拉挤成型工艺参数介绍

合集下载

碳纤维拉挤成型工艺

碳纤维拉挤成型工艺

碳纤维拉挤成型工艺引言:碳纤维材料以其轻质高强的特性,在航空航天、汽车制造、体育器材等领域得到广泛应用。

而碳纤维拉挤成型工艺作为一种重要的碳纤维制备技术,具有高效、灵活、经济的优势。

本文将详细介绍碳纤维拉挤成型工艺的原理、步骤以及应用前景。

一、碳纤维拉挤成型工艺的原理碳纤维拉挤成型工艺是利用拉伸过程中的热流和剪应力对碳纤维进行塑性变形,使其形成连续的纤维预制件。

具体而言,碳纤维束经过预处理后,通过拉伸机构进行拉伸,同时通过加热机构提供热源,使碳纤维在拉伸的同时发生塑性变形,最终形成拉挤后的碳纤维材料。

二、碳纤维拉挤成型工艺的步骤1. 碳纤维预处理:碳纤维束经过脱脂、干燥等处理,去除其中的杂质和水分,以提高成型后的质量。

2. 模具准备:根据产品的形状和尺寸要求,制作相应的拉挤模具,确保成型后的产品符合设计要求。

3. 碳纤维拉伸:将经过预处理的碳纤维束通过拉伸机构进行拉伸。

拉伸过程中,碳纤维受到热流和剪应力的作用,发生塑性变形,形成连续的纤维预制件。

4. 热源加热:为了促进碳纤维的塑性变形,需要通过加热机构对拉伸过程中的碳纤维进行加热。

加热温度和时间需要根据具体的碳纤维材料和产品要求进行控制。

5. 模具成型:将拉挤后的碳纤维预制件放入模具中,通过压力和温度控制,使其形成最终的碳纤维拉挤产品。

三、碳纤维拉挤成型工艺的应用前景1. 航空航天领域:碳纤维拉挤成型工艺可以制备出轻质高强的航空航天结构件,用于飞机、导弹等载具,可以大幅度降低重量,提高载荷能力。

2. 汽车制造领域:碳纤维拉挤成型工艺可以用于制造汽车车身、底盘等部件,提高车辆的安全性和燃油经济性。

3. 体育器材领域:碳纤维拉挤成型工艺可以用于制造高强度、轻量化的体育器材,如高尔夫球杆、网球拍等,提高运动员的竞技水平。

4. 建筑领域:碳纤维拉挤成型工艺可以制备出耐久、抗震的建筑结构材料,如桥梁、楼板等,提高建筑物的安全性和使用寿命。

5. 医疗领域:碳纤维拉挤成型工艺可以制备出人工骨骼、关节等医用器械,具有良好的生物相容性和力学性能,可以改善患者的生活质量。

拉挤成型工艺培训教材ppt课件

拉挤成型工艺培训教材ppt课件
7.推行自主招生改革,扩大学校的招生 自主权,有助于 高校根 据自己 的办学 定位、 育人要 求,选拔 适合本 校培养 目标的 学生。
⑤制品质量稳定,重复性好,长度可任意切断。
拉挤成型工艺的缺点
拉挤成型工艺的缺点是产品形状单调,只能生产 线形型材,而且横向强度不高。
8、2 拉挤工艺用原材料
①树脂基体 不饱和聚酯树脂、环氧树脂、乙烯基树脂、
热固性甲基丙烯酸树脂、改性酚醛树脂、阻燃性 树脂等。
热塑性树脂
不饱和聚酯树脂
②增强材料
拉挤成型的优点
①生产过程完全实现自动化控制,生产效率高; ②拉挤成型制品中纤维含量可高达80%,浸胶在张
力下进行,能充分发挥增强材料的作用,产品强 度高;
拉挤成型的优点
③制品纵、横向强度可任意调整,可以满足不同 力学性能制品的使用要求;
④生产过程中无边角废料,产品不需后加工,故 较其它工艺省工,省原料,省能耗;
第八章 拉挤成型工艺
玻 璃 钢 型 材
8、1 拉挤成型工艺概述
拉挤成型工艺是将浸渍树脂胶液的连续玻璃 纤维束、带或布等,在牵引力的作用下,通过挤 压模具成型、固化,连续不断地生产长度不限的 玻璃钢型材。
8、1 拉挤成型工艺概述
这种工艺最适于生产各种断面形状的玻璃钢 型材,如棒、管、实体型材(工字形、槽形、 方形型材)和空腹型材(门窗型材、叶片等)等。
拉挤成型示意图
拉挤成型工艺参数 1、固化温度和时间
固化体系
拉挤成型工艺参数
2、浸胶时间
浸透
拉挤成型工艺参数 3、张力及牵引力
热塑性树脂拉挤工艺流程
8、4 拉挤成型设备
立式 卧式
卧式机组
液压式拉挤设备 (右图) → Hydraulic Pultrusion Machine

拉挤成型工艺

拉挤成型工艺

拉挤成型工艺
拉挤成型工艺是指将目标材料拉伸并利用外力,在一定温度下让其外形、截面等特性发生变化,从而达到不同功能需求的一种成形工艺。

一、拉挤成型工艺的概述
1. 介绍
拉挤成型是针对金属、塑料等可加工的材料,利用机械加工手段,使材料在一定温度下拉伸、压缩,在外形、截面、特性上发生变化,改变材料原来的形状而达到指定目的的金属加工工艺。

2. 工艺特点
拉挤成型工艺是金属外形调整中最重要也是最基础的成形工艺之一,它具有生产效率高、工序简便、节约成本、表面状态好、后期处理少等优点,几乎可以覆盖金属外形调整的所有领域。

二、拉挤成型工艺的分类
1. 拉伸成型
拉伸成型工艺的原理是,将材料在固定的拉伸缸内,以所需要的温度和拉伸力拉伸,使其形状发生变化而达到指定成型目的。

2. 压缩成型
压缩成型工艺是一种以压力为所施加的外力,利用模具内挤压力在一定温度下,使硬物料的外形、截面或其它性能得到变化的一种工艺。

三、拉挤成型工艺的应用
1. 电子行业
在电子行业,拉挤成型工艺广泛应用于电线电缆的加工制作中,可以实现电缆以及其他电子元器件的制作、变径和改型。

2. 机械行业
拉挤成型是机械加工领域中金属零件的基本工艺,可以实现连杆、轴、活塞等机械零件的主体构建。

3. 其他行业
此外,除了电子行业和机械行业,拉挤成型工艺还可以应用于能源行业,如用于油钻管、制作锅炉、制作液压缸等;交通运输行业,可以制作法兰、轴箱、制作汽车、摩托车等等。

复合材料3拉挤成型

复合材料3拉挤成型

模腔温度
用于拉挤的树脂体系对温度都很敏感,模腔温度的控 制应十分严格。温度低,树脂不能固化 ;温度过高, 坯料一入模就固化,使成型、牵引困难,严重时会产
生废品甚至损坏 设备。模腔分 布温度应两端高, 中间低。
模温控制
一般把模具人为地分为三段,即加热区、胶凝和 固化区。在模具上使用三组加热板来加热,并严 格控制温度。树脂在加热过程中,温度逐渐升高, 粘度降低。通过加热区后,树脂体系开始胶凝、 固化,这时产品与模具界面处的粘滞阻力增加, 壁面上零速度的边界条件被打破,基本固化的型 材以均匀的速度在模具表面摩擦运动,在离开模 具后基本固化,型材在烘道中受热继续固化,以保 证进入牵引机时有足够的固化度。
模具温度控制
加热区温度可以较低,胶凝区与固化区温 度相似。温度分布应使固化放热峰出现在模 具中部靠后,胶凝固化分界点应控制在模具 中部。一般三段温差控制在10-20℃左右, 温度梯度不宜过大。温度的设定与配方、牵 引速度、模具的尺寸、形式有密切的关系。
模腔压力
模腔压力是由于树脂粘性,制品与模腔 壁间的摩擦力,材料受热产生的体积膨胀, 以及部分材料受热气化产生的。因此,模 腔压力使制品在模腔内行为的一个综合反 映参数。一般模腔压力在1.7~8.6MPa 之间。
6.6.5 拉挤工艺变量的关系
温度、牵引速度、牵引力三个重要工艺参数中,温度是 由树脂系统的特性来确定的,是拉挤工艺中应当解决的 首要因素。通过树脂固化体系的DSC曲线的峰值和有关条 件,确定模具加热的各段温度值。
拉挤速度确定的原则是确定模内温度下的胶凝时间,保 证制品在模具中部胶凝、固化,出模具时具有一定的固 化程度。
(3)预成型模和成型模
1)预成型模 作用是将浸透了树脂的增强材料进 一步均匀并除去多余的树脂和排除气泡,使其形状 逐渐形成成型模的进口形状。

拉挤成型工艺参数介绍

拉挤成型工艺参数介绍

来源于:注塑塑料网拉挤成型工艺参数介绍一、国外玻璃钢拉挤成型工艺概况随着玻璃钢拉挤制品应用领域不断扩大,国外拉挤制品的规格品种也越来越多。

目前除L 型、O型、U型、平板型、中空或实芯等标准拉挤制品形状外,还可生产出根据客户所要求的各种异形结构。

有些多孔腔制品的芯材,现在也已实现标准化了。

拉挤复合材料制品的尺寸,小的只有几个平方毫米,大的如桥梁桥面用的拉挤制品,可达几十平方米。

玻璃钢拉挤成型工艺所使用的增强材料品种也很多,如玻璃纤维无捻粗纱、毡、薄布或玻纤织物,碳纤维、芳纶纤维以及它们的织物等。

拉挤成型所使用的基体树脂材料,有热塑性树脂和热固性树脂两大类。

聚酯树脂、环氧树脂、乙烯基酯树脂和酚醛树脂等热固性树脂,常用于批量较大的拉挤制品的生产;而热塑性树脂基体,正处于开发生产的阶段。

目前,水平拉挤的标准型设备,一般为20~30m长,最大宽度约。

这种标准型设备生产线进入端系一玻璃纤维的供纱库,其后是经干燥的或预热过的玻璃纤维纱,经过热固性树脂的浸胶槽,在模具内成型,加热后固化。

通常,在成型模具和拉引器之间有一个比较长的距离,玻璃钢制品可以在该段距离内,完成固化过程并逐渐冷却。

生产线上使用夹具夹住制品从拉挤模具中,把玻璃钢制品拉引出来。

最后由切割机,把拉挤制品切割成定长制品。

二、玻璃钢拉挤成型的工序及其控制参数玻璃钢拉挤成型工艺,共有8道工序:纺捻、预浸渍、加热、制品固化及尺寸的校准测量、冷却、拉引和切割。

通常,各个工序都有一个可在一定范围内调整的工艺参数。

这些工艺参数,有些可以通过拉挤设备直接进行调整,例如模具的温度、拉引的速度等。

但另有些工艺参数,例如拉挤制品的温度、受力状况、树脂的粘度等,则不能够直接通过设备进行调整。

显然,所有的工艺参数都将对拉挤制品的质量,包括机械性能和光学性能等,产生一定的影响。

其中最主要的工序,是预浸渍、模塑成型和固化等三道工序。

必须指出的是,某一个工序的工艺参数,将对其它工序产生一定的影响,例如拉引速度的快慢,就将对上述三个主要工序产生一定的影响。

复合材料-拉挤成型工艺-(综合版改)

复合材料-拉挤成型工艺-(综合版改)

复合材料拉挤成型工艺——纺硕1205班柴寅芳、丁倩、刘冰、刘小梅、戎佳琦、王卷1 拉挤成型定义拉挤成型是指玻璃纤维粗纱或其织物在外力牵引(外力拉拔和挤压模塑)下,经过浸胶、挤压成型、加热固化、定长切割,连续生产长度不限的玻璃钢线型制品的一种方法。

这种工艺最适于生产各种断面形状的型材,如棒、管、实体型(工字形、槽形、方形型材)和空腹型材(门窗型材、叶片)等。

2 拉挤成型的特点2.1优点:1)典型拉挤速度0.5-2m/min,效率高,适于批量生产,制造长尺寸制品;2)树脂含量可精确控制;3)主要用无捻粗纱增强,原材料成本低,多种增强材料组合使用,可调节制品力学性能;4)拉挤制品中纤维含量可高达80%,浸胶在张力下进行,能充分发挥连续纤维的力学性能,产品强度高;5)原材料利用率在95%以上,废品率低;6)制品纵、横向强度可任意调整,可以满足不同力学性能制品的使用要求。

2.2缺点:1)不能利用非连续增强材料;2)产品形状单调,只能生产线形型材(非变截面制品),横向强度不高;3)模具费用较高;4)一般限于生产恒定横截面的制品。

3 拉挤成型所需的材料拉挤成型工艺中使用的材料包括树脂、增强材料、辅助材料等。

3.1拉挤成型工艺所用树脂拉挤成型工艺要求所用的树脂黏度低,主要使用不饱和聚酯树脂和环氧树脂或改性环氧树脂。

不饱和聚酯树脂用作拉挤的基本上是邻苯和间苯型。

间苯型树脂有较好的力学性能、坚韧性、耐热性和耐腐蚀性能。

目前国内使用的较多的是邻苯型,因其价格较间苯型有优势。

环氧树脂和不饱和聚酯树脂相比,具有优良的力学性能、高介电性能、耐表面漏电、耐电弧,是优良绝缘材料。

常用拉挤工艺用树脂如表1所示,树脂生产配方如表2和表3。

表1拉挤工艺用树脂表2典型拉挤用不饱和聚酯树脂配方树脂 196 100份填料(轻质碳酸钙)脱模剂(硬脂酸锌)固化剂(过氧化物)低收缩剂(PVC树脂)颜料5~15份3~5份1~3份5~15份0.1~1份表 3环氧树脂配方环氧树脂 E-55脱模剂(硬脂酸锌)固化剂(590#)增韧剂100份3~5份15~20份10~15份适量稀释剂3.2拉挤成型工艺所用增强材料拉挤成型玻璃钢所用的纤维增强材料,主要是 E 玻璃纤维无捻粗纱居多,其优点是不产生悬垂现象,集束性好,易被树脂浸透,力学性能较高。

拉挤成型

拉挤成型

拉挤成型工艺拉挤成型工艺是将浸渍树脂胶液的连续玻璃纤维束、带或布等,在牵引力的作用下,通过挤压模具成型、固化,连续不断地生产长度不限的玻璃钢型材。

这种工艺最适于生产各种断面形状的玻璃钢型材,如棒、管、实体型材(工字形、槽形、方形型材)和空腹型材(门窗型材、叶片等)等。

拉挤成型是复合材料成型工艺中的一种特殊工艺,其优点是:①生产过程完全实现自动化控制,生产效率高;②拉挤成型制品中纤维含量可高达80%,浸胶在张力下进行,能充分发挥增强材料的作用,产品强度高;③制品纵、横向强度可任意调整,可以满足不同力学性能制品的使用要求;④生产过程中无边角废料,产品不需后加工,故较其它工艺省工,省原料,省能耗;⑤制品质量稳定,重复性好,长度可任意切断。

拉挤成型工艺的缺点是产品形状单调,只能生产线形型材,而且横向强度不高。

(1)拉挤工艺用原材料①树脂基体在拉挤工艺中,应用最多的是不饱和聚酯树脂,约占本工艺树脂用量的90以上,另外还有环氧树脂、乙烯基树脂、热固性甲基丙烯酸树脂、改性酚醛树脂、阻燃性树脂等。

②增强材料拉挤工艺用的增强材料,主要是玻璃纤维及其制品,如无捻粗纱、连续纤维毡等。

为了满足制品的特殊性能要求,可以选用芳纶纤维、碳纤维及金属纤维等。

不论是哪种纤维,用于拉挤工艺时,其表面都必须经过处理,使之与树脂基体能很好的粘接。

③辅助材料拉挤工艺的辅助材料主要有脱模剂和填料。

(2)拉挤成型模具模具是拉挤成型技术的重要工具,一般由预成型模和成型模两部分组成。

①预成型模具在拉挤成型过程中,增强材料浸渍树脂后(或被浸渍的同时),在进入成型模具前,必须经过由一组导纱元件组成的预成型模具,预成型模的作用是将浸胶后的增强材料,按照型材断面配置形式,逐步形成近似成型模控形状和尺寸的预成型体,然后进入成型模,这样可以保证制品断面含纱量均匀。

②成型模具成型模具横截面面积与产品横截面面积之比一般应大于或等于10,以保证模具有足够的强度和刚度,加热后热量分布均匀和稳定。

拉挤成型工艺

拉挤成型工艺

拉挤成型工艺第一节原料配制(一)胶液的配制方法配胶是拉挤生产过程中关键的工序之一其操作是否合理,配料是否准确,将决定着最终产品的质量。

因此,应加强对这一工序的过程控制,要做到操作准确,记录清楚,具有可追溯性。

拉挤产品配方中所用到的原材料,主要有:树脂、低收缩剂、引发剂、脱模剂、填料、色浆及辅助剂(如消泡剂、分散剂等)。

配胶时应严格按以下列步骤进行:1.填料装在托盘里放入温度(110士5℃)烘箱里烘干约0. 5h。

2.校正称量器具如:磅秤、天平等。

3.按工艺文件要求量取或称取树脂。

4.按拉挤工艺配方的比例加入分散剂等组分,搅拌5-l0min;5.依次加入低收缩剂、色浆等组分,搅拌约5-l0min:同时称取内脱模剂、固化剂;6.加入内脱模剂,再加入固化剂,保持搅拌机的搅拌状态;7.从烘箱中取出烘过的填料,称量并加入后,继续搅拌约5-l0min;8.最后关闭搅拌机,清理配胶现场。

以上所提到的搅拌时间,仅是一个参考时间,操作者可以根据所使用的搅拌器的转速大小、配方的实际情况、配胶量的多少进行调整。

搅拌时间过短,不利于各种原材料的均匀混合,搅拌时间过长,会导致胶液温度的升高,影响胶液的储存期。

在产品正常生产的情况下,视产品大小,一般以10-15kg 的树脂量配置为宜。

如果一次配置树脂量过大,会增加操作人员的负担,影响操作效率。

在搅拌过程中,要严格按照搅拌机操作规程进行操作,注意安全。

每次倒入液体组分时要尽可能将称量容器中的液体倒尽。

并且在生产过程中,待胶槽中的胶液快被用完之前应及时准备好下一桶胶,以免造成生产的停顿。

在配胶过程中要学会正确操作和使用天平。

首先要保持砝码和托盘的清洁,如粘有树脂、色浆等要将其擦拭干净;在称量前一定要调整天平的水平,使指针对准刻度盘的。

刻度或左右摇摆幅度一致:将要称量的物体放在左托盘上(一般通过烧杯来盛装),在右托盘上放砝码,放砝码时按照从大到小的顺序,最后调整横梁上的游砝,直至天平平衡,累计砝码总重量,减去烧杯的重量,所得差即为所称量物体重量。

拉挤

拉挤

拉挤成型加工一、实习目的了解拉挤成型加工工艺流程。

二、拉挤成型加工介绍1.概说:拉挤成型工艺是将浸渍树脂胶液的连续纤维束、带或布等,在牵引力的作用下,通过挤压模具成型、固化,连续不断地生产长度不限的玻璃钢型材。

拉挤成型可以说是复合材料加工方法中最高度自动化与最适合连续生产的技术,只要是截面形状固定的工件,几乎均可以拉挤的方式来加工,其应用范围已遍及多种民生及航天工业。

因为其大量生产的特性,得以获得较低的加工成本,因此在工业应用上有很高的竞争性,又因复合材料抗腐蚀及绝缘的特性,许多钢制及铝制的应用领域都有可能以拉挤工件来取代,例如铝梯,栏杆,角钢,工型梁都适合用拉挤制品来取代。

拉挤成型的特点:(1)自动化、连续化生产工艺;(2)生产效率高,可多模多件;(3)拉挤制品中纤维含量可高达80%,浸胶在张力下进行,能充分发挥连续纤维的力学性能,产品强度高;(4)制品纵、横向强度可任意调整,可以满足不同力学性能制品的使用要求;(5)制品性能稳定可靠,波动范围在±5%之内;(6)原材料利用率在95%以上,废品率低;(7)不能利用非连续增强材料;(8)产品形状单调,只能生产线形型材(非变截面制品),横向强度不高。

拉挤加工法与缠绕法最大的差异是拉挤法适合将大部份的补强材安排在轴向而缠绕法适合在圆周向做补强,因此,在决定以何种方法生产的同时,必须对工件承载负荷的特性先行了解。

拉挤成型工艺分类:1.1.卧式拉挤成型工艺(1)间歇式牵引机构间断工作,浸胶的纤维在热模中固化定型,然后牵引出模,下一段浸胶纤维在进入热模中固化定型后,再牵引出模。

主要特点:成型物在模具中加热固化,固化时间不受限制。

生产效率低,制品表面易出现间断分界线。

(2)连续式牵引机构连续工作。

主要特点:牵引和模塑过程均连续,生产效率高。

成型制品质量关键是控制凝胶时间和固化程度、模具温度和牵引速度。

1.2.立式拉挤成型工艺宜生产空腹型材。

拉挤加工的制程与设备可概分为五大部份,分别是(1) 纤维区,(2) 含浸区,(3) 预成型区,(4) 硬化区,以及(5) 拉拔区,本章中将逐一介绍这五大部份。

挤出成型工艺参数包括

挤出成型工艺参数包括

挤出成型工艺参数包括挤出成型是一种常见的塑料加工方法,通过将塑料物料加热至熔融状态后在挤出机中进行挤压,从而获得所需的塑料制品。

在挤出成型过程中,各项工艺参数的设置直接影响着成型产品的质量和生产效率。

以下是挤出成型工艺参数的一般包括:1. 挤出温度:挤出温度是指塑料物料在挤出机内的加热温度,通常需要根据所用塑料的种类来确定合适的挤出温度。

过高或过低的挤出温度都会导致产品质量下降。

2. 挤出速度:挤出速度是指挤出机内挤出头的旋转速度或者挤出压力的大小,对于不同形状和尺寸的挤出制品,需要调整合适的挤出速度以保证产品的均匀性和一致性。

3. 挤出压力:挤出压力是指塑料物料在挤出机内受到的挤出压力,通常需要根据挤出产品的形状和尺寸来确定合适的挤出压力,以确保产品的外观和尺寸精准度。

4. 模头设计:模头是塑料挤出的重要组成部分,模头的设计直接影响到挤出产品的成型效果和质量。

合理的模头设计能够减少产品缺陷和材料浪费。

5. 冷却方式:挤出成型后的塑料制品需要进行冷却固化才能得到最终的形态和性能,冷却方式的选择对产品的性能和表面质量有重要影响,例如水冷却、风冷却等。

6. 拉伸速度:对于一些需要拉伸的塑料制品,拉伸速度是一个重要的挤出影响参数,适当的拉伸速度可以使产品达到理想的拉伸强度和尺寸稳定性。

7. 压力控制:在挤出成型过程中需要对挤出机的压力进行控制,确保产品形状和尺寸的一致性,同时减少挤出过程中的产生的缺陷。

挤出成型工艺参数的合理设置对于塑料制品的成型质量和生产效率至关重要,只有充分了解和掌握这些参数的特点和调整方法,才能更好地实现挤出成型过程的优化和产品质量的提升。

希望以上内容能对您了解挤出成型工艺参数有所帮助。

1。

挤出成型的工艺参数有哪些

挤出成型的工艺参数有哪些

挤出成型的工艺参数有哪些在塑料加工领域中,挤出成型是一种常见且广泛应用的加工工艺,通过挤出机将塑料熔体压制通过模具挤出成型,成为各种复杂形状的塑料制品。

而挤出成型的工艺参数对成型制品的质量和性能具有重要影响,以下是挤出成型的主要工艺参数:温度参数1.料筒温度:料筒温度是指挤出机内塑料熔体的温度,通常根据不同的塑料材料选择合适的料筒温度,过高或过低都会导致挤出成型过程中的问题。

2.模头温度:模头温度是指模头表面的温度,影响熔体挤出后的冷却固化速度和产品表面质量。

压力参数1.螺杆推进压力:控制螺杆对塑料的推进力大小,直接决定了塑料熔体的挤出速度和稳定性。

2.挤出头压力:挤出头压力影响产品挤出速度和外观质量,通常调节挤出头压力来控制产品外观问题。

速度参数1.螺杆转速:控制螺杆的转速可以调节熔体的压缩、混炼和输送速度,影响了挤出成型的效率和产品质量。

2.进料量:进料量是指单位时间内给挤出机加入的原料量,影响着熔体在料筒内的压力和熔体的均匀程度。

几何参数1.模头几何设计:模头的设计决定了最终产品的截面形状和尺寸,合理的模头设计能保证产品的外观质量。

2.挤出机螺杆数量和结构:挤出机的螺杆数量和结构对塑料熔体的挤出过程有重要影响,不同的挤出机螺杆结构适用于不同类型的塑料。

其他参数1.冷却参数:产品挤出后需要经过冷却固化阶段,控制冷却方式和速度对产品的成型完整性和尺寸稳定性具有重要作用。

2.模具温度:模具温度对产品的收缩率和表面质量有直接影响,适当调节模具温度能够改善产品的表面光滑度和尺寸精度。

以上便是挤出成型的主要工艺参数,通过对这些参数的合理控制和调节,可以提高挤出成型制品的质量稳定性和生产效率,从而满足不同行业对塑料制品的需求。

拉挤树脂及其成型工艺介绍

拉挤树脂及其成型工艺介绍

一、拉挤成型工艺简介
(二)拉挤产品的主要应用领域
电工领域 主要用 于高压电缆保护管、 电缆架、绝缘梯、绝 缘杆、电杆、灯柱、 变压器和电机的零部 件等。
一、拉挤成型工艺简介
(二)拉挤产品的主要应用领域
建筑领域 主要用于 门、窗结构用型材、桥 梁、栏杆、帐篷支架和
天花板吊架等。
一、拉挤成型工艺简介
(三)辅助材料
脱模剂 脱模剂的主要作用是拉挤制品完好无损的与模具分离,以保证拉挤成
型的顺利进行。由于拉挤成型工艺的模具是闭合的,因此,在拉挤行 业一般都使用内脱模剂。
对脱模剂的要求 对复合材料的性能影响小 与树脂相容性好
常用的内脱模剂有:硬脂酸锌、硬脂酸钙、硬脂酸铝和烷基磷酸等。
使用量一般为1%-2%
三、拉挤树脂的组成与选择
(二)拉挤树脂的主要原材料
饱和二元酸 邻苯二甲酸酐 提高聚酯与苯乙烯的相容性,树脂综合性能优异 间 苯 二 甲 酸 提高树脂的耐化学、耐热性和力学性能 对 苯 二 甲 酸 提高树脂的韧性、耐化学、耐油污和耐电性,但树脂 透明性差,易结晶 四 溴 苯 酐 提高树脂的阻燃性能 四 氢 苯 酐 提高树脂的气干性 己 二 酸 提高树脂的韧性 丁 二 酸 提高树脂的韧性,但其效果不如己二酸,易结晶 氯 桥 酸 提高树脂的阻燃性能
二、拉挤成型工艺的原理及设备
(二)拉挤设备
预成型模和成型模 3、预成型模具的选择 (1)拉挤成型棒材时,一般使用管状预成型模具; (2)成型空心型材时,通常使用芯轴预成型模具; (3)生产异型材时,大都使用形状与型材截面形状接近的金属预成型模 具。
二、拉挤成型工艺的原理及设备
(二)拉挤设备
预成型模和成型模 4、成型模具的要求 (1)模具截面几何形状与型材轮廓相同; (2)模具长度与树脂的种类、模具温度、制品尺寸、拉挤速度、增强材 料性质等相关,一般为300-500mm; (3)模具材质可为金属、陶瓷或工程塑料,一般使用钢镀铬成型模具; (4)模具的模腔表面要光洁、耐磨,以减少拉挤成型过程中的摩擦阻力, 使制品容易脱模,并提高模具的使用寿命; (5)模具采用电加热方式为好,以便控制温度的分布。

拉挤成型工艺及应用

拉挤成型工艺及应用

一、概述和发展历史拉挤成型工艺是将浸渍树脂胶液的连续玻璃纤维束、带或布等,在牵引力的作用下,通过挤压模具成型、固化,连续不断地生产长度不限的玻璃钢型材。

这种工艺最适于生产各种断面形状的玻璃钢型材,如棒、管、实体型材(工字形、槽形、方形型材)和空腹型材(门窗型材、叶片等)等。

拉挤成型技术是一种以连续纤维及其织物或毡类材料增强型材的工艺方法。

基本工艺过程,增强材料在外力的牵引下,经浸胶、预成型、热模固化、在连续出模下经定长切割或一定的后加工,得到型材制品。

第一个拉挤成型工艺技术专利于1951年在美国注册。

直到60年代,其应用也十分有限,主要制作实芯的钓鱼杆和电器绝缘材料等。

60年代中期,由于化学工业对轻质高强、耐腐蚀和低成本的迫切需要,促进了拉挤工业的发展,特别是连续纤维毡的问世,解决了拉挤型材横向强度问题。

70年代起,拉挤制品开始步入结构材料领域,并以每年20%左右的速度增长,成为美国复合材料工业十分重要的一种成型技术。

从此,拉挤成型工艺也随之进入了一个高速发展和广泛应用的阶段。

与此同时,国内也开始关注起拉挤成型工艺这一新型技术。

随着拉挤产品应用领域的不断拓展,人们对拉挤工艺有了全新的认识,从80年代起,秦皇岛玻璃钢厂、西安绝缘材料厂、哈尔滨玻璃钢研究所、北京玻璃钢研究设计院,武汉工业大学先后从英国PUITREX公司,美国PTI公司引进拉挤成型工艺设备。

此外河北冀县中意玻璃钢有限公司从意大利TOP Glass公司引进5条拉挤生产线,其中有一条是我国首家引进的光缆增强芯拉挤设备,其拉挤速度可达15-35 m/min。

在借鉴和消化国外先进技术的基础上,业内人员不断研究新工艺,开发新产品,从而有力地推动了国内拉挤成型工业,目前这一技术正在向高速度、大直径、高厚度、复杂截面及复合成型的工艺方向发展。

二、拉挤工艺过程1 拉挤工艺拉挤成型工艺是指将浸溃了树脂的连续纤维粗纱经加热模拉出形成预定截面型材的过程。

在拉挤成型工艺的发展中,有三种同时发展起来的工艺:(1)隧道炉拉挤工艺该工艺是把玻纤粗纱或类似的增强材料牵引穿过树脂浴后,经过整形套管除去包藏的空气和多余的树脂达到预定的直径,然后牵引穿过隧道炉并悬空连续固化得到最终产品。

第二章拉挤工艺

第二章拉挤工艺
精品资料
通常,内脱模剂的起始用量为树脂量的1%, 有效添加范围是基于树脂重量的0.75-2%。 应根据实际情况适当调整。
1、薄壁的简单型材(xínɡ cái),用量可以适 当少些,比如0.8%或更少;
2、厚壁或形状复杂的型材(xínɡ cái)需要多 加一些。
3、在高填料体系内,应提高内脱模剂的 添加量,但内脱模剂添加量过多,会延迟固 化。
精品资料
脱模剂使用中注意的问题
由于大多数液体状内脱模剂都是酸性的,所以在 使用中要注意以下问题: 1、在使用对酸敏感的颜料时会导致颜色变化; 2、在使用碱性填料时,如碳酸钙,酸性脱模剂会 与之起反应,引起混合料的粘度增加,但不会影响 脱模效果; 3、如果填料为氢氧化铝,酸性脱模剂除了会使混 合料的粘度增加外,还会在混合料固化过程中放出 (fànɡ chū)水份,导致气泡、裂纹等问题。
精品资料
精品资料
拉挤成型设备组成 1、增强材料传送系统:如纱架、毡铺展
装置、纱孔等。 2、树脂浸渍:直槽浸渍法最常用,在整
个浸渍过程中,纤维和毡排列应十分整齐。 3、预成型:浸渍过的增强材料穿过预成
型装置,以连续方式谨慎地传递,以便确保 (quèbǎo)它们的相对位置,逐渐接近制品的 最终形状,并挤出多余的树脂,然后再进入 模具,进行成型固化。
精品资料
拉挤成型工艺形式很多,分类方法也很多。 如间歇式和连续式,立式和卧式,湿法和干 法,履带式牵引和夹持式牵引,模内固化和 模内凝胶模外固化,加热方式有电加热、红 外加热、高频加热、微波(wēibō)加热或组合 式加热等。
拉挤成型典型工艺流程为: 玻璃纤维粗纱排布——浸胶——预成型—
—挤压模塑及固化——牵引——切割——制 品
精品资料
主要原材料 拉挤成型玻璃钢用主要原材料: 树脂基体

拉挤树脂及其成型工艺介绍

拉挤树脂及其成型工艺介绍

一、拉挤成型工艺简介
(二)拉挤产品的主要应用领域
电工领域 主要用 于高压电缆保护管、 电缆架、绝缘梯、绝 缘杆、电杆、灯柱、 变压器和电机的零部 件等。
一、拉挤成型工艺简介
(二)拉挤产品的主要应用领域
建筑领域 主要用于 门、窗结构用型材、桥 梁、栏杆、帐篷支架和
天花板吊架等。
一、拉挤成型工艺简介
随着先进设备的发展,以前被认为不可想象的工艺,如在线编制拉 挤成型、反应注射拉挤成型、曲面拉挤工艺和含填料的拉挤工艺等 新型工艺正在不断涌现。
一、拉挤成型工艺简介
(二)拉挤产品的主要应用领域
耐腐蚀领域 主要用于 化工设备、水处理设 备、酿造设备、耐腐 蚀储罐保护架、洗涤 器组合构件、水族馆 检查走廊、冷却塔支 架、抽油杆和海上采 油设备等。
二、拉挤成型工艺的原理及设备
(一)拉挤成型工艺的原理
拉挤成型工艺过程
胶液配制
上层毡
无碱纱 下层毡
浸渍
预成型
加温固化
牵引
切割
钻孔
喷涂
烘烤
检验包装
二、拉挤成型工艺的原理及设备
(一)拉挤成型工艺的原理
拉挤成型工艺设备原理
二、拉挤成型工艺的原理及设备
二、拉挤成型工艺的原理及设备
(二)拉挤设备
二、拉挤成型工艺的原理及设备
(二)拉挤设备
预成型模和成型模 3、预成型模具的选择 (1)拉挤成型棒材时,一般使用管状预成型模具; (2)成型空心型材时,通常使用芯轴预成型模具; (3)生产异型材时,大都使用形状与型材截面形状接近的金属预成型模 具。
二、拉挤成型工艺的原理及设备
(二)拉挤备
预成型模和成型模 4、成型模具的要求 (1)模具截面几何形状与型材轮廓相同; (2)模具长度与树脂的种类、模具温度、制品尺寸、拉挤速度、增强材 料性质等相关,一般为300-500mm; (3)模具材质可为金属、陶瓷或工程塑料,一般使用钢镀铬成型模具; (4)模具的模腔表面要光洁、耐磨,以减少拉挤成型过程中的摩擦阻力, 使制品容易脱模,并提高模具的使用寿命; (5)模具采用电加热方式为好,以便控制温度的分布。

拉挤成型工艺

拉挤成型工艺

4、固化炉
电阻或远红外加热
5、牵引装置
履带式牵引机 液压机械式
6、切割装置
砂轮 其它刀具
8、6 应用
建筑领域 运输领域 电工领域 运动娱乐领域 航空航天领域
玻璃纤维绝缘撑条
高压电缆保护管
玻璃钢型材
门窗型材
雷达天线罩
课程结束
This template is the internal standard courseware template of the enterprise
案例:1997年香港邮政对特快专递业务单元做的SWOT分析
•特快专递服务推出较早
•特快专递”过去的形象不
S
•技术支持较强(如电子追 踪服务
W
太好 •认知率不高
•以邮局为服务终端,服务 网络覆盖面广
•可靠性与速度不及私营公 司
•私营速递公司多以大公司 为主要客户
•香港近年经济不太景气, 外部环境不利
O •中小机构、个人的需求得 T •速递业竞争对手林立,正
➢它在制定公司发展战略和进行竞争对手分析中也经常被使用。 SWOT的 分析技巧类似于波士顿咨询(BCG)公司的增长/份额矩阵(The Growth/Share Matrix),
SWOT分析传统矩阵示意图
内部环境
优势 Strengths
劣势 Weakness
机会 Opportunities
威胁 Threats
SWOT分析模板
什么是SWOT分析
➢SWOT分析是市场营销管理中经常使用的功能强大的分析工具,最早是由 美国旧金山大学的管理学教授在80年代初提出来的:S代表strength(优势), W代表weakness(弱势),O代表opportunity (机会),T代表threat(威胁)。

拉挤工艺技术标准

拉挤工艺技术标准
玻璃钢拉挤型材技术标准
1、适用范围
本标准适用于各种电缆桥架、大桥栏杆、护栏、格栅、走道板、梯子的组装,产
品适用用于室内外腐蚀性较大的工作场所。
2、产品品种、规格
2.1 原材料
树脂、苯甲酰、色浆、叔丁脂、氢氧化铝、硬脂酸锌、抗紫外线剂。
2.2 型材工艺过程与技术指标
拉挤型材工艺企业技术标准(表一、表二)
横截面积÷4.8(玻纤每股4.8克/米)=纱的股数
装,产 的
2.3 型材的形状、尺寸、重量及极限偏差
尺寸偏差见下表:
尺寸名称
允许偏差
型材横截面尺寸H、W、E
±0.5mm
型材壁厚t、c
±0.2mm
表面轴向直线度
≤2.0mm/
型材长度偏差
L≤6m时 L>6m时
≥+20mm 由供需双方商定
3、型材纱的计算方法:
型材横截面积×1.8(玻璃钢比重)×0.65(常数)指纱在模腔中的占有量)—毡的

拉挤生产工艺

拉挤生产工艺

拉挤生产工艺玻璃钢表面清洗采用洗洁剂冲洗,以防造成表面划痕和毛糙。

不使加工断面裸露,凡有加工断面的地方,都用树脂封闭涂装。

温度和模内压力是复合材料拉挤成型工艺过程中两个最重要的工艺参数。

在材料组成确定的条件下,拉挤和牵引力等工艺参数实际上都是由温度和模内压力所决定的,在拉挤工艺中,测定模具内温度分布的基本方法为:将一根细的线状热电偶插入浸胶后的增强材料中,使其随之进入模内,然后从模具另一端随材料被拉出,温度记录从热电偶进入模具开始,分析拉挤工艺过程中的温度曲线;可知道在确定工艺条件下,树脂在模具内的固化反应状况,从而指导工艺条件的调整。

模内压力的分布的实时监控是通过类似于热电偶的力敏电阻来测定的,其使用方法与热电偶在拉挤中测定温度方法相似。

经过测量温度信息和模内压力的信息相结合,可以准确的指导拉挤速度牵引力等工艺参数,获得力学性能和表面质量好的拉挤制品。

模压料的质量控制。

模压料质量的好坏对其模压特性及模压制品的性能有极大的影响。

一般情况下应控制好树脂含量、挥发物含量和不溶性树脂含量这三个指标。

影响模压料质量的因素。

(1)稀释剂的加入量:为了使树脂能浸透纤维并混合均匀,需要预先将树脂配制成一定粘度的溶液,此时稀释剂起着调节树脂粘度的作用。

树脂粘度低,对浸透增强材料有利,增强材料的强度损失也就小,同时能容纳的填料就多;但粘度过低将不利于树脂和纤维的均匀混合,也不利于树脂对纤维的粘接,而且还将导致模压料在压制过程中固化收缩率增大,使模压制品产生龟裂、变形。

此外,稀释剂用量过多还将导致生产成本增大。

(2)纤维长度:纤维长度是影响模压料质量的重要因素之一。

长度过短,增强效果降低;长度过长,将导致预混模压料生产过程中纤维的严重缠结。

实践证明,机械法生产预混模压料时,纤维长度以下不超过20~40mm为好,手工法生产预混模压料时,纤维长度以下不超过30~50mm为好。

(3)模压料的烘干条件:烘干的目的是除去大部分挥发物,降低压制时模压料的流动性、模压制品的收缩率、增加尺寸稳定性等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

来源于:注塑塑料网
拉挤成型工艺参数介绍
一、国外玻璃钢拉挤成型工艺概况
随着玻璃钢拉挤制品应用领域不断扩大,国外拉挤制品的规格品种也越来越多。

目前除L型、O型、U型、平板型、中空或实芯等标准拉挤制品形状外,还可生产出根据客户所要求的各种异形结构。

有些多孔腔制品的芯材,现在也已实现标准化了。

拉挤复合材料制品的尺寸,小的只有几个平方毫米,大的如桥梁桥面用的拉挤制品,可达几十平方米。

玻璃钢拉挤成型工艺所使用的增强材料品种也很多,如玻璃纤维无捻粗纱、毡、薄布或玻纤织物,碳纤维、芳纶纤维以及它们的织物等。

拉挤成型所使用的基体树脂材料,有热塑性树脂和热固性树脂两大类。

聚酯树脂、环氧树脂、乙烯基酯树脂和酚醛树脂等热固性树脂,常用于批量较大的拉挤制品的生产;而热塑性树脂基体,正处于开发生产的阶段。

目前,水平拉挤的标准型设备,一般为20~30m长,最大宽度约1.5m。

这种标准型设备生产线进入端系一玻璃纤维的供纱库,其后是经干燥的或预热过的玻璃纤维纱,经过热固性树脂的浸胶槽,在模具内成型,加热后固化。

通常,在成型模具和拉引器之间有一个比较长的距离,玻璃钢制品可以在该段距离内,完成固化过程并逐渐冷却。

生产线上使用夹具夹住制品从拉挤模具中,把玻璃钢制品拉引出来。

最后由切割机,把拉挤制品切割成定长制品。

二、玻璃钢拉挤成型的工序及其控制参数
玻璃钢拉挤成型工艺,共有8道工序:纺捻、预浸渍、加热、制品固化及尺寸的校准测量、冷却、拉引和切割。

通常,各个工序都有一个可在一定范围内调整的工艺参数。

这些工艺参数,有些可以通过拉挤设备直接进行调整,例如模具的温度、拉引的速度等。

但另有些工艺参数,例如拉挤制品的温度、受力状况、树脂的粘度等,则不能够直接通过设备进行调整。

显然,所有的工艺参数都将对拉挤制品的质量,包括机械性能和光学性能等,产生一定的影响。

其中最主要的工序,是预浸渍、模塑成型和固化等三道工序。

必须指出的是,某一个工序的工艺参数,将对其它工序产生一定的影响,例如拉引速度的快慢,就将对上述三个主要工序产生一定的影响。

由于拉挤成型工艺参数这种相互影响的结果,因而至今尚不可能建立起一套切实可行的工艺模型,以期达到拉挤产品质量的预定的目标。

三、玻璃钢拉挤工艺参数控制元件
如上所述,由于热固性树脂拉挤工艺参数条件,受其在成型模具内发生的一些复杂因素所制约,并且还要受制于其它工艺参数之间的相互影响,因此在拉挤成型时,原材料中发生的聚合反应,也比较难以进行精确地预测。

目前,玻璃钢拉挤模中常用的监测控制传感元件有:温度传感器,压力传感器和介电传感器等三种上述这些传感器,首先必须要解决好耐拉挤磨损的问题。

另外,拉挤模的温度、玻璃纤维的体积含量,以及拉引速度的快慢等,也均将会对拉挤成型工艺参数传感器产生一定的影响。

目前常用的玻璃钢拉挤成型设备上,所采用的温度检测传感元件,经常在沿纤维的方向,并放置于成型模内的表面部位;而压力检测传感元件,则经常放置在拉挤模的入口处及模具的中间位置(通常拉挤模的长度约为1000mm)。

这种张力式压力传感元件的表面,往往涂有铬层,以提高它对耐玻璃纤维拉挤磨损的性能。

拉挤成型设备中使用的介电传感元件,有薄膜式和固定陶瓷式等两种。

这种介电传感元件的基本原理,主要是在两块极板之间,以高聚物作为介质,当处于交变电场中,高聚物分子将发生移动。

由于交变频率的改变,高聚物分子量的大小(也可表示为聚合度的大小),粘度,以及电导率等性能考参数,也将会发生变化。

也就是说,高聚物的粘度越低,电导率就越高,其电阻值就越小。

薄膜式介电传感器,是随玻璃纤维一起从模具腔内拉引而出,制品固化后传感器仍将留在其中,因此只能使用一次,在工业化批量生产时不太适用。

固定式介电传感器是属于双板电容器类型的一种传感器。

传感器将作为其中的一个极板,而另一个极板则就是模具的本身。

但Index 薄膜式传感器本身,就装有两块板极。

它们板片之间的排列,类似于印刷电路板的结构。

由于它们结构上的不同,因此,上述这两种介电传感器的电导性能,尚不能进行直接的比较。

相关文档
最新文档