抛物线与平行四边形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、(2011陕西)如图,二次函数x x y 3
1
322-=
的图象经过△AOB 的三个顶点,其中A (-1,m ),B (n ,n )。
(1)求点A 、B 的坐标;
(2)在坐标平面上找点C ,使以A 、O 、B 、C 为顶点的四边形是平行四边形。
①这样的点C 有几个?
②能否将抛物线x x y 3
1
322-=平移后经过A 、C 两点?若能,
求出平移后经过A 、C 两点的一条抛物线的解析式,若不能,
说明理由。
2.(2011广东)如图,抛物线14
17
452++-
=x y 与y 物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C (3,(1)求直线AB 的函数关系式;
(2)动点P 在线段OC 点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N . 为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,围;
(3)设在(2)的条件下(不考虑点P 与点O ,点C CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形?
问对于所求的t 值,平行四边形BCMN 由.
3.(2011兰州)如图所示,在平面直角坐标系X0Y 中,正方形OABC 的边长为2cm ,点A 、C 分别在y 轴的负半轴和x 轴的正半轴上,抛物线2
y ax bx c =++经过点A 、B 和D (4,23
-
). (1)求抛物线的表达式.
(2)如果点
P 由点A 出发沿AB 边以2cm/s 的速度向点C 运动,当其中一点到达终点时,
另一点也随之停止运动,设S=2PQ (2
cm ).
①试求出S 与运动时间t 之间的函数关系式,并写出t 的取值范围; ②当S 取
5
4
时,在抛物线上是否存在点R ,使得以点P 、B 、Q 、R 为顶点的四边形是平行四边形?如果存在,求出R 点的坐标;如果不存在,请说明理由.
(3)在抛物线的对称轴上求点M ,使得M 到D 、A 的距离之差最大,求出点M 的坐标. 4.(2011南宁)如图,在平面直角坐标系中,抛物线y =x 2
+mx +n 经过点A (3,0)、B (0,
-3),点P 是直线AB 上的动点,过点P 作x 轴的垂线交抛物线于点M ,设点P 的横坐标为t .
(1)分别求出直线AB 和这条抛物线的解析式.
(2)若点P 在第四象限,连接AM 、BM ,当线段PM 最长时,求△ABM 的面积.
(3)是否存在这样的点P ,使得以点P 、M 、B 、O 为顶点的四边形为平行四边形?若存在,请直接写出点P 的横坐标;若不存在,请说明理由.
5.(2009江西)如图,抛物线2
23y x x =-++与x 轴相交于A 、在点B 的左侧),与y 轴相交于点C ,顶点为D .
(1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴;
(2)连接BC ,与抛物线的对称轴交于点E ,点P 为线段BC 动点,过点P 作PF DE ∥交抛物线于点F ,设点P 的横坐标为①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形?
②设BCF △的面积为S ,求S 与m 的函数关系式.
6.如图,在平面直角坐标系中,已知抛物线经过点A(-4,0),B(0,-4),C (2,0)三点
(1)求抛物线的解析式
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求出S的最大值
(3)若点P时抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使点P,Q,B,O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标