4-4高等数学 微积分 ppt视频教程

合集下载

微积分ppt课件

微积分ppt课件

和趋势。
02
微积分在机器学习中的应用
利用微积分优化算法,提高机器学习的效率和准确性。
03
微积分在金融工程中的应用
研究微积分在金融衍生品定价、风险管理等领域的应用,推动金融工程
的发展。
THANKS
感谢观看
用微积分解决经济学问题
总结词
微积分在经济学中用于研究经济现象的变化规律和优 化资源配置。
详细描述
在经济学中,微积分被用于分析边际成本、边际收益、 边际效用等问题,以及研究经济增长、通货膨胀、供需 关系等经济现象的变化规律。此外,微积分还可以用于 优化生产和分配资源,提高经济效率。
06
微积分的未来发展与展望
微积分与其他学科的交叉研究
微积分与物理学的交叉
01
研究微积分在解决物理问题中的应用,如流体力学、电磁学等
领域的数学模型。
微积分与经济学的交叉
02
探讨微积分在经济学理论和应用方面的作用,如最优控制理论
、动态规划等。
微积分与计算机科学的交叉
03
研究微积分在算法设计、数据科学、人工智能等领域的应用。
微积分的未来发展方向
上的整体性质,如求面积、体积等。
微积分提供了研究函数和解决实际问题的有效工具, 是高等数学的重要基础。
微积分的发展历史
17世纪,牛顿和莱布尼茨分别独立地创立了微 积分学,为微积分的发展奠定了基础。
19世纪,柯西、黎曼等数学家对微积分的概念和基 础进行了深入的研究和探讨,进一步完善了微积分理
论。
微积分的发展经历了漫长的过程,最早可以追 溯到古代数学家对面积、体积等问题的研究。
1 2
微积分的理论深化
进一步探索微积分的数学原理,发展新的理论和 方法。

4-3[1]高等数学 微积分 ppt视频教程

4-3[1]高等数学   微积分   ppt视频教程
分部积分公式
例1 求积分 x cos xdx .
1 2 解(一) 令 u = cos x , xdx = dx = dv 2 2 2 x x ∫ x cos xdx = 2 cos x + ∫ 2 sin xdx 显然, u 选择不当,积分更难进行. 显然, , v ′ 选择不当,积分更难进行 解(二) 令 u = x , cos xdx = d sin x = dv
例5 求积分 sin(ln x )dx . 解

∫ sin(ln x)dx = x sin(ln x ) ∫ xd [sin(ln x )]
1 = x sin(ln x ) ∫ x cos(ln x ) dx x
= x sin(ln x ) x cos(ln x ) + ∫ xd [cos(ln x )] = x[sin(ln x ) cos(ln x )] ∫ sin(ln x )dx

∫ x cos xdx = ∫ xd sin x = x sin x ∫ sin xdx
= x sin x + cos x + C .
x 2e x dx x2,
e x dx = de x = dv ,
2
∫x e
2
x
dx = x e 2 ∫ xe dx
x x
(再次使用分部积分法)u = x , e x dx = dv 再次使用分部积分法)
= 1 + x arctan x ∫
2
1 1+ x dx 2 1+ x
2
= 1 + x arctan x ∫
2
1 dx 2 1+ x 令 x = tant

1 1 dx = ∫ sec 2 tdt = ∫ sec tdt 1 + x2 1 + tan 2 t

大学微积分课件(PPT幻灯片版)pptx

大学微积分课件(PPT幻灯片版)pptx

高阶导数计算
高阶导数的计算一般采用归纳法 或莱布尼茨公式等方法进行求解。 需要注意的是,在计算过程中要 遵循求导法则和运算顺序。
应用举例
高阶导数在物理学、工程学等领 域有着广泛的应用。例如,在物 理学中,加速度是速度的一阶导 数,而速度是位移的一阶导数; 在工程学中,梁的挠度是荷载的 一阶导数等。
03 一元函数积分学
VS
几何意义
函数$y = f(x)$在点$x_0$处的导数 $f'(x_0)$在几何上表示曲线$y = f(x)$在点 $(x_0, f(x_0))$处的切线的斜率。
求导法则与技巧总结
基本求导法则
包括常数的导数、幂函数的导数、指数函数的导数、对数函数的导 数、三角函数的导数、反三角函数的导数等。
求导技巧
连续性与可微性关系
连续性
函数在某一点连续意味着函数在 该点有定义,且左右极限相等并 等于函数值。连续性是函数的基 本性质之一。
可微性
函数在某一点可微意味着函数在 该点的切线斜率存在,即函数在 该点有导数。可微性反映了函数 局部变化的快慢程度。
连续性与可微性关

连续不一定可微,但可微一定连 续。即函数的连续性是可微性的 必要条件,但不是充分条件。
历史发展
微积分起源于17世纪,由牛顿和莱布尼 茨独立发展。经过数百年的完善,已成 为现代数学的重要基础。
极限思想与运算规则
极限思想
极限是微积分的基本概念,表示函数在某一点或无穷远处的变 化趋势。通过极限思想,可以研究函数的局部和全局性质。
运算规则
极限的运算包括极限的四则运算、复合函数的极限、无穷小量 与无穷大量的比较等。这些规则为求解复杂函数的极限提供了 有效方法。

微积分基础教程

微积分基础教程

微积分教程微积分(Calculus)是高等数学中研讨函数的微分.积分以及有关概念和应用的数学分支.它是数学的一个基本学科.内容重要包含极限.微分学.积分学及其应用.微分学包含求导数的运算,是一套关于变更率的理论.它使得函数.速度.加快度和曲线的斜率等均可用一套通用的符号进行评论辩论.积分学,包含求积分的运算,为界说和盘算面积.体积等供给一套通用的办法.微积分的根本介绍微积分学根本定理指出,求不定积分与求导函数互为逆运算[把高低限代入不定积分即得到积分值,而微分则是导数值与自变量增量的乘积],这也是两种理论被同一成微积分学的原因.我们可以以两者中随意率性一者为起点来评论辩论微积分学,但是在教授教养中,微分学一般会先被引入.微积分学是微分学和积分学的总称.它是一种数学思惟,‘无穷细分’就是微分,‘无穷乞降’就是积分.十七世纪后半叶,牛顿和莱布尼茨完成了很多半学家都介入过预备的工作,分离自力地树立了微积分学.他们树立微积分的动身点是直不雅的无穷小量,但是理论基本是不稳定的.因为“无穷”的概念是无法用已经失去的代数公式进行演算,所以,直到十九世纪,柯西和维尔斯特拉斯树立了极限理论,康托尔等树立了严厉的实数理论,这门学科才得以周密化.进修微积分学,重要的一步就是要懂得到,“极限”引入的须要性:因为,代数是人们已经熟习的概念,但是,代数无法处理“无穷”的概念.所以,必须要应用代数处理代表无穷的量,这时就精心结构了“极限”的概念.在“极限”的界说中,我们可以知道,这个概念绕过了用一个数除以0的麻烦,相反引入了一个进程随意率性小量.就是说,除的数不是零,所以有意义,同时,这个小量可以取随意率性小,只要知足在德尔塔区间,都小于该随意率性小量,我们就说他的极限为该数——你可以以为这是投契取巧,但是,他的实用性证实,如许的界说还算比较完美,给出了准确推论的可能性.这个概念是成功的.微积分是与实际应用接洽着成长起来的,它在天文学.力学.化学.生物学.工程学.经济学等天然科学.社会科学及应用科学等多个分支中,有越来越普遍的应用.特别是盘算机的创造更有助于这些应用的不竭成长.客不雅世界的一切事物,小至粒子,大至宇宙,始终都在活动和变更着.是以在数学中引入了变量的概念后,就有可能把活动现象用数学来加以描写了.因为函数概念的产生和应用的加深,也因为科学技巧成长的须要,一门新的数学分支就继解析几何之后产生了,这就是微积分学.微积分学这门学科在数学成长中的地位是十分重要的,可以说它是继欧氏几何后,全体数学中的最大的一个创造.微积分的本质【参考文献】刘里鹏.《从割圆术走向无穷小——揭秘微积分》,长沙:湖南科学技巧出版社,1.用文字表述:增量无穷趋近于零,割线无穷趋近于切线,曲线无穷趋近于直线,从而以直代曲,以线性化的办法解决非线性问题,这就是微积分理论的精华地点.2.用式子暗示:微积分的根本办法微积分的基起源基本理告知我们微分和积分是互逆的运算,微积分的精华告知我们我们之所以可以解决很多非线性问题,本质的原因在于我们化曲为直了,实际生涯中我们会碰到很多非线性问题,那么解决如许的问题有没有同一的办法呢?经由研讨思虑和总结,笔者以为,微积分的根本办法在于:先微分,后积分.笔者所看到的是,如今的教材没有留意对这些根本问题的总结,根本上所有的教材每讲到积分时都还反复前人无穷细分取极限的思惟,讲到弧长时取极限,讲到面积时又取极限,最后用一个约等号打发曩昔.如许一来不但让学生听得看得满头雾水,并且很有牵强附会之嫌,其实懂得微积分的本质和根本办法后根本不须要再那么反复.微积分学的树立从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思惟在古代就已经产生了.公元前三世纪,古希腊的阿基米德在研讨解决抛物弓形的面积.球和球冠面积.螺线下面积和扭转双曲体的体积的问题中,就隐含着近代积分学的思惟.作为微分学基本的极限理论来说,早在古代以有比较清楚的阐述.比方我国的庄周所著的《庄子》一书的“世界篇”中,记有“一尺之棰,日取其半,万世不竭”.三国时代的刘徽在他的割圆术中提到“割之弥细,所掉弥小,割之又割,以至于不成割,则与圆周和体而无所掉矣.”这些都是朴实的.也是很典范的极限概念.到了十七世纪,有很多科学问题须要解决,这些问题也就成了促使微积分产生的身分.归结起来,大约有四种重要类型的问题:第一类是研讨活动的时刻直接消失的,也就是求即时速度的问题.第二类问题是求曲线的切线的问题.第三类问题是求函数的最大值和最小值问题.第四类问题是求曲线长.曲线围成的面积.曲面围成的体积.物体的重心.一个别积相当大的物体感化于另一物体上的引力.十七世纪的很多有名的数学家.天文学家.物理学家都为解决上述几类问题作了大量的研讨工作,如法国的费马.笛卡尔.罗伯瓦.笛沙格;英国的巴罗.瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出很多很有建树的理论.为微积分的创立做出了进献.十七世纪下半叶,在前人工作的基本上,英国大科学家牛顿和德国数学家莱布尼茨分离在本身的国家里独自研讨和完成了微积分的创立工作,固然这只是十分初步的工作.他们的最大功劳是把两个貌似毫不相干的问题接洽在一路,一个是切线问题(微分学的中间问题),一个是求积问题(积分学的中间问题).牛顿和莱布尼茨树立微积分的动身点是直不雅的无穷小量,是以这门学科早期也称为无穷小剖析,这恰是如今数学中剖析学这一大分支名称的起源.牛顿研讨微积分侧重于从活动学来斟酌,莱布尼茨倒是侧重于几何学来斟酌的.牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点.线.面的中断活动产生的,否认了以前本身以为的变量是无穷小元素的静止聚集.他把中断变量叫做流淌量,把这些流淌量的导数叫做流数.牛顿在流数术中所提出的中间问题是:已知中断活动的路径,求给准时刻的速度(微分法);已知活动的速度求给准时光内经由的旅程(积分法).德国的莱布尼茨是一个博才多学的学者,1684年,他揭橥了如今世界上以为是最早的微积分文献,这篇文章有一个很长并且很怪僻的名字《一种求极大微小和切线的新办法,它也实用于分式和无理量,以及这种新办法的奥妙类型的盘算》.就是如许一篇说理也颇暧昧的文章,却有划时代的意义.它已含有现代的微分符号和根本微分轨则.1686年,莱布尼茨揭橥了第一篇积分学的文献.他是汗青上最巨大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的成长有极大的影响.如今我们应用的微积分通用符号就是当时莱布尼茨精心选用的.微积分学的创立,极大地推进了数学的成长,曩昔很多初等数学一筹莫展的问题,应用微积分,往往水到渠成,显示出微积分学的不凡威力.前面已经提到,一门科学的创立决不是某一小我的事迹,他肯定是经由若干人的尽力后,在积聚了大量成果的基本上,最后由某小我或几小我总结完成的.微积分也是如许.不幸的是,因为人们在观赏微积分的雄伟功能之余,在提出谁是这门学科的创立者的时刻,竟然引起了一场悍然大波,造成了欧洲大陆的数学家和英国数学家的长期对峙.英国数学在一个时代里闭关锁国,囿于平易近族成见,过于拘泥在牛顿的“流数术”中留步不前,因而数学成长整整落伍了一百年.其实,牛顿和莱布尼茨分离是本身自力研讨,在大体上邻近的时光里先后完成的.比较特别的是牛顿创立微积分要比莱布尼茨早10年阁下,但是正式公开揭橥微积分这一理论,莱布尼茨却要比牛顿揭橥早三年.他们的研讨各有长处,也都各有短处.那时刻,因为平易近族成见,关于创造优先权的争辩竟从1699年始延续了一百多年.应当指出,这是和汗青上任何一项重大理论的完成都要阅历一段时光一样,牛顿和莱布尼茨的工作也都是很不完美的.他们在无穷和无穷小量这个问题上,其说不一,十分暧昧.牛顿的无穷小量,有时刻是零,有时刻不是零而是有限的小量;莱布尼茨的也不克不及自圆其说.这些基本方面的缺点,最终导致了第二次数学危机的产生.直到19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了卖力研讨,树立了极限理论,后来又经由德国数学家维尔斯特拉斯进一步的严厉化,使极限理论成为了微积分的果断基本.才使微积分进一步的成长开来.任何新兴的.具有无量前程的科学成就都吸引着宽大的科学工作者.在微积分的汗青上也闪耀着如许的一些明星:瑞士的雅科布•贝努利和他的兄弟约翰•贝努利.欧拉.法国的拉格朗日.柯西……欧氏几何也好,上古和中世纪的代数学也好,都是一种常量数学,微积分才是真正的变量数学,是数学中的大革命.微积分是高等数学的重要分支,不只是局限在解决力学中的变速问题,它驰骋在近代和现代科学技巧场地里,树立了数不清的丰功伟绩.微积分的根本内容研讨函数,从量的方面研讨事物活动变更是微积分的根本办法.这种办法叫做数学剖析.本来从广义上说,数学剖析包含微积分.函数论等很多分支学科,但是如今一般已习惯于把数学剖析和微积分等同起来,数学剖析成了微积分的同义词,一提数学剖析就知道是指微积分.微积分的根本概念和内容包含微分学和积分学.微分学的重要内容包含:极限理论.导数.微分等.积分学的重要内容包含:定积分.不定积分等.微积分是与科学应用接洽着成长起来的.最初,牛顿应用微积分学及微分方程对第谷浩瀚的天文不雅测数据进行了剖析运算,得到了万有引力定律,并进一步导出了开普勒行星活动三定律.此后,微积分学成了推进近代数学成长壮大的引擎,同时也极大的推进了天文学.物理学.化学.生物学.工程学.经济学等天然科学.社会科学及应用科学各个分支中的成长.并在这些学科中有越来越普遍的应用,特别是盘算机的消失更有助于这些应用的不竭成长.一元微分界说:设函数y = f(x)在某区间内有界说,x0及x0 + Δx 在此区间内.假如函数的增量Δy = f(x0 + Δx) – f(x0)可暗示为Δy = AΔx0 + o(Δx0)(个中A是不依附于Δx的常数),而o(Δx0)是比Δx高阶的无穷小,那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0响应于自变量增量Δx的微分,记作dy,即dy = Adx.平日把自变量x的增量Δx称为自变量的微分,记作dx,即dx = Δx.于是函数y = f(x)的微分又可记作dy = f'(x)dx.函数的微分与自变量的微分之商等于该函数的导数.是以,导数也叫做微商.几何意义设Δx曲直线y = f(x)上的点M的在横坐标上的增量,Δy曲直线在点M对应Δx在纵坐标上的增量,dy曲直线在点M的切线对应Δx在纵坐标上的增量.当|Δx|很小时,|Δy-dy|比|Δy|要小得多(高阶无穷小),是以在点M邻近,我们可以用切线段来近似代替曲线段.多元微分多元微分又叫全微分,是由两个自变量的偏导数相对应的一元微分的增量暗示的.ΔZ=A*ΔX+B*ΔY+ο(ρ)为函数Z在点(x.y)处的全增量,(个中A.B不依附于ΔX和ΔY,而只与x.y有关,ρ=[(x∧2+y∧2)]∧(1\2),A*ΔX+B*ΔY等于Z在点的全微分.总的来说,微分学的焦点思惟等于以直代曲,即在渺小的邻域内,可以用一段切线段来代替曲线以简化盘算进程.积分有两种:定积分和不定积分.定积分是微分的逆运算,即知道了函数的导函数,反求原函数.在应用上,定积分感化不但如斯,它被大量应用于乞降,通俗的说是求曲边三角形的面积,这奇妙的求解办法是积分特别的性质决议的.一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数.个中:[F(x) + C]' = f(x)一个实变函数在区间[a,b]上的定积分,是一个实数.它等于该函数的一个原函数在b的值减去在a的值.定积分和不定积分的界说迥然不合,定积分是求图形的面积,等于求微元元素的累加和,而不定积分则是求其原函数,它们又为何通称为积分呢?这要靠牛顿和莱布尼茨的进献了,把本来毫不相干的两个事物慎密的接洽起来了.详见牛顿——莱布尼茨公式.一阶微分与高阶微分函数一阶导数对应的微分称为一阶微分;一阶微分的微分称为二阶微分;.......n阶微分的微分称为(n+1)阶微分即:d(n)y=f(n)(x)*dx^n (f(n)(x)指n阶导数,d(n)y指n阶微分,dx^n指dx的n次方)含有未知函数yt=f(t)以及yt的差分Dyt, D2yt,…的函数方程,称为常差分方程(简称差分方程);出如今差分方程中的差分的最高阶数,称为差分方程的阶.n阶差分方程的一般情势为F(t,yt,Dyt,…, Dnyt)=0,个中F是t,yt, Dyt,…, Dnyt的已知函数,且Dnyt必定要在方程中消失.含有两个或两个以上函数值yt,yt+1,…的函数方程,称为(常)差分方程,出如今差分方程中未知函数下标的最大差,称为差分方程的阶.n阶差分方程的一般情势为F(t,yt,yt+1,…,yt+n)=0,个中F为t,yt,yt+1,…,yt+n的已知函数,且yt和yt+n必定要在差分方程中消失.常微分方程与偏微分方程的总称.含自变量.未知函数和它的微商(或偏微商)的方程称为常(或偏)微分方程.未知函数为一元函数的微分方程,称为常微分方程.未知函数为多元函,从而消失多元函数的偏导数的方程,称为偏微分方程.微积分的诞生及其重要意义微积分的诞生是继Euclid几何树立之后,数学成长的又一个里程碑式的事宜.微积分诞生之前,人类根本上还处在农耕文明时代.解析几何的诞生是新时代到来的序曲,但还不是新时代的开端.它对旧数学作了总结,使代数与几何融为一体,并激发出变量的概念.变量,这是一个全新的概念,它为研讨活动供给了基本推导出大量的宇宙定律必须等待如许的时代的到来,预备好这方面的思惟,产生像牛顿.莱布尼茨.拉普拉斯如许一批可以或许首创将来,为科学活动供给办法,指出偏向的首脑,但也必须等待创立一个必不成少的对象——微积分,没有微积分,推导宇宙定律是不成能的.在17世纪的天才们开辟的所有常识宝库中,这一范畴是最丰富的,微积分为创立很多新的学科供给了源泉.微积分的树立是人类脑筋最巨大的创造之一,一部微积分成长史,是人类一步一步倔强地熟习客不雅事物的汗青,是人类理性思维的结晶.它给出一整套的科学办法,首创了科学的新纪元,并是以增强与加深了数学的感化.恩格斯说:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样被看作人类精力的最高成功了.假如在某个地方我们看到人类精力的纯粹的和惟一的功劳,那就恰是在这里.”有了微积分,人类才有才能掌控活动和进程.有了微积分,就有了工业革命,有了大工业临盆,也就有了现代化的社会.航天飞机.宇宙飞船等现代化交通对象都是微积分的直接效果.在微积分的帮忙下,万有引力定律发清楚明了,牛顿用同一个公式来描写太阳对行星的感化,以及地球对它邻近物体的感化.从最小的尘埃到最遥远的天体的活动行动.宇宙中没有哪一个角落不在这些定律的所包含规模内.这是人类熟习史上的一次空前的飞跃,不但具有巨大的科学意义,并且具有深远的社会影响.它强有力地证清楚明了宇宙的数学设计,摧毁了覆盖在天体上的神秘主义.迷信和神学.一场空前巨大的.囊括近代世界的科学活动开端了.毫无疑问,微积分的发明是世界近代科学的开端.微积分优先权大争辩汗青上,微积分是由两位科学家,牛顿和莱布尼茨几乎同时发明的.在创立微积分方面,莱布尼茨与牛顿功劳相当.这两位数学家在微积分学范畴中的卓著进献归纳综合起来就是:他们总结出处理各类有关问题的一般办法,熟习到求积问题与切线问题互逆的特点,并揭示出微分学与积分学之间的本质接洽;他们都各自树立了微积分学根本定理,他们给出微积分的概念.轨则.公式和符号理论为今后的微积分学的进一步成长奠定了坚实而重要的基本.总之,他们创立了作为一门自力学科的微积分学.微积分这种数学剖析办法正式诞生今后,因为解决了很多以往靠初等数学无法作答的实际问题,所以逐渐引起科学家和社会人士的看重.同时,也带来了关于“谁先树立微积分”问题的争辩.从牛顿和莱布尼茨还活着时就开端消失这种争辩,英国和欧洲大陆列国很多科学家都卷入这场空费时日的.尖利而庞杂的论战.这场论战中断了100多年的时光.就创造与揭橥的年月比较,牛顿创造微积分根本定理比莱布尼茨更早.前者奠定于1665—1667年,后者则是1672—1676年,但莱布尼茨比牛顿更早揭橥微积分的成果.故创造微积分的声誉应属于他们两人.第二次数学危机及微积分逻辑上的严厉化微积分诞生之后,数学迎来了一次空前繁华的时代.对18世纪的数学产生了重要而深远的影响.但是牛顿和莱布尼茨的微积分都缺少清楚的.严谨的逻辑基本,这在初创时代是不成防止的.科学上的巨大须要克服了逻辑上的忌惮.他们须要做的工作太多了,他们急于去牟取新的成果.根本问题只好先放一放.正如达朗贝尔所说的:“向进步,你就会产生信念!”数学史的成长几回再三证实自由创造老是领先于情势化和逻辑基本.于是在微积分的成长进程中,消失了如许的局势:一方面是微积分创立之后立刻在科学技巧上获得应用,从而敏捷地成长;另一方面是微积分学的理论在当时是不周密的,消失了越来越多的悖论和谬论.数学的成长又碰到了深刻的令人不安的危机.例如,有时把无穷小量看作不为零的有限量而从等式两头消去,而有时却又令无穷小量为零而疏忽不计.因为这些抵触,引起了数学界的极大争辩.如当时爱尔兰主教.唯心主义哲学家贝克莱嘲笑“无穷小量”是“已逝世的鬼魂”.贝克莱对牛顿导数的界说进行了批评.当时牛顿对导数的界说为:当x增加为x+o时,x的立方(记为x^3)成为(x+o)的立方(记为(x+o)^3).即x^3+3 x^2o+ 3x o^2+ o^3.x与x^3的增量分离为o和3 x^2o+ 3x o^2+ o^3.这两个增量与x的增量的比分离为1和3 x^2+ 3x o+ o^2,然后让增量消掉,则它们的最后比为1与3 x^2.我们知道这个成果是准确的,但是推导进程确切消失着显著的掉包假设的错误:在论证的前一部分假设o是不为0的,而在论证的后一部分又被取为0.那么o到底是不是0呢?这就是有名的贝克莱悖论.这种微积分的基本所激发的危机在数学史上称为第二次数学危机,而此次危机的激发与牛顿有直接关系.汗青请求给微积分以严厉的基本.第一个为解救第二次数学危机提出真正有看法的看法的是达朗贝尔.他在1754年指出,必须用靠得住的理论去代替当时应用的光滑的极限理论.但是他本身未能供给如许的理论.最早使微积分严厉化的是拉格朗日.为了防止应用无穷小推理和当时还不明白的极限概念,拉格朗日曾试图把全部微积分树立在泰勒睁开式的基本上.但是,如许一来,斟酌的函数规模太窄了,并且不必极限概念也无法评论辩论无穷级数的收敛问题,所以,拉格朗日的以幂级数为对象的代数办法也未能解决微积分的奠定问题.到了19世纪,消失了一批出色的数学家,他们积极为微积分的奠定工作而尽力,个中包含了捷克的哲学家 B.Bolzano.曾著有《无穷的悖论》,明白地提出了级数收敛的概念,并对极限.中断和变量有了较深刻的懂得.剖析学的奠定人,法国数学家柯西在1821—1823年间出版的《剖析教程》和《无穷小盘算课本》是数学史上划时代的著作.在那边他给出了数学剖析一系列的根本概念和准确界说.对剖析基本做更深一步的懂得的请求产生在1874年.那时的德国数学家外尔斯特拉斯结构了一个没有导数的中断函数,即结构了一条没有切线的中断曲线,这与直不雅概念是抵触的.它使人们熟习到极限概念.中断性.可微性和收敛性对实数系的依附比人们想象的要深邃得多.黎曼发明,柯西没有须要把他的定积分限制于中断函数.黎曼证清楚明了,被积函数不中断,其定积分也可能消失.也就是将柯西积分改良为Riemann积分.这些事实使我们明白,在为剖析树立一个完美的基本方面,还须要再深挖一步:懂得实数系更深刻的性质.这项工作最终由外尔斯特拉斯完成,使得数学剖析完整由实数系导出,离开了知觉懂得和几何直不雅.如许一来,数学剖析所有的根本概念都可以经由过程实数和它们的根本运算表述出来.微积分严厉化的工作终于接近封顶,只有关于无穷的概念没有完整弄清楚,在这个范畴,德国数学家Cantor做出了出色的进献.总之,第二次数学危机和焦点是微积分的基本不稳定.柯西的进献在于,将微积分树立在极限论的基本上.外尔斯特拉斯的进献在于逻辑地结构了实数论.为此,树立剖析基本的逻辑次序是实数系——极限论——微积分。

《高等数学》视频教程 蔡高厅教授主讲

《高等数学》视频教程 蔡高厅教授主讲

《高等数学》视频教程蔡高厅教授主讲中文名称:蔡高厅高等数学上下册RM压缩清晰版本地区:大陆语言:普通话简介:高等数学辅导讲座(蔡高厅)分189讲上册95讲下册94讲!赠送与之配套的电子书课文!本教程讲解之细致,容量之庞大令人叹为观止!适合任何程度的朋友学习。

即使只有高中数学水平,凭此讲座可在一月内快速成为高数高手,也可作为复习后期查缺补漏之用。

本教程是目前国内水平最高的高等数学长期教程,影音俱佳,强烈推荐!!第一章函数第二章极限第三章导数与微分第四章导数的应用第五章不定积分第六章定积分第七章空间解析几何与矢量代数第八章多元函数微积分第九章重积分第十章曲线积分及曲面积分第十一章级数第十二章微分方程适合人群:1、在校大学生2、自考人3、考研人士(高数一,二)4、其它想学习数学的人士[点评][天津大学][高数](蔡高厅)我来谈谈对天津大学蔡高厅高数的一些看法。

这部高等数学教程应该是现在名气最大的,也是好评最高的。

原因我认为有这么些,首先,整部教程体积很小(全部一起不到3G),而北航柳重堪高等数学加起来超过10G,对硬盘空间不是很大的用户是个不小的负担,这点使的很多人选择了它(包括我本人),在着,一共189讲的超大容量,整个高等数学的全部知识,无论巨细,无一遗漏,是其他教程所不能及的(北航柳重堪高等数学),其次,本科学校的正规教程也是个很诱人的地方。

以上说的是它的优点,下面说说我自己的体会。

我是在看完北航柳重堪高等数学第一章时再看的,对比而言,蔡高厅高数给我感受就是蔡高厅本人一直在黑板上不停的版书,对知识本身的讲解很机械,这点我很不喜欢。

既然是本科学校的教程,就应该讲究对知识本身和思维的沟通,重点应该是放上创造性上,而不只是知识的简单堆砌,蔡高厅的讲课完全是教科书的移植,加上一点做题的技巧,对基本概念的理解讲解很生硬,缺少沟通性。

跟真正的数学教学相差很远“蔡高厅的讲课完全是教科书的移植”,这点我很同意。

高教社2024高等数学第五版教学课件-4.3 分部积分法

高教社2024高等数学第五版教学课件-4.3 分部积分法

例1 求 න

‫) ( ׬ = ׬‬′ = − ‫)(׬‬′
= − න
= + + .
注 例1如果采用下面的方法,即
2
2 ′
2

න = න ∙ ( ) = − න()′ ∙
1
1
2
1) ]+ ‫׬‬

2 1+(2+1)2
1
2
1) ]+ arctan
2
1
[ 1
4
2 +
+ (2 + 1)2 ] + .
解法二(先用换元法,再用分部积分法,最后再使用凑微分)
令 = 2 + 1, =
−1
,则
2
−1
න 2 + 1 = න (
∴ ‫ ׬‬

= 2
(
− 2 + 2) + .
例10 求 න(2 + 1)
解法一(先用分部积分法,再用第一类换元法——凑微分)
‫( ׬‬2 + 1) = (2 + 1)-‫( ׬‬2 + 1)
2
= 2 + 1 − න

‫ ׬‬2 = ‫ ׬‬2 ( )
= 2 − න ( 2 ) = 2 − 2 න
= 2 + 2 න ( ) = 2 + 2( − ‫) ׬‬
= − + .
例3 求‫ ׬‬
解 令 = , = =
2
,
2

微积分基本公式ppt课件

微积分基本公式ppt课件
热力学
温度与热量,熵与绝热过程,热力学第二定律
微积分在经济中的应用实例
01
总结词
边际分析,最优化问题,经济增长 模型
最优化问题
最大利润,最小成本,最优解
03
02
边际分析
边际成本,边际收益,边际利润
经济增长模型
索洛模型,哈罗德-多马模型,内生 增长模型
04
THANKS
感谢观看
微积分基本公式的应用实例
总结词
微积分基本公式在解决实际问题中有着广泛 的应用,例如求解变速直线运动的位移、求 解曲线的面积等。
详细描述
通过微积分基本公式,我们可以求解变速直 线运动的位移。例如,假设一个物体以速度 v(t)运动,那么物体在时间t到时间t+Δt之间 的位移就是∫(v(t)dt),通过微积分基本公式 可以求得该物体的位移。此外,微积分基本 公式还可以用于求解曲线的面积,例如求解
要点二
高阶导数的几何意义
掌握高阶导数的计算方法,例如利用莱布尼茨公式计算二 阶、三阶等高阶导数。
理解高阶导数在几何上的意义,例如二阶导数表示曲线的 凹凸性,三阶导数表示曲线的拐点等。
05
定积分的计算
定积分的计算方法与技巧
积分公式
掌握积分公式是进行定积分计算的基础,包括 幂函数的积分公式、三角函数的积分公式等。
微积分基本公式
微积分基本公式的内容与证明
总结词
微积分基本公式是微积分学的基础,它描述 了函数在某一点处的导数与该函数在该点附 近的变化率之间的关系。
详细描述
微积分基本公式通常表示为∫(f'(x))dx = f(b) - f(a),其中∫代表积分,f'(x)代表函数f 在点x处的导数,b和a分别代表积分的上限 和下限。这个公式在理解函数的积分和导数 之间关系上起着关键作用。

高等数学 课件 PPT 第五章 定积分

高等数学 课件 PPT 第五章  定积分
[a,b]上有界并不是可积的充分条件.例如,
在[0,1]上是有界函数,但不可积.因为不论对[0,1]怎样分 割,在任意被分割的小区间[xi-1,xi]上,总能取到ξi为有理数, 这时f(ξi)=1,也总能取到ξi为无理数,这时f(ξi)=0.所以对[0,1] 的任何一种分法,我们总可以得到
一、定积分的概念
思考
一个函数在什么条件下可积?什么条件下不可积?
一、定积分的概念
3. 定积分存在的充分条件
若f(x)在[a,b]上无界,则f(x)在[a,b]上一定是不可积 的.这是因为,若f(x)在[a,b]上无界,那么无论对[a,b] 怎样分割,都至少有一个区间[xi-1,xi],函数f(x)在其上无 界.因此,在[xi-1,xi]上一定可以取一点ξi,使得f(ξi)大于任 意一个正数M,因而也就使得和式 ∑ =1f(ξi)Δxi可以任意的 大.当λ→0时,这个和就不可能趋向于任何极限.由此可知, f(x)在[a,b]上可积的必要条件是f(x)在[a,b]上有界.
一、变速直线运动中位置函数与速度函数之间的联系
为了讨论质点在变速直线运动中位置函数与速度函数间的 联系,有必要沿质点的运动方向建立坐标轴.设时刻t时质点所 在位置st,速度vtvt≥0. 已知质点在时间间隔T1,T2内经过的路程可以用速度函数vt在 T1,T2上的定积分
一、定积分的概念
在区间[a,b]上,f(x)既有正值又有负值时,函数y=f(x) 的图形某些部分在x轴的上方,而其他部分在x轴的下方.如果 规定在x轴的上方的图形的面积为正,在x下方的图形面积为负, 那么∫baf(x) 的几何意义就是介于曲线y=f(x)、x轴及两条直线 x=a,x=b之间的各部分面积的代数和,如图5-2所示.
把区间[a,b]分成个n小区间 [x0,x1],[x1,x2],…,[xn-1,xn],

《微积分》PPT课件

《微积分》PPT课件

x x0
f (x)
f
(x0 )
何时函数f(x)在 点 处间断?
(1)f(x)在点 x0 处无定义;
(2)f(x)在点
x0 处有定义,但
时,函数f(x)以常数A为极限,记作
lim f (x) A或f (x) A(x )
x
定 义 2 . 5 : 若 对 于 任 意 给 定 的 正 数 , 总 存
在一个正数M,使得当x>M(x<-M)时,
恒 有 f (x) A< 成 立 , 则 称 当 x (x )
时,函数f(x)以常数A为极限,记作
y=arcsinx x [1,1], y [ , ]
22
y=arccos x [-1,1], y [0, ]
y=arctanx X R, y ( , ) 22
y=arccotx X R,y (0,)
1.4 初等函数(三角函数)
正弦函数和余弦函数
正切函数和余切函数
正割函数与余割函数
三角函数的基本关系式:
xx0
ua
2.4
被迫性定理 若在某个变化过程中,
恒有y≤x≤z,且 limy=limz=A,则limx=A
两个重要极限(必考)
单调有界定理
单调有界的数列
必有极限
} 单 调 增 + 有 上 界
单调减+有下界
数列收敛
定理 2.12
定义 2.9
定理 2.13
若数列 {an}满足 an an1(或an an1)(n N) 则称数列 {an}为单调增 加(或单调减少)数列。
当x 0时,等价无穷小量:
sinx~x tanx~x
arcsinx~x 1-cosx~x2

微积分基础知识ppt课件

微积分基础知识ppt课件
M{xP(x)} P(x)表示元素具有性质
.
9
2.邻域:
设 a与 是两个 , 且 实 0.数
数{x集 xa()}称为 a的 邻 点 ,域
点a叫做这邻域的中心, 叫做这邻域的半径.
a
a
a x
点 a的去心 邻的 ,域 记U 作 (a,).
U (a , ) {x0 x a }.
.
10
二、函数
1.定义 设数集 D,若存在对应法则 f ,使对 x D ,
矛盾取 . 故 N b 假 2 a设m 不xn 真 N b a 1 ! , a N b 因b 2 2 2 a a 此 ,收则x 敛当数n 3列a>a22bN的b时极xnx,限nx必n3满ba2唯2a足b一的. 不等式
.
37
两边夹准则
( 1 ) y n x n z n ( n 1 ,2 , )
n 1 1
2
.
7
具备的数学素质: ➢ 从实际问题抽象出数学模型的能力 ➢ 计算与分析的能力 ➢ 了解和使用现代数学语言和符号的能力 ➢ 使用数学软件学习和应用数学的能力
.
8
第0章 基本知识
一、基本概念
1.集合: 具有某种特定性质的对象的全体. 组成集合的事物称为该集合的元素.
aM, aM, A { a 1 ,a 2 , ,a n }
基本初等函数(幂函数,指数函数,对数函数,三角函数 和反三角函数).
.
12
几个特殊的函数举例 (1) 符号函数
1 当x0 ysgnx 0 当x0
1 当x0
y
1
o
x
-1
xsgxn x
.
13
(2) 取整函数 y=[x]

微积分.ppt课件

微积分.ppt课件
在听课时常会遇到某些问题没听懂的情况,这时 千万不要在这些问题上持续徘徊而影响继续听课,应 承认它并在教材上或笔记上相应处作上记号,继续跟 上教师的讲授. 遗留的问题、疑点待课后复习时再思 考、钻研,或找同学讨论,或找教师答疑,或查看参 考书加以解决.
(3) 记笔记
记好课堂笔记是学好高等数学的一个重要的学 习环节. 但要注意的是,课堂学习的中心任务是听、 看、想,记笔记的目的是便于课后复习,便于消化 课上所讲的内容. 因此,记笔记不应占用过多的课 堂时间. 笔记不必工整,不必全面,不必连贯,但 应预留一定的空白以便课后补充、写心得、记疑问.
高等数学有四个显著特点:
(1)高度的抽象性
数学的抽象性在简单的计算中就已经表现出 来. 我们运用抽象的数字,却不是每次都把它们同 具体的对象联系起来. 在数学的抽象中只留下量的 关系和空间形式,而舍弃了其他一切. 它的抽象程 度大大超过了自然科学中任何一门学科.
(2)严谨的逻辑性
数学中的每一个定理,不论验证了多少实例, 只有当它在逻辑上被严格证明时,才能在数学中
(5)做作业
要把高等数学学到手,及时、认真地完成作 业是一个必不可少的学习环节. 每次的作业最好 在当天完成,但是应该在复习完当天的内容之后 进行. 做作业不仅是检验学习效果的手段,同时 也是培养、提高综合分析问题的能力、笔头表达 能力以及计算能力的重要手段.
特别强调,认真完成作业是培养同学们严谨 治学的一个环节.因此,要求作业“字迹工整、绘 图准确、条理清楚、论据充分”. 切忌抄袭,尽 量不先看书后的答案.
成立. 在数学中要证明一个定理,必须是从条件和 已有的数学公式出发,用严谨的逻辑推理方法导出 结论.
(3)广泛的应用性
高等数学具有广泛的应用性. 例如,掌握了导数 概念及其运算法则,就可以用它来刻画和计算曲线的 切线斜率、曲线的曲率等等几何量;就可以用它来刻 画和计算速度、加速度、密度等等物理量;就可以用 它来刻画和计算产品产量的增长率、成本的下降率等 等经济量;……

高等数学微积分教学ppt(2)

高等数学微积分教学ppt(2)
2、自变量趋于无穷大时函数的极限
本节内容 :
二、函数的极限
1、自变量趋于有限值时函数的极限
1).
时函数极限的定义
引例. 测量正方形面积.
面积为A )
边长为
(真值:
边长
面积
直接观测值
间接观测值
任给精度 ,
要求
确定直接观测值精度 :
定义1 . 设函数
在点
的某去心邻域内有定义 ,

时, 有
1.幂函数
2.指数函数
3.对数函数
4.三角函数
正弦函数
余弦函数
正切函数
余切函数
正割函数
余割函数
5.反三角函数
幂函数,指数函数,对数函数,三角函数和反三角函数统称为基本初等函数.
四. 初等函数
由常数及基本初等函数
否则称为非初等函数 .
例如 ,
并可用一个式子表示的函数 ,
例6. 求
解:
利用定理 4 可知
说明 : y = 0 是
的渐近线 .
内容小结
1). 无穷小与无穷大的定义
2). 无穷小与函数极限的关系
Th1
3). 无穷小与无穷大的关系
Th3
4). 无穷小的运算法则
Th4
Th5
二、 函数的间断点
一、 函数连续性的定义
函数的连续性与间断点
第一章
可见 , 函数
分析基础
函数
极限
连续
— 研究对象
— 研究方法
— 研究桥梁
函数、极限与连续
第一章
二、函数
一、集合
第一节
函数
元素 a 属于集合 M , 记作

高等数学(微积分学)教学课件

高等数学(微积分学)教学课件

三、两个重要极限
重要极限Ⅰ lim sin x 1 x0 x
它可以拓展为 lim sin[ f (x)] 1 f (x)0 f (x)
sin 2x
例:lim x 2x
1
1 cos x
lim
x0
x2
lim
x0
2 sin 2 x 2
4 x2 4
lim
1
sin
x 2
x0 2 x
2
2
1 2
判断:lim sin x 1
叫做因变量.
数集 D 称为这个函数的定义域.
全体函数值的集合称为函数的值域.
2. 函数的表示法
解析法(公式法):用解析表达式(或公式)表示函数关系.
y x 1
表格法:用列表的方法来表示函数关系.
x123456789 y 1 4 9 16 25 36 49 64 81
图示法:用平面直角坐标系 xoy 上的曲线来表示函数关系.
x
x
1 0
x
x
1
1
1 lim( x0 1
x
)
1 x
x
lim
x0
(1 (1
x) x
1
x) x
lim x0
(1 x) x
1 (1)
[1 (x)] x
e e1
e2
一类特殊极限
若f
(x)
a0 xm a1xm1 a2 xm2 b0 xn b1xn1 b2 xn2
am1x am bn1x bn
x 果对于定义区间的任意点 , 恒有 f (x) f (x) , 则称f (x)
为 D 内的偶函数;如果恒有 f (x) f (x) , 则称 f (x)为D

《微积分》课件

《微积分》课件
微分学主要研究函数在某一点附近的 局部行为,包括切线、函数的变化率 等;积分学则研究函数在某个区间上 的整体行为,包括面积、体积等。
微积分的历史背景
01
微积分的发展可以追溯到古代数 学,如希腊数学家阿基米德在求 面积和体积时已经有了积分学的 萌芽。
02
微积分的真正奠基人是牛顿和莱 布尼茨,他们分别独立地发展出 了微积分的基本理论,为后来的 数学发展奠定了基础。
《微积分》PPT课件
contents
目录
• 微积分的定义与历史 • 微积分的基本概念 • 微积分的应用 • 微积分的解题技巧 • 微积分的重点与难点解析 • 微积分的习题与答案解析
01
微积分的定义与历史
微积分的定义
微积分是研究函数、极限和连续性的 数学分支,通过微分和积分的方法来 研究函数的性质和变化规律。
极限的运算性质与法则
1 2
极限的运算性质
极限的四则运算法则、复合函数的极限运算法则 等。
极限的法则
极限的保号性、极限的局部有界性等。
3
注意事项
理解极限的运算法则和性质是解决极限问题的关 键,需要注意运算过程中的等价变换和放缩技巧 。
导数的几何意义与运算性质
导数的几何意义
切线的斜率、函数图像的变化率等。
习题一:极限的运算
$lim_{x to infty} frac{1}{x}$
判断下列叙述是否正 确,并说明理由
$lim_{x to 0} (1 + x)^{1/x}$
习题一:极限的运算
$lim_{x to 0} frac{sin x}{x} = 1$
$lim_{x to infty} frac{1}{x} = 0$
$lim_{x to 0} (1 + x)^{1/x} = e$
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档