第二章核酸的分子结构
生化第二章核酸的结构和功能
⽣化第⼆章核酸的结构和功能第⼆章核酸的结构与功能本章重点核酸前⾔:1.真核⽣物DNA 存在于细胞核和线粒体内,携带遗传信息,并通过复制的⽅式将遗传信息进⾏传代;真核⽣物RNA 存在于细胞质、细胞核和线粒体内。
2.在某些病毒中,RNA 也可以作为遗传信息的载体。
⼀、核酸的化学组成以及⼀级结构(⼀)、核苷酸是构成核酸的基本组成单位1.DNA 的基本组成单位是脱氧核苷酸,⽽RNA 的基本组成单位是核糖核苷酸。
2.核苷酸中的碱基成分:含氮的杂环化合物。
①DNA 中的碱基:A\T\C\G 。
②RNA 中的碱基:S\U\C\G 。
★这五种碱基的酮基或氨基受所处环境的pH 是影响可以形成酮-烯醇互变异构体或氨基-亚2.核糖①β-D-核糖:C-2’原⼦上有⼀个羟基。
②β-D-脱氧核糖:C-2’原⼦上没有羟基☆脱氧核糖的化学稳定性⽐核糖好,这使DNA成为了遗传信息的载体。
3.核苷①核苷②脱氧核苷③核糖的C-1’原⼦和嘌呤的N-9原⼦或者嘧啶的N-1原⼦通过缩合反应形成了β-N-糖苷键。
在天然条件下,由于空间位阻效应,核糖和碱基处在反式构象上。
3.核苷酸的结构与命名①核苷或脱氧核苷C-5’原⼦上的羟基可以与磷酸反应,脱⽔后形成磷酸键,⽣成核苷酸或脱氧核苷酸。
②根据连接的磷酸基团的数⽬不同,核苷酸可分为核苷⼀磷酸(NMP)、核苷⼆磷酸(NDP)、核苷三磷酸(NTP)。
③⽣物体内游离存在的多是5’核苷酸★细胞内⼀些参与物质代谢的酶分⼦的辅酶结构中都含有腺苷酸,如辅酶Ⅰ(NAD+),它们是⽣物氧化体系的重要成分,在传递质⼦或电⼦的过程中具有重要的作⽤。
(⼆)、DNA是脱氧核糖核苷酸通过3’,5’-磷酸⼆酯键连接形成的⼤分⼦1.脱氧核糖核苷三磷酸C-3’原⼦的羟基能够与另⼀个脱氧核糖核苷三磷酸的α-磷酸基团缩合,形成了⼀个含有3’,5’-磷酸⼆酯键的脱氧核苷酸分⼦。
2.脱氧核苷酸分⼦保留着C-5’原⼦的磷酸基团和C-3’原⼦的羟基。
Chapter 2 核酸的结构与功能教学教材
核酸的结构与功能
Structures and Functions of Nucleic Acids
内容
2.1 核酸的种类与分布 2.2 核苷酸 2.3 DNA的分子结构 2.4 核酸与蛋白质的复合体 2.5 RNA的分子结构 2.6 核酸的理化性质
2
2.1 核酸(Nucleic acid) 的种类与分布
48
(四)DNA双螺旋结构的多样性
49
双螺旋DNA的类型及相关参数
类型 螺旋方向
存在条件
螺距 碱基数/螺旋 碱基倾角
A-DNA 右手
相对湿度75% 2.53 nm
11
19°
B-DNA 右手
相对湿度92% 3.54 nm
10.4
1°
Z-DNA 左手 嘌呤-嘧啶二核 4.56 nm
12
苷酸为重复单位
N=A/U/G/C
同样,dNDP、dNTP, N=A/T/G/C
腺嘌呤 腺苷
16
核苷多磷酸的生物学功能:
§NTP和dNTP分别是RNA和DNA的直接前体。 §ATP分子的最显著特点是含有两个高能磷酸键。水
解时, ATP可以释放出大量自由能,推动生物体内 各种需能的生化反应。 §UDP、ADP、GDP在多糖合成中,可作为携带葡 萄糖基的载体;CDP在磷脂合成中可作为携带胆 碱的载体。 §GTP、CTP、UTP在某些生化反应中也具有传递能 量的作用。
11
稀 有 碱 基
大多甲基化碱基,tRNA含量丰富 (高达10%) 12
2.2.3 戊糖
β-D-核糖
β-D-脱氧核糖
13
2.2.4 核苷
碱基和核糖(或脱氧核糖)通过C-N 糖苷 键连接形成核苷(或脱氧核苷)。
第二单元 核酸的结构和功能
(1~2题共用备选答案)
A.G、C、T、U
Bቤተ መጻሕፍቲ ባይዱG、A、C、T
C.A、G、C、U
D.G、A、T、U
E.I、C、A、U
【助理】
1RNA分子中所含的碱基是
四、DNA的功能
DNA是遗传的物质基础,表现生物性状的遗传信息贮存在DNA分子的核苷酸序列中。当细胞分裂时,生物遗传信息通过复制从亲代(细胞)传递给子代(细胞),使物种得以延续。因此,DNA与细胞增生、生物体传代有关。DNA还可通过转录指导RNA(包括mRNA)合成,将遗传信息传递给mRNA;继而以mRNA为模板合成特异的蛋白质分子。蛋白质赋予生物体或细胞特异的生物表型和代谢表型,使生物性状遗传。
C.DNA双螺旋以右手螺旋的方式围绕同一轴有规律地盘旋
D.两股单链的5′至3′端走向在空间排列上相同
E.两碱基之间的氢键是维持双螺旋横向稳定的主要化学键
答案:D
三、DNA的三级结构
原核生物没有细胞核,其DNA分子在双螺旋基础上进一步扭转盘曲,形成超螺旋,使体积压缩。超螺旋结构就是DNA的三级结构。
在真核生物的染色体中,DNA的三级结构与蛋白质的结合有关。与DNA结合的蛋白质有组蛋白和非组蛋白两类。组蛋白有H1,H2A,H2B,H3和H4共5种,它们都是含有丰富的赖氨酸和精氨酸残基的碱性蛋白质。组蛋白H2A、H2B、H3和H4各两分子形成八聚体,八聚体之外绕有近1圈约140至146个碱基对的DNA,构成一个核小体。H1位于核小体与核小体之间的连接区,并与约75至100个碱基对的DNA结合,组成串珠状结构。在核小体结构基础上,DNA链进—步折叠,形成染色(单)体。人类细胞核中有46条(23对)染色体,这些染色体的DNA总长达1.7m,经过折叠压缩,46条染色体总长也仅200nm左右。
第二章核酸的分子结构
第二章核酸的分子结构核酸是一类重要的生物大分子,包括DNA(脱氧核糖核酸)和RNA(核糖核酸)。
它们是细胞内负责遗传信息存储和传递的关键分子。
核酸的分子结构是由不同的分子组成,形成了独特的双螺旋结构,这种结构使得核酸能够实现遗传信息的稳定传递以及多种生物功能的实现。
DNA是由鸟嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)和鸟嘌呤(G)四种碱基组成的核酸分子。
碱基通过N-糖苷键链接到核糖磷酸分子上,形成了核苷酸,进而形成了DNA的整个分子结构。
DNA的双螺旋结构采用了著名的Watson-Crick结构模型,即两根互相以螺旋形状缠绕的链。
这种结构由两条链通过碱基间的氢键相互连接,形成了DNA的双螺旋结构。
其中,鸟嘌呤通过三个氢键连接到胸腺嘧啶,胞嘧啶通过两个氢键连接到鸟嘌呤。
这种碱基之间的选择性配对使得DNA能够实现信息的复制和传递。
在DNA的分子结构中,糖苷和磷酸通过磷酸二酯键链接在一起,形成了DNA的骨架。
两条糖磷酸链反向排列,形成了DNA的双螺旋结构。
糖苷分子是由五个碳原子组成的环状结构,每个碳原子上有一个氧原子和一个氢原子,还有一个碱基。
两条DNA链互相以反向排列的方式连接,即一个链上的3'-OH基团连接到另一个链上的5'-磷酸基团。
这种反向排列使得DNA具有了方向性,即5'端和3'端。
与DNA不同,RNA由磷酸核糖分子和碱基组成。
在RNA分子中,脱氧核糖被核糖取代,并且鸟嘌呤(A)和胸腺嘧啶(T)不再是碱基对,取而代之的是鸟嘌呤(A)和尿嘧啶(U)。
RNA的磷酸二酯键连接在一起,形成了RNA的线性结构。
虽然RNA也可以形成双螺旋结构,但大部分的RNA通常是单链结构。
RNA还具有许多不同的结构和功能,例如mRNA(信使RNA)、rRNA(核糖体RNA)和tRNA(转运RNA),它们参与了蛋白质的合成过程。
总之,核酸的分子结构是由不同的分子组成,形成了特殊的双螺旋结构。
第二章 核酸的结构与功能
第二章核酸的分子结构与功能——复习测试题A型选择题1.核酸各基本单位之间的主要连接键为A.磷酸一酯键B.磷酸二酯键C.氢键D.离子键E.碱基堆积力2.游离核苷酸分子中,磷酸基最常位于A.核苷酸中戊糖的C-5’上B.核苷酸中戊糖的C-3’上C.核苷酸中戊糖的C-2’上D.核苷酸中戊糖的C-2’和C-3’上E.核苷酸中戊糖的C-2’和C-5’上3.DNA与RNA完全水解后的产物特点是A.核糖相同,碱基部分相同B.核糖不同,碱基相同C.核糖相同,碱基不同D.核糖不同,碱基部分相同E.以上均不对4.下列哪种碱基一般只存在于RNA而不存在于DNAA.腺嘌呤B.胞嘧啶C.胸腺嘧啶D.尿嘧啶E.鸟嘌呤5.有关DNA双螺旋结构,以下哪种说法不对A. 由两条多核苷酸链组成B. 碱基不同,相连的氢键数目不同C. 3’-OH与5’-磷酸基形成磷酸二酯键D. 磷酸与戊糖总是在双螺旋的内部E. 磷酸与戊糖组成了双螺旋的骨架6.下列有关DNA的二级结构,错误的是A.DNA二级结构是双螺旋结构B.DNA双螺旋结构是空间结构C.双螺旋结构中,两条链方向相同D.双螺旋结构中碱基之间互相配对E.二级结构中碱基之间一定有氢键相连7.有关tRNA的二级结构,正确的是A.tRNA没有氨基酸臂B.含DHU的是反密码环C.含TψC的是二氢尿嘧啶环D.可与mRNA密码子识别配对的是额外环E.tRNA分子中有部分碱基以氢键连接成对8.有关DNA分子中碱基组成,正确的是A.A=T,G=CB.A+T=G+CC.G=T,A=CD.2A=C+TE.以上均对9.对于tRNA的描述,错误的是A.细胞内有多种tRNAB.tRNA通常由70~80个单核苷酸组成C.参与蛋白质的生物合成D.遗传上具有保守性E.分子量比mRNA大10.对环核苷酸的叙述,错误的是A. 重要的环核苷酸有cAMP和cGMPB. cAMP为第二信使C. cAMP与cGMP的生物学作用相反D. cAMP是由AMP在腺苷酸环化酶的作用下生成E. cAMP分子内有环化的磷酸二酯键11.稀有核苷酸碱基主要是在下列哪类核酸中发现的A. rRNAB. mRNAC. tRNAD.核仁DNAE.线粒体DNA12.DNA双螺旋结构中,最常见的是A. A-DNA结构B. B-DNA结构C. X-DNA结构D. Y-DNA结构E. Z-DNA结构13.双链DNA的Tm值高,是由下列哪组碱基含量高引起的A. A+GB. C+TC. A+TD. C+GE. A+C14.下列曲线中的数字符号,代表Tm的是A. ①B.②C.③D.④E.⑤15.Watson-CrickDNA结构模型表示A.一个三链结构B.DNA双股链的走向是反向平行的C.碱基A和G配对D.碱基之间共价结合E.磷酸-戊糖主链位于DNA螺旋内侧16.核酸在260nm处有最大光吸收是由于A.磷酸二酯键的存在B.核苷酸中的N-糖苷键C.核糖和脱氧核糖的呋喃型环状结构D.碱基对之间形成氢键E.嘌呤和嘧啶环上有共轭双键17.组成核酸的基本化学成分A.碱基、磷酸、戊糖B.核苷C.单核苷酸D.氨基酸E.环单核苷酸18.有关多核苷酸链的叙述正确的是A.多核苷酸链中,嘌呤与嘧啶核苷酸有规律地交替排列B.多核苷酸链中,核苷酸借肽键连接而成C.有极性和方向性D.一侧末端为5’-OH,另一侧末端为3’-PiE.有2个末端,即N-末端和C-末端19.假尿苷(ψ)中的糖苷键是A.C-N连接B.C5-C1’连接C.N-N连接D.O-C连接E.O-N连接20.下列哪项可说明DNA是生物遗传信息的携带者A.不同生物的碱基组成应是相同的B.病毒感染是通过蛋白质侵入宿主细胞来完成的C.同一生物体不同组织的DNA通常具有相同的碱基组成D.生物体的DNA碱基组成应随年龄和营养状态的改变而改变E.DNA是以小的环状结构被发现的21.脱氧胸苷的缩写符号A. GdRB. AdRC. UdRD. CdRE. TdR22.下列哪种DNA的Tm较低A.含A-T15%B.含G-C25%C.含G-C40%D.含A-T80%E.含G-C35%23.Watson-Crick的DNA结构模型的特点是A.两条多核苷酸链的碱基顺序完全相同B.腺嘌呤必定与胞嘧啶配对,鸟嘌呤必定与胸腺嘧啶配对C.DNA分子由两条反平行的多核苷酸链围绕同一中心轴构成双螺旋D.碱基位于螺旋外侧,形成螺旋的骨架E.碱基对之间以共价键连接24.关于rRNA的叙述,下列哪项是错误的A.是细胞内含量最多的RNAB.能够与核糖体蛋白共同组成核糖体C.核糖体由易于解离的大、小两个亚基组成D.真核细胞的核糖体含5S、16S和23S三种rRNAE.能进行碱基配对形成局部的双螺旋结构25.核糖核苷中核糖与碱基的连接键是A. α-糖苷键B. β-糖苷键C. α-1,2糖苷键D. α-1,6糖苷键E. β-1,4糖苷键26.在下列哪种情况下,互补的两条DNA单链将结合形成双链A.在低于变性温度约25℃的条件下保温B.在高于变性温度约25℃的条件下保温C.在等于变性温度的条件下保温D.加入放射性同位素32PE.将吸附在硝酸纤维素膜上的DNA烘烤27.DNA热变性时具有下列哪种特征A.碱基之间的磷酸二酯键发生断裂B.形成三股螺旋C.顺序复杂度较低者具有较宽的变性范围D.变性温度的高低与G+C碱基含量相关E.在波长260nm处的光吸收降低28.常见的cAMP指的是A.1’,4’-环腺苷酸B.2’,5’-环腺苷酸C.3’,5’-环腺苷酸D.1’,3’-环腺苷酸E.2’,4’-环腺苷酸29.下列哪种情况可使两条互补的单链DNA结合成双链A.变性B.退火C.加连接酶D.加聚合酶E.所列都不是30.关于真核生物mRNA的结构特点,下列哪项是正确的A.其3’-端具有帽子结构B.由大、小两个亚基组成C.存在7-甲基鸟苷三磷酸的帽子结构D.其二级结构与DNA一样,整个分子均为双螺旋结构E.其5’-端为-CCA顺序B型选择题A.磷酸、核糖、尿嘧啶、胞嘧啶B.磷酸、脱氧核糖、尿嘧啶、胞嘧啶C.磷酸、核糖、尿嘧啶、胸腺嘧啶D.磷酸、脱氧核糖、胞嘧啶、胸腺嘧啶E.磷酸、核糖、胸腺嘧啶、胞嘧啶31.构成DNA的成分有32.构成RNA的成分有A.假尿苷B.核糖C.胞嘧啶D.次黄嘌呤E.脱氧核糖33.只存在于DNA分子中34.tRNA分子中的特征性组分35.DNA和RNA分子都有的组分A.mRNAB.tRNAC.rRNAD.DNAE.cAMP36.蛋白肽类激素的第二信使37.参与氨基酸转运的是A.磷酸二酯键B.肽键C.氢键D.离子键E.疏水键38.稳定DNA双螺旋结构的因素39.配对碱基间的连接键40.核苷酸之间的连接键X型选择题41.DNA分子中的碱基组成是A. A+C=G+TB. A=TC. C=GD. C+G=A+T42. tRNA分子中的稀有核苷酸包括A.假尿嘧啶核苷酸B.二氢尿嘧啶核苷酸C.胸腺嘧啶核苷酸D.嘌呤脱氧核苷酸43.DNA具有以下哪些功能A.携带遗传信息B.进行半保留复制C.有转运氨基酸的功能D.能转录合成RNA44. DNA存在于A.高尔基体B.线粒体C.粗面内质网D.染色体45.维持DNA双螺旋的力包括A.碱基对间的范德华氏力B.碱基之间的氢键C.磷酸残基的负电荷与介质中阳离子形成离子键D.磷酸二酯键46.有关A TP的叙述正确的是A.ATP含有三个磷酸酯键B.A TP含有两个高能磷酸酯键C.ATP可以游离存在D.ATP含有两个高能硫酯键47.有关tRNA的叙述哪些是正确的A.分子中含有较多稀有碱基B.tRNA通常由70-80个单核苷酸组成C.空间结构中含有反密码环D.是细胞内含量最多的一种RNA48.属于tRNA“三叶草”结构的是A.氨基酸臂B.DHU臂C.反密码臂D.TψC臂49.下列关于hnRNA叙述正确的是A.其生命期(几分钟)较细胞内大多数RNA为短B.其3’端可经修饰形成一个ployA长尾C.它们存在于细胞核的核仁外周部分D. 3’-脱氧腺苷抑制ployA长尾的生成50.原核生物遗传密码的研究揭示了A.三联体密码3’端核苷酸对氨基酸有最小的专一性B.一个密码子的末端与另一密码子开端之间没有标点符号C.只有三个三联体不代表任何氨基酸D. mRNA分子可指令一条以上的多肽链名词解释1. 增色效应(hyperchromic effect)2. Tm 值(melting temperature)3. 反密码环(anticoden loop)4. 核酶(ribozyme)5. 核酸分子杂交(hybridization)问答题1. 细胞内有哪几类主要的RNA ?其主要功能是什么?2. 简述DNA 双螺旋结构模式的要点及其与DNA 生物学功能的关系。
第二章 核酸的结构与功能(试题及答案)
第二章核酸的结构与功能一、名词解释1.核酸 2.核苷 3.核苷酸 4.稀有碱基 5.碱基对 6.DNA的一级结构 7.核酸的变性 8.Tm值 9.DNA的复性 10.核酸的杂交二、填空题11.核酸可分为 ____和____两大类,其中____主要存在于____中,而____主要存在于____。
12.核酸完全水解生成的产物有____、____和____,其中糖基有____、____,碱基有____和____两大类. 13.生物体内的嘌呤碱主要有____和____,嘧啶碱主要有____、____和____。
某些RNA分子中还含有微量的其它碱基,称为____.14.DNA和RNA分子在物质组成上有所不同,主要表现在____和____的不同,DNA分子中存在的是____和____,RNA分子中存在的是____和____。
15.RNA的基本组成单位是____、____、____、____,DNA的基本组成单位是____、____、____、____,它们通过____键相互连接形成多核苷酸链。
16.DNA的二级结构是____结构,其中碱基组成的共同特点是(若按摩尔数计算)____、____、____。
17.测知某一DNA样品中,A=0。
53mol、C=0.25mol、那么T= ____mol,G= ____mol。
18.嘌呤环上的第____位氮原子与戊糖的第____位碳原子相连形成____键,通过这种键相连而成的化合物叫____。
19.嘧啶环上的第____位氮原子与戊糖的第____位碳原子相连形成____键,通过这种键相连而成的化合物叫____.20.体内有两个主要的环核苷酸是____、____,它们的主要生理功用是____。
21.写出下列核苷酸符号的中文名称:ATP____、dCDP____。
22.DNA分子中,两条链通过碱基间的____相连,碱基间的配对原则是____对____、____对____.23.DNA二级结构的重要特点是形成____结构,此结构属于____螺旋,此结构内部是由____通过____相连维持,其纵向结构的维系力是____。
第二章 核酸的结构与功能
核酸的结构与功能
❖ 1868年,瑞士外科医生Fridrich从外科手术绷带上的脓细胞的细 胞核中分离出一种溶于碱而不溶于酸的酸性有机化合物,其分子 中含磷2.5%、含氮14%,该物质被命名为核酸。
❖ 根据核酸分子中所含戊糖的差别: (一)脱氧核糖核酸(DNA):主要存在于细胞核中(真核细胞的 线粒体中也存在不少量的DNA),携带着决定个体基因型的遗传信 息,是遗传信息的贮存和携带者; (二)核糖核酸(RNA):主要存在于细胞核和细胞质中,参与细
比DNA复制得多,这与它的功能多样化密切相关。
一、mRNA是蛋白质合成中的模板
❖ 1960年,Jacob 和 Monod 等人用放射性核素示踪实验证实: 一类大小不同的RNA才是细胞内合成蛋白质的真正模板,于 1961年首先提出了信使RNA(mRNA)这个概念。
❖ 在各种RNA分子中,mRNA约占细胞内RNA总量的2~5%,种类 最多,分子大小相差很大;
N H
❖DN生称AN物为稀体有的D碱N基A8 N和79NH。RN45 AN36分12 子N 中NH2还含有一些65含1N4 3量2N 很O 少H的3C碱基65 1,N4 32
N
O
鸟嘌呤
RNA
胞嘧啶
胸腺嘧啶
5´
HOCH2
4´ H
OH O
H 1´
H
H
3´
2´
OH OH
β-D-核糖(构成RNA)
5´
HOCH2
遗传的相对稳定性,又可发生各种重组和突变,适应环境的 变迁,为自然选R型择细提菌供:无机毒会型。肺炎球菌
S型细菌:有毒型肺炎球菌
肺炎球菌转化实验
第三节
RNA 的结构与功能
❖ RNA和蛋白质共同担负着基因的表达和表达调控功能。 ❖ RNA通常以单链形式存在,但可通过链内的碱基配对形成
第2章 核酸结构与功能习题
第二章核酸结构、功能复习测试(一)名词解释1.核苷2.核苷酸3.磷酸二酯键4.核酸一级结构5.DNA二级结构6.碱基互补规律7.增色效应8.Tm值9.核小体10.反密码子环 11.核酶 12.分子杂交(二)选择题A型题:1. 下列哪种碱基只存在于RNA而不存在于DNA:A.腺嘌呤 B.胞嘧啶 C.胸腺嘧啶 D.尿嘧啶 E.鸟嘌呤2. DNA和RNA共有的成分是:A.D-核糖 B.D-2-脱氧核糖 C.腺嘌呤 D.尿嘧啶E.胸腺嘧啶3. DNA与RNA两类核酸分类的主要依据是:A.所含碱基不同 B.所含戊糖不同C.核苷酸之间连接方式不同 D.空间结构不同E.在细胞中存在的部位不同4. 稀有碱基主要存在于:A.核糖体RNA B.信使RNA C.转运RNAD.核DNA E.线粒体DNA5. tRNA含有的核苷酸数目为:A.100~120 B.70~90 C.40~60 D.10~30 E.以上都不是6. 游离核苷酸中磷酸常常位于:A.核苷酸中戊糖的C3'上 B.核苷酸中戊糖的C5'上C.二核苷酸中戊糖的C2'上 D.核苷酸中戊糖的C3'和C2'上E.核苷酸中戊糖的C5'和C2'上7. 核酸中核苷酸之间的连接方式是:A.2',3'-磷酸二酯键 B.2',5'-磷酸二酯键C.3',5'-磷酸二酯键 D.肽键 E.糖苷键8. 核酸各基本组成单位之间的连接方式是:A.磷酸一酯键 B.磷酸二酯键C.氢键 D.离子键 E.碱基堆积力9. 下列对环核苷酸的叙述哪项是错误的:A.重要的环核苷酸有C AMP和C GMPB.C AMP与C GMP的生物学作用相反C.C AMP是一种第二信使D.C AMP是由AMP在腺苷酸环化酶的作用下生成的E.C AMP分子内有环化的磷酸二酯键10. 对Watson-Crick DNA模型的叙述正确的是:A.DNA为单股螺旋结构 B.DNA两条链的走向相反C.只在A与G之间形成氢键 D.碱基间形成共价键E.磷酸戊糖骨架位于DNA螺旋内部11. DNA碱基配对主要靠:A.范德华力 B.疏水作用 C.共价键 D.盐键 E.氢键12. 与片断pTAGA互补的片断为:A.pTAGA B.pAGAT C.pATCT D.pTCTA E.pUGUA13.在一个DNA分子中,若A所占摩尔比为32.8%,则G的摩尔比为:A.67.2% B.32.8% C.17.2% D.65.6% E.16.4%14. 根据Watson-Crick模型,求得每一微米DNA双螺旋含核苷酸对的平均数为: A.25 400 B.2 540 C.29 411 D.2 941 E.3 50515. 稳定DNA双螺旋的主要因素是:A.氢键和碱基堆积力 B.与Na+结合 C.DNA与组蛋白的结合D.与Mn2+、Mg2+的结合 E.与精胺、亚精胺的结合16. A型DNA和B型DNA产生差别的原因是:A.A型DNA是双链,B型DNA是单链B.A型DNA是右旋,B型DNA是左旋C.A型DNA与B型DNA碱基组成不同D.两者的结晶条件不同E.二者碱基平面倾斜角度不同17. 下列有关DNA二级结构的叙述哪种是错误的:A.DNA二级结构是双螺旋结构B.DNA二级结构是空间结构C.DNA二级结构中两条链方向相同D.DNA二级结构中碱基之间相互配对E.二级结构中碱基之间一定有氢键相连18. 有关DNA双螺旋结构下列哪种叙述不正确:A.DNA二级结构中都是由两条多核苷酸链组成B.DNA二级结构中碱基不同,相连的氢键数目也不同C.DNA二级结构中,核苷酸之间形成磷酸二酯键D.磷酸与戊糖总是在双螺旋结构的内部E.磷酸与戊糖组成了双螺旋的骨架19. 下列关于DNA分子组成的叙述哪项是正确的:A.A=T,G=C B.A+T=G+C C.G=T,A=CD.2A=C+T E.G=A,C=T20. 下列关于核酸二级结构的叙述哪项是错误的:A.在双螺旋中,碱基对形成一种近似平面的结构B.G和C之间是2个氢键相连而成C.双螺旋中每10对碱基对可使螺旋上升一圈D.双螺旋中大多数为右手螺旋,但也有左手螺旋E.双螺旋中碱基的连接是非共价的结合21. 双链DNA有较高的解链温度是由于它含有较多的:A.嘌呤 B.嘧啶 C.A和T D.C和G E.A和C22. 关于核小体下列哪项正确:A.核小体由DNA和非组蛋白共同构成B.核小体由RNA和组蛋白共同构成C.组蛋白的成分是H1,H2A,H2B,H3和H4D.核小体由DNA和H1,H2,H3,H4各二分子构成E.组蛋白是由组氨酸构成的23. DNA的热变性时:A.磷酸二酯键发生断裂B.形成三股螺旋C.在波长260nm处光吸收减少D.解链温度随A-T的含量增加而降低E.解链温度随A-T的含量增加而增加24. 核酸具有紫外吸收能力的原因是:A.嘌呤和嘧啶环中有共轭双键 B.嘌呤和嘧啶中有氮原子C.嘌呤和嘧啶中有氧原子 D.嘌呤和嘧啶连接了核糖E.嘌呤和嘧啶连接了磷酸基团25. 有关核酸的变性与复性的正确叙述为:A.热变性后DNA经缓慢冷却后可复性B.不同的单链DNA,在合适温度下都可复性C.热变性的DNA迅速降温过程也称作退火D.复性的最佳温度为250CE.热变性DNA迅速冷却后即可相互结合26. DNA的解链温度指的是:A.A260nm达到最大值时的温度B.A260nm达到最大变化值的50%时的温度C.DNA开始解链时所需要的温度D.DNA完全解链时所需要的温度E.A280nm达到最大值的50%时的温度27. 真核生物mRNA的帽子结构中,m7G与多核苷酸链通过三个磷酸基连接,连接方式是:A.2'-5' B.3'-5' C.3'-3' D.5'-5' E.3'-3'28. hnRNA是下列哪种RNA的前体:A.tRNA B.真核rRNA C.原核rRNA D.真核mRNA E.原核mRNA29. 下列关于假尿苷的结构描述哪项是正确的:A.假尿苷所含的碱基不是尿嘧啶 B.假尿苷中戊糖是D-2'-脱氧核糖C.碱基戊糖间以N1-C1相联 D.碱基戊糖间以N1-C5相联E.碱基戊糖间以C5-C1相联30. tRNA在发挥其“对号入座”功能时的两个重要部位是:A.反密码子臂和反密码子环 B.氨基酸臂和D环C.TΨC环与可变环 D.TΨC环与反密码子环E.氨基酸臂和反密码子环31. 下列核酸变性后的描述哪项是错误的:A.共价键断裂,分子量变小 B.紫外吸收值增加C.碱基对之间的氢键被破坏 D.粘度下降 E.比旋值减小32. (G+C)含量愈高Tm值愈高的原因是:A.G-C间形成了一个共价键 B.G-C间形成了两个氢键C.G-C间形成了三个氢键 D.G-C间形成了离子键E.G-C间可以结合更多的精胺、亚精胺33. 核小体珠状核心蛋白是:A.H2A、H2B、H3、H4各一个分子B.H2A、H2B、H3、H4各二个分子C.H1蛋白以及140—145碱基对DNAD.H2A、H2B、H3、H4各四个分子E.非组蛋白34. 下列有关tRNA的叙述哪项是错误的:A.tRNA二级结构是三叶草结构B.tRNA分子中含有稀有碱基C.tRNA的二级结构含有二氢尿嘧啶环D.tRNA分子中含有1个可变环E.反密码子环有CCA三个碱基组成的反密码子35. 下列对RNA一级结构的叙述哪项是正确的:A.几千至几千万个核糖核苷酸组成的多核苷酸链B.单核苷酸之间是通过磷酸一酯键相连C.RNA分子中A一定等于U,G一定等于CD.RNA分子中通常含有稀有碱基E.mRNA的一级结构决定了DNA的核苷酸顺序36. 下列有关RNA的叙述哪项是错误的:A.mRNA分子中含有遗传密码B.tRNA是分子量最小的一种RNAC.RNA可分为mRNA、tRNA、rRNA等D.胞浆中只有mRNA,而没有别的核酸E.rRNA可以组成合成蛋白质的场所37. 对于tRNA的叙述下列哪项是错误的:A.tRNA通常由70~80个核苷酸组成B.细胞内有多种tRNAC.参与蛋白质的生物合成D.分子量一般比mRNA小E.每种氨基酸都只有一种tRNA与之对应38. DNA变性的原因是:A.温度升高是惟一的原因 B.磷酸二酯键断裂C.多核苷酸链解聚 D.碱基的甲基化修饰E.互补碱基之间的氢键断裂39. DNA变性后下列哪项性质是正确的:A.是一个循序渐进的过程 B.260nm波长处的光吸收增加C.形成三股链螺旋 D.溶液粘度增大E.变性是不可逆的40.下列哪种碱基组成DNA分子的Tm高:A.A+T=15% B.G+C=25% C.G+C=40% D.A+T=80% E.G+C=35%41. 单链DNA:5'-pCpGpGpTpA-3'能与下列哪种RNA单链分子进行分子杂交:A.5'-pGpCpCpTpA-3' B.5'-pGpCpCpApU-3'C.5'-pUpApCpCpG-3' D.5'-pTpApGpGpC-3'E.5'-pTpUpCpCpG-3'42.下列关于RNA的论述哪项是错误的:A.主要有mRNA、tRNA、rRNA等种类B.原核生物没有hnRNA和snRNAC.tRNA是最小的一种RNAD.胞质中只有一种RNA,即tRNAE.组成核糖体的RNA是rRNA43. 关于真核生物的mRNA叙述正确的是:A.在胞质内合成并发挥其功能 B.帽子结构是一系列的腺苷酸C.有帽子结构和多聚A尾巴 D.在细胞内可长期存在E.前身是rRNA44. 有关mRNA的正确解释是:A.大多数真核生物的mRNA都有5'-末端的多聚腺苷酸结构B.所有生物的mRNA分子中都有较多的稀有碱基C.原核生物mRNA的3'末端是7-甲基鸟嘌呤D.大多数真核生物mRNA 5'-端为m7GpppN结构E.原核生物帽子结构是7-甲基腺嘌呤45. 真核生物mRNA多数在3'-末端有:A.起始密码子 B.PolyA尾巴 C.帽子结构D.终止密码子 E.CCA序列46. snRNA的功能是:A.作为mRNA的前身物 B.促进mRNA的产生成熟C.使RNA的碱基甲基化 D.催化RNA合成E.促进DNA合成47. tRNA连接氨基酸的部位是在:A.1'-OH B.2'-OH C.3'-OH D.3'-P E.5'-P48. tRNA分子3'末端的碱基序列是:A.CCA-3'B.AAA-3' C.CCC-3' D.AAC-3' E.ACA-3'49. 酪氨酸tRNA的反密码子是5'-GUA-3',它能辨认的mRNA上的相应密码子是: A.GUA B.AUG C.UAC D.GTA E.TAC50. 原核生物和真核生物核糖体上都有:A.18S rRNA B.5S rRNA C.5.8S rRNA D.30S rRNA E.28S rRNA51. 哺乳动物细胞核糖体的大亚基沉降系数为:A.30S B.40S C.60S D.70S E.80S52. 下列关于tRNA的叙述哪项是正确的:A.分子上的核苷酸序列全部是三联体密码B.是核糖体组成的一部分C.可贮存遗传信息D.由稀有碱基构成发卡结构E.其二级结构为三叶草形53. 下列关于tRNA的叙述哪项是错误的:A.由于各种tRNA3'末端结构不同,因而能结合各种不同的氨基酸B.含有二氢尿嘧啶核苷并形成环C.分子量较小,通常由70~90个核苷酸组成D.发卡结构是形成四个臂的基础E.3'末端往往有CCA-3'序列54. 关于核酶的叙述正确的是:A.专门水解RNA的酶 B.专门水解DNA的酶C.位于细胞核内的酶 D.具有催化活性的RNA分子E.由RNA和蛋白质组成的结合酶.55. 关于锤头核酶的叙述错误的是:A.碱基组成相同 B.一级结构没有共同的特点C.二级结构呈锤头状 D.有十三个保守碱基E.人工设计合成的核酶可能成为抗病毒的新药56. DNA合成需要的原料是:A.ATP,CTP,GTP,TTP B.ATP,CTP,GTP,UTP C.dATP,dGTP,dCTP,dUTP D.dATP,dGTP,dCTP,TTPE. 以上都不是57. 关于DNA双螺旋结构模型的描述哪项不正确:A.腺嘌呤的摩尔分数等于胸腺嘧啶的摩尔分数B.同种生物体不同组织中的DNA碱基组成相同C.DNA双螺旋中碱基对位于外侧D.二股多核苷酸链通过A与T或C与C之间的氢键连接E.维持双螺旋稳定的主要因素是氢键和碱基堆积力58. 参与hnRNA剪接的RNA是:A.snRNA B.tRNA C.hnRNA D.mRNA E.rRNA 59. 人的基因组的碱基数目为:A.2.9×109bp B.2.9×106bp C.4×109bpD.4×106bp E.4×108bpB型题:A.AMP B.ADP C.ATP D.dATP E.cAMP1. 含一个高能磷酸键:2. 含脱氧核糖基:3. 含分子内3',5'-磷酸二酯键:A.5sRNA B.28sRNA C.16sRNA D.snRNA E.hnRNA4. 原核生物和真核生物核糖体都有的是:5. 真核生物核糖体特有:6. 原核生物核糖体特有:A.tRNA B.mRNA C.rRNA D.hnRNA E.DNA7. 分子量最小的一类核酸:8. 细胞内含量最多的一类RNA:9. mRNA的前体:A.tRNA B.mRNA C.rRNA D.hnRNA E.DNA10. 有5'-帽子结构:11. 有3'-CCA-OH结构:12. 有较多的稀有碱基:13. 其中有些片段被剪切掉:A.变性 B.复性 C.杂交 D.重组 E.层析14. DNA的两股单链重新缔合成双链称为:15. 单链DNA与RNA形成局部双链称为:16. 不同DNA单链重新形成局部双链称为:A.超螺旋结构 B.三叶草形结构 C.双螺旋结构D.帽子结构 E.发夹样结构17. RNA二级结构的基本特点是:18. tRNA二级结构的基本特征是:19. DNA二级结构的特点是:20. mRNA5'端具有:A.腺嘌呤核苷酸 B.胸腺嘧啶核苷酸 C.假尿嘧啶核苷酸D.次黄嘌呤核苷酸 E.黄嘌呤21. 存在于tRNA中反密码子环:22. 只存在于DNA中:23. 通过C-C糖苷键相连:(三)问答题1. DNA与RNA一级结构和二级结构有何异同?2. 细胞内有哪几类主要的RNA?其主要功能是什么?3. 已知人类细胞基因组的大小约30亿bp,试计算一个二倍体细胞中DNA的总长度,这么长的DNA分子是如何装配到直径只有几微米的细胞核内的?4. 叙述DNA双螺旋结构模式的要点。
生物化学第二章笔记
⽣物化学第⼆章笔记第⼆章核酸的结构与功能核酸(uncleic acid)是以核苷酸为基本组成单位的⽣物信息⼤分⼦,携带和传递遗传信息。
脱氧核糖核苷酸(deoxyribonucleic acid,DNA)90%以上分布于细胞核,其余分布于核外,如线粒体,叶绿体和质粒等。
携带遗传信息,决定细胞和个体的遗传型(genotype)。
核糖核酸(ribonucleic acid,RNA)分布于细胞质、细胞核和线粒体内。
参与细胞内DNA遗传信息的表达。
某些病毒RNA也可作为遗传信息的载体。
第⼀节核酸的化学组成及结构核酸组成⼀、核苷酸是构成氨基酸的基本组成单位分⼦组成:碱基(嘌呤碱、嘧啶碱)、戊糖(核糖、脱氧核糖)、磷酸。
碱基(base)是含氮的杂环化合物。
嘌呤N-9或嘧啶N-1与脱氧核糖C-1’通过β-N-糖苷键相连形成脱氧核苷或核苷。
核苷或脱氧核苷与磷酸通过酯键结合构成核苷酸或脱氧核苷酸。
核苷酸还存在衍⽣物,如环化核苷酸(cAMP、cGMP)是细胞信号转导中的第⼆信使。
⼆、DNA是脱氧核苷酸通过3’,5’-磷酸⼆酯键连接形成的⼤分⼦⼀个脱氧核苷酸3’的羟基与另⼀个核苷酸5’的α-磷酸基团缩合形成磷酸⼆酯键。
多个脱氧核苷酸通过磷酸⼆酯键构成了具有⽅向性的线性分⼦,称为多聚脱氧核苷酸,即DNA链。
DNA链的⽅向是5’→3’。
交替的磷酸基团和戊糖构成了DNA的⾻架。
三、RNA也是具有3’,5’-磷酸⼆酯键的线性⼤分⼦RNA也是多个核苷酸分⼦通过酯化反应形成的线性⼤分⼦,并且具有⽅向性;RNA的戊糖是核糖;RNA 的嘧啶是胞嘧啶和尿嘧啶。
四、核酸的⼀级结构是核苷酸的排列顺序由于核苷酸间的差异主要是碱基不同,所以也称为碱基序列。
核酸分⼦的⼤⼩常⽤碱基数⽬来表⽰。
⼩的核酸⽚段(<50bp)常被称为寡核苷酸。
⾃然界中的DNA 和RNA的长度可以⾼达⼏⼗万个碱基。
DNA和RNA之间的差别第⼆节DNA的空间结构与功能DNA的空间结构:构成DNA的所有原⼦在三维空间具有确定的相对位置关系。
分子生物学名词解释
分子生物学名词解释第二章核酸的结构与功能1. DNA的变性与复性(denaturation and renaturation of DNA): 双链DNA(dsDNA)在变性因素(如过酸、过碱、加热、尿素等)影响下,解链成单链DNA(ssDNA)的过程称之为DNA变性。
DNA变性后,生物活性丧失,但一级结构没有改变,所以在一定条件下仍可恢复双螺旋结构。
热变性的DNA经缓慢冷却后,两条互补链可重新恢复天然的双螺旋构象,这一现象称为复性,也称退火。
2.核酸分子杂交(hybridization of nucleic acids):是核酸研究中一项最基本的实验技术。
其基本原理就是应用核酸分子的变性和复性的性质,使来源不同的DNA(或RNA)片段,按碱基互补关系形成杂交双链分子。
杂交双链可以在DNA与DNA链之间,也可在RNA与DNA链之间形成。
这种现象称为核酸分子杂交。
简称杂交(hybridization)3.增色效应与减色效应(hyperchromic effect and hypochromi c effect): DNA变性时,双螺旋松解,碱基暴露,OD260值增高称之为增色效应;除去变性因素后,单链DNA依碱基配对规律恢复双螺旋结构,OD260值减小称为减色效应。
4. 核酶(ribozyme):核酶是具有催化功能的RNA分子。
大多数核酶通过催化转磷酸酯和磷酸二酯键水解反应参与RNA自身剪切、加工过程。
5.探针:探针是经过特殊标记的核酸片段,具有特定的序列,能够与待测的核酸片段互补结合,因此可用于检测核酸样品中的基因。
第八章核苷酸代谢1. 从头合成途径(de novo synthesis pathway): 利用磷酸核糖、氨基酸、一碳单位及CO2等简单物质为原料合成嘌呤或嘧啶核苷酸的过程,称为从头合成途径,是体内的主要合成途径。
核酸的结构与功能
现代分子生物学的基础:1953年 Watson和 Crick发现DNA的双螺旋结构
P24
• 1968年 Nirenberg发现遗传密码 • 1973年美国斯坦福大学首次进行了体外基因重组 • 1975年 Temin和Baltimore发现逆转录酶 • 1981年 Gilbert和Sanger建立DNA测序方法 • 1985年 Mullis发明PCR技术 • 1990年 启动人类基因组计划(HGP) • 2003年 完成人类基因组计划 • 20世纪末 发现许多具有特殊功能的RNA
2003年4月14日,美、英、日、意、中同时宣布: 人类30亿碱基DNA序列已测定出来
P30
核酸分子大小的表示方法
碱基数目(单链): base或kilobase, kb 碱基对数目(双链): base pair, bp或kilobase pair, kb DNA和RNA的分子量呈多样性
<50bp常被称为寡核苷酸(oligonucleotide)
P32
0.34nm
3.4nm
1nm
3、两条核苷酸链通过碱 基间的氢键连接。遵从
T
A
碱基互补原则,即:
A-T配对,形成两个氢键 C
G
G-C配对,形成三个氢键
互补
P32
4、碱基堆积力(疏水力)和氢键 维系DNA双螺旋结构的稳定 力量
P32
Watson-Crick的DNA双螺旋
2.0 nm
DNA双螺旋结构存在多样性:
第三节 DNA的结构与功能 第四节 RNA的结构与功能 第五节 核酸的理化性质及应用
第四节 RNA的结构与功能
RNA的一级结构即核苷酸的排列顺序 RNA的基本组成单位是4种核糖核苷酸 AMP、GMP、CMP、UMP RNA的基本结构键是 3’,5’ – 磷酸二酯键 RNA的分子小,种类多,稀有碱基多
2第二章 DNA的分子特性
5’-磷酸腺苷的结构式 -
7
2)核苷酸是怎么连接的?
8
3’,5’ - 磷酸二酯 ,
9
寡核苷酸(oligonucleotide)
指二~~十个核苷酸残基以磷酸二酯键连接而 指二 十个核苷酸残基以磷酸二酯键连接而 成的线性多核苷酸片段。 成的线性多核苷酸片段
使用时,对核苷酸残基的数目并无严格规定 寡核苷酸目前已可由仪器自动合成,作为 DNA合成的引物(primer)、基因探针(probe)等
14
(2)线条式 )
垂线(位于碱基之下) 垂线(位于碱基之下)—— 糖基 斜线(位于垂线与P之间) 斜线(位于垂线与P之间)—— 磷酸酯键
15
简写式表示的含义
核酸分子的一级结构 ※核酸分子的一级结构
※核酸分子中的核苷酸排列顺序
16
二)DNA的一级结构
1)DNA一级结构的概念 ) 一级结构的概念
12
链和RNA链片段的简写式 例:DNA链和 链和 链片段的简写式 5'pApCpTpTpGpApApCpG3'DNA ' A C T T G A A C G ' 5'pApCpUpUpGpApApCpG3'RNA ' A C U U G A A C G ' 可进一步简化为: 5'pACTTGAACG ' ' ACTTGAACG ACTTGAACG3' 5'pACUUGAACG ' ACUUGAACG3' ' ACUUGAACG
研究表明DNA的结构是动态的 的结构是动态的 研究表明
30
31
A构象:以钠、钾或铯作反离子,相对湿度为75 构象:以钠、钾或铯作反离子,相对湿度为 构象 分子的X-射线衍射图。 %时,DNA分子的 -射线衍射图。 分子的
出现于脱水DNA DNA中 ★出现于脱水DNA中 出现于DNA RNA杂交分子中 DNA- ★出现于DNA-RNA杂交分主要内容是核酸链中的核苷酸或碱基
第2章核酸的结构与功能ppt课件
Sanger测序原理
1.2.1.2 DNA的二级结构及其多态性
Watson和Crick在总结前人研究工作的基础上, 在1953年以立体化学上的最适构型建立了与 DNA X-射线衍射资料相符的分子模型—— DNA双螺旋结构模型。 它可在分子水平上 阐述遗传(基因复制)的基本特征。
⑴DNA双螺旋结构的主要依据
核酸根据核酸的化学组成和生物学功能,将核 酸分为:
核糖核酸(ribonucleic acid RNA)和
脱氧核糖核酸(deoxyribonucleic acid DNA)
所有细胞都同时含有DNA和RNA两种核酸。病 毒只含一种核酸,DNA或RNA,故有DNA 病毒和RNA病毒之分。多数细菌病毒(噬菌 体)属DNA病毒,而植物和动物病毒多为 RNA病毒。
5’pApCpUpUpGpApApCpC3’ RNA
简化为: 5’pACTTGAACG3’ DNA
5’pACUUGAACG3’RNA
简写式的5`-末端均含有一个磷酸残基(与糖基 的C-5`位上的羟基相连),3`-末端含有一个 自由羟基(与糖基的C-3`位相连),若5`端 不写P,则表示5`-末端为自由羟基。
3.4nm 2.8nm 36° 33°
Z-DNA
Wang和Rich等在研究人工 合成的d(CGCGCG)单 晶的X-射线衍射图谱时, 发现这种六聚体的构象不 同于B-构象。
它是左手双螺旋,在主链 中各个磷酸根呈锯齿 (Zigzag)状排列,因此 称Z-构象。
B-DNA与Z-DNA的比较
比较内容
B-DNA
T 24.8
28 25.6 29.7 28.9 29.2 32.9
G 24.1 23.2 21.9 20.5 20.4 20.4 18.7
第2章 核酸的结构与功能
第二章核酸的结构和功能核酸是以核苷酸为基本组成单位的线性多聚生物信息分子。
分为DNA和RNA两大类。
其化学组成见下表:DNA RNA碱基①嘌呤碱 A、G A、G②嘧啶碱 C、T C、U戊糖β-D-2 脱氧核糖β-D-核糖磷酸磷酸磷酸碱基与戊糖通过糖苷键相连,形成核苷。
核苷的磷酸酯为核苷酸。
根据核苷酸分子的戊糖种类不同,核苷酸分为核糖核苷酸与脱氧核糖核苷酸,前者是RNA的基本组成单位,后者为DNA的基本组成单位,核酸分子中核苷酸以3’,5’-磷酸二酯键相连,形成多核苷酸链,是核酸的基本结构。
多核苷酸链中碱基的排列顺序为核酸的一级结构。
多核苷酸链的两端分别称为3’-末端与5’-末端。
DNA的二级结构即双螺旋结构的特点:⑴两条链走向相反,反向平行,为右手螺旋结构;⑵脱氧核糖和磷酸在双螺旋外侧,碱基在内侧;⑶两链通过氢键相连,必须A与T、G与C配对形成氢键,称为碱基互补规律。
⑷大(深)沟,小(浅)沟。
⑸螺旋一周包含10个bp,碱基平面间的距离为0.34nm,螺旋为3.4nm,螺旋直径2nm;⑹疏水作用。
氢键及碱基平面间的疏水性堆积力维持其稳定性。
DNA的基本功能是作为遗传信息的载体,并作为基因复制转录的模板。
mRNA分子中有密码,是蛋白质合成的直接模板。
真核生物的mRNA一级结构特点:5’-末端“帽”,3’-末端“尾”。
tRNA在蛋白质合成中作为转运氨基酸的载体,其一级结构特点:含有较多的稀有碱基;3’-CCA-OH,二级结构为三叶草形结构。
rRNA与蛋白质结合构成核蛋白体,作为蛋白质合成的“装配机”。
细胞的不同部位还存在着许多其他种类小分子RNA,统称为非mRNA小RNA(snmRNAs),对细胞中snmRNA 种类、结构和功能的研究称为RNA组学。
具有催化作用的某些小RNA称为核酶。
碱基、核苷、核苷酸及核酸在260nm处有最大吸收峰。
加热可使DNA双链间氢键断裂,变为单链称为DNA变性。
DNA变性时,OD260增高。
生物化学讲义第二章核酸化学
核酸的结构与功能【目的和要求】1. 熟悉核酸的种类、分布和主要的生物学功能。
2.掌握核酸的化学组成、核苷酸的连接方式。
3.归纳区分两类核酸在化学组分上的异同点。
4.说出DNA二级结构的模型及其主要特点。
5.简述RNA分子组成和结构的特点。
6.简述三种RNA结构特点和主要功能。
7.了解核酸重要的理化特性及其在医学上的应用。
8.能说出生物体内重要的单核苷酸及其生化功能。
【本章重难点】1.核酸的种类、分布和生物学功能。
2.核酸的化学组成。
3.DNA和RNA的分子结构与功能。
4.核酸的变性、复性及杂交。
5.生物体内重要的单核苷酸。
学习内容第一节核酸的化学组成第二节 DNA的分子结构第三节 RNA的分子结构第四节核酸的理化性质第一节核酸的化学组成一、核酸(nucleic acid)的分类、分布与生物学功能分类分布生物学功能核糖核酸(RNA)细胞质参与蛋白质的生物合成5 % 蛋白质合成的直接模板tRNA 15 % 活化与转运AArRNA 80 % 充当装配机,提供场所脱氧核糖核酸(DNA ) 核内、染色质遗传的物质基础** 基因 —— DNA 分子中的功能片段(决定遗传特性的碱基序列)。
二、核酸的分子组成1.核酸的元素组成:C.H.O.N.和P ;代表元素P ,平均含量9~10%。
2.核酸的基本组成单位:核苷酸(nucleotide )1)核苷酸的组成戊糖、碱基:核苷、核苷酸:核苷酸链:3/,5/-磷酸二酯键;3/-羟基端,5/-磷酸基端水解 水解 磷酸 戊糖(戊糖、脱氧戊糖)核酸 核苷酸核苷 嘧啶(C.T.U )碱基嘌呤(A.G)2)核苷酸的结构与命名3)核苷酸的功用3.两类核酸在分子组成上的异同点第二节 DNA 的分子结构一、DNA 的一级结构组成DNA 分子的基本单位是四种脱氧核苷酸:dAMP 、dCMP 、dGMP 和dTMP1.DNA 的碱基组成规律:Chargaff 规则:①同一生物不同组织的DNA 样品,其碱基成分含量相同。
第二章 核酸的分子结构与功能(间)
32
33
图
不同类型的DNA双螺旋结构
34
B型双螺旋DNA的结构特点:
1. 为右手反平行双螺旋;
2. 主链位于螺旋外侧,碱基位于内侧;
3. 两条链间存在碱基互补:A与T或G与C配对形
成氢键,称为碱基互补原则(A与T为两个氢
键,G与C为三个氢键);
4. 螺旋的稳定因素为氢键和碱基堆砌力;
5. 螺旋的螺距为3.4nm,直径为2nm。
参与hnRNA的剪接、转运 rRNA的加工、修饰 蛋白质内质网定位合成 的信号识别体的组分
40
胞浆小RNA
一、mRNA的结构与功能
mRNA是在细胞核内以DNA为模板合成;
mRNA又作为模板将来自DNA的信息经翻译, 指导合成蛋白质。称信使RNA,或模板RNA 。
在细胞内合成的mRNA初级产物分子大小不 一,被称为核内不均一RNA(heterogeneous nuclear RNA,hnRNA) 。
3
分类
功能 遗传的物质基础, 携带、传递遗传信 息。
分布
细胞核和 线粒体内
DNA 核酸
mRNA RNA tRNA
模板(信使) 转运氨基酸 识别密码子 细胞质和 细胞核内
rRNA 构成核蛋白体
合成蛋白质的场所
4
核酸是存在于细胞中的一类大分子酸性物质, 包括核糖核酸(ribonucleic acid, RNA)和脱 氧核糖核酸(deoxyribonucleic acid, DNA)两 大类。
42
3’-末端的多聚A尾结构:
真核生物mRNA的3’-末端,大多数 有数十个至百余个腺苷酸连接而成的 多聚腺苷酸结构称为多聚A尾结构,即 poly(A)结构。
43
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核酸的研究历史和重要性(续) 历史
70年代 建立DNA重组技术,改变了分子生物学的面貌,并导 致生物技术的兴起。 80年代 RNA研究出现第二次高潮:ribozyme、反义RNA、 “RNA世界”假说等等。 90年代以后 实施人类基因组计划(HGP), 开辟了生命科学 新纪元。
人类基因组测序完成后,生命科学进入后基因组时代: 功能基因组学(functional genomics) Hapmap(单体型图 ) (基于SNP) 蛋白质组学(proteomics)
RNA分子中各核苷之间 的连接方式(3´-5´磷酸二 酯键)和排列顺序叫做 RNA的一级结构
RNA与DNA的差异
DNA
RNA
糖 脱氧核糖 核糖
碱基 AGCT
AGCU
不含稀有碱基 含稀有碱基
OH
5´
3´ OH
OH
4.1.2 RNA的类别
信使RNA(messenger RNA,mRNA):在蛋白 质合成中起模板作用;
反转重复(inverted repeated):由反方向互补的 两个DNA片段组成,两个反转重复序列又叫回 文序列(palindrome sequence)。(第47页)
镜像重复(mirror repeat):由反方向完全相同的 两个序列组成。
直接重复(direct repeat):由同一方向完全相同 的两个序列组成。正向重复序列、顺向重复序 列。
2 核酸的基本结构单位—核苷酸
2.1 核苷酸的化学组成与命名 2.1.1 碱基、核苷、核苷酸的概念和关系 2.1.2 常见碱基的结构与命名法 2.1.3 常见(脱氧)核苷酸的基本结构与命名 2.1.4 稀有核苷酸 2.1.5 细胞内游离核苷酸及其衍生物
2.2 核苷酸的生物学功能
5´-磷酸核苷酸的基本结构
小 亚
rRNA 蛋白
16S(有mRNA识别结合位点) 18S(有mRNA识别结合位点)
基质
21种
33种
大 亚
rRNA
23S、5S(识别、结合tRNA)
28S、5S、5.8S(识别、结合 tRNA)
基 蛋白 质
34种
49种
一切生物的遗传密码都要在核糖体上翻译。病毒本身没有核糖体,其mRNA要靠宿主 细胞的核糖体来翻译。
3 DNA的分子结构
3.1 核酸分子中的共价键 3.2 DNA 一级结构 3.3 DNA碱基组成的Chargaff规则 3.4 DNA的二级结构 3.5 DNA的三级结构 3.6 DNA与蛋白质复合物的结构
3.1 核酸Βιβλιοθήκη 子中核苷酸之间的共价键5
3 -5 磷酸二酯键
3 5
3
3.2 DNA 的一级结构
核糖体蛋白如何识别rRNA上的结合位点,如何和rRNA结合,不同核糖体蛋白彼此如 何识别,怎样互相联结,组装成为功能性的核糖体,尚在研究之中。目前只知道彼此所 处的相对位置,联结的细节不明。
• 多磷酸核苷酸 • 环核苷酸 • 辅酶类核苷酸。
O O CH2
A (G)
HH
HO
H
OP
O
OH
OH
cAMP(cGMP)的结构
3`,5`- Cyclic adenylic (Guaninic) acid
2.2 核苷酸的生物学功能
作为核酸的单体 细胞中的携能物质(如ATP、GTP、CTP、TTP) 酶的辅助 因子的 结 构成分 ( 如NAD) (nicotinamide adenine dinucleotide, 烟酰胺腺嘌呤二核苷酸) 细胞通讯的媒介(如cAMP、cGMP)
分子内三链DNA于1987年由Mirkin在超螺 旋中发现。其形成要求双螺旋中存在连续 的嘌呤或嘧啶序列,而且必须是镜像重复 序列。
T-A-T C-G-C
DNA分子间 的三链结构
DNA三链间 的碱基配对
DNA分子内 的三链结构
•镜像重复序列:由反方向完全相同的两个 序列组成。
5 ′GGAATCGATCTTTTCTAGCTAAGG 3 ′ 3′CCTTAGCTAGAAAAGATCGATTCC 5′
核糖核酸(ribonucleic acid, RNA): 主要参与遗传信息的传递和表达过程,细胞内 的RNA主要存在于细胞质中,少量存在于细胞核 中,病毒中RNA本身就是遗传信息的储存者如逆 转录病毒(retrovirus)。另外在植物中还发现 了一类比病毒还小得多的侵染性致病因子称为 类病毒(viroid)和拟病毒(virusoid or satellite RNA),还发现有些RNA具生物催化作 用(ribozyme)。
核糖体RNA(ribosomal RNA,rRNA):与蛋 白质结合构成核糖体(ribosome), 核糖体是蛋白质合 成的场所;
转移RNA(transfer RNA,tRNA):在蛋白质 合成时起着携带活化氨基酸的作用。
4.2 tRNA 的结构
二级结构特征: 单链 三叶草叶形 四臂四环
三级结构 特征: 在二级结构基础上
DNA的三级结构
螺 旋
超螺旋是DNA三级结构的一种普遍形式, 双螺旋DNA的松开导致负超螺旋,而拧紧
和 则导致正超螺旋。
超
螺
旋
螺旋
电
话
线
超螺旋
4 RNA的分子结构
4.1 RNA一级结构 和类别 4.2 tRNA 的分子结构 4.3 rRNA的分子结构 4.4 mRNA的分子结构
4.1.1 RNA的一级结构 (第10页)
P
P
P
P
脱氧腺嘌呤核苷酸 脱氧鸟嘌呤核苷酸 脱氧胸腺嘧啶核苷酸
(dAMP)
(dGMP)
(dTMP)
脱氧胞嘧啶核苷酸 (dCMP)
2.1.4 几种稀有核苷
H H H H
H3C CH3
假尿苷() 二氢尿嘧啶(DHU)
CH3
Am
2`-O-甲基腺苷
m
6 2
G
N6,N6-二甲基腺苷
2.1.5 细胞内游离核苷酸及其衍生物
外型
A 粗短
B 适中
Z 细长
螺旋方向 右手
右手
左手
螺旋直径 碱基直升
2.55nm 0.23nm
2.37nm 0.34nm
1.84nm 0.38nm
每圈碱基数 11
10
12
碱基倾角 200
00
70
大沟
很窄很深 很宽较深
平坦
小沟
Z-DNA B-DNA A-DNA
很宽、浅 窄、深
较窄很深
三链DNA既可以是B-DNA与另一条DNA链 结合成的链间的三链DNA,又可以是BDNA与其自身的一条链结合形成的链内的 三链DNA。(第9页)
DNA的双螺旋结构的形成
5´
3´
5
3´
´
磷酸 核糖 碱基
T-A碱基对
C-G碱基对
3´
5´
5´
3
´
DNA的双螺旋模型特点
a. 两条反向平行的多聚核苷酸链沿一个假 设的中心轴右旋相互盘绕而形成。
b. 磷酸和脱氧核糖单位作为不变的骨架组 成位于外侧,作为可变成分的碱基位于内侧 ,链间碱基按A—T,G—C配对(碱基配对 原则,Chargaff定律)
1.2 核酸种类和分布
脱氧核糖核酸(deoxyribonucleic acid, DNA):
遗传信息的贮存和携带者,生物的主要遗传物质。在真 核细胞中,DNA主要集中在细胞核内,线粒体和叶绿体中均 有各自的DNA。原核细胞没有明显的细胞核结构,DNA存 在于称为拟核(nucleoid)的结构区。每个原核细胞一般只有 一个染色体,每个染色体含一个双链环状DNA。
结构式,线条式,字母式
3.3 DNA碱基组成的Chargaff规则
Chargaff首先注意到DNA碱基组成的某些规律性,在 1950年总结出DNA碱基组成的规律:
腺嘌呤和胸腺嘧啶的摩尔数相等,即 A=T。 鸟嘌呤和胞腺嘧啶的摩尔数也相等,即G=C。 含氨基的碱基总数等于含酮基碱基总数,即
A+C=G+T。 嘌呤的总数等于嘧啶的总数,即A+G=C+T。
DNA、RNA的一级结构
OH
5´
3´ OH
5´ 3´
OH
RNA一级结构
DNA一级结构
3.4 DNA的二级结构
(1) DNA的双螺旋结构(Watson-Crick模型) (2) DNA双螺旋结构特征及意义 (3) DNA双螺旋的多态性 (4)DNA的三股螺旋(tripkex)
DNA分子中各脱氧核苷酸
之 间 的 连 接 方 式 ( 3´-5´ 磷 酸 二
酯 键 ) 和 排 列 顺 序 叫 做 DNA 的
一级结构,简称为碱基序列。一
级结构的走向的规定为5´→3´。
5
不 同 的 DNA 分 子 具 有 不 同 的 核
´
苷酸排列顺序,因此携带有不同
3´
的遗传信息。
一级结构的表示法
进一步折叠扭曲形成倒 L型
tRNA的三级结构
4.3 rRNA的分子结构
特征:单链,螺旋化程度较tRNA低 与蛋白质组成核糖体后方能发挥其功能
S: Theodor Svedberg
5S RNA的二级结构
rRNA与核糖体蛋白共同构成核糖体,后者是蛋白质合 成的场所。
核糖体的组成
原核生物(70S,小30s大50S)真核生物(80S,小40s大60s)
1869 Miescher从脓细胞的细胞核中分离出了一 种含磷酸的有 机物,当时称为核素(nuclein),后称为核酸(nucleic acid); 此后几十年内,弄清了核酸的组成及在细胞中的分布。 1944 Avery 等成功进行肺炎球菌转化试验;1952年Hershey等 的实验表明32P-DNA可进入噬菌体内, 证明DNA是遗传物质。 1953 Watson和Crick建立了DNA结构的双螺旋模型,说明了 基因的结构、信息和功能三者间的关系,推动了分子生物学的 迅猛发展。 1958 Crick提出遗传信息传递的中心法则, 60年代 RNA研究取得大发展(操纵子学说,遗传密码,逆转 录酶)。