辊筒的设计............................. 错误!未定义书签。

5.3.1 平衡飞轮的设计........................ 错误!未定义书签。

拉挤成型工艺参数介绍

拉挤成型工艺参数介绍

来源于:注塑塑料网拉挤成型工艺参数介绍一、国外玻璃钢拉挤成型工艺概况随着玻璃钢拉挤制品应用领域不断扩大,国外拉挤制品的规格品种也越来越多。

目前除L 型、O型、U型、平板型、中空或实芯等标准拉挤制品形状外,还可生产出根据客户所要求的各种异形结构。

有些多孔腔制品的芯材,现在也已实现标准化了。

拉挤复合材料制品的尺寸,小的只有几个平方毫米,大的如桥梁桥面用的拉挤制品,可达几十平方米。

玻璃钢拉挤成型工艺所使用的增强材料品种也很多,如玻璃纤维无捻粗纱、毡、薄布或玻纤织物,碳纤维、芳纶纤维以及它们的织物等。

拉挤成型所使用的基体树脂材料,有热塑性树脂和热固性树脂两大类。

聚酯树脂、环氧树脂、乙烯基酯树脂和酚醛树脂等热固性树脂,常用于批量较大的拉挤制品的生产;而热塑性树脂基体,正处于开发生产的阶段。

目前,水平拉挤的标准型设备,一般为20~30m长,最大宽度约。

这种标准型设备生产线进入端系一玻璃纤维的供纱库,其后是经干燥的或预热过的玻璃纤维纱,经过热固性树脂的浸胶槽,在模具内成型,加热后固化。

通常,在成型模具和拉引器之间有一个比较长的距离,玻璃钢制品可以在该段距离内,完成固化过程并逐渐冷却。

生产线上使用夹具夹住制品从拉挤模具中,把玻璃钢制品拉引出来。

最后由切割机,把拉挤制品切割成定长制品。

二、玻璃钢拉挤成型的工序及其控制参数玻璃钢拉挤成型工艺,共有8道工序:纺捻、预浸渍、加热、制品固化及尺寸的校准测量、冷却、拉引和切割。

通常,各个工序都有一个可在一定范围内调整的工艺参数。

这些工艺参数,有些可以通过拉挤设备直接进行调整,例如模具的温度、拉引的速度等。

但另有些工艺参数,例如拉挤制品的温度、受力状况、树脂的粘度等,则不能够直接通过设备进行调整。

显然,所有的工艺参数都将对拉挤制品的质量,包括机械性能和光学性能等,产生一定的影响。

其中最主要的工序,是预浸渍、模塑成型和固化等三道工序。

必须指出的是,某一个工序的工艺参数,将对其它工序产生一定的影响,例如拉引速度的快慢,就将对上述三个主要工序产生一定的影响。

玻璃钢拉挤成型设计

玻璃钢拉挤成型设计

收稿日期:1998-11-23。

3ECRG LAS 和S -2为OCF 公司产品注册商标。

作者简介:徐伟强,工程师,30岁,1993年南京化工大学高分子材料专业研究生毕业。

现从事拉挤玻璃钢新材料的工艺研究,曾获化工部科技进步二等奖一项,公开发表论文近10篇。

玻璃钢拉挤成型设计徐伟强(南京兴亚玻璃钢有限公司,210012) 摘要:介绍了玻璃钢拉挤成型的原材料、生产工艺、质量保证、产品性能和设计计算等内容,对拉挤玻璃钢的生产、设计和应用具有实际意义。

关键词: 玻璃钢 拉挤成型 纤维增强塑料 设计 玻璃纤维增强塑料(俗称玻璃钢)拉挤成型是自动化连续生产同一截面玻璃钢型材的工艺,它能成型截面形状相当复杂的产品。

通过连续纤维的增强,可获得比传统材料更佳的机械性能,由高分子组成的基体满足了结构、化学、耐火、电气、腐蚀和环境方面的要求,具有很强的可设计性。

拉挤玻璃钢具有其他复合材料成型工艺典型的特性:比强度高,耐腐蚀,电绝缘和尺寸稳定性。

另外,拉挤成型工艺还具有其自身工艺所决定的优点,如可得连续长度的产品、薄壁的复杂型材和中空型材。

且中空拉挤型材的内外表面光滑、完美,电线、木材或泡沫等插入件都可在拉挤产品中连续包裹。

拉挤成型工艺可运用各种增强形式(E -玻璃纤维、ECR G LAS 、S -2玻璃连续粗纱3、连续毡、复合织物,缝编粗纱)和许多热固性树脂(具有优良化学、电气稳定性的聚酯树脂;具有更佳机械和防腐性能的乙烯基酯或环氧树脂;具有防火性能的酚醛树脂,还可加入各种填料。

高性能的热塑性聚合物对提高拉挤型材的物理/化学性能提供了极大的可能性。

拉挤生产厂家可制造出具有突出的性能、质量和可靠性并具有价格竞争性的大型型材和部件[1,2]。

1 拉挤原材料拉挤工艺用原材料分成三类:增强材料、基体材料和添加剂,原材料的选择和它们各自的比例调节能派生出一系列的复合性能。

111 增强材料 应用最广的增强材料为玻璃纤维,它具有多种形式。

玻璃钢拉挤成型机总体设计(附CAD零件图和装配图)

玻璃钢拉挤成型机总体设计(附CAD零件图和装配图)

玻璃钢拉挤成型机总体设计(附CAD零件图和装配图)玻璃钢拉挤成型机总体设计(附CAD零件图和装配图)(含任务书,演示文稿ppt,论文说明书15000字,6张cad图纸) 摘要玻璃钢/复合材料工业在国际上的开发已有近60年的历史,它具有不可替代的优越性。

在我国,玻璃钢/复合材料广泛应用在建筑、石化、冶金、机电及造船...<p>玻璃钢拉挤成型机总体设计(附CAD零件图和装配图)(含任务书,演示文稿ppt,论文说明书字,6张cad图纸)&nbsp;&nbsp;&nbsp;&nbsp; <br />摘&nbsp;&nbsp;&nbsp; 要<br />玻璃钢/复合材料工业在国际上的开发已有近60年的历史,它具有不可替代的优越性。

在我国,玻璃钢/复合材料广泛应用在建筑、石化、冶金、机电及造船等行业。

拉挤成型工艺作为玻璃钢的一种重要的生产制造工艺,它的技术也日臻完善。

根据我们的设计任务,很有必要对玻璃钢拉挤成型机进行总体方案设计。

本次论文的内容主要包括玻璃钢管原材料和成型工艺的选择,玻璃钢拉挤成型机的工作原理,机械设备组成结构,以及机械执行系统、传动系统、控制系统和辅助系统的设计。

<br /><br />关键词:玻璃钢/复合材料&nbsp;&nbsp; 玻璃钢拉挤成型机&nbsp;&nbsp; 总体方案<br /> <br />Glass Fibre Reinforced Plastic Pultrusion Molding Machine <br />Abstract:&nbsp; The development of the glass fibre reinforced plastic / composite industry in the world has already had a history of nearly 60 years, it has irreplaceable superiority. In our country, the glass fibre reinforced plastic / composite is extensively applied to trades such as the building, petrochemical industry, metallurgy, electromechanics and shipbuilding,etc. Pultrusion molding craft , as a kind of important production manufacturing process of the glass fibre reinforced plastic, its technology is becoming better and approaching perfection day by day . According to our design task, it is very necessary to carry on overall conceptual design of the&nbsp; FRP Pultrusion Molding Machine. The content of this thesis mainly includes choosing raw materials of glass steel tube and the shaping craft, the glass fibre reinforced plastic draws the operation principle of theFRP Pultrusion Molding Machine, the mechanical equipment makes up the structure, and mechanical executive system, the designs of the transmission, control system and accessory system. </p><br /><br /><p><P></P><p >内容简介</p><p >简单介绍达渝二级紫荆至荣华段位于邻水县城以南经济欠发达地区,老国道210线东侧。

玻璃钢拉挤成型机牵引部分设计_图文(精)

玻璃钢拉挤成型机牵引部分设计_图文(精)
3.3.1涡轮减速机的选择.............................................................................. 13
3.3.2电机减速链传动的设计和计算.......................................................... 14
3.1.1水冷过程................................................................................................. 8
3.1.2二次风冷................................................................................................ 9
3. 3牵引过程的执行元件的设计和计算........................................................... 18
3.3.1平行牵引链传动的设计和计算........................................................... 18
3.5轴的设计和计算............................................................................................ 23
3.5.1轴的最小直径的初步的确定.............................................................. 24
第一章绪论........................................................ 2

拉挤玻璃钢的模具、预成型设计

拉挤玻璃钢的模具、预成型设计

拉挤成型工艺自动化程度高、工艺稳定,随着玻璃钢复合材料应用市场的不断拓展,拉挤制品所占份额也越来越大。

开发一件新的拉挤制品,首先是根据其使用条件和性能要求对制品进行材料选择和结构设计,确定产品的截面形状和原材料配比方式;其次就是拉挤成型中非常重要的一道工序,玻璃拉挤模具及预成型的设计与加工。

模具及预成型部分可以说是拉挤生产的中心环节,由纱架、胶槽部位过来的增强材料经由预成型初步定型,然后在牵引装置的作用下进入模具固化成型,最后切割为定长产品。

玻璃钢拉挤模具及预成型的设计与加工的好坏将直接决定拉挤生产的效率高低,甚至成败与否,同时还决定着拉挤制品的外观与质量。

模具一但加工定型后将很难改变,预成型部分尽管可以作调整,但如果设计加工不合理同样会给生产造成很大的经济损失,如需要更多的人员参与生产从而增加人工成本,纱束和毡走不到位,造成次品、废品,甚至发生堵模导致生产停顿,接下来就是费工费力的拆模、清理和重新穿纱再次起机。

因此模具及预成型的设计与加工很关键,设计加工合理可避免很多不必要的损失。

2玻璃钢拉挤模具设计加工在拉挤成型工艺过程中,模具是各种工艺参数作用的交汇点,其主要要求是具有良好的尺寸稳定性、优良的耐磨性和极低的表面粗糙度。

目前拉挤生产常用的模具主要为直腔钢制模具,有整体式的,也有组合式的,一般为长方体结构,结构形式尽管相对简单,但设计加工过程中需要注意和考虑的地方较多,主要有如下几个部分。

2.1模具材料选择及加工类型玻璃钢拉挤模具材料应能满足以下要求,强度高、热处理变形小、加工性能好、使用过程中尺寸稳定性好、耐磨、耐热及耐热腐蚀等。

完全都能满足这些要求的材料为数不多,目前常用模具材料为40Cr,耐磨要求高的可选用Crl2、Crl2MoV、38CrMoAl等,型腔表面硬度应大于HRC50,型腔表面粗糙度必须达到0.025-0.0800卩m。

为达到拉挤模具的工艺要求,通常须经过锻造,退火、粗铣、调质、精铣、淬火、研磨等一系列工序。

拉挤成型工艺流程

拉挤成型工艺流程

拉挤工艺是一种连续生产复合材料型材的方法,它是将纱架上的无捻玻璃纤维粗纱和其他连续增强材料、聚脂表面毡等进行树脂浸渍,然后通过保持一定截面形状的成型模具,并使其在模内固化成型后连续出模,由此形成拉挤制品的一种自动化生产工艺。

利用拉挤工艺生产的产品其拉伸强度高于普通钢材。

表面的富树脂层又使其具有良好的防腐性,故在具有腐蚀性的环境的工程中是取代钢材的最佳产品,广泛应用于交通运输、电工、电气、电气绝缘、化工、矿山、海洋、船艇、腐蚀性环境及生活、民用各个领域。

拉挤成型工艺流程拉挤成型工艺形式很多,分类方法也很多。

如间歇式和连续式,立式和卧式,湿法和干法,履带式牵引和夹持式牵引,模内固化和模内凝胶模外固化,加热方式有电加热、红外加热、高频加热、微波加热或组合式加热等。

拉挤成型典型工艺流程为:玻璃纤维粗纱排布——浸胶——预成型——挤压模塑及固化——牵引——切割——制品拉挤成型设备组成:1、增强材料传送系统:如纱架、毡铺展装置、纱孔等。

2、树脂浸渍:直槽浸渍法最常用,在整个浸渍过程中,纤维和毡排列应十分整齐。

3、预成型:浸渍过的增强材料穿过预成型装置,以连续方式谨慎地传递,以便确保它们的相对位置,逐渐接近制品的最终形状,并挤出多余的树脂,然后再进入模具,进行成型固化。

4、模具:模具是在系统确定的条件下进行设计的。

根据树脂固化放热曲线及物料与模具的摩擦性能,将模具分成三个不同的加热区,其温度由树脂系统的性能确定。

模具是拉挤成型工艺中最关键的部分,典型模具的长度范围在0.6~1.2m之间。

5、牵引装置:牵引装置本身可以是一个履带型拉出器或两个往复运动的夹持装置,以便确保连续运动。

6、切割装置:型材由一个自动同步移动的切割锯按需要的长度切割。

成型模具的作用是实现坯料的压实、成型和固化。

模具截面尺寸应考虑树脂的成型收缩率。

模具长度与固化速度、模具温度、制品尺寸、拉挤速度、增强材料性质等有关,一般为600~1200mm。

拉挤成型(1)

拉挤成型(1)

拔浸胶玻璃钢纤维或织物,挤压通过加热模具
成型、固化形成玻璃钢线型材, 用于生产断面 形状固定不变的玻璃钢制品。
高分子材料成型新技术及模具CAD/CAE/KBE研究室
玻璃纤维粗纱排布→浸胶→预成型→拉挤模塑及固化→牵引→ 切割→制品→包装
图1 复合材料拉挤成型工艺过程示意图
高分子材料成型新技术及模具CAD/CAE/KBE研究室
(2)树脂浸渍 将排布整齐的增强纤维均匀浸渍上已配制好的不饱
和树脂的过程,一般是采用将纤维通过装有树脂胶
槽时进行的。 方法: 压纱浸渍
直槽浸渍
滚筒浸渍 压纱和直槽浸渍法最为常用,在整个浸渍过程中,必 须保证纤维和毡排列十分整齐。
高分子材料成型新技术及模具CAD/CAE/KBE研究室
高分子材料成型新技术及模具CAD/CAE/KBE研究室
证制品断面含纱量均匀。
高分子材料成型新技术及模具CAD/CAE/KBE研究室
作用:是将浸透了树脂的增强材料进一步均匀并除去
多余的树脂和排除气泡,使其形状逐渐形成成型模的
进口形状。 形状:如拉挤成型管材时,一般使用圆环状预成型模;
制造空心型材时,通常使用带有芯模的预成型模;生
产异型材时,大都使用形状与型材截面形状接近的金 属预成型模具。 原理:在预成型模中,材料被逐渐地成型到所要求的 形状,使增强材料在制品断面的分布符合设计要求。
固化程度。
一般采用钢镀铬,模腔表面要求光洁,耐磨,借 以减少拉挤成型是的摩擦阻力和提高模具的使用 寿命。
高分子材料成型新技术及模具CAD/CAE/KBE研究室
成型模具按结构形式可分为:整体式和组合式成型 模两类。 整体模具是由整体钢材加工而成,一般适用于棒材 和管材。组合成型模具有上、下模对合而成。这种 类型的模具易于加工,可生产各种类型的型材,但 制品表面有分型线痕迹。 空腹制品采用芯模。芯模一端固定,另一端悬臂伸 入上、下模所形成的空间,与上、下模一起构成产 品所需的截面形状。为减少脱模时芯模产生的阻力, 芯模尾部加工成 1/300~1/200 的锥度,较大的芯模应 考虑采用模心加热装置。

我国玻璃钢拉挤成型工艺、产品应用与现状

我国玻璃钢拉挤成型工艺、产品应用与现状

我国玻璃钢拉挤成型工艺、产品应用与现状我国玻璃钢(也称为玻璃纤维增强塑料)拉挤成型工艺是一种常用的塑料加工技术,在各个领域得到广泛应用。

这种工艺的基本原理是将玻璃纤维与树脂混合,并通过拉挤成型机将混合物挤出成型。

玻璃钢拉挤成型工艺的主要步骤包括:原材料准备、玻璃纤维切短、树脂与固化剂混合、充填模具、拉挤成型和固化。

在这个过程中,玻璃纤维的长度和分布对成型性能有很大影响。

拉挤成型机通过高温熔融树脂,将其挤出模具形成所需形状的产品,经过固化和后处理后,即可得到强度高、耐腐蚀、耐磨损的玻璃钢制品。

玻璃钢拉挤成型工艺的应用范围广泛,可以用于制造船舶、高速列车、飞机、汽车、建筑材料、储罐等各种结构件。

由于玻璃钢具有优异的耐腐蚀性、重量轻、机械强度高等特点,被广泛应用于化工、石油、电力、水处理等领域。

例如,玻璃钢储罐被广泛用于储存腐蚀性物质,玻璃钢管道在化工工业中用于输送腐蚀性介质。

目前,我国的玻璃钢拉挤成型工艺已经取得了一定的发展。

国内玻璃钢制品生产企业数量增多,产品质量和技术水平也有了大幅提升。

同时,我国政府也加大了对玻璃钢产业的支持力度,推动玻璃钢在各个领域的应用。

然而,与发达国家相比,我国的玻璃钢拉挤成型工艺仍存在一些问题和挑战。

一方面,技术水平有待提高,特别是在产品设计、模具制造和质量控制等方面仍存在一定差距。

另一方面,我国的玻璃钢市场仍处于初级阶段,市场需求相对较小,产品创新和应用推广仍有待进一步加强。

综上所述,我国玻璃钢拉挤成型工艺在应用和技术水平上取得了一定的发展,应用领域广泛,但仍面临一些挑战。

未来,我们需要加大研发力度,提高技术水平,进一步推动玻璃钢产业的发展,以满足市场需求,并不断创新,拓宽其应用领域。

我国玻璃钢拉挤成型工艺在应用和技术水平上取得了一定的发展,成为我国塑料加工领域的重要技术之一。

随着科技的进步和市场需求的不断增长,玻璃钢制品在航空航天、汽车工业、轨道交通、建筑材料、化工、环保等领域得到了广泛应用。

玻璃钢拉挤成型工艺现状总结

玻璃钢拉挤成型工艺现状总结

玻璃钢拉挤成型工艺现状总结
玻璃钢拉挤成型工艺是一种将纤维增强塑料通过模具拉挤成型的加工
工艺。

这种工艺具有成型周期短、生产效率高、材料利用率高、制品质量
稳定等优点,已经成为当前玻璃钢行业主流的生产方式之一。

目前,玻璃钢拉挤成型工艺在国内外得到了广泛应用。

国外许多成熟
的玻璃钢生产线均采用拉挤成型工艺,其主要应用领域包括卫生间隔断、
泳池配件、风能叶片等。

而国内工程领域的应用也越来越广泛,包括化工
设备、环保处理设备、建筑材料等。

但是,玻璃钢拉挤成型工艺在应用过程中也存在一些亟待解决的问题。

首先是外观质量偏差较大,需要针对不同工艺、不同要求进行调整。

其次
是产品性能的不稳定性,需要进一步提高材料的质量和制备技术。

最后是
在生产成本方面,需要继续挖掘降低成本的途径,提高生产效率和材料利
用率。

总之,玻璃钢拉挤成型工艺具有广泛的应用前景,但只有通过不断的
技术创新和质量升级,才能更好地满足市场需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录前言 (2)第一章玻璃钢的发展与应用 (3)1.1 玻璃钢的发展概况 (3)1.2 玻璃钢应用 (4)第二章成型部工作原理 (4)第三章成型部的设计内容 (5)3.1 送纱装置的设计 (5)3.1.1 送纱过程分析 (5)3.1.2 前纤维梳板的设计 (6)3.1.3 刮胶板与刮胶圈的设计 (6)3.1.4 后纤维梳板的设计 (7)3.2 浸胶装置的设计 (7)3.2.1 浸胶装置的设计原理 (7)3.2.2 浸胶升降气缸的确定 (8)4.1 预成型装置的设计 (9)4.1.1 预成型原理分析 (9)4.1.2 钢芯的选择 (9)4.1.3 钢芯的作用 (9)4.1.4 钢芯座的设计 (9)4.1.5 加热座I的设计 (10)4.2 束纱管及喂纱嘴的设计 (11)4.2.1 束纱管及喂纱嘴的设计的设计原理 (11)4.2.2 束纱管与喂纱嘴的结构设计 (12)4.3 加热座Ⅱ的设计 (12)5.1 成型装置的设计 (12)5.1.1 成型装置设计原理 (12)5.1.2 传动方案的设计 (13)5.1.3 传动比的确定 (16)5.1.4 齿轮的设计 (16)5.1.5 轴的设计 (17)5.1.6 轴强度的校核 (19)5.2 轴承座的选择 (21)5.3 绕纹辊筒的设计 (22)5.3.1 平衡飞轮的设计 (22)5.3.2 绕线转板的设计 (22)5.3.3 加热器III材料的选择及数量的确定 (26)5.4 电刷的设计 (27)6.1 后固化装置的设计 (28)第四章总结 (29)参考文献 (30)致谢 (31)前言近年来,世界上几个工业发达国家和地区都将玻璃钢复合材料列为研究和发展的新材料项目之一,普遍认为这种材料除自身具有的独特性能之外,在加工制造和使用过程中还是一种节能材料。

随着玻璃钢应用领域的扩大,拉挤工艺的不断发展,拉挤玻璃钢制品从小尺寸、形状简单、对称均匀向大型、复杂、非对称的拉挤制品发展,这就对拉挤玻璃钢设备提出了更高的要求。

为了更好的改进拉挤玻璃钢的成型设备,满足不同领域对玻璃钢的要求,本设计从玻璃钢成型的最基本的装置出发,利用机械设计的相关理论来设计玻璃钢的成型设备,本文详细的阐述了各部分的设计原理与思路,并叙述了各部分的基本组成,主要包括送纱装置的设计、预成型装置的设计、成型装置的设计、后固化装置的设计。

本设计各部分的结构比较简单,操作方便,实用性较高。

在设计的过程当中,我得到了知道老师的悉心指导,同时也得到了众多同学的帮助,在此表示衷心的感谢。

由于本人的知识水平和设计的经验有先限,此说明书肯定有不足之处,恳请评审老师批评指正。

第一章玻璃钢的发展与应用1.1 玻璃钢的发展概况人类使用复合材料的历史,可以追溯到远古时代,当时的埃及人、犹太人及我国的劳动人民已经运用草筋增强泥胚作墙体材料等,这是原始的复合材料。

我国元代所制成的弓,已经是一个具有相当水平的复合材料结构物,它用木材做芯子,在受拉面胶有平行纤维,而在受压面胶有牛角,在当时它已作为强有力的战术武器。

近代建筑用的钢筋混凝土,多层木板等都是常见的复合材料。

作为近代复合材料之一的玻璃钢,是从第二次世界大战时发展起来的,当时的美国已经有了发展玻璃钢的物质基础,一是从1935年起,连续玻璃纤维已有了较大发展,二是1939年发明了低压的不饱和聚酯树脂。

当时的玻璃钢首先用在航空工业方面,如飞机的雷达罩、副油箱等等,这是由于重量轻、透电波,成型工艺简便、能满足性能要求。

早期的AT—6型飞机,已成型了夹层结构机翼。

在工艺方面已经采用了喷射成型。

在树脂方面如瑞士的巴西公司已开始试制环氧树脂,同时英国的司高脱—贝特公司已开始制造玻璃钢用的聚酯树脂。

50年代以后,美国研制火箭发动机外壳用的玻璃钢,1957年回收的红石导弹,第一节是用三聚氰氨玻璃钢制造。

以后,有较多数量的玻璃钢用于大型客机上。

1967年在美国的德克萨斯州试飞了用环氧树脂制造的第一架全玻璃钢结构飞机(该机设计历时7年)。

进入70年代,玻璃钢船舶发展较快,西方各主要工业国都趋向于大型化,尤其是玻璃钢扫雷艇,都已相继下水。

近年来,玻璃钢渔船发展很快,日本的大中型玻璃钢渔船与占到40%。

造船的增强材料,有多层毡、复合薄毡及无捻粗纱玻璃。

在玻璃钢等复合材料中,一般认为其力学性能是取决于玻璃纤维等增强材料,在40年代是玻璃纤维占绝大多数,在以后很长的历史时期中,用玻璃纤维作增强材料的复合材料仍然占主要地位,但随着工业的发展,不同的时期相继出现了新的材料,在50年代,研制了高模量的炭纤维、硼纤维。

60年代,改变了玻璃成分,研究了S及R型高强度玻璃纤维。

从70年代到目前,先后开发了聚芳香酰胺纤维、碳化硅纤维等,开辟了材料应用领域的新途径。

增强材料的品种是非常多的,除此之外,还有剑麻等天然纤维。

1.2 玻璃钢应用玻璃钢的应用是非常广的,从各主要工业国家的不完全统计,其品种在3万种以上,概括起来,目前玻璃钢的主要应用领域是车辆、船舶、化工防腐和建筑四大部门,但由于全国情况不一,在玻璃钢应用的着重点是有很大区别。

我国的玻璃钢发展于1958年,早期作重为国防工业服务,随着我国社会主要经济的不断发展与壮大,玻璃钢工业也相继有了增长,70年代以后,发展得比较快,现在的玻璃钢和研究单位,基本已遍及全国各主要城市。

1959年试航了9米长的游艇,1965年试飞了玻璃钢飞机螺旋浆,1966年试飞了全玻璃钢水上飞机浮筒和介放7型滑翔机,1968年安装了第一台直径15米的大型玻璃钢天线反射面,1970年运转了直径4.7米的玻璃钢风洞螺旋浆,1971年安装了直径44米的的大型全玻璃钢结构的地面雷达罩,1974年颁布了40立升铝内衬玻璃钢气瓶规范,同年,我国第一首大型的是39.8米的玻璃钢船舶下水,1976年定性了直径为8米的冷却风机玻璃钢叶片,1982年颁布了玻璃钢波形瓦标准.另外还试制生产了许多玻璃钢产品:如冷却塔、波形瓦、活动房屋、风力发电叶片、大型电机护环、各种透电波的罩壳、及文体方面活动上午撑杆、弓等产品。

玻璃钢应用在各个工业领域以及能源开发与利用和节约木材等方面都作出了更大贡献。

第二章成型部工作原理玻璃钢拉挤成型机的成型部是整个机器设备的核心。

它具有两个功能:定型功能和固化功能。

我们将成型部分为送纱浸胶装置、预成型装置、成型装置和后固化装置四个部分。

送纱浸胶装置的作用是将无捻粗纱从纱架引入成型装置中,并将一部分粗纱浸胶。

我们将无捻粗纱分成了三部分,一部分在胶槽中浸胶之后,被牵引进入预成型装置;第二部分则被直接引入到预成型装置中;第三部分无捻粗纱不经过预成型装置而被直接牵引至成型装置。

拉挤成型工艺浸胶的形式主要有胶槽浸渍法和注入浸渍法,我们采用的是胶槽浸渍法,即将增强材料通过树脂槽浸胶,然后进入预成型装置。

预成型装置的作用是将浸有树脂的无捻粗纱和第二部分无捻粗纱混合在模具当中初步成型,并将多余的树脂挤去。

我们设计的预成型装置由钢芯座、钢芯、前纤维梳板、刮胶板、加热座Ⅰ、铜管和后纤维梳板组成。

加热座Ⅰ内部嵌入数根加热棒,其上有一温度传感器,温度由PLC控制。

铜管安装在加热座上,它有两个作用:一是充当加热固化设备,从送纱浸胶装置中引入的无捻粗纱和树脂的混合体与铜管内壁直接接触,均匀受热而初步固化;二是作为定型装置,对玻璃纤维和树脂基体产生径向压力,初步对其进行拉挤成型。

成型装置的作用是将预成型的玻璃钢管进一步加热固化,并在玻璃钢管表面形成螺纹。

成型装置分为预热压紧区、绕纹成型区和加热固化区三个部分。

预热压紧区由喂纱嘴、束纱管和加热座Ⅱ组成。

从预成型装置出来的玻璃纤维和树脂的混合体已经初步具备了玻璃钢管的形状,通过喂纱嘴被牵引入束纱管。

束纱管的内孔设计成花瓣状,即内孔沿着圆周开有多个型腔。

“花瓣”的直径(即内孔最大直径)为22mm。

当预成型的玻璃钢管牵引入束纱管中时,其中的一部分树脂被挤压入束纱管内孔的型腔中,同时在定型时产生一定的压力,保证成型后的玻璃钢管密度,无气孔、不起层、无裂纹和其它缺陷。

同时束纱管的截面钻有一圈的引纱孔,其作用是将第三部分的无捻粗纱引入绕纹成型区。

加热座Ⅱ的作用主要是对这第三部分的无捻粗纱进行预热,将其加热使其软化,为其后的绕纹成型做准备。

绕纹成型区的主要结构是绕纹辊筒,它的主要作用是在玻璃钢管上产生螺纹。

绕纹辊筒由绕线转板、辊筒齿轮、平衡飞轮和平衡转板组成。

绕线转板将钢丝带引入绕在玻璃钢管上,辊筒齿轮带动整个绕纹辊筒旋转,钢丝带也不断地缠绕在玻璃钢管上,并且将从束纱管引入的第三部分无捻粗纱也紧紧地扎紧在玻璃钢管表面上,于此同时玻璃钢管连续地被牵引着向前移动,那么钢丝带相对于玻璃钢管做的是螺旋运动,从而在它上面形成螺纹。

我们设计在绕线转板上装有多个张紧滚轮、可调滚轮和减速滚轮,用来调节钢丝带的张紧力和缠绕速度。

钢丝依此绕过各个滚轮,我们可以手动调节张紧轮来调节钢丝带的张紧度,也可以通过可调滚轮组来调节。

可调滚轮的原理是通过安装在绕线转板侧面的张紧电机带动螺杆转动,从而驱动双滚轮部的调节横梁前后移动来调节钢丝的张紧。

固化区的结构是一组安装在绕线转板上的加热瓦(加热座Ⅲ),其作用是对玻璃钢管进行三次加热(固化成型)。

玻璃钢管经过成型装置要经过后固化装置进一步固化。

后固化装置的作用是对玻璃钢管进行第四加热(保温),采用一组加热瓦加热。

第三章成型部的设计内容3.1 送纱装置的设计please contact Q 3053703061 give you more perfect drawings本部分的设计包括前纤维梳板、后纤维梳板、刮胶板的设计。

3.1.1 送纱过程分析从总装配图分析可知,从纱架牵引出来的无捻粗纱分为三部分进入成型部阶段。

第一部分纱直接通过前纤维梳板、后纤维梳板进入束纱管。

第二部分纱为不浸胶粗纱与第三部分浸胶粗纱一起通过前纤维梳板、刮胶板进入预成型装置。

根据以上对送纱过程的分析,送纱分为三部分,由总体设计中选定的粗纱型号以及最终产品的规格得出需粗纱的数量,为了使无捻粗纱与浸润剂能够均匀相间,前纤维梳板的结构设计示意图如下:其零件图如BLG-001。

1) 前纤维梳板尺寸的确定由总体设计布局、生产速率hυ和无捻粗纱的型号和最后产品的规格=m/20要求得到结构尺寸如图BLG-001。

2) 前纤维梳板材料的选择从设计的实际要求以及设计的经济方面考虑,采用具有如下性能的聚合塑料:①质轻,比强度高。

②减摩,耐腐蚀性能好。

③优异的化学稳定性,一般对酸碱化学药品均有良好的耐腐蚀能力。

④优异的电绝缘性。

3.1.3 刮胶板与刮胶圈的设计1)设计原理为了控制胶层的厚度及使胶均匀地分布在粗纱之间,刮胶板设计成由上盖与基座两部分组成,刮胶板与刮胶圈的装配尺寸通过配作孔实现,刮胶板与刮胶圈的具体结构与尺寸见各自的零件图BLG-002 ,BLG-002-01,BLG-002-02,BLG-002-03.2)刮胶板与刮胶圈材料的选择根据实际工作条件分析,可以选择铸铁作为刮胶板的材料。

相关文档
最新文档