实验四植物灰分元素的分析测定(精)
测定植物粗灰分含量
![测定植物粗灰分含量](https://img.taocdn.com/s3/m/7caa723e905f804d2b160b4e767f5acfa1c7832e.png)
测定植物粗灰分含量植物有机体灼烧的残余物称为“粗灰分”。
植物体的灰分含量并不⾼(约占⼲物质的2—7%,平均5%左右),但对植物的⽣长发育有很重要的意义。
植物⼲物质中灰分的含量随植物品种、品种、不同器官和部位、⽣育期以及⼟壤、⽓候、上肥和其它农业技术措施等要素⽽改变。
⼀般地说,叶部含灰分最⾼。
特别是在幼苗期,茎秆次之,种⼦中更少。
不同植物和器官中灰分组成也各有其特征,例如⼀般茎叶的灰分中以钾钙较多,⾕类和⽟⽶种⼦的灰分以磷钾占多数,⾖类种⼦则以钙为较多,有趣的是茎叶中的钙常⾼于镁,种⼦中则常为镁⾼于钙。
测定植株各部分灰分含量能够了解各种作物在不同⽣育期和不同器官中灰分的含量及其改变状况,也能够查明上肥、⼟壤、⽓候等要素对灰分含量改变的影响。
农产品及其加⼯品的粗灰分含量也是品质鉴定的项⽬之⼀。
样品在恰当条件下灼烧灰化后,除了测定粗灰分以外,必要时还能够在其间测定各组成—灰分元素,如磷、钾、钙、镁和多种微量元素。
测定⽅法原理粗灰分常⽤简单、快速、节省的⼲灰化法测定,即将样品⼩⼼肠加热碳化和灼烧,除尽有机质,称量残留的矿物质,即可核算粗灰分%。
这些矿物质主要是各种⾦属元素的碳酸盐、硫酸盐、磷酸盐、硅酸盐、氯化物等。
因为燃烧时⽣成的碳粒不易彻底烧尽,样品上粘附的少量尘⼟也不易彻底洗净,并且植物样品灼烧后灰的组成已改变(例如碳酸盐添加,氯化物和硝酸盐丢失,有机磷、硫转变为磷酸盐和硫酸盐,重量都有改变),这样测得的灰分称为“粗灰分”。
灼烧时的温度有必要控制在525左右(500—550。
坩锅呈暗红⾊),不⾏过⾼或急于求成,否则会引起部分钾、钠的氯化物蒸发丢失(磷酸盐在600以下不致蒸发,太⾼时也会丢失);并且钾、钠的磷酸盐和硅酸盐类也会熔融⽽把磷粒包藏起来,不易烧尽。
加热的速度也不⾏太快,以防急剧⼲馏时灼热物的部分发⽣⼤量⽓体⽽致微粒飞失—爆热;并且在⾼温时磷、硫等也或许被碳粒还原为氢化物⽽逸失。
对于含磷、硫、氯等酸性元素较多的样品,例如种⼦类及其加⼯品,为了防⽌⾼温时这些元素的逸失,须在样品中参加⼀定量的镁盐或钙盐等补充⾜够量的碱性⾦属,使酸性元素构成⾼熔点的盐类⽽固定起来,再⾏灰化。
灰分及矿物元素的测定
![灰分及矿物元素的测定](https://img.taocdn.com/s3/m/ee2a7ae0856a561252d36f12.png)
加速灰化的方法
有些样品难于灰化,如含磷较多 的谷物及其制品。磷酸过剩于阳离子 ,灰化过程中易形成KH2PO4、 NaH2PO4等,会熔融而包住C粒,即 使灰化相当长时间也达不到恒重。对 这类样品,可采用下述方法加速灰化 :
⑴ 样品初步灼烧后,取出,冷却,从灰 化容器边缘慢慢加入少量无离子水, 使残灰充分湿润(不可直接洒在残灰 上,以防残灰飞扬损失),用玻璃棒 研碎,使水溶性盐类溶解,被包住的C 粒暴露出来,把玻璃棒上粘的东西用 水冲进容器里,在水浴上蒸发至干涸 ,至 120 ~ 130℃烘箱内干燥,再灼烧 至恒重。
葡萄干
0.5
1.8 1.6 0.4
土豆(带皮,未加工)
西红柿(红色,成熟,未加工)
食 品 种 类 肉、家禽、鱼类 鲜鸡蛋(全部,未经加工,新鲜) 鱼片(去骨、糊状或涂面包屑油炸) 猪肉(新鲜,腿心,全部、未加工) 汉堡包(单层小馅饼,普通的) 鸡肉(烤或炸,胸脯肉,未经加工)
灰分含量/%
(按湿基计算)
⑸ 添加 MgO、CaCO3 等惰性不熔物 质,它们的作用纯属机械性,它们和灰 分混杂在一起,使C粒不受覆盖,应做 空白试验,因为它们使残灰增重。
取样量
根据试样种类和性状来定,一般控制灼烧后灰分为 10 ~100 mg 。 通常: 乳粉、麦乳精、大豆粉、调味料、水产品等取 1~2g 。 谷物及制品、肉及制品、糕点、牛乳等取 3~5 g 。
性小。 缺点: 价格昂贵,约为黄金的9倍,要有专人保管,免丢 失。 使用不当会腐蚀或发脆。
•灰化温度 灰化温度根据样品中无机成分的组成、性质及含量选 择,一般为500~550 ℃ 。 例如:鱼类及海产品、谷类及其制品、乳制品< 550℃; 果蔬及其制品、砂糖及其制品、肉制品<525℃ ; 个别样品(如谷类饲料)可以达到600℃。 灰化温度过高,将引起钾、钠、氯等元素的挥发损 失,而且磷酸盐、硅酸盐类也会熔融,特碳粒包藏起 来,使碳粒无法氧化; 灰化温度过低,则灰化速度慢、时间长,不易灰化 完全,也不利于除去过剩的碱(碱性食品)吸收的二氧 化碳。
灰分的测定
![灰分的测定](https://img.taocdn.com/s3/m/0dc9b367af1ffc4ffe47acfb.png)
×100%
m4— 不溶性灰分 + 原坩埚质量 g m1— 原坩埚质量 g m2— 样品 + 原坩埚质量 g
水溶性灰分%=总灰分% - 水不溶性灰分%
四、 酸不溶性灰分的测定
取水不溶性灰分或总灰分的残留物,加入25ml 0.1mol/L的HCl,放在小火上轻微煮沸,用无灰滤纸 过滤后,再用热水洗涤至不显酸性为止,将残留物 连同滤纸置坩埚中进行干燥、炭化、灰化,直到恒 重。 m5 m1 计算: 酸不溶性灰分%= ×100% m2 m1
果,用马福炉则需要40min~4h。
(四)总灰分的 测定方法(以瓷坩埚为例)
马福炉 瓷坩埚
的准备 结果计算
的准备
称样品
炭化样品
不恒重
灰化1小时
恒重
入干燥器冷却 30 分钟
取出
①
瓷坩埚的准备
根据取样量的大小、样品的性质(如易膨胀等) 来选取坩埚的大小。有时样品太多,宜选素瓷 蒸发皿。使用的容器大会使称量的误差增大
• 总的时间一般为 2 ~ 5 小时,个别样品有规定温度、 时间。 • 应指出,对某些样品即使灰化完全,残灰也不一定 呈白色或浅灰色,如铁含量高的食品,残灰呈褐色。 锰、铜含量高的食品,残灰呈蓝绿色。
(三)加速灰化的方法
有些样品难于灰化,如含磷较多的谷物及其制 品。磷酸过剩于阳离子,灰化过程中易形成 KH2PO4、NaH2PO4等,会熔融而包住C粒, 即使灰化相当长时间也达不到恒重。对这类样 品,可采用下述方法加速灰化:
矿物元素的测定方法很多:
化学分析法、比色法、原子吸收分光光度法、
极谱法、离子选择性电极法、荧光法等等。
二、 钙的测定
(一) KMnO4法 原理: 灰分 + HCl 溶解 CaCl2+(NH4 )2C2O4 →CaC2O4 ↓+2NH4Cl CaC2O4 + H2SO4 →CaSO4 + H2C2O4 5H2C2O4 +2KMnO4 +3 H2SO4 K2SO4 +2MnSO4 +10CO2 +8H2O 此法需要沉淀、过滤、洗涤等步骤,费时费力, 较为少用。
灰分的测定实验报告
![灰分的测定实验报告](https://img.taocdn.com/s3/m/33c662bb0342a8956bec0975f46527d3250ca67f.png)
灰分的测定实验报告灰分的测定实验报告引言:灰分是指固体物质在高温下被氧化或燃烧后,残留下来的无机物质的总和。
灰分的测定对于许多行业和领域都具有重要意义,比如环境监测、燃烧性能评估等。
本实验旨在通过测定灰分的方法和步骤,探究不同材料的灰分含量。
实验目的:1. 了解灰分的定义和测定方法;2. 掌握测定灰分的实验步骤和技巧;3. 比较不同材料的灰分含量。
实验仪器和试剂:1. 灰分瓷舟、电子天平、烘箱、燃烧器等;2. 待测样品。
实验步骤:1. 将灰分瓷舟称重,记录质量;2. 取适量待测样品,放入瓷舟中,记录总质量;3. 将瓷舟放入预热至600℃的烘箱中,加热1小时,使样品完全燃烧;4. 取出瓷舟,放置至室温,再次称重,记录质量;5. 计算灰分的质量差值,即可得到灰分含量。
实验结果与分析:通过对不同材料的灰分测定,我们得到了以下结果:样品A的灰分含量为10.5%,样品B的灰分含量为8.2%,样品C的灰分含量为12.0%。
从结果可以看出,不同材料的灰分含量存在一定的差异。
灰分的含量与材料的性质密切相关。
一般来说,有机物质的灰分含量较低,而无机物质的灰分含量较高。
这是因为有机物质主要由碳、氢、氧等元素组成,燃烧后残留的无机物质较少;而无机物质本身就是由无机元素组成,燃烧后残留的无机物质较多。
灰分的测定在许多领域都具有重要意义。
例如,在环境监测中,灰分的含量可以反映空气中的颗粒物污染程度;在燃烧性能评估中,灰分的含量可以评估燃料的燃烧效果和产生的灰渣量。
因此,准确测定灰分含量对于相关领域的研究和应用具有重要意义。
实验中,我们采用了烘箱加热的方法进行灰分测定。
这种方法简便易行,能够较好地保证样品的燃烧和灰分的残留。
然而,需要注意的是,在实际应用中,不同样品的燃烧条件可能存在差异,因此在测定过程中需要根据具体情况进行调整和优化。
结论:通过本次实验,我们成功测定了不同材料的灰分含量,并对灰分的定义、测定方法和意义有了更深入的了解。
灰分的测定及灰化方法
![灰分的测定及灰化方法](https://img.taocdn.com/s3/m/c39e75e1af1ffc4fff47ac35.png)
第四章灰分的测定及灰化方法食品中除含有大量有机物质外,还含有较丰富的无机成分。
这些无机成分在维持人体的正常生理功能,构成人体组织方面有着十分重要的作用。
灰分主要为食品中的矿物盐或无机盐类。
1、灰分测定方法:灰分:高温灼烧后的残留物叫灰分。
严格的说叫粗灰分湿法消化:就是通过加入强氧化剂消化食品的方法,叫湿法消化干法灰化:通过灼烧手段分解食品的方法叫干法灰化。
灼烧装置有灰化炉(马福炉)2、食品在500℃—600℃灼烧灰化时,发生一系列变化:A、水分及挥发性物质以气态放出B、有机物中的与O2生成等而散失.C、有机酸的金属盐转变为碳酸盐或金属氧化物;D、有些组分转变为氧化物、磷酸盐、硫酸盐或卤化物E、有的金属直接挥发散失或生成容易挥发的金属化合物3、灰分测定内容:总灰分、水溶性灰分、水不溶性灰分、酸不溶性灰分等。
4、食品灰分含量大致如下:牛乳—% 乳粉5—% 鲜果—% 蔬菜—% 小麦胚乳% 鲜肉—% 纯油脂无第一节总灰分的测定一、原理:将食品经炭化后置于高温炉内灼烧后的残留物即为灰分。
二、操作条件选择1、灰化温度:灰化温度因样品而异:素烧瓷坩埚,耐高温,内壁光滑,它的物理性质,化学性质与石英坩埚相同。
水果及其制品,肉及肉制品、糖及糖制品、蔬菜制品<525 谷类食品、乳制品<550奶油<500 鱼海产品酒<550实践证明,灰化温度大于500时,无机物将有所损失。
如表5—1P92说明增加灰化温度就增加了KCL、NaCL挥发损失,CaCO3变成CaO,磷酸盐熔融。
2、灰化时间:对于一般样品,并不规定时间,要求灼烧至灰分呈全白色或浅灰色并到达恒重为止。
也有例外。
如谷类饲料和茎杆饲料规定灰化时间,即在600灰化灼烧2小时。
3、加速灰化的方法(对于难于灰化的样品,可用下述方法处理)(1)、改变操作方法:就是样品初步灼烧后,取出坩埚,冷却,加入少量的水,用玻璃棒研碎,使水溶性盐类溶解,此时被融熔的磷酸盐所包住信的碳粒,重新游离而出,小心蒸去水分,干燥后继续灼烧。
灰分的测定(精)
![灰分的测定(精)](https://img.taocdn.com/s3/m/8bada563fd0a79563d1e7243.png)
灰分的测定概述灰分是代表食品中的矿物盐或无机盐类,在测试食品的灰分时,如果含量很高则说明该食品生产工艺粗糙或混入了泥沙,或者加入了不合乎卫生标准要求的食品添加剂。
比如:含泥沙较多的红糖,食盐其灰分含量必然增高,因此测定食品灰分是评价食品质量的指标之一。
在必要时,还可以分析灰分中含的各种元素(如Ca、P、Fe、I、K、Na等,这也是评价营养的参考指标。
所以,对食品要规定一定的灰分含量。
通常我们测定的灰分为总灰分。
在总灰分中包括有水溶性灰分和水不溶性灰分,以及酸溶性灰分和酸不溶性灰分。
在讲测定意义之前,我们首先搞清何谓灰分。
灰分:有机物经高温灼烧以后的残留物称为灰分(粗灰分,总灰分测定灰分的意1.食品的总灰分含量是控制食品成品或半成品质量的重要依据。
比如:牛奶中的总灰分在牛奶中的含量是恒定的。
一般在0.68%--0.74%,平均值非常接近0.70%, 因此可以用测定牛奶中总灰分的方法测定牛奶是否掺假若掺水,灰分降低。
另外还可以判断浓缩比,如果测出牛奶灰分在1.4%左右,说明牛奶浓缩一倍。
又如富强粉,麦子中麸皮灰分含量高,而胚乳中蛋白质含量高,麸皮的灰分比胚乳的含量高20倍,就是说面粉中的精度高,则灰分就低2.评定食品是否卫生,有没有污染。
如果灰分含量超过了正常范围,说明食品生产中使用了不合理的卫生标准。
如果原料中有杂质或加工过程中混入了一些泥沙,则测定灰分时可检出。
3.判断食品是否掺彳假4.评价营养的参考指标(可通过测各种元素总灰分的测定通常所说灰分就是指总灰分,在总灰分中有包括:水溶性灰分;水不溶性灰分;酸溶性灰分;酸不溶性灰分。
.准备坩埚(灰化容器目前常有的坩埚:石英坩埚;素瓷坩埚;白金坩埚;不锈钢坩埚素瓷坩埚在实验室常用,它的物理性质和化学性质和石英相同,耐高温,内壁光滑可以用热酸洗涤,价格低,对碱性敏感。
下面我们谈到的坩埚都是素瓷坩埚。
坩埚-(1:4盐酸煮沸洗净-降至2000-放入干燥室内冷却到室温-称重(空坩埚二.样品的处理对于各种样品应取多少克应根据样品种类而定,另外对于一些样品不能直接烘干的首先进行预处理才能烘干。
实验四植物灰分元素的分析测定
![实验四植物灰分元素的分析测定](https://img.taocdn.com/s3/m/a71504ebd0d233d4b14e69e0.png)
可编辑ppt
1
• 四、实验步骤
• 1、植物材料灰化:取10g悬铃木叶片,洗净,吸干水分, 放在蒙福炉中,550度灰化1~2h,至样品呈灰白色(此 部由实验老师于实验前一天准备好)。
• 2、灰分溶液的制备:将上述灰分融于15ml5%HCl中,充 分振荡均匀,过滤后备用。
• 3、灰分元素的测定
断S元素的有无。
•
K:取一滴灰分提取液滴于载玻片一段,取一滴
5在%酒KH2精PO灯4溶上液略与加另热一,端盖,上每盖段玻都片加,入在一显滴微1镜5%下HC观lO察试比剂较,
结晶的颜色和形状,判断K元素的有无。
可编玻片一端,取一滴 1%MgSO4溶液滴于另一端,每滴都加入一滴 10%BaCl2试剂,盖上盖玻片,在显微镜下观察比较 结晶颜色和形状,判断S元素的有无。
• 一、实验目的 • 了解植物体内存在的一些常量灰分元素;掌握灰分元素
的定性测定方法
• 二、实验原理 • 植物体内含有多种元素,在高温和氧存在下,大部分金
属和硅元素以氧化物形式存在于灰分中。通常可以利用 元素与特殊试剂的专一性反应,产生特定的结晶或颜色, 来定性判断元素的存在。
• 三、器材与试剂 • 仪器:高温电炉(蒙福炉)、干燥器、显微镜、台天平、
4
•
P:取1滴灰分提取液滴于载玻片一端,取一滴
5试%剂KH2,PO在4溶酒液精滴灯于上另略一加端热,,每盖端上都盖加玻入片一,滴在钼显酸微铵镜溶上液观
察比较结晶颜色和形状,判断P元素的有无。
•
S:取一滴灰分提取液滴于载玻片一端,取一滴
1盖%上Mg盖SO4玻溶片液,滴在于显另微一镜端下,观每察滴比都较加结入晶一颜滴色10和%B形aC状l2,试判剂,
植物灰分和各种营养元素的测定
![植物灰分和各种营养元素的测定](https://img.taocdn.com/s3/m/1e0223c1d5d8d15abe23482fb4daa58da0111c13.png)
植物灰分和各种营养元素的测定一、植物灰分的测定方法植物灰分是指植物样品中无机物的部分,包括矿物质和一些无机盐,主要成分有钙、镁、钾、钠等。
植物灰分的测定可以通过高温燃烧的方法进行。
1.燃烧法:将干燥的植物样品放入人字瓦上,放至瓦上冷却。
然后将瓦放入干燥的称量瓶中,称量瓶的质量为m1、接着将装有植物样品的瓦置于电炉上,将温度升至500摄氏度并保持2小时,然后升至550摄氏度直到完全燃烧,保持5小时。
将瓦炉中残留物置于电炉上,继续加热至600摄氏度,使无机物转化成灰分。
经冷却后将含灰的烧瓦称量的质量为m2、植物样品的灰分含量(%)=(m2-m1)/m1×100。
二、各种营养元素的测定方法1.氮的测定方法(1)凯氏法:将植物样品加入凯氏试剂瓶中,加入石碱钠和镁剂,用蒸馏水稀释稳定,用齿轮孵化器反应2小时,然后用硫酸酸化,用硫酸钾和硫酸亚铁滴定,测定氨态氮的含量。
(2)显色比色法:将植物样品加入含有草酸和硫酸二乙酯的反应瓶中,加入氢氧化钠溶液,用比色量热计测定反应热量,计算样品中氮的含量。
2.磷的测定方法(1)钼酸盐法:将植物样品与稀硫酸在高温下反应,生成铵宣酸盐后沉淀,滴定后,计算磷的含量。
(2)纳氏定量法:将植物样品与氢氧化钠和氢氯酸混合,然后滴定,计算磷的含量。
3.钾元素的测定方法(1)火焰光度法:将植物样品溶解在盐酸中,加入酒石酸钠,调整pH值,然后放在火焰中测定钾的相对强度。
(2)玛汶克法:将植物样品焙馏后溶解在醋酸中,加入硫酸二乙酯后溶液,然后用酒石酸钠进行滴定,计算磷的含量。
4.钠元素的测定方法常用的方法有电导法、火焰光度法、原子吸收光谱法等。
5.钙、镁的测定方法常用的方法有滴定法、原子吸收光谱法等。
综上所述,植物样品中植物灰分和各种营养元素的测定方法包括燃烧法、凯氏法、显色比色法、钼酸盐法、纳氏定量法、火焰光度法、玛汶克法、电导法、原子吸收光谱法等。
这些方法可以帮助研究者了解植物样品中的无机物和有机物的含量和组成,从而对植物生长和发育、以及植物营养状况进行深入研究。
灰分测定实验报告
![灰分测定实验报告](https://img.taocdn.com/s3/m/a62516b5bb0d4a7302768e9951e79b896902685d.png)
灰分测定实验报告灰分测定实验报告引言:灰分是指在样品燃烧过程中,不挥发的无机物质的总和。
它是煤炭、矿石等燃料的重要指标之一,对于燃料的质量评价具有重要意义。
本实验通过灰分测定方法,对样品中的灰分含量进行了准确的测定。
实验目的:1. 掌握灰分测定的基本原理和方法。
2. 熟悉实验操作步骤和仪器设备的使用。
3. 获得样品中灰分的准确测定结果。
实验原理:灰分测定采用的是样品在高温下燃烧的方法。
样品经过燃烧后,有机物质会挥发,而无机物质则残留在样品中,形成灰分。
通过称量样品前后的质量差异,可以计算出样品中的灰分含量。
实验步骤:1. 准备样品:将待测样品研磨至均匀细粉末,并称取适量的样品。
2. 烘干:将样品放入预热至恒温的烘箱中,保持一定时间,使样品中的水分蒸发。
3. 燃烧:将烘干后的样品放入预热至高温的燃烧炉中,进行燃烧。
燃烧结束后,关闭炉门,使炉内温度逐渐降低。
4. 冷却:待炉内温度降至室温后,取出样品,并放入干燥器中,使其冷却至常温。
5. 称量:使用天平准确称量冷却后的样品,记录其质量。
6. 计算:根据称量前后样品的质量差异,计算出样品中的灰分含量。
实验结果与分析:经过实验测定,得到了样品的灰分含量为X%。
根据灰分的测定结果,可以对样品的质量进行评估和分析。
高灰分含量往往意味着燃料的质量较差,容易产生大量的灰渣,对环境造成污染。
低灰分含量则表示燃料的质量较好,燃烧过程中产生的灰渣较少。
实验误差与改进:在实验过程中,可能会存在一定的误差。
首先,样品的称量精度对于灰分测定结果的准确性具有重要影响。
其次,实验操作中的温度控制和时间控制也会对结果产生一定的影响。
为了减小误差,可以在实验过程中加强对仪器设备的操作熟练度,提高实验的重复性和准确性。
结论:通过本次实验,我们成功地测定了样品中的灰分含量,得到了X%的结果。
灰分测定是对燃料质量进行评估的重要方法,对于煤炭、矿石等燃料的选择和利用具有重要意义。
通过实验的结果分析,我们可以对样品的质量进行合理评估,并为燃料的选择和利用提供参考依据。
植物灰分元素的分析
![植物灰分元素的分析](https://img.taocdn.com/s3/m/fac6b120dd36a32d7375817f.png)
大部分S 灰 分 部分非金属 全部金属
构成灰分的无素称为灰分元素,由于它们都是来自于土壤中的矿物质 ,所以又称为矿质元素(mineral element),
2:分析矿质元素 通常利用灰分元素与特殊试剂的专一性反应, 能够产生一定形状的晶体和颜色,就可以在 显微镜下作定性鉴定。
设备与材料
• • • • • • • • • • • • • • • • • 显微镜 马伏炉 玻璃棒 载玻片 盖玻片 白磁板 黑磁板 烘箱 台称 1%盐酸 1%硫酸 1%氨水 1%磷酸氢二钠 1%硝酸锶 1%黄血盐 1%KCl 植物叶片
实验步骤
•
–
植物材料的灰化
称取50g新鲜叶片,用自来水冲净后用蒸馏水冲洗 2次,放入玻璃容器中置于100~105℃烘箱中约30~ 60min,然后放于坩埚中于550 ℃约6小时灰化至 白色。
•
灰分溶液的准备
1. 2. 少量灰分溶解于1-2ml蒸馏水中,用于鉴定氯元 素。 少量灰分溶解于3-4ml 10%HCl中,用于鉴定其 它元素。
植物灰分元素的分析
实验目的
• 植物体内含有大量矿质元素,通过对植 物体内矿质元素的分析,可以了解植物 对矿质元素的吸收和利用,有助于制定 合理施肥计划。 • 本实验练习定性测定植物组织内的矿质 元素。
实验原理
1:获得矿质元素
新鲜材料
烘干
水分以气态跑掉
C→CO2
充分燃烧
干物质
有机物跑掉
O、H→H2O N→N2、NH3、NO2 小部分S→SO2
•
灰分元素的鉴定
1. 氯
取干净黑磁板,加上一滴灰分元素溶液,再加入一滴 1%AgNO3,看生成的AgNO3沉淀。
2.
钾
灰分测定
![灰分测定](https://img.taocdn.com/s3/m/26ae58f2770bf78a65295496.png)
在植物组织或农畜产品分析中,样品经高温灼烧,有机物中的碳、氢、氧等物质与氧结合成二氧化碳和水蒸汽而碳化,残留物呈无色或灰白色的氧化物称为“总灰分”。
它主要是各种金属元素的碳酸盐、硫酸盐、磷酸盐、硅酸盐、氯化物等。
动物性原料的灰分含量由饲料的组分、动物品种及其它因素决定,植物性原料的灰分含量及其组分则由自然条件、成熟度等因素决定。
此外灼烧条件也会影响分析结果,而且残留物(灰分)与样品中原有的无机物并不完全相同,因此用干灰化法测得的灰分只能是“粗灰分”。
总灰分含量是品质分析中经常测定的项目之一,它是产品中无机营养物质的总和。
测定植株各部分灰分含量可以了解各种作物在不同生育期和不同器官中灰分及其变动情况,如用于确定饲料作物收获期有重要参考价值。
此外,样品在适当条件下灰化后,除了测定“总灰分”,必要时还可以在其中测定各组成分——灰分元素,如:氮、磷、钾、钙、镁、钠和多种微量元素,它们也是评价营养状况的参考指标之一。
现在常用的灰分测定方法有下列几种[1]:(1)一般灰化法;(2)灰化后的残灰用水浸湿后再次灰化;(3)灰化后的残灰用热水溶解过滤后再次灰化残渣;(4)添加醋酸镁或硝酸镁或碳酸钙等灰化;(5)添加硫酸灰化。
前三种测定方法可以认为本质上相同,即均是“直接灰化法”,目前绝大多数农畜产品均采用此法。
对含磷、硫、氯等酸性元素较多,即阴离子相对于阳离子过剩的样品,须在样品中加入一定量的灰化辅助剂,补充足够量的碱性金属元素,如镁盐或钙盐等,使酸性元素形成高熔点的盐类而固定起来,再行灰化。
如目前国际上将添加醋酸镁作为肉和肉制品灰分测定的标准方法[5]。
而相对于以钾、钙、钠、镁等为主的样品,其阳离子过剩,灰化后的残灰呈碱性碳酸盐的形式,如:大豆、薯类、萝卜、苹果、柑橘等,一般还是采用“直接灰化法”,也可以采用通过添加高沸点的硫酸,使阳离子全部以硫酸盐形式成为一定组分进行定量的方法,目前主要用于糖类制品的灰分测定[2],此外通过测定食品中的电解质含量,即“电导法”,也可间接测定食品中的总灰分,但目前该法只应用于白砂糖的灰分测定。
灰分测定
![灰分测定](https://img.taocdn.com/s3/m/c5898b0979563c1ec5da7130.png)
在植物组织或农畜产品分析中,样品经高温灼烧,有机物中的碳、氢、氧等物质与氧结合成二氧化碳和水蒸汽而碳化,残留物呈无色或灰白色的氧化物称为“总灰分”。
它主要是各种金属元素的碳酸盐、硫酸盐、磷酸盐、硅酸盐、氯化物等。
动物性原料的灰分含量由饲料的组分、动物品种及其它因素决定,植物性原料的灰分含量及其组分则由自然条件、成熟度等因素决定。
此外灼烧条件也会影响分析结果,而且残留物(灰分)与样品中原有的无机物并不完全相同,因此用干灰化法测得的灰分只能是“粗灰分”。
总灰分含量是品质分析中经常测定的项目之一,它是产品中无机营养物质的总和。
测定植株各部分灰分含量可以了解各种作物在不同生育期和不同器官中灰分及其变动情况,如用于确定饲料作物收获期有重要参考价值。
此外,样品在适当条件下灰化后,除了测定“总灰分”,必要时还可以在其中测定各组成分——灰分元素,如:氮、磷、钾、钙、镁、钠和多种微量元素,它们也是评价营养状况的参考指标之一。
现在常用的灰分测定方法有下列几种[1]:(1)一般灰化法;(2)灰化后的残灰用水浸湿后再次灰化;(3)灰化后的残灰用热水溶解过滤后再次灰化残渣;(4)添加醋酸镁或硝酸镁或碳酸钙等灰化;(5)添加硫酸灰化。
前三种测定方法可以认为本质上相同,即均是“直接灰化法”,目前绝大多数农畜产品均采用此法。
对含磷、硫、氯等酸性元素较多,即阴离子相对于阳离子过剩的样品,须在样品中加入一定量的灰化辅助剂,补充足够量的碱性金属元素,如镁盐或钙盐等,使酸性元素形成高熔点的盐类而固定起来,再行灰化。
如目前国际上将添加醋酸镁作为肉和肉制品灰分测定的标准方法[5]。
而相对于以钾、钙、钠、镁等为主的样品,其阳离子过剩,灰化后的残灰呈碱性碳酸盐的形式,如:大豆、薯类、萝卜、苹果、柑橘等,一般还是采用“直接灰化法”,也可以采用通过添加高沸点的硫酸,使阳离子全部以硫酸盐形式成为一定组分进行定量的方法,目前主要用于糖类制品的灰分测定[2],此外通过测定食品中的电解质含量,即“电导法”,也可间接测定食品中的总灰分,但目前该法只应用于白砂糖的灰分测定。
植物生理学实验步骤与实验原理
![植物生理学实验步骤与实验原理](https://img.taocdn.com/s3/m/2f6ce3b8a58da0116c1749a0.png)
一、实验目的
本实验是植物生理学课堂教学中的一个重要环 节,不仅与课堂讲授的基本理论、基础知识相 结合,而且要使学生学会植物生理学的基本实 验方法,并在科学态度、实验技能技巧、独立 工作能力、理论联系实际能力等方面获得基本
的训练。
二、基本要求
通过教学,要使学生学会植物生理学的基本实 验方法、技术和设计思路,掌握植物生理学基 本原理的验证方法和定量测定植物体内发生的 生理生化变化,并初步具有完成综合性、设计 性实验的能力。每次实验结束,学生均需写出 一份实验报告。
实验3 印迹法测定气孔开张度
【实验原理】
有些有机溶剂涂在叶片表面,失水很快形成一层 薄膜,上面就印在叶片表面的保卫细胞与气孔的 轮廓。在显微镜下可观察到,结合显微测微尺可 测其开张度大小。
【仪器与用品】
植物叶片
显微镜 显微测微尺 载玻片 盖玻片 牛皮胶(或 火棉胶)
【方法与步骤】
配制牛皮胶溶液→在叶的下表皮涂胶→成膜后取一小 片→镜检→测量
原子吸收分光光度计测定其Ca、K、Mg、Fe、Zn、Mo含 量(同时要测定和元素的标准曲线)
观察的现象描述及计算
【思考题】
灰分元素在植物样品中的含量是怎样的? 各灰分元素的化学反应原理是什么? 原子吸收分光光度计的工作原理以及他可以测定多 种灰分元素的技术关键是什么?
实验5 植物的无土培养和缺素症状
【思考题】
测量不同生境下、不同植物叶片的气孔开张度,比较 后说明原因。
实验4 植物灰分元素的定性鉴定 和定量分析
【实验原理】
植物风干样品在高温灼烧后,剩下灰分 灰分元素发生特定的化学反应后显现出颜色及结晶 灰分元素在高温下吸收特定光谱的能量发生能级的 跃迁,可用原子吸收分光光度计定量测定
植物灰分元素的分析
![植物灰分元素的分析](https://img.taocdn.com/s3/m/30cbf2c24793daef5ef7ba0d4a7302768e996fc3.png)
植物灰分元素的分析植物灰分是指植物在高温条件下燃烧后剩余的无机物质,主要由矿物质元素构成。
通常采用烘干和灼烧的方法将植物样品转化为灰分,然后进行元素分析。
在植物生长过程中,土壤中的元素是其营养来源,因此植物灰分元素的分析可以反映土壤中元素的状况,为土壤评价和植物营养解决方案提供指导。
植物灰分元素的分析方法有多种,包括光谱法、原子荧光法、电感耦合等离子体质谱法等。
在常规农业生产中,常用的是原子吸收光谱法(AAS)和原子荧光法(AFS)。
原子吸收光谱法是将样品放入火焰中,并利用特定波长的光源进行分析。
根据不同元素在吸收特定波长光线时的吸收能力来判断元素的含量。
优点是检测灵敏度高,检测速度快,但只能测定单种元素含量。
原子荧光法则是利用样品经过高能量光的激发,产生光子并返回基态时发射出光谱线,从而判断元素的含量。
不同于AAS的光谱源在吸光前就先将物质激发,所以较不受物质的热膨胀和气体流动等因素的影响且检测范围宽。
植物灰分元素的分析可以获得丰富的营养信息,包括植物所需的微量元素、大量元素和盐基元素等。
其中,微量元素是植物生长必需的微量元素,例如锌、铜、锰、镉等,其相对含量较低,如果缺乏或过剩都会导致植物生长异常。
大量元素是指植物生长所需的相对较高的元素,包括氮、磷、钾等。
盐基元素则是指由阴阳离子组成的电解质,如钠、钾、钙、镁等,其含量反映了土壤的含盐量,对植物生长有重要影响。
植物灰分元素的分析结果可以为农田施肥和植物养护提供参考。
例如,在土壤中微量元素缺乏的情况下,可以针对性地进行补充施肥;而在土壤中含盐量过高时,可以选择适合耐盐植物进行种植。
因此,植物灰分元素的分析可以优化农业生产方式、提高作物产量和品质。
植物灰分和各种营养元素的测定
![植物灰分和各种营养元素的测定](https://img.taocdn.com/s3/m/db84e1f5551810a6f52486af.png)
(三)植物钾的测定
1.
待测液制备方法
硫酸-双氧水; 2. 硫酸-高氯酸; 3. 灰化法; 4. 6M盐酸浸提法。
测定方法——火焰光度法。
(四)植物钙、镁的测定
1. 2. 3.
待测液制备方法
硫酸-双氧水; 硫酸-高氯酸; 灰化法; 硝酸-高氯酸-盐酸
4.
1. 2. 3.
HNO3:HF
一般体积比为HNO3:HF=1:5,溶解Ti,W,Nb 和Zr(除ZrO2)。 合金、碳化物、氮化物、硼化物、硅酸盐岩石、 灰、矿渣和高硅含量的植物材料可用此混合酸消解。
过氧化氢:
如果HNO3消解食物或类似样品后仍有残余有 机物存在,可以加入过氧化氢,但应小心从事。过 氧化氢必须在预处理阶段和低功率条件下(≤250W) 进行辅助,或在主要有机物质被消解后才能加入。
微波消解的优点
1.速度快: 消解可通过提高温度/压力协助反应,使反应物在特 定温度下发生快速分解,比普通消化快4-100倍完成。 2.不改变反应方向: 2450MHz微波只导致分子运动,不引起分子结构变 化,大多数传统试剂不会因为其活性成分的蒸发而降低或 失去强度,从而不会改变消解反应的方向。 3.效率高: 微波直接向样品释放能量,避免传统方式中能量的 损失,提高了能量的使用效率。
测定有机相中的吸光度,硼的特征浓度为0.016g/mL /1%,线性范围是0.005-1.20 g/mL。
3、方法评述
可用MIBK、三氯甲烷或乙酰丙酮等作为萃取剂;
对植物样品消解处理后的常见离子进行实验表明,因 萃取体系控制pH值在5.0左右,Al3+、Fe3+大部分沉淀分 离;Na+、K+ 、Ca2+、Mg2+也不能取代Cd(phen)32+中的 Cd,因而很难进入有机相中;F-、C1- 、NO3- 、ClO4-、 SO42- 、C032-、PO43-等虽有与Cd(phen)32+缔合趋势,但 在萃取条件下,络离子的空间构型迫使变形性大,不易 与Cd(phen)32+缔合,或优先进入有机相,致使共存离 子达不到干扰。
实验四 植物灰分元素的分析测定
![实验四 植物灰分元素的分析测定](https://img.taocdn.com/s3/m/7b22ea61777f5acfa1c7aa00b52acfc789eb9f35.png)
实验四植物灰分元素的分析测定实验目的:1. 熟悉样品的收集和前处理方法;2. 掌握植物灰分的提取方法和干燥方法;3. 了解植物灰分元素的分析测定方法。
实验原理:植物灰分指植物在高温下,有机质分解后所剩下的无机物质。
植物的灰分含量与植物品种、植物部位、生长地点、生长条件等因素有关。
植物灰分中包含多种元素,如钾、钠、钙、镁、铁、锰等。
这些元素对于植物的生长和发育至关重要。
在植物灰分元素的分析测定中,常用的方法有火焰原子吸收光谱法(AAS)、原子荧光光谱法(AFS)、电感耦合等离子体质谱法(ICP-MS)等。
实验步骤:1. 样品的收集和前处理从当地采集数个植物样品,洗净并风干。
去掉根部和太过厚重的部分后将植物质量稳定称量,置于陶瓷坩埚中,烘箱干燥至完全干燥。
2. 植物灰分的提取方法取干燥后的样品,置于研钵中;然后移至热板上加热,热至250°C。
保持一段时间,将研钵再移至高温炉加热。
用250°C左右高温炉加热至灰白色即为完全燃尽,即为植物灰分。
提取后的植物灰分过筛,取得粉末,称取一定质量的灰分,再将其在50°C的恒温箱内干燥至恒重。
将干燥后的植物灰分样品取一定量,加入玻璃坩埚中,加入相应酸溶液(盐酸、硝酸)浸泡一定时间后加热,使植物灰分溶解并转化为元素离子,然后采用相应的仪器进行分析测定,如火焰原子吸收光谱法(AAS)、原子荧光光谱法(AFS)、电感耦合等离子体质谱法(ICP-MS)等。
分析测定结果可以根据仪器和实验方法进行计算并得到。
实验注意事项:1. 植物灰分的烧制要均匀,避免不完全燃尽;2. 提取时要防止样品受到污染;3. 植物灰分在干燥的过程中不能受到湿气和水分污染;4. 测定中要注意仪器的准确性和精度;5. 实验操作时要遵守相关安全操作规程。
实验结果:实验中获得的植物灰分元素分析数据,应根据实验方法进行计算并得出最终结果。
同时,应根据获得的数据进行分析及讨论,比较不同植物样品之间及植物部位之间元素含量的差异,探讨不同元素含量的星系及其对植物的生长和发育的影响。
植物灰分常量元素分析讲解
![植物灰分常量元素分析讲解](https://img.taocdn.com/s3/m/994c5b3a4b35eefdc8d333b8.png)
坩埚使用口诀
• • • 炉;半开门,先灰化。 关炉门,定炉温;灼烧至,重量恒。
容量瓶的使用
• 容量瓶专定容,其它场合不要用。 • 混匀方法:体积半时先摇动,定到刻度颠 倒混。 • 拿瓶要点:一只手指拿上颈,另只手指托 下面。
植物分析
植物分析
• • • • • 植物样本的采集与储存 植物水分的测定 植物灰分的测定 植物中常量元素的分析 植物中微量元素的分析
植物灰分的测定
• • • • • • 原理 仪器药品 操作步骤 注意事项 准备实验 连续实验
实验原理
• 通常所说灰分就是指总灰分,在总灰分中 有包括:水溶性灰分;水不溶性灰分;酸 溶性灰分;酸不溶性灰分。 • 样品加热碳化和灼烧,除尽有机质,剩下 的无机矿物质冷却后称重,即可计算粗灰 分。
一、称量联系 1.用托盘天平称量250mL烧杯,表面皿 2.差量法称量0.01mol氯化钠 二、移液管的使用
实验安排
• 本周实验安排 • 完成实验方案的设计(预习报告)(粗灰分的测定,标准溶液的配制 及标定,含水率的测定(新鲜样本(二步常压烘干法),风干样本 (一步常压烘干法))) 粗灰分的测定 EDTA标准溶液的配置及标定 • A组于周一晚上9点以前交到学习委员处 • B组于周二下午2点以前交到学习委员处
对于灰化时间一般无规定,针对试样和灰化的颜色,一般灰化到无 色(灰白色),灰化的时间过长,损失大,一般灰化需要2-5小时, 有些样品即使灰化完全,颜色也达不到灰白色,如Fe含量高的样品, 残灰蓝褐色,Mn、Cu含量高的食品残灰蓝绿色,所以根据样品不 同来看颜色
加速灰化的方法
• 对于一些难灰化的样品(如动物性食品,蛋白质较高的) 为了缩短灰化周期,采用加速灰化过程,一般可采用三种 方法来加速灰化。 • 〈1〉改变操作方法 样品初步灼烧后取出坩埚→冷却 →在 灰中加少量热水→搅拌使水溶性盐溶解,使包住的碳粒游 离出来蒸去水分→干燥→灼烧 • 〈2〉 加HNO3(1:1)或30%H2O2 使未氧化的碳粒充分 氧化并且使它们生成NO2和水,这类物质灼烧时完全消失, 又不至于增加残留物灰分重量。 • 〈3〉 加惰性物质 如Mg ,CaCO3等,这些都不溶解,使 碳粒不被覆盖,此法同时作空白实验。
实验四植物灰分元素的分析测定
![实验四植物灰分元素的分析测定](https://img.taocdn.com/s3/m/e10a8437fad6195f302ba62d.png)
• 五、结论与讨论 • •比较标准和灰分加入反应试剂后的反应, 判断灰分中相应元素的有无。 •六、作业 • •记录每种元素的特征性反应。
• 一、实验目的 • 了解植物体内存在的一些常量灰分元素;掌握灰分元素 的定性测定方法 • 二、实验原理 • 植物体内含有多种元素,在高温和氧存在下,大部分金 属和硅元素以氧化物形式存在于灰分中。通常可以利用 元素与特殊试剂的专一性反应,产生特定的结晶或颜色, 来定性判断元素的存在。 • 三、器材与试剂 • 仪器:高温电炉(蒙福炉)、干燥器、显微镜、台天平、 白瓷比色板、载玻片、盖玻片 • 试剂:5%HCl,5%硫氰化钾,钼酸铵试剂(7g钼酸铵溶 于50ml蒸馏水中,加入50ml6M的HNO3,放置过夜,取 上清液备用),5%NaH2PO4,5%KH2PO4,15%HClO, 5%CaCl2,10%BaCl2,1%FeCl3,1%MgSO4,10%H2SO4。 • 材料:悬铃木叶片。
• Ca:取一滴灰分提取液滴于载玻片一端,取一滴 1%MgSO4溶液滴于另一端,每滴都加入一滴 10%BaCl2试剂,盖上盖玻片,在显微镜下观察比较 结晶颜色和形状,判断S元素的有无。 • K:取一滴灰分提取液滴于载玻片一段,取一滴 5%CaCl2溶液与另一端,每段都加入一滴10%H2SO4 试剂,在酒精灯上略加热,盖上盖玻片,在显微镜 下观察比较结晶的颜色和形状,判断Ca元素的有无。 • Mg:取一滴灰分提取液滴于载玻片一段,取一滴 5%CaCl2溶液与另一端,每段都加入一滴 5%NaH2PO4试剂,在酒精灯上略加热,盖上盖玻片, 在显微镜下观察比较结晶的颜色和形状,判断Mg元 素的有无。 • Fe:取一滴灰分提取液滴于载玻片一段,取一滴 1%FeCl3溶液与另一端,每段都加入一滴5%硫氰化 钾试剂,观察红色产物的出现,判断Fe元素的有无。
植物灰分中各营养元素的测定
![植物灰分中各营养元素的测定](https://img.taocdn.com/s3/m/1157cca6d1f34693daef3ec0.png)
植物氮的测定待测液制备方法:1.开氏消化 2.硫酸-双氧水法测定方法:1.蒸馏法 2.纳氏比色法 3.靛酚蓝比色法 4.碱解扩散法(康惠皿法)5.氨气敏电极法6.甲醛法。
植物磷的测定待测液制备方法: 1.硫酸-双氧水 2. 硫酸-高氯酸。
测定方法:1.钼蓝比色法 2.钼黄比色法。
植物钾的测定待测液制备方法:1.硫酸-双氧水 2.硫酸-高氯酸 3.灰化法 4.6M盐酸浸提法。
测定方法——火焰光度法。
测定法精密量取供试品2ml,置50 ml量瓶中,用水稀释至刻度,即为供试品溶液。
按火焰光度法(附录II D)测定,在769nm波长处测定供试品溶液的发光强度。
另精密称取于110℃干燥至恒重的氯化钾0.056g,置500ml量瓶中,用水稀释至刻度,再精密量取该溶液1.0ml, 2.0ml, 3.0ml, 4.0ml, 5.0ml,分别置50ml量瓶中,用水稀释至刻度,制成0.03mmol/l,0.06 mmol/l ,0.09mmol/l,0.12 mmol/l,0.15mmol/l的系列标准钾溶液,同法操作。
用系列标准钾溶液的浓度对其相应的发光强度作直线回归处理,将供试品溶液发光强度带入回归方程,求得供试品溶液钾离子浓度为(mmol/l),再乘以供试品的稀释倍数(25),计算出供试品钾离子含量(mmol/l)。
植物钙、镁的测定待测液制备方法:1.硫酸-双氧水 2.硫酸-高氯酸 3.灰化法 4.硝酸-高氯酸-盐酸测定方法:1. AAs法(注意阴离子的干扰) 2.ICP法 3.EDTA络合滴定法。
植物硼的测定待测液制备方法:灰化法或碱熔法测定方法:1.甲亚胺比色法 2.姜黄素比色法 3.邻二杂菲镉缔合/硝基苯萃取原子吸收法硼的测定——邻二杂菲镉缔合/硝基苯萃取原子吸收法1、方法原理硼虽可用无火焰-AAS法测定,但在石墨炉中易形成碳化硼难于原子化而降低了其测定的灵敏度。
在硫酸的介质中,用氟化铵将样品消解液中的BO33-转化为BF4-,然后使之与Cd(phen)32+ [三(1,10含邻二氮菲)镉]离子缔合,反应如下:以硝基苯萃取,在空气-乙炔火焰中,用AAS法测定镉的含量从而间接测定硼的含量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• Ca:取一滴灰分提取液滴于载玻片一端,取一滴 1%MgSO4溶液滴于另一端,每滴都加入一滴 10%BaCl2试剂,盖上盖玻片,在显微镜下观察比较 结晶颜色和形状,判断S元素的有无。 • K:取一滴灰分提取液滴于载玻片一段,取一滴 5%CaCl2溶液与另一端,每段都加入一滴10%H2SO4 试剂,在酒精灯上略加热,盖上盖玻片,在显微镜 下观察比较结晶的颜色和形状,判断Ca元素的有无。 • Mg:取一滴灰分提取液滴于载玻片一段,取一滴 5%CaCl2溶液与另一端,每段都加入一滴 5%NaH2PO4试剂,在酒精灯上略加热,盖上盖玻片, 在显微镜下观察比较结晶的颜色和形状,判断Mg元 素的有无。 • Fe:取一滴灰分提取液滴于载玻片一段,取一滴 1%FeCl3溶液与另一端,每段都加入一滴5%硫氰化 钾试剂,观察红色产物的出现,判断Fe元素的有无。
• 四、实验步骤 • 1、植物材料灰化:取10g悬铃木叶片,洗净,吸干水分, 放在蒙福炉中,550度灰化1~2h,至样品呈灰白色(此 部由实验老师于实验前一天准备好)。 • 2、灰分溶液的制备:将上述灰分融于15ml5%HCl中,充 分振荡均匀,过滤后备用。 • 3、灰分元素的测定 • P:取1滴灰分提取液滴于载玻片一端,取一滴 5%KH2PO4溶液滴于另一端,每端都加入一滴钼酸铵溶液 试剂,在酒精灯上略加热,盖上盖玻片,在显微镜上观 察比较结晶颜色和形状,判断P元素的有无。 • S:取一滴灰分提取液滴于载玻片一端,取一滴 1%MgSO4溶液滴于另一端,每滴都加入一滴10%BaCl2试 剂,盖上盖玻片,在显微镜下观察比较结晶颜色和形状, 判断S元素的有无。 • K:取一滴灰分提取液滴于载玻片一段,取一滴 5%KH2PO4溶液与另一端,每段都加入一滴15%HClO试剂, 在酒精灯上略加热,盖上盖玻片,在显微镜下观察比较 结晶的颜色和形状,判断K元素的有无。
ห้องสมุดไป่ตู้
• 五、结论与讨论 • •比较标准和灰分加入反应试剂后的反应, 判断灰分中相应元素的有无。 •六、作业 • •记录每种元素的特征性反应。