概率论期中考试试卷及答案
13142《概率论与数理统计》期中试卷_参考答案

所以可知这件产品是次品的概率为 0.0185,若此件产品是次品,则该产品是乙车间生产的概 率为 0.38.
五、 (15 分)设 (X, Y) 的概率密度为
2
x 2 a x y , 0 x 1, 0 y 2, f ( x, y) 0, 其它, ,试求(1)a ; (2)
(2) P{ X Y 1}
f ( x, y )dxdy 0 dx 1 x ( x x y 1
1
xy 65 )dy 3 72
(3)
f X ( x)
2x 2 2 xy )dy 2 x 2 , 0 x 1, 0 ( x f ( x , y )dy 3 3 0, 其它. 1 y 1 2 xy )dx , 0 y 2, 0 ( x f ( x , y )dx 3 3 6 0, 其它.
p q k 1 q k p qi q k k 1 k 0 k 1 i2
p q i q k k 0 i 0
1 1 p 1 q 1 q
3
xe- x , x 0, f ( x) 假设各周的需求量相互独立,以 Uk 表示 k 周的总 0, 其它。
需求量。 (1)求 U2、U3 的概率密度; (2)求接连三周中的最大需求量的概率密度
解 利用卷积公式. 设 Xi 表示第 i 周的需求量, i=1,2,3, Z 表示三周中的周最大需求量.于是
解: 记 q=1-p, X 的概率分布为 P{X=k}=qk-1 p, k=1,2,…,
概率论期中考试试卷及答案

1。
将4个不同的球随机地放在5个不同的盒子里,求下列事件的概率: (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球。
解:把4个球随机放入5个盒子中共有45=625种等可能结果。
(1)A={4个球全在一个盒子里}共有5种等可能结果,故P(A )=5/625=1/125 (2) 5个盒子中选一个放两个球,再选两个各放一球有302415=C C 种方法4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法因此,B={恰有一个盒子有2个球}共有12×30=360种等可能结果. 故12572625360)(==B P2.某货运码头仅能容纳一只船卸货,而,甲乙两船在码头卸货时间分别为1小时和2小时,设甲、乙在24小时内随时可能到达,求它们中间任何一船都不需要等待码头空出的概率。
解:设x,y 分别为两船到达码头的时刻.由于两船随时可以到达,故x,y 分别等可能地在[0,60]上取值,如右图 方形区域,记为Ω.设A 为“两船不碰面",则表现为阴影部分。
222024,024024,024,2111()24576,()2322506.522()()0.8793()x y x y x y y x m m A m A P A m Ω≤<≤<≤<≤<->->Ω===⨯+⨯===Ω={(x,y)},A={(x,y)或},有所以,3。
设商场出售的某种商品由三个厂家供货,其供应量之比是3:1:1,且第一、二、三厂家的正品率依次为98%、98%、96%,若在该商场随机购买一件商品,求:(1) 该件商品是次品的概率。
(2) 该件次品是由第一厂家生产的概率。
厦门大学概统课程期中试卷____学院___系___年级___专业考试时间 2013.11.8解:1231122331,(1)()()(|)()(|)()(|)=60%*(1-98%)+20%*(1-98%)+20%*(1-96%) =0.024(2) (|)A B B B P A P B P A B P B P A B P B P A B P B A =++=设为该产品为次品,,分别为三个厂家产品,则由全概率公式可知由贝叶斯公式可知111()()(|)60%*(1-98%)()()0.024=0.5P AB P B P A B P A P A ==4。
《概率论与数理统计》期中考试试题汇总,DOC

《概率论与数理统计》期中考试试题(一)一、选择题(本题共6小题,每小题2分,共12分)1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( )A .A 1A 2B .21A AC .21A AD .21A A2345C 68.将3个球放入5个盒子中,则3个盒子中各有一球的概率为=________.9.从a 个白球和b 个黑球中不放回的任取k 次球,第k 次取的黑球的概率是=.10.设随机变量X ~U (0,5),且21Y X =-,则Y 的概率密度2f Y (y )=________.11.设二维随机变量(X ,Y )的概率密度f (x ,y )=⎩⎨⎧≤≤≤≤,y x ,其他,0,10,101则P {X +Y ≤1}=________. 12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59⎛⎫ ⎪⎝⎭,则相关系数,X Y ρ=________. 13.二维随机变量(X ,Y )(1,3,16,25,0.5)N -,则X ;Z X Y =-+.(-1,31),(2,0),且取这些值的概率依次为61,a ,121,125. 求(1)a =?并写出(X ,Y )的分布律;(2)(X ,Y )关于X ,Y 的边缘分布律;问X ,Y 是否独立;(3){0}P X Y +<;(4)1X Y =的条件分布律;(5)相关系数,X Y ρ18.(8分)设测量距离时产生的随机误差X ~N (0,102)(单位:m),现作三次独立测量,记Y 为三次测量中误差绝对值大于19.6的次数,已知Φ(1.96)=0.975.(1)求每次测量中误差绝对值大于19.6的概率p ;(2)问Y 服从何种分布,并写出其分布律;求E (Y ).1取出的3件中恰有一件次品的概率为( )A .601B .457C .51D .157 2.下列选项不正确的是()A .互为对立的事件一定互斥B .互为独立的事件不一定互斥C .互为独立的随机变量一定是不相关的D .不相关的随机变量一定是独立的3.某种电子元件的使用寿命X (单位:小时)的概率密度为42100,100;()0,100,x p x x x ⎧≥⎪=⎨⎪<⎩任取一只电子元件,则它的使用寿命在150小时以内的概率为( )A .41B .31C .21D .32 4.若随机变量,X Y 不相关,则下列等式中不成立的是.A5A 6A 79.设随机变量X ~E (1),且21Y X =-,则Y 的概率密度f Y (y )=________.10.设随机变量X ~B (4,32),则{}1P X <=___________. 11.已知随机变量X 的分布函数为0,6;6(),66121,6,x x F x x x ≤-⎧⎪+⎪=-<<⎨⎪≥⎪⎩,则X 的概率密度p (x )=______________.12.设二维随机变量(,)X Y 的协方差矩阵是90.60.625⎛⎫⎪⎝⎭,则相关系数,X Y ρ=________. 13.二维随机变量(X ,Y )(2,3,9,16,0.4)N -,则X;Z X Y =-+. 14.随机变量X 的概率密度函数为,0()0,0x X e x f x x -⎧>=⎨≤⎩,Y 的概率密度函数为1,12()3Y y f y ⎧-<<⎪=⎨,,X Y 相互独立,且Z X Y =+的概率密度函数为()z f z = 试求:(1)常数α,β;(2)(X ,Y )关于X ,Y 的边缘分布律;问X ,Y 是6否独立;(3)X 的分布函数F(x);(4){1}P X Y +<;(5)1X Y =的条件分布律;(6)相关系数,X Y ρ18.(8分)设顾客在某银行窗口等待服务的时间X (单位:分钟)具有概率密度()3103x e x p x -⎧>⎪=⎨,;某顾客在窗口等待服务,若超过9分钟,他就离视机,厂方获得利润50万元,但如果因销售不出而积压在仓库里,则每一万台需支付库存费10万元,问29寸彩色电视机的年产量应定为多少台,才能使厂方的平均收益最大?《概率论与数理统计》期中试卷试题(五)一、选择题(共5题,每题2分,共计12分)1.下列选项正确的是()A.互为对立事件一定是互不相容的B.互为独立的事件一定是互不相容的C.互为独立的随机变量一定是不相关的 D.不相关的随机变量不二、填空题:(每小题2分,共18分)7.同时扔4枚均匀硬币,则至多有一枚硬币正面向上的概率为________.8.将3个球放入6个盒子中,则3个盒子中各有一球的概率为=________.89.从a 个白球和b 个黑球中不放回的任取3次球,第3次取的黑球的概率是=.10.公共汽车站每隔5分钟有一辆汽车到站,乘客到站的时刻是任意的,则一个乘客候车时间不超过3分钟的概率为 (1,2,9,16,0)N -;2Z X =-. 率密度函数51,050,0x e x x ->≤的概率密,(,)X Y 相互独立,且X Y +的概率密度函数为(z f 在某区域有一架飞机,雷达以99%的概率探测到并报警。
《概率论》期中测试题参考解答

《概率论》期中测试题参考解答1、(10分)设A B C、、的运算分别表、、表示三个随机事件,试用事件A B C示下列各事件:(1)A不发生而B C、都发生;表示为:ABC(2)A B C、、三个事件至少有一个发生;表示为:A B C;或表示为:ABC ABC ABC ABC ABC ABC ABC(3)A B C、、三个事件至多有一个发生;表示为:ABC ABC ABC ABC(4)A B C、、恰有两个不发生;表示为:ABC CAB BAC;(5)A B C、、都不发生;表示为:ABC(6)A B C、、三个事件不少于两个发生;表示为:AB BC AC;或表示为:ABC ABC ABC ABC(7)A B C、、同时发生;表示为:ABC(8)A B C、、三个事件不多于两个发生;表示为:A B C;或表示为:ABC或表示为:ABC ABC ABC ABC ABC ABC ABC(9)A B C、、不全发生;表示为:A B C;或表示为:ABC 或表示为:ABCABC ABC ABC ABC ABC ABC(10)A B C 、、恰有一个发生. 或表示为:ABC ABC ABC2、(14分)已知()0.6,()0.3,()0.6,P A P AB P B ===求:(1)()P AB ;(2)()P A B -;(3)()P A B ;(4)()P AB ;(5)()P A B ;(6)()P B A ;(7)()P A B A .解:(1)因为0.3()()()()P AB P A B P A P AB ==-=-,所以有()()0.3[1()]0.30.40.30.1P AB P A P A =-=--=-=;(2)()()()[1()]()(10.6)0.10.3P A B P A P AB P A P AB -=-=--=--=(3)()()()()0.40.60.10.9P A B P A P B P AB =+-=+-=; (4)()()1()10.90.1P AB P A B P A B ==-=-=; (5)()0.11()()0.66P AB P A B P B ===; (6)()()0.33()()1()0.44P AB P A B P B A P A P A -====-; (7)[()]()()()()()()P A B A P AB AA P A B A P B A P B P A P BA ==+- ()()()[()()]P AB P B P A P B P AB =+--()0.11()()0.60.17P AB P A P AB ===++3、(8分)一个盒子中有10个球,其中4个黑球6个红球,求下列事件的概率:(1)A =“从盒子中任取一球,这个球是黑球”;(2)B =“从盒子中任取两球,刚好一黑一红”;(3)C =“从盒子中任取两球,都是红球”;(4)D =“从盒子中任取五球,恰好有两个黑球”.解:(1)141102()5C P A C ==;(2)11462108()15C C P B C ==;(3)262101()3C P C C ==; (4)234651010()21C C P C C ==4、(3分)设甲、乙、丙三人同时独立地向同一目标各射击一次,命中率分别为112,,323,求目标被命中的概率. 解:设1A =“甲命中目标”;2A =“乙命中目标”;3A =“丙命中目标”;A =“目标被击中”。
2010-2011学年第二学期概率论期中考试试卷答案

则 Bn F , n 1, 2, 3, ,而且
B1 B2 Bn Bn 1 ,
而且 Bn An ,所以,有
n 1 n 1
第 3 页 共 7 页
2010-2011 学年第二学期概率论期中考试试卷答案
n n P A P B lim P B lim P A lim P A P Ai . i i n n n n n i 1 n 1 n 1 i 1 n i 1
某学生参加一项考试,他可以决定聘请 5 名或者 7 名考官.各位考官独立地对他的成绩做出判断,并 且每位考官判断他通过考试的概率均为 0.3 ,如果至少有 3 位考官判断他通过,他便通过该考试.试问该 考生聘请 5 名还是 7 名考官,能使得他通过考试的概率较大? 解:
设 A 一位考官判断他通过考试,则 P A 0.3 .
x x
第 5 页 共 7 页
2010-2011 学年第二学期概率论期中考试试卷答案
Page 6 of 7
解方程组
A 2 B 1 A B 0 2
,得 A
1 1 ,B 2
所以,
F x 1 1 arctan x 2
2011 学年第二学期概率论期中考试试卷答案
Page 3 of 7
B2 “炮弹在目标周围横方向偏离超过 10 米”
B3 “炮弹在目标周围竖方向偏离超过 10 米”
则有 A B1 B2 B3 ,因此有
PA PB1 B2 B3 1 PB1B2 B3 1 PB1 PB2 PB3
1 1 PB1 1 PB2 1 PB3
14-15概率论期中考试试题答案(防灾科技学院)

1 y 8 1 ) , y 8 y 8 ( fY ( y) f X ( )( ) 8 2 2 2 2 0 , y 8 , 8 y 16, 32 其它. 0 ,
„(5 分)
1, 0 x 1, (2)因 X ~ U (0,1) ,故 f X ( x) 0, 其他;
1 4 1 „(3 分) 4
(3)因为 X 为连续型随机变量, P{1 X 3} F (3) F (1) 1 (1 )
3. (10 分)设随机变量 X 在 [ 2, 5 ]上服从均匀分布, 现对 X 进行三次独立观测 ,试求至 少有两次观测值大于 3 的概率. 1 答:X 的概率密度函数为 , 2 x 5,
0
„„„(3 分)
4. (20 分) (1)设随机变量 X 具有概率密度 f X ( x) 8
0 x4 其它
,求 Y=2X+8 的概率
密度。 (2)设随机变量 X ~ U (0,1) ,求 Y e
2X
的密度函数 f Y ( y) 。
y 8
解: (1)
y 8 FY ( y) P(Y y) P(2 X 8 y) P( X ) 2 f X ( x)dx „ (5 分) 2
3
1 2 dx , 3 3
„„„(2 分)
因而有 P{Y 2}
3 2 2 3
2
2 3 2 1 3 3 3
3
20 2 1 . 3 27
x , 0,
„„„(2 分)
(1) 由全概率公式 P( B) P( A1 ) P( B A1 ) P( A2 ) P( B A2 ) P( A3 ) P( B A3 ) „„ (3 分) =0.25×0.05+0.35×0.04+0.40×0.02=0.0345; (2)由贝叶斯公式 P( A1 B)
概率论试题及答案

概率论试题及答案一、选择题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是:- A. 1/2- B. 3/8- C. 5/8- D. 1/82. 如果事件A和事件B是互斥的,且P(A) = 0.4,P(B) = 0.3,那么P(A∪B)等于:- A. 0.7- B. 0.6- C. 0.4- D. 0.33. 抛掷一枚硬币两次,出现正面向上的概率是:- A. 1/4- B. 1/2- C. 3/4- D. 1二、填空题1. 概率论中,事件的全概率公式是 P(A) = ________,其中∑表示对所有互斥事件B_i的和。
2. 如果事件A和事件B是独立事件,那么P(A∩B) = ________。
三、计算题1. 一个工厂有3台机器,每台机器在一小时内发生故障的概率是0.01。
求在一小时内至少有一台机器发生故障的概率。
2. 一个班级有50名学生,其中30名男生和20名女生。
如果随机选择一名学生,这名学生是男生的概率是0.6。
求这个班级中男生和女生的人数。
四、解答题1. 解释什么是条件概率,并给出计算条件概率的公式。
2. 一个袋子里有10个球,其中7个是红球,3个是蓝球。
如果从袋子中随机取出一个球,观察其颜色后放回,再取出一个球。
求第二次取出的球是蓝球的概率。
答案一、选择题1. C. 5/82. B. 0.63. B. 1/2二、填空题1. P(A) = ∑P(A∩B_i)2. P(A)P(B)三、计算题1. 首先计算没有机器发生故障的概率,即每台机器都不发生故障的概率,为(1-0.01)^3。
至少有一台机器发生故障的概率为1减去没有机器发生故障的概率,即1 - (1-0.01)^3。
2. 设男生人数为x,女生人数为y。
根据题意,x/(x+y) = 0.6,且x+y=50。
解得x=30,y=20。
四、解答题1. 条件概率是指在已知某个事件已经发生的情况下,另一个事件发生的概率。
计算条件概率的公式是P(A|B) = P(A∩B)/P(B),其中P(A|B)表示在事件B发生的条件下事件A发生的概率。
(完整版)概率论与数理统计试卷与答案

《概率论与数理统计》课程期中试卷班级 姓名 学号____________ 得分注意:答案写在答题纸上,标注题号,做在试卷上无效。
考试不需要计算器。
一、选择题(每题3分,共30分)1. 以A 表示事件“泰州地区下雨或扬州地区不下雨”,则其对立事件A :( ) A .“泰州地区不下雨” B .“泰州地区不下雨或扬州地区下雨” C .“泰州地区不下雨,扬州地区下雨” D .“泰州、扬州地区都下雨”2. 在区间(0,1)中任取两个数,则事件{两数之和小于25}的概率为( ) A .225 B .425 C .2125 D .23253. 已知()0.7P A =,()0.5P B =,()0.3P A B -=,则(|)P A B =( ) A .0.5 B . 0.6 C .0.7 D . 0.84. 设()F x 和()f x 分别是某随机变量的分布函数和概率密度,则下列说法正确的是( ) A .()F x 单调不增 B . ()()xF x f t dt -∞=⎰C .0()1f x ≤≤D .() 1 F x dx +∞-∞=⎰.5. 设二维随机变量(,)X Y 的概率分布为已知随机事件{X = A . a=0.2,b=0.3 B . a=0.4,b=0.1 C . a=0.3,b=0.2 D . a=0.1,b=0.4 6. 已知()0.7P A =,()0.5P B =,(|)0.8P A B =,则()P A B -=( ) A .0.1 B . 0.2 C .0.3 D . 0.47. 设两个随机变量X 和Y 相互独立且同分布:{}{}1112P X P Y =-==-=,{}{}1112P X P Y ====,则下列各式成立的是( ) A .{}12P X Y ==B {}1P X Y ==C .{}104P X Y +==D .{}114P XY == 8. 设随机变量~(2,),~(3,),X B p Y B p 若19{1}27P Y ≥=,则{1}P X ≥= ( ) A .13 B .23 C .49D .599. 连续随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤≤=其它,021,210,)(x x x x x f ,则随机变量X 落在区间 (0.4, 1.2) 内的概率为( )A .0.42B .0.5C .0.6D .0.64 10. 将3粒红豆随机地放入4个杯子,则杯子中盛红豆最多为一粒的概率为( ) A .332B .38C .116D .18二、填空题(每题4分,共20分)11. 设概率()0.3,()0.5,()0.6P A P B P A B ==+=, 则()P AB = . 12. 设随机变量X 服从参数为1的泊松分布,则{3}P X == . 13. 某大楼有4部独立运行的电梯,在某时刻T ,各电梯正在运行的概率均为43,则在此时刻恰好有1个电梯在运行的概率为 .14. 某种型号的电子的寿命X (以小时计)的概率密度210001000()0x f x x ⎧>⎪=⎨⎪⎩其它任取1只,其寿命大于2500小时的概率为 .15. 设随机变量X 的分布函数为:0(1),0.2(12),()0.5(23),1(3).x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≤⎩当时当时当时当时则 X 的分布律为 . 三、解答题(每题10分,共50分)16. 已知0.30.40.5+P A P B P AB P A A B ===()()()(|),,,求17. 从只含3红, 4白两种颜色的球袋中逐次取一球, 令1,,0,i i X i ⎧=⎨⎩第次取出红球第次取出白球,1,2i =. 在不放回模式下求12,X X 的联合分布律, 并考虑独立性(要说明原因).18. 某工厂有两个车间生产同型号家用电器,第1车间的次品率为0.15,第2车间的次品率为0.12.两个车间生产的成品都混合堆放在一个仓库中,假设1、2车间生产的成品比例为2:3,今有一客户从成品仓库中随机提台产品,求该产品合格的概率.19. 设某城市成年男子的身高()2~170,6X N (单位:cm )(1)问应如何设计公交车车门高度,使得男子与车门碰头的概率小于0.01? (2)若车门高为182cm ,求100个成年男子中没有人与车门顶碰头的概率. ( 2.330.9920.9772Φ=Φ=(),())20. 已知随机变量(,)X Y 的分布律为问:(1)当,αβ为何值时,X 和Y 相互独立;(2)在上述条件下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将 个不同的球随机地放在 个不同的盒子里,求下列事件的概率 个球全在一个盒子里 恰有一个盒子有 个球
解
把 个球随机放入 个盒子中共有45 种等可能结果 ( ) 个球全在一个盒子里 共有 种等可能结果 故
个盒子中选一个放两个球,再选两个各放一球有
30
2
415=C C 种方法
个球中取 个放在一个盒子里,其他 个各放在一个盒子里有 种方法 因此, 恰有一个盒子有 个球 共有 × 种等可能结果
故
12572
625360)(=
=
B P
某货运码头仅能容纳一只船卸货,而,甲乙两船在码头卸货时间分别为 小时和 小时,设甲、乙在 小时内随时可能到达,求它们中间任何一船都不需要等待码头空出的概率。
解:
设 分别为两船到达码头的时刻。
由于两船随时可以到达,故 分别等可能地在 上取值,如
厦门大学概统课程期中试卷
____学院___系___年级___专业
考试时间
右图
方形区域,记为Ω。
设 为“两船不碰面”,则表现为阴影部分。
222024,024024,024,2111
()24576,()2322506.522
()
()0.8793
()x y x y x y y x m m A m A P A m Ω≤<≤<≤<≤<->->Ω===⨯+⨯===Ω={(x,y)},
A={(x,y)或},有所以,
设商场出售的某种商品由三个厂家供货,其供应量之比是 : : ,且第一、二、三厂家的正品率依次为 、 、 ,若在该商场随机购买一件商品,求:
该件商品是次品的概率。
该件次品是由第一厂家生产的概率。
解
1231122331,
(1)
()()(|)()(|)()(|)
=60%*(1-98%)+20%*(1-98%)+20%*(1-96%) =0.024
(2) (|)A B B B P A P B P A B P B P A B P B P A B P B A =++=
设为该产品为次品,,分别为三个厂家产品,则由全概率公式可知由贝叶斯公式可知
111()()(|)60%*(1-98%)
()()0.024
=0.5P AB P B P A B P A P A ==
甲乙丙三台机床独立工作,在同一时间内他们不需要工人照顾的概率分别为 ,求在这段时间内,最多只有一台机床需人照顾的概率。
解:
设123A A A 、、分别代表这段时间内甲、乙、丙机床需要照管,i B 代表这段时
间内恰有 台机床需要照管, 、
显然,0B 与1B 互斥,123A A A 、、相互独立。
并且:
123012312311231231230101(=(=(=(=((((=(=(+(+(=+(=((P A P A P A P B P A A A P A P A P A P B P A A A P A A A P A A A P B B P B P B ⨯⨯⨯⨯⨯⨯⨯⨯⋃+)0.3、)0.2、)0.1
))=)))=0.70.80.90.504,))))
0.30.80.90.70.20.9+0.70.80.1=0.398故最多只有一台机床需要照顾的概率为:)))=0.902
设顾客在某银行的窗口等候服务的时间 (以分钟计)服从参数为 的指数分布,某顾客在窗口等候服务,若超过 分钟,他就离开.他一月内要到银行 次,以 表示一个月内他未等到服务而离开的次数,试计算
≥ .
解:
1
5125
10
20202551,0()5
0,015(10),
5~(5,)
(1)1(0)1()(1-)=1-0.4833=0.5167x x e x X f x x Y n p P X e dx e Y B e P Y P Y C e e -+∞
-----⎧>⎪
=⎨⎪≤⎩
==>==≥=-==-⨯⎰的密度函数为为伯努利概型,其中,,即
某种电池的寿命 (单位:小时)是一个随机变量,服从μ ,σ 的正态分布,求这样的电池寿命在 小时以上的概率,并求一允许限 ,使得电池寿命在 , 内的概率不小于 .
(1.4286)0.9236;(1.65)0.95Φ=Φ=
解:
22~()=(30035)250300
(250)1(250)1()1( 1.4286)35
(1.4286)0.9236
(300300)(300)(300)(
)()2()10.9353535()0.95351.6557.7535X N N P X F P x X x F x F x x x x
x
x
x μσ-≥=-=-Φ=-Φ-=Φ=-<<+=+--=Φ-Φ-=Φ-≥Φ≥≥≥因,,故又即;
故,
设随机变量 在区间 − 上服从均匀分布,求2x Y e = 的密度函数
解:
2-24-2
4
-241
,12
~(12)()3
0,1
,,
2111(),3261,6()0,X x Y Y x X U X f x dx Y e e y e dy y f y e y e y y e y e
y
Y f y ⎧-<<⎪-=⎨⎪⎩==<<==<<⎧<<⎪=⎨⎪⎩
因,,有的密度函数为其他
又因为严格单增,且-1<x<2时,有则故的密度函数为其他
假定某人浏览网站时独立且随机点击任意网站,点击甲网站概率为 。
浏览进行到点击甲网站两次为止,用 表示直至第一次点击甲网站为止所点击的次数,以 表示此次浏览点击网站的总次数,试求( )的联合分布律及 与 的条件分布律。
解:
各次点击是独立的,对任意的 ,有
2222
1
1
12
11
1
22
1
1
22,)(,=(1),1,2,,1;2,3
,)(=
(,=
(1)(1)(1),1,2,
(=(,=(1)(1)(1)n n n m n m m m n n n m m n X Y P X m Y n p p m n n X Y X Y P X m P X m Y n p p p p p p m p P Y n P X m Y n p p n p p -∞
∞
-=+=+-----==-==-=-====--==-====-=--∑
∑
∑
∑故(的联合分布律为
)(关于及的边缘分布律为))))2222
22
11
,2,32,3(1)1(==,1,2,,1;
(1)(1)11,2,
(1)(==(1),1,2,(1)
n n n n m m n X Y n p p P X m Y n m n n p p n m p p P Y n X m p p n m m p p ------==-===----=-==-=++
-故、条件分布律分别为:当时
)当时
)
.设二维随机变量 ),(Y X 的联合概率密度为
01,01
(,)0cxy x y f x y <<<<⎧=⎨
⎩
其它 其中 为常数 求 ( )常数
( )求关于,X 关于Y 的边缘概率密度() ()X Y F x F y ,
( )求12P X Y ⎧
⎫+>⎨⎬⎩
⎭的概率
解
1
1
0101
(1) (,)1
1 *1
42 (0,1)
(2) () =(,)0 (0,1)2 ( () =(,)x y x y X Y f x y dxdy cxydxdy c dx xydy c x x f x f x y dy x y x f y f x y dx -∞<<+∞-∞<<+∞
<<<<+∞-∞+∞
-∞
====∈⎧=⎨
∉⎩∈=⎰⎰
⎰⎰⎰⎰⎰⎰
由密度函数性质可知因此 01/2
01/2
11/20
0,1)
0 (0,1)
11(3) =1-=1-(,)22111
1-411212
x y x
x P X Y P X Y f x y dxdy
dx xydy <<<<-⎧⎨
∉⎩⎧⎫⎧
⎫+>+≤⎨⎬⎨⎬⎩⎭⎩⎭==-
=⎰⎰⎰⎰。