集合的概念及运算
第一讲 集合的概念和运算
。
解析:对于新定义题,关键是读懂题目, 弄清概念的含义,准确运用。 ∵n=4, ∴ Sn {1, 2,3, 4}, ,则X可取 ,{1}, {2}, {3},
{4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}, {2,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}.不是偶子集有{1},
A B 0,1,2,4,16
则a的值为( A. 0 答案:D. B. 1
) C. 2 D. 4
a4 解析:抓住并集中的元素,由此知 a 2 16 2
a 4 或 ,∴选D。 a 16
变式题:含有三个实数的集合可表示为{a,b,lg(ab)},也可 表示为{|a|,b,0},则 a 2015 b2015 的值等于 。
7.特别提醒的几点:
①.注意区分几种常见集合
研究一个集合,首先要看集合中的代表元素,然 后再看元素的限制条件,当集合用描述法表示时,注 意弄清其元素表示的意义是什么.
集合 {x|f(x)=0} {x|f(x)>0} {x|y=f(x)} {y|y=f(x)} {(x,y)|y=f(x)}
集合的意义 方程f(x)=0的解源自 不等式f(x)>0的解集 函数y=f(x)的定义域 函数y=f(x)的值域 函数y=f(x)图象上的点集
⑶
无序性
。
5.集合中元素和集合、集合与集合的关系: ⑴元素和集合的关系:若元素a 是集合A的元素, A”。 记作:a A ,否则“a
⑵集合与集合的关系:包含和不包含关系。包含关系又 分为真包含和相等关系。符号为“ ”,“=”, ”,“ “ ”,“ ” .
特别提醒:规定空集是 空集是
集合的概念和运算
集合的概念和运算集合是数学中重要的基本概念,它可以理解为元素的组合。
在数学中,元素可以是数字、字母、单词等等。
本文将介绍集合的概念、集合的表示方法以及集合的运算。
一、集合的概念集合是由元素构成的,通常用大写字母表示。
假设A是一个集合,x是A的元素,我们可以表示为x∈A,表示x属于A。
相反地,如果x不属于A,我们可以表示为x∉A。
集合可以有有限个或者无限个元素。
如果集合A中的元素个数有限,并且可以一一列举出来,我们称之为有限集。
如果集合A中的元素个数是无穷的,我们称之为无限集。
二、集合的表示方法1. 列举法:我们可以直接将集合中的元素一一列举出来。
例如,集合A = {1, 2, 3}表示A是一个包含元素1、2、3的集合。
2. 描述法:我们可以使用一个条件来描述集合中的元素。
例如,集合B = {x | x是自然数,且x < 5}表示B是一个包含小于5的自然数的集合。
三、集合的运算1. 交集:给定两个集合A和B,它们的交集(记作A∩B)是包含同时属于A和B的所有元素的新集合。
例如,A = {1, 2, 3},B = {2, 3, 4},则A∩B = {2, 3}。
2. 并集:给定两个集合A和B,它们的并集(记作A∪B)是包含属于A或者属于B的所有元素的新集合。
例如,A = {1, 2, 3},B = {2, 3, 4},则A∪B = {1, 2, 3, 4}。
3. 差集:给定两个集合A和B,它们的差集(记作A-B)是包含属于A但不属于B的所有元素的新集合。
例如,A = {1, 2, 3},B = {2, 3, 4},则A-B = {1}。
4. 互斥集:给定两个集合A和B,如果它们的交集为空集,则称它们为互斥集。
例如,A = {1, 2},B = {3, 4},则A∩B = ∅。
5. 补集:给定一个普通集合U和它的一个子集合A,A相对于U的补集(记作A'或者A^c)是包含U中所有不属于A的元素的集合。
第一章 集合的概念及运算(集合论讲义)
(5) 德·摩根律 A ∪ B = A ∩ B , A ∩ B = A ∪ B
A − (B ∪ C) = (A − B) ∩ (A − C) , A − (B ∩ C) = (A − B) ∪ (A − C)
4
|
A1
|=
⎢ 250 ⎥ ⎢⎣ 2 ⎥⎦
=
125
,|
A2
|=
⎢ 250 ⎢⎣ 3
⎥ ⎥⎦
=
83
,|
A3
|=
⎢ 250 ⎥ ⎢⎣ 5 ⎥⎦
=
50
,|
A4
|=
⎢ ⎢⎣
250 ⎥ 7 ⎥⎦
=
35
,
|
A1
∩
A2
|=
⎢ ⎢⎣
250 ⎥ 2× 3⎥⎦
=
41
,|
A1
∩
A3
|=
⎢ 250 ⎥ ⎢⎣2× 5⎥⎦
=
(6) 吸收律 A ∪ ( A ∩ B) = A , A ∩ ( A ∪ B) = A (7) 零律 A ∪ E = E , A ∩ ∅ = ∅ (8) 同一律 A ∪ ∅ = A , A ∩ E = A (9) 排中律 A ∪ A = E
5
(10) 矛盾律 A ∩ A = ∅ (11) 全补律 ∅ = E , E = ∅ (12) 双重否定律 A = A (13) 补交转换律 A − B = A ∩ B
3
还可以将交,并运算推广到集族上。
∪ 定义 2.3 设 A 为一个集族,称由 A 中全体集合的元素组成的集合为 A 的广义并集,记作 A , ∪ 称 ∪ 为广义并运算符, A 可描述为
集合的概念及其运算
集合的概念及其运算1、集合中元素的性质:确定性,互异性,无序性2、有n个元素的集合的子集的个数是2n,真子集的个数是2n-13、自然数集N 正整数集N* 整数集Z 有理数集Q 实数集R 复数C4、交集:由所有属于集合A且属于集合B的元素所组成的集合叫做集合A与B的交集,记为A∩B,即A∩B={x|x∈A,且x∈B}并集:由所有属于集合A或属于集合B的元素所组成的集合叫做集合A与B的并集,记为A∪B,即A∪B={x|x∈A,或x∈B}补集:一般地设S是一个集合,A是S的一个子集(即A S),由S中所有不属于A的元素组成的集合,叫做集合A在全集S中的补集(或余集).5、真子集关系对于集合A、B,如果A ⊆ B,并且A≠B,我们就说集合A是集合B的真子集 显然,空集是任何非空集合的真子集1.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是( )A.1B.3C.4D.82.若集合A={x|x2-4x<0},则集合A∩Z中元素的个数为( )A.3B.4C.5D.23.已知集合A={a-2,2a2+5a,12},且-3∈A,则a= .4、已知集合A={1,3,5},B={2,4,6}.定义集合A+B={a+b|a∈A,b∈B},则A+B中元素的个数是( )A.9B.6C.5D.45、满足Φ A⊆{1,2,3}的集合A的个数是( )A.7B.8C.6D.42>0},N={x|x>a}.若M⊆N,求实数a的取值范围6、 已知集合M={x|3+2x-x7、已知集合M={x|x2+x-6=0},N={x|ax-1=0},且M∩N=N,求实数a的值.8、集合A={0,2,a},B={1,a2}.若A∪B={0,1,2,4,16},则a的值为( )A.0B.1C.2D.49、若A、B、C为三个集合,A∪B=B∩C,则一定有A. A⊆CB.C⊆AC.A≠CD.A=∅10、已知集合A={y|y=log2x,x>1},B={y|y=(1/2)x,x>1},则A∩B等于A. ∅B.{y|0<y<1}C.{y|1/2<y<1}D.{y|0<y<1/211、.设全集U是实数集R,M={x|x2>4},N={x|≥1},则下图中阴影部分所表示的集合是A.{x|-2≤x<1}B.{x|-2≤x≤2}C.{x|1<x≤2}D.{x|x<2}12、.设集合A={5,log2(a2-3a+6)},集合B={1,a,b},若A∩B ={2},则集合A∪B的真子集的个数是A.3个B.7个C.12个D.15个13、.设全集U=R,A={x|x<-3或x≥2},B={x|-1<x<5},则集合{x|-1<x<2}是A. (UA)∪(UB)B. U(A∪B)C. (UA)∩BD.A∩B14、定义集合A*B={x|x∈A,且xB},若A={1,3,5,7},B={2,3,5},则A*B的子集个数为10、A.1 B.2 C.3 D.415、.设集合M={x|x≤m},N={y|y=2-x,x∈R},若M∩N≠,则实数m 的取值范围是A.m≥0B.m>0C.m≤0D.m<016、.已知集合A={x∈R|ax2-3x+2=0,a∈R}.(1)若A是空集,求a的取值范围;(2)若A中只有一个元素,求a的值,并把这个元素写出来;命题及其关系充要条件1、2. 用命题的等价性判断:判断p是q的什么条件,其实质是判断“若p,则q”及其逆命题“若q,则p”是真还是假,原命题为真而逆命题为假,p是q的充分不必要条件;原命题为假而逆命题为真,则p是q的必要不充分条件;原命题为真,逆命题为真,则p是q的充要条件;原命题为假,逆命题为假,则p是q的既不充分也不必要条件.3. 原命题为“若P则q,则它的逆命题为若q则p;否命题为若非p则非q,逆否命题为若非q则非p 原命题与它的逆否命题等价,逆命题与它的否命题等价1、写出“面积相等的两个三角形是全等三角形”的逆命题、否命题、逆否命题2、写出“若a>b且c>d,则a+c>b+d”的逆命题、否命题、逆否命题3、设原命题”若p则q”假,而逆命题真,则p是q的()A、充分不必要条件B、必要不充分条件C、充要条件 D既不充分也不必要条件3、0<x<5是不等式lx-2l<4成立的()A、充分不必要条件B、必要不充分条件C、充要条件 D既不充分也不必要条件4、1命题:“若x2<1,则-1<x<1”的逆否命题是 ( )A.若x2≥1,则x≥1或x≤-1 B.若-1<x<1,则x2<1C.若x>1或x<-1,则x2>1 D.若x≥1或x≤-1,则x2≥12.已知集合M={x|0<x<1},集合N={x|-2<x<1},那么“a∈N”是“a∈M”的 ( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件。
第1讲集合的概念和运算
第1讲 集合的概念和运算必记考点1.集合的基本概念(1)集合元素的三个特征: 、 、 . (2)元素与集合的关系是属于或不属于关系,用符号 或 表示. (3)集合的表示法:列举法、描述法、图示法、区间法.(4)常用数集: N ; N *(或N +) ; Z ;Q ; R . (5)集合的分类:按集合中元素个数划分,集合可以分为有限集、无限集、 . 2.集合间的基本关系(1)子集: ,则A ⊆B (或B ⊇A ). (2)真子集: 则A B (或B A ).若集合A 中含有n 个元素,则A 的子集有2n 个,A 的真子集有2n -1个.(3)空集:空集是 的子集,是 的真子集.即∅⊆A ,∅B (B ≠∅).(4)集合相等:若 ,则A =B . 3.集合的基本运算及其性质(1)并集:A ∪B = . (2)交集:A ∩B = .(3)补集:∁U A = ,U 为全集,∁U A 表示A 相对于全集U 的补集. (4)集合的运算性质①A ∪B =A ⇔B ⊆A ,A ∩B =A ⇔A ⊆B ; ②A ∩A =A ,A ∩∅=∅; ③A ∪A =A ,A ∪∅=A ;④A ∩∁U A =∅,A ∪∁U A =U ,∁U (∁U A )=A .考向一 集合的基本概念【例1】►已知a ∈R ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},则a 2 014+b 2 014=________.【训练1】集合⎩⎨⎧⎭⎬⎫x ∈N *⎪⎪12x∈Z 中含有的元素个数为( ).考向二 集合间的基本关系【例2】已知集合A ={x |0<x ≤4},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是________.【训练2】已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,求实数m 的取值范围.考向三 集合的基本运算【例3】►(1)(2012·安徽)设集合A ={x |-3≤2x -1≤3},集合B 为函数y =lg(x -1)的定义域,则A ∩B =( ).A .(1,2)B .[1,2]C .[1,2)D .(1,2](2)(2012·山东)已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B 为( ). A .{1,2,4} B .{2,3,4} C .{0,2,4}D .{0,2,3,4}(3)设全集U ={1,2,3,4,5,6},集合A ={1,2,4},B ={3,4,5},则图中的阴影部分表示的集合为( ).A .{5}B .{4}C.{1,2} D.{3,5}基础演练1.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则().A.A B B.B AC.A=B D.A∩B=∅2.设全集U={1,2,3,4,5,6},集合P={1,2,3,4},Q={3,4,5},则P∩(∁U Q)=().A.{1,2,3,4,6} B.{1,2,3,4,5}C.{1,2,5} D.{1,2}3.设集合U={x|x<5,x∈N*},M={x|x2-5x+6=0},则∁U M=().A.{1,4} B.{1,5}C.{2,3} D.{3,4}4.若集合A={x||x|>1,x∈R},B={y|y=2x2,x∈R},则(∁R A)∩B=().A.{x|-1≤x≤1} B.{x|x≥0}C.{x|0≤x≤1} D.∅5.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________. 6.集合A={x∈R||x-2|≤5}中的最小整数为________.7.若集合A={-1,3},集合B={x|x2+ax+b=0},且A=B,求实数a,b.第2讲函数及其表示必记考点1.函数的概念一般地,设A,B是两个非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)与之对应;那么就称:f:A→B为从集合A到集合B 的一个函数.记作.2.函数的三要素函数由、、三个要素构成,对函数y=f(x),x∈A,其中(1)定义域:.(2)值域:.(3)两个函数就相同: .3.函数的表示方法表示函数的常用方法有:解析法、图象法、列表法.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.考向一函数的定义【例1】(1)下列各图形中是函数图象的是().2.下列各组函数表示相同函数的是().A.f(x)=x2,g(x)=(x)2B.f(x)=1,g(x)=x2C.f(x)=⎩⎪⎨⎪⎧x,x≥0,-x,x<0,g(t)=|t|D.f(x)=x+1,g(x)=x2-1x-1考向二 求函数的定义域、值域【例2】►(1) 函数y =x +1x 的定义域为________.(2)函数y =x -3x +1的值域为________.(3) 设函数f (x )=41-x ,若f (a )=2,实数a =________.考向三 分段函数及其应用【例3】(1) 设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=( ).A.15 B .3 C.23D.139(2)设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为( ).A .1B .0C .-1D .π(3)已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( ).A.12 B.45 C .2 D .9基础演练1.函数f (x )=11-x +lg(1+x )的定义域是( ).A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞)2.下列各组函数中,表示同一函数的是( ). A .f (x )=x ,g (x )=(x )2 B .f (x )=x 2,g (x )=(x +1)2 C .f (x )=x 2,g (x )=|x |D .f (x )=0,g (x )=x -1+1-x3.设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =( ).A .-3B .±3C .-1D .±14.函数f (x )=lg 1-x 2的定义域为________.5.(2013·皖南八校联考)已知f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,log 2x ,x >0,则f ⎣⎡⎦⎤f ⎝⎛⎭⎫-12=________. 6.已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1.求函数f (x )的解析式.第3讲 函数的性质必记考点 1.函数的单调性 (1)单调函数的定义设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,当x 1<x 2时,①若 ,则f (x )在区间D 上是增函数;②若 ,则f (x )在区间D 上是减函数.(2)单调区间的定义若函数f (x )在区间D 上是 或 ,则区间D 叫做f (x )的单调区间.(3)用定义判断函数单调性的步骤: . 2. 函数的奇偶性(1)定义:如果对于函数f (x )的定义域内任意一个x ,都有 ,那么函数f (x )就叫做偶函数.如果对于函数f (x )的定义域内任意一个x ,都有 ,那么函数f (x )就叫做奇函数.(2)性质:奇函数的图象关于 对称;偶函数的图象关于 对称.考向一 确定函数的单调性或单调区间【例1】(1)下列函数中,在区间(0,+∞)上为增函数的是( ).A .y =ln(x +2)B .y =-x +1C .y =⎝⎛⎭⎫12xD .y =x +1x(2)函数y =-x 2+2x -3(x <0)的单调增区间是( ).A .(0,+∞)B .(-∞,1]C .(-∞,0)D .(-∞,-1]考向二 函数单调性的应用【例2】(1)若函数f (x )=4x 2-mx +5在[-2,+∞)上递增,在(-∞,-2]上递减,则f (1)=________. (2) 函数y =f(x)在R 上为增函数,且f(2m)>f(-m +9),则实数m 的取值范围是 .考向三 求函数的最值【例3】函数f (x )=2xx +1在[1,2]上的最大值和最小值分别是________.考向四 判断函数的奇偶性【例4】判断下列函数的奇偶性: (1)f (x )=x 3-2x ;(2)f (x )=x 2-1+1-x 2;(3)f (x )=(x -1)- 1+x1-x.考向五 函数奇偶性的应用【例5】(1)函数f (x )=(x +a )(x -4)为偶函数,则实数a =________.(2) 设函数f (x )=(x +1)(x +a )x 为奇函数,则a =________. (3) 设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x+2x +b (b 为常数),则f (-1)= .基础演练1.定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有f (a )-f (b )a -b>0,则必有( ).A .函数f (x )先增后减B .f (x )是R 上的增函数C .函数f (x )先减后增D .函数f (x )是R 上的减函数2.函数y =f (x )在R 上为减函数,且f (2m )>f (-m +9),则实数m 的取值范围是 .3.下列函数中,在(0,+∞)上单调递增的函数是( ).A .y =1xB .y =|x |+1C .y =-x 2+1D .y =-2x +14.已知f (x )=x 2-2mx +6在(-∞,-1]上是减函数,则m 的范围为________.5.已知函数f (x )为定义在区间[-1,1]上的增函数,则满足f (x )<f ⎝⎛⎭⎫12的实数x 的取值范围为________. 6.下列函数是偶函数的是( ).A .y =xB .y =2x 2-3C .y =1xD .y =x 2,x ∈[0,1]7. 设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是 .8. 设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=________.9.已知函数y =f (x )是偶函数,其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和是________. 10.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0.(1)求b 与c 的值;(2)试证明函数f (x )在区间(2,+∞)上是增函数.第4讲 指数与指数函数必记考点1.指数与指数运算 (1)根式的概念若x n =a ,则x 叫 ,.式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数.即x n=a ⇒⎩⎨⎧x =n a (当n 为奇数且n ∈N *时),x =±n a (当n 为偶数且n ∈N *时).(2)根式的性质①(na )n = .②当n 为奇数时,na n= ;当n 为偶数时,na n=|a |=⎩⎪⎨⎪⎧a (a ≥0)-a (a <0).(3)分数指数幂的含义正分数指数幂a m n =na m (a >0,m ,n ∈N *,n >1).负分数指数幂a -m n =1a m n =1na m (a >0,m ,n ∈N *,n >1).(4)幂指数的运算性质a r ·a s = rs aa= (a r )s = (ab )r =2.指数函数的图象与性质考向一 指数幂的化简与求值【例1】化简下列各式: (1)[(0.06415)-2.5]23- 3338-π0;(2) 2132a b ·(-31132a b )÷156613a b(3)a ·3a 25a ·3a考向二 指数函数的性质【例2】(1)方程2x -2+x =0的解的个数是________. (2) 下列各式比较大小正确的是( ). A .1.72.5>1.73 B .0.6-1>0.62C .0.8-0.1>1.250.2 D .1.70.3<0.93.1(3)已知函数f (x )=2x -12x +1,①讨论f (x )的奇偶性;②讨论f (x )的单调性.⎝⎛⎭⎫21412-⎝⎛⎭⎫-350-⎝⎛⎭⎫827-13=________. 已知函数f (x )=4+a x -1(a >0且a ≠1)的图象恒过定点P ,则点P 的坐标是( ).函数y =1-3x 的定义域为________。
集合的基本概念与运算
集合的基本概念与运算集合是数学中一个基本的概念,简单地说,集合是由元素构成的一种集合结构。
在数学中,集合和集合运算能够被应用到各种各样的领域,比如计算机科学、物理学、经济学等。
本文将深入探讨集合的基本概念和运算。
一、基本概念在集合的讨论中,我们需要先了解一些基本概念。
首先,元素是指集合中的一个个体。
例如,{1, 2, 3}中的1、2、3就是元素。
其次,集合可以用花括号{}来表示,例如{1, 2, 3}就是一个集合。
注意,集合中的元素是无序的,也就是说{1, 2, 3}和{3, 2, 1}是等价的。
另外,集合中的元素必须是不同的,例如{1, 1, 2}就不是一个合法的集合,因为其中有重复的元素。
集合的大小可以用“|S|”来表示,其中S是集合的名字。
比如{1, 2, 3}的大小是3。
二、集合运算在集合的讨论中,我们需要介绍一些集合运算。
这些集合运算包括并集、交集、补集等。
并集对于两个集合A、B,它们的并集是指由它们中的所有元素组成的集合,用“∪”表示。
例如,如果A={1, 2},B={2, 3},则它们的并集是{1, 2, 3},即A∪B={1, 2, 3}。
需要注意的是,如果两个集合的元素有重复,重复的元素只会出现一次。
交集对于两个集合A、B,它们的交集是指它们中共同包含的元素所组成的集合,用“∩”表示。
例如,如果A={1, 2},B={2, 3},则它们的交集是{2},即A∩B={2}。
补集对于一个集合A和它的一个父集合U,A的补集是指U中不包含A中所有元素的集合,用“A'”表示。
例如,如果U={1, 2, 3},A={1, 2},则A的补集是{3},即A'={3}。
三、常用集合运算规则对于集合的运算,还有一些常用的规则。
结合律对于任意三个集合A、B、C,它们的并集和交集都满足结合律。
即(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C)。
交换律对于任意两个集合A、B,它们的并集和交集都满足交换律。
集合的概念与运算
集合的概念与运算教案●知识梳理 1.集合的有关概念2.元素与集合、集合与集合之间的关系 (1)元素与集合:“∈”或“”.(2)集合与集合之间的关系:包含关系、相等关系. 3.集合的运算(1)交集:由所有属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集,记为A ∩B ,即A ∩B ={x |x ∈A 且x ∈B }. (2)并集:由所有属于集合A 或属于集合B 的元素所组成的集合,叫做集合A 与集合B 的并集,记为A ∪B ,即A ∪B ={x |x ∈A 或x ∈B }. (3)补集:一般地,设S 是一个集合,A 是S 的一个子集(即A S ),由S 中所有不属于A 的元素组成的集合,叫做子集A 在全集S 中的补集(或余集),记为SA ,即S A ={x |x ∈S 且x A }.●点击双基1.(2004年全国Ⅱ,1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N 等于A.{x |x <-2}B.{x |x >3}C.{x |-1<x <2}D.{x |2<x <3}2.(2005年北京西城区抽样测试题)已知集合A ={x ∈R|x <5-},B ={1,2,3,4},则(R A )∩B 等于A.{1,2,3,4}B.{2,3,4}C.{3,4}D.{4}∉⊆∉23.(2004年天津,1)设集合P ={1,2,3,4,5,6},Q ={x ∈R|2≤x ≤6},那么下列结论正确的是A.P ∩Q =PB.P ∩Q QC.P ∪Q =QD.P ∩Q P4.设U 是全集,非空集合P 、Q 满足P Q U ,若求含P 、Q 的一个集合运算表达式,使运算结果为空集,则这个运算表达式可以是_______________.5.已知集合A ={0,1},B ={x |x ∈A ,x ∈N*},C ={x |x A },则A 、B 、C 之间的关系是___________________.●典例剖析【例1】 已知A ={x |x 3+3x 2+2x >0},B ={x |x 2+ax +b ≤0}且A ∩B ={x |0<x ≤2},A ∪B ={x |x >-2},求a 、b 的值.深化拓展∅⊆(2004年上海,19)记函数f (x )=的定义域为A ,g (x )=lg [(x -a -1)(2a -x )](a <1)的定义域为B . (1)求A ;(2)若B A ,求实数a 的取值范围.【例2】 (2004年湖北)设集合P ={m |-1<m ≤0},Q ={m ∈R|mx 2+4mx -4<0对任意实数x 恒成立},则下列关系中成立的是 A.P Q B.Q P C.P =Q D.P ∩Q =Q132++-x x ⊆【例3】已知集合A={(x,y)|x2+mx-y+2=0},B={(x,y)|x-y+1=0,0≤x≤2},如果A∩B≠,求实数m的取值范围.●闯关训练夯实基础1.集合A={(x,y)|x+y=0},B={(x,y)|x-y=2},则A∩B是A.(1,-1)B.C.{(1,-1)}D.{1,-1}2.(2004年上海,3)设集合A ={5,log 2(a +3)},集合B ={a ,b }.若A ∩B ={2},则A ∪B =______________.3.设A ={x |1<x <2},B ={x |x >a },若A B ,则a 的取值范围是___________________.4.已知集合A ={x ∈R|ax 2+2x +1=0,a ∈R}只有一个元素,则a 的值为__________________.5.(2004年全国Ⅰ,理6)设A 、B 、I 均为非空集合,且满足A B I ,则下列各式中错误..的是 A.(I A )∪B =I B.(I A )∪(I B )=I C.A ∩(I B )= D.(I A )∩(I B )=I B 6.(2005年春季北京,15)记函数f (x )=log 2(2x -3)的定义域为集合M ,函数g (x )= 的定义域为集合N .求:(1)集合M 、N ; (2)集合M ∩N 、M ∪N .⎩⎨⎧-==11y x ⊆⊆∅)1)(3(--x x培养能力7.已知A ={x ∈R|x 2+2x +p =0}且A ∩{x ∈R|x >0}=,求实数p 的取值范围.8.已知P ={(x ,y )|(x +2)2+(y -3)2≤4},Q ={(x ,y )|(x +1)2+(y -m )2<},且P ∩Q =Q ,求m 的取值范围.探究创新9.若B ={x |x 2-3x +2<0},是否存在实数a ,使A ={x |x 2-(a +a 2)x +a 3<0}且A ∩B =A ?请说明你的理由.41●思悟小结1.对于集合问题,要首先确定属于哪类集合(数集、点集或某类图形),然后确定处理此类问题的方法.2.关于集合的运算,一般应把各参与运算的集合化到最简,再进行运算.3.含参数的集合问题,多根据集合元素的互异性来处理.4.集合问题多与函数、方程、不等式有关,要注意各类知识的融会贯通.解决问题时常用数形结合、分类讨论等数学思想.教学点睛1.对于集合问题,要首先确定属于哪类集合(数集、点集或某类图形),然后确定处理此类问题的方法.2.集合问题多与函数、方程、不等式有关,要注意各类知识的融会贯通.3.强化数形结合、分类讨论的数学思想.拓展题例【例1】设M、N是两个非空集合,定义M与N的差集为M-N={x|x∈M且x N},则M-(M-N)等于A.NB.M∩NC.M∪ND.M【例2】设集合P={1,a,b},Q={1,a2,b2},已知P=Q,求1+a2+b2的值.。
集合的基本概念与运算方法
集合的基本概念与运算方法在数学中,集合是由一组独立的元素组成的。
理解集合的基本概念和运算方法对于解决各种数学问题至关重要。
本文将介绍集合的基本概念以及常用的运算方法。
一、集合的基本概念1. 集合的定义:集合通常用大写字母表示,集合内的元素用逗号分隔,并放在大括号中。
例如,集合A可以表示为:A = {1, 2, 3, 4}。
2. 元素:一个集合由若干个元素组成,元素是集合的基本单位。
例如,集合A中的元素1、2、3、4便是集合A的元素。
3. 子集:若一个集合A的所有元素都属于另一个集合B,则称集合A为集合B的子集。
用符号表示为A ⊆ B。
例如,集合A = {1, 2}是集合B = {1, 2, 3}的子集。
4. 相等集合:若两个集合A和B拥有相同的元素,则称集合A和集合B相等。
用符号表示为A = B。
二、集合的运算方法1. 并集:若A和B为两个集合,他们的并集就是包含两个集合中所有元素的集合。
用符号表示为A ∪ B。
例如,集合A = {1, 2}和集合B = {2, 3}的并集为A ∪ B = {1, 2, 3}。
2. 交集:若A和B为两个集合,他们的交集就是属于A且属于B的所有元素的集合。
用符号表示为A ∩ B。
例如,集合A = {1, 2}和集合B = {2, 3}的交集为A ∩ B = {2}。
3. 补集:设U为全集,若A为一个集合,则相对于全集U,A的补集为U中不属于A的所有元素组成的集合。
用符号表示为A'。
例如,集合A = {1, 2, 3, 4}相对于全集U = {1, 2, 3, 4, 5, 6}的补集为A' = {5, 6}。
4. 差集:若A和B为两个集合,他们的差集就是属于A但不属于B的所有元素的集合。
用符号表示为A - B。
例如,集合A = {1, 2, 3, 4}和集合B = {2, 3}的差集为A - B = {1, 4}。
5. 互斥集:若两个集合A和B的交集为空集,则称它们为互斥集。
集合的概念与运算
分配律
定义
对于任意三个集合A、B和C,如果A∪(B∩C)=(A∪B)∩(A∪C)和 A∩(B∪C)=(A∩B)∪(A∩C),则称集合的运算满足分配律。
解释
分配律意味着并集和交集运算可以分配给括号内的并集和交集运算。 即,括号内的并集和交集运算的结果可以与外部的并集和交集运算 的结果进行交换。
伍 集合的应用
集合的元素
元素可以是具体的, 如苹果、汽车等;也 可以是抽象的,如数 字、图形等。 元素是构成集合的基 本单位,可以是任何 对象或实体。
并集
并集是将两个集合中 的所有元素合并到一 个新的集合中。 并集运算可以用符号 “∪”表示。
交集
交集运算可以用符号“∩”表示。 交集是两个集合中共有的元素组成的集合。
壹
集合的概念与运算
目录 CONTENTS
0 1 集合的基本概念
0 4 集合的应用
0 2 集合的运算
0 5 集合运算的注意事项
0 3 集合运算的性质
贰 集合的基本概念
集的定义
集合中的元素具有确定性、 互异性和无序性。 集合是由确定的、互不相 同的元素所组成的总体。
集合的表示方法
将集合中的元素一一列举出 来,用大括号括起来。 列举法 通过描述集合中元素的共同 特征,用大括号括起来。 描述法
交集是指两个或多个集合中共有的元素的集合,即同时属于A和B的元素组成的集合。 交集的表示方法为A∩B,其中A和B为两个集合。 交集的性质包括交换律、结合律和分配律。
差集
差集是指属于A但不属于B的元素的集合,即所有属于A但不属于B的元素组成的集合。 差集的表示方法为A−B,其中A和B为两个集合。 差集的性质包括反身律、对称律和传递律。
解释
数学集合的概念运算
课前案1.集合与元素(1)集合元素的三个特征:、、.(2)元素与集合的关系是或关系,用符号或表示.(3)集合的表示法:、、.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号2.集合间的基本关系表示关系文字语言符号语言记法基本关系子集集合A的所有元素都是集合B的元素x∈A⇒x∈BA B或B A 真子集集合A是集合B的子集,且集合B中至少有一个元素不属于AA⊆B,且存在x0∈B,x0∉AA B或B A 相等集合A,B的元素完全相同A⊆B,B⊆AA=B 空集不含任何元素的集合.空集是任何集合A的子集任意x,x∉∅,∅⊆A ∅3.集合的基本运算集合的并集集合的交集集合的补集图形语言符号语言A∪B=A∩B=∁U A=(1)并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.(2)交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.(3)补集的性质:A∪(∁U A)=U;A∩(∁U A)=∅.(4)∁U(∁U A)=A;∁U(A∪B)=(∁U A)∩(∁U B);∁U(A∩B)=(∁U A)∪(∁U B).课中案一、目标导引[疑误辨析]判断正误(正确的打“√”,错误的打“×”)(1){x |y =x 2+1}={y |y =x 2+1}={(x ,y )|y =x 2+1}.( ) (2)若{x 2,1}={0,1},则x =0,1.( ) (3){x |x ≤1}={t |t ≤1}.( )(4)对于任意两个集合A ,B ,(A ∩B )⊆(A ∪B )恒成立. ( ) (5)若A ∩B =A ∩C ,则B =C .( ) [教材衍化]1.(必修1P12A 组T3改编)若集合P ={x ∈N |x ≤ 2 021},a =22,则( ) A .a ∈P B .{a }∈P C .{a }⊆P D .a ∉P2.(必修1P11例9改编)已知U ={α|0°<α<180°},A ={x |x 是锐角},B ={x |x 是钝角},则∁U (A ∪B )=________.3.(必修1P44A 组T5改编)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为________.[易错纠偏](1)忽视集合中元素的互异性致误; (2)忽视空集的情况致误; (3)忽视区间端点值致误. 1.已知集合A ={1,3,m },B ={1,m },若B ⊆A ,则m =________.2.已知集合A ={x |x 2-4x +3<0},B ={x |2<x <4},则A ∩B =________,A ∪B =________,(∁R A )∪B =________.3.已知集合M ={x |x -2=0},N ={x |ax -1=0},若M ∩N =N ,则实数a 的值是________. 二典型例题集合的含义(1)已知集合A ={0,1,2},则集合B ={(x ,y )|x ≥y ,x ∈A ,y ∈A }中元素的个数是( ) A .1 B .3 C .6 D .9(2)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( ) A .92 B .98 C .0 D .0或98(3)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.与集合中的元素有关问题的求解步骤1.(2020·温州八校联考)已知集合M={1,m+2,m2+4},且5∈M,则m的值为() A.1或-1 B.1或3 C.-1或3 D.1,-1或32.已知集合A={x|x∈Z,且32-x∈Z},则集合A中的元素个数为________.集合的基本关系(1)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C 的个数( ) A.1 B.2 C.3 D.4(2)已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,则实数m的取值范围为________.1.(变条件)在本例(2)中,若A⊆B,如何求解?2.(变条件)若将本例(2)中的集合A改为A={x|x<-2或x>5},如何求解?1.设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则()A.P⊆Q B.Q⊆P C.∁R P⊆Q D.Q⊆∁R P2.(2020·绍兴调研)设A={1,4,2x},B={1,x2},若B⊆A,则x=________.3.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为________.集合的基本运算(高频考点)集合的基本运算是历年高考的热点,每年必考,常和不等式的解集、函数的定义域、值域等相结合命题,主要以选择题的形式出现.试题多为低档题.主要命题角度有:(1)求集合间的交、并、补运算;(2)已知集合的运算结果求参数.角度一求集合间的交、并、补运算2019·高考全国卷Ⅰ)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6} B.{1,7} C.{6,7} D.{1,6,7}(2)(2020·浙江高考模拟)设全集U=R,集合A={x|x2-x-2<0},B={x|1<x<3},则A∪B=________,∁U(A ∩B)=________.角度二已知集合的运算结果求参数(1)设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.-1<a≤2 B.a>2 C.a≥-1 D.a>-1(2)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3} B.{1,0 }C.{1,3} D.{1,5}(1)集合运算的常用方法①若集合中的元素是离散的,常用Venn图求解.②若集合中的元素是连续的实数,则用数轴表示,此时要注意端点的情况.(2)利用集合的运算求参数的值或取值范围的方法①与不等式有关的集合,一般利用数轴解决,要注意端点值能否取到.②若集合能一一列举,则一般先用观察法得到不同集合中元素之间的关系,再列方程(组)求解.[提醒]在求出参数后,注意结果的验证(满足互异性).1.已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3] B.(-2,3] C.[1,2) D.(-∞,-2]∪[1,+∞)2.设全集S={1,2,3,4},且A={x∈S|x2-5x+m=0},若∁S A={2,3},则m=________.核心素养系列 数学抽象——集合的新定义问题定义集合的商集运算为A B ={x |x =m n ,m ∈A ,n ∈B }.已知集合A ={2,4,6},B ={x |x =k2-1,k∈A },则集合BA ∪B 中的元素个数为( )A .6B .7C .8D .9解决集合新定义问题的方法(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在.(2)用好集合的性质.集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.设数集M ={x |m ≤x ≤m +34},N ={x |n -13≤x ≤n },且M ,N 都是集合U ={x |0≤x ≤1}的子集,定义b -a 为集合{x |a ≤x ≤b }的“长度”,则集合M ∩N 的长度的最小值为________.课后案 [A 组]1.已知集合A ={1,2,3,4},B ={2,4,6,8},则A ∩B 中元素的个数为( ) A .1 B .2 C .3 D .42.(2020·温州十五校联合体联考)已知集合A ={}x |e x ≤1,B ={}x |ln x ≤0,则A ∪B =( ) A .(-∞,1] B .(0,1] C .[1,e] D .(0,e]3.已知全集U =A ∪B ={x ∈Z |0≤x ≤6},A ∩(∁U B )={1,3,5},则B =( ) A .{2,4,6} B .{1,3,5} C .{0,2,4,6} D .{x ∈Z |0≤x ≤6} 4.设集合A ={1,2,6},B ={2,4},C ={x ∈R |-1≤x ≤5},则(A ∪B )∩C =( ) A .{2} B .{1,2,4} C .{1,2,4,6} D .{x ∈R |-1≤x ≤5} 5.已知全集为R ,集合A ={x |x 2-5x -6<0},B ={x |2x <1},则图中阴影部分表示的集合是( )A .{x |2<x <3}B .{x |-1<x ≤0}C .{x |0≤x <6}D .{x |x <-1}6.已知集合A ={x |x 2-3x <0},B ={1,a },且A ∩B 有4个子集,则实数a 的取值范围是( ) A .(0,3) B .(0,1)∪(1,3) C .(0,1) D .(-∞,1)∪(3,+∞) 7.设U ={x ∈N *|x <9},A ={1,2,3},B ={3,4,5,6},则(∁U A )∩B =( ) A .{1,2,3} B .{4,5,6} C .{6,7,8} D .{4,5,6,7,8}8.设集合A =⎩⎨⎧⎭⎬⎫5,b a ,a -b ,B ={b ,a +b ,-1},若A ∩B ={2,-1},则A ∪B =( )A .{-1,2,3,5}B .{-1,2,3}C .{5,-1,2}D .{2,3,5}9.已知集合P ={n |n =2k -1,k ∈N *,k ≤50},Q ={2,3,5},则集合T ={xy |x ∈P ,y ∈Q }中元素的个数为( ) A .147 B .140 C .130 D .11710.已知全集U =R ,集合A ={x |x 2-3x +2>0},B ={x |x -a ≤0},若∁U B ⊆A ,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,2]C .[1,+∞)D .[2,+∞)11.集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为________. 12.已知全集U =R ,集合A ={x |-1≤x ≤3},集合B ={x |log 2(x -2)<1},则A ∪B =________;A ∩(∁U B )=________.13.设集合A ={n |n =3k -1,k ∈Z },B ={x ||x -1|>3},则B =________,A ∩(∁R B )=________. 14.设全集为R ,集合M ={x ∈R |x 2-4x +3>0},集合N ={x ∈R |2x >4},则M ∩N =________;∁R (M ∩N )=________.15.已知集合M ={x |x 2-4x <0},N ={x |m <x <5},若M ∩N ={x |3<x <n },则m =________,n =________. 16.设全集U ={x ∈N *|x ≤9},∁U (A ∪B )={1,3},A ∩(∁U B )={2,4},则B =________. 17.已知集合A ={x |1≤x <5},C ={x |-a <x ≤a +3},若C ∩A =C ,则a 的取值范围是________.[B 组]1.已知全集U 为R ,集合A ={x |x 2<16},B ={x |y =log 3(x -4)},则下列关系正确的是( ) A .A ∪B =R B .A ∪(∁U B )=R C .(∁U A )∪B =R D .A ∩(∁U B )=A .2.集合A ={x |y =ln(1-x )},B ={x |x 2-2x -3≤0},全集U =A ∪B ,则∁U (A ∩B )=( )A .{x |x <-1或x ≥1}B .{x |1≤x ≤3或x <-1}C .{x |x ≤-1或x >1}D .{x |1<x ≤3或x ≤-1} 3.(2020·浙江新高考联盟联考)已知集合A ={1,2,m },B ={1,m },若B ⊆A ,则m =________,∁A B =________.4.函数g (x )=⎩⎪⎨⎪⎧x ,x ∈P ,-x ,x ∈M ,其中P ,M 为实数集R 的两个非空子集,规定f (P )={y |y =g (x ),x ∈P },f (M )={y |y =g (x ),x ∈M }.给出下列四个命题:①若P ∩M =∅,则f (P )∩f (M )=∅; ②若P ∩M ≠∅,则f (P )∩f (M )≠∅; ③若P ∪M =R ,则f (P )∪f (M )=R ; ④若P ∪M ≠R ,则f (P )∪f (M )≠R . 其中命题不正确的有________.5.设[x ]表示不大于x 的最大整数,集合A ={x |x 2-2[x ]=3},B =⎩⎨⎧⎭⎬⎫x |18<2x <8,求A ∩B .6.已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }. (1)当m =-1时,求A ∪B ; (2)若A ⊆B ,求实数m 的取值范围; (3)若A ∩B =∅,求实数m 的取值范围.课后案答题纸1 2 3 4 5 6 7 8 9 1011. 12. A ∪B =________;A ∩(∁U B )=________.13、 B =________,A ∩(∁R B )=_14. M ∩N =________;∁R (M ∩N )=________. 15. m =________,n =________.16. B =________. 17.B 组1 23. m =________,∁A B =________.4.5.设[x ]表示不大于x 的最大整数,集合A ={x |x 2-2[x ]=3},B =⎩⎨⎧⎭⎬⎫x |18<2x <8,求A ∩B .6.已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }. (1)当m =-1时,求A ∪B ; (2)若A ⊆B ,求实数m 的取值范围; (3)若A ∩B =∅,求实数m 的取值范围.。
集合的概念与运算
集合的概念与运算(总6页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除01集合的概念知识梳理1.元素与集合(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或?表示.(3)集合的表示法:列举法、描述法、图示法.2.集合间的基本关系表示关系文字语言符号语言集合间的基本关系相等集合A与集合B中的所有元素都相同A=B 子集A中任意一个元素均为B中的元素A?B 真子集A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素A B 空集空集是任何集合的子集,是任何非空集合的真子集集合的并集集合的交集集合的补集图形语言符号语言A∪B={x|x∈A,或x∈B}A∩B={x|x∈A,且x∈B}?U A={x|x∈U,且x?A}并集的性质:A∪?=A;A∪A=A;A∪B=B∪A;A∪B=A?B?A.交集的性质:A∩?=?;A∩A=A;A∩B=B∩A;A∩B=A?A?B.补集的性质:A∪(?U A)=U;A∩(?U A)=?;?U(?U A)=A.题型一.集合例1. (1)已知集合A ={0,1,2},则集合B ={x -y|x ∈A ,y ∈A}中元素的个数是( ) A .1 B .3 C .5 D .9(2)已知集合A ={m +2,2m 2+m},若3∈A ,则m 的值为________. 答案 (1)C (2)-32(2)由题意得m +2=3或2m 2+m =3,则m =1或m =-32,当m =1时,m +2=3且2m 2+m =3,根据集合中元素的互异性可知不满足题意;当m =-32时,m +2=12,而2m 2+m =3,故m =-32.【感悟提升】(1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型集合;(2)集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.变式1.设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中的元素个数为( )A .3B .4C .5D .6 变式2.设a ,b ∈R ,集合{1,a +b ,a}=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.答案 1.B 2.2解析 1.因为集合M 中的元素x =a +b ,a ∈A ,b ∈B ,所以当b =4时,a =1,2,3,此时x =5,6,7.当b =5时,a =1,2,3,此时x =6,7,8. 所以根据集合元素的互异性可知,x =5,6,7,8. 即M ={5,6,7,8},共有4个元素.2.因为{1,a +b ,a}=⎩⎨⎧⎭⎬⎫0,ba ,b ,a ≠0, 所以a +b =0,得ba =-1,所以a=-1,b=1,所以b-a=2.题型二. 集合间的基本关系例2.(1)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A?C?B的集合C的个数为()A.1 B.2 C.3 D.4B⊆,则实数m的最大值为(2)已知集合},xm-≤≤xA若A=xBx=m|{121},7≤≤{-|2+_____.答案(1)D(2)4 注:若B是A的真子集,则m的最大值为什么?【感悟提升】(1)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解;(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系.常用数轴、Venn图等来直观解决这类问题.变式1.已知集合A={x|y=ln(x+3)},B={x|x≥2},则下列结论正确的是()A.A=B B.A∩B=?C.A?B D.B?A变式2.已知集合A={x|log2x≤2},B={x|x<a},若A?B,则实数a的取值范围是________.答案 1.D 2.(4,+∞)解析 1.A={x|x>-3},B={x|x≥2},结合数轴可得:B?A.2.由log2x≤2,得0<x≤4,即A={x|0<x≤4},而B={x|x<a},由于A ?B ,如图所示,则a>4. 题型三. 集合的基本运算例3.(1)已知}2|1||{<-=x x A ,}06|{2<-+=ax x x B ,}0152|{2<--=x x x C , ① ,B B A =⋃求a 的范围;② 是否存在a 的值使C B B A ⋂=⋃,若存在,求出a 的值,若不存在,说明理由. (2)设集合U =R ,A ={x|2x(x -2)<1},B ={x|y =ln(1-x)},则图中阴影部分表示的集合为( )A .{x|x ≥1}B .{x|1≤x<2}C .{x|0<x ≤1}D .{x|x ≤1}答案 (1)✍(-5≤a ≤-1);✍1519,-≤≤-⊆⊆a C B A (2)B变式1.已知集合A ={1,3,m},B ={1,m},A ∪B =A ,则m 等于( ) A .0或 3 B .0或3 C .1或 3D .1或3变式2.}32|{+≤≤=a x a x A ,}51|{>-<=x x x B 或,∅≠⋂B A ,则a 的取值范围为_______.答案1.B 2.]3,2()21,(⋃--∞【感悟提升】1.一般来讲,集合中的元素若是离散的,则用Venn 图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况.2.运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化.变式3.(2015·天津)已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7},则集合A ∩(?UB)等于( )A.{2,5} B.{3,6}C.{2,5,6} D.{2,3,5,6,8}变式4.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(?UA)∩B =?,则m的值是__________.答案 3.A 4.1或2解析 3.由题意知,?UB={2,5,8},则A∩(?UB)={2,5},选A.4.A={-2,-1},由(?UA)∩B=?,得B?A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠?.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则应有-(m+1)=(-2)+(-2)=-4,且m=(-2)×(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3,且m=(-1)×(-2)=2,由这两式得m=2.经检验知m=1和m=2符合条件.∴m=1或2.题型四. 集合的新定义问题例4.若集合A具有以下性质:(Ⅰ)0∈A,1∈A;(Ⅱ)若x∈A,y∈A,则x-y∈A,且x≠0时,1x∈A.则称集合A是“好集”.下列命题正确的个数是()(1)集合B={-1,0,1}是“好集”;(2)有理数集Q是“好集”;(3)设集合A 是“好集”,若x ∈A ,y ∈A ,则x +y ∈A. A .0 B .1 C .2 D .3 答案 C变式: (2015·湖北)已知集合A ={(x ,y)|x 2+y 2≤1,x ,y ∈Z},B ={(x ,y)||x|≤2,|y|≤2,x ,y ∈Z},定义集合A*B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B},则A*B 中元素的个数为( )A .77B .49C .45D .30 答案 C解析 如图,集合A 表示如图所示的所有圆点“”,集合B 表示如图所示的所有圆点“”+所有圆点“”,集合A*B 显然是集合{(x ,y)||x|≤3,|y|≤3,x ,y ∈Z}中除去四个点{(-3,-3),(-3,3),(3,-3),(3,3)}之外的所有整点(即横坐标与纵坐标都为整数的点),即集合A*B 表示如图所示的所有圆点“”+所有圆点“”+所有圆点“”,共45个.故A*B 中元素的个数为45.故选C. 【真题演练】1.【2016高考新课标1理数】设集合{}2430A x x x =-+< ,{}230x x ->,则A B = ( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭ (D )3,32⎛⎫ ⎪⎝⎭【答案】D【解析】因为23{|430}={|13},={|},2A x x x x xB x x =+<<<>-所以33={|13}{|}={|3},22A B x x x x x x <<><<故选D.2.【2016高考新课标3理数】设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S T =( )(A) [2,3] (B)(-∞ ,2] [3,+∞) (C) [3,+∞) (D)(0,2] [3,+∞)【答案】D【解析】由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{|23}S x x x =≤≥或,所以{|023}S T x x x =<≤≥或,故选D .3.【2016年高考四川理数】设集合{|22}A x x =-≤≤,Z 为整数集,则A Z 中元素的个数是( )(A )3 (B )4 (C )5 (D )6【答案】C 【解析】由题意,{2,1,0,1,2}A Z =--,故其中的元素个数为5,选C. 4.【2016高考山东理数】设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =( ) (A )(1,1)-(B )(0,1) (C )(1,)-+∞ (D )(0,)+∞【答案】C 【解析】}0|{>=y y A ,}11|{<<-=x x B ,则A B =∞(-1,+),选C. 5.【2016高考新课标2理数】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =( )(A ){1} (B ){12},(C ){0123},,, (D ){10123}-,,,, 【答案】C【解析】集合{|12,}{0,1}B x x x =-<<∈=Z ,而{1,2,3}A =,所以{0,1,2,3}A B =,故选C.6.【2016高考浙江理数】已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ( )A .[2,3]B .( -2,3 ]C .[1,2)D .(,2][1,)-∞-⋃+∞ 【答案】B 【解析】根据补集的运算得.故选B .7.【2015高考陕西,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞ 【答案】A【解析】{}{}20,1x x x M ===,{}{}lg 001x x x x N =≤=<≤,所以[]0,1M N =,故选A .8.【2015高考福建,理1】若集合{}234,,,A i i i i = (i 是虚数单位),{}1,1B =- ,则A B 等于 ( )A .{}1-B .{}1C .{}1,1-D .φ 【答案】C【解析】由已知得{},1,,1A i i =--,故A B ={}1,1-,故选C .。
集合的概念及运算
集合的表示
集合的关系
子集、相等、真子集; 空集、全集;
幂集、n元集、有限集;
集合的概念 ①子集
集合的表示
集合的关系
[子集(subset)]设A、B是任意两个集合,如果A的
每一个元素是B的元素,则称A为B的子集,
A包含于B, 或说B包含A, 记作AB,或BA。
或说
AB (x)(xAxB)
第二部分 集合论
集合
• 概念:属于、包含 、子集、空集、幂集 • 运算:交、并、补、差 等价关系
序偶:
·
• 有序二元组 • 笛卡尔积
关系
• • • • • 概念:定义域、值域 性质:(反) 自反性、(反) 对称性、传递性 运算:复合关系、逆关系、闭包 集合划分和覆盖 等价关系(RST)、相容关系(RS)、序 关系(RiST)
xAxB是重言式,即 xA xB 若A不是B的子集, 则记作AB AB (x)(xAxB)
集合的概念 ①子集
集合的表示
集合的关系
证明AB x(xAxB)成立 [证明]:根据定义 AB (x)(xAxB) 则 AB (x)(xAxB) (x)((xA)(xB)) (x)((xA)(xB))
集合的关系
1.AAБайду номын сангаас(反自反性)
证明:
A A AA AA TF F.
2.若AB,则 BA (反对称性) 证明: (反证) 设BA, 则 AB AB AB AB BA BA BA BA 所以 AB BA A=B (=定义) 但是 AB AB AB AB (化简) 矛盾 (化简)
(0,10]
例2: 设An={xR|0x1/n},n=1,2,…,则 A1 A2 An =
集合的概念与运算总结
集合的概念与运算总结在数学中,集合是由一组特定对象组成的。
这些对象可以是数字、字母、词语、人物、事物等等。
集合的运算是指对集合进行交、并、差等操作的过程。
本文将对集合的概念及其运算进行总结。
一、集合的概念集合是数学中的基础概念之一,通常用大写字母表示,如A、B、C 等。
集合中的对象称为元素,用小写字母表示。
一个元素要么属于一个集合,要么不属于,不存在属于但不属于的情况。
表示元素属于某个集合的关系可以用符号∈表示,不属于则用∉表示。
例如,对于集合A={1,2,3},元素1∈A,元素4∉A。
集合还有一些常用的特殊表示方法,如空集∅表示不包含任何元素的集合,全集U表示某一给定条件下所有可能元素的集合。
二、集合的基本运算1. 交集运算(∩)交集运算是指将两个集合中共同拥有的元素合并成一个新的集合。
用符号∩表示。
例如,对于集合A={1,2,3}和集合B={2,3,4},它们的交集为A∩B={2,3}。
2. 并集运算 (∪)并集运算是指将两个集合中所有的元素合并成一个新的集合。
用符号∪表示。
例如,对于集合A={1,2,3}和集合B={2,3,4},它们的并集为A∪B={1,2,3,4}。
3. 差集运算(\)差集运算是指从一个集合中去除另一个集合的所有元素。
用符号\表示。
例如,对于集合A={1,2,3}和集合B={2,3,4},集合A减去集合B的差集为A\B={1}。
4. 补集运算补集运算是指对于给定的全集U,从全集中去除某个集合中的元素得到的集合。
用符号'表示。
例如,对于集合A={1,2,3}和全集U={1,2,3,4,5},A的补集为A'={4,5}。
三、集合运算的性质集合运算具有以下几个基本性质:1. 交换律交换律指的是对于任意两个集合A和B,A∩B = B∩A,A∪B =B∪A。
2. 结合律结合律指的是对于任意三个集合A、B和C,(A∩B)∩C = A∩(B∩C),(A∪B)∪C = A∪(B∪C)。
1.1 集合的概念及运算
集合的概念及运算一、 集合的含义与表示1. 集合的含义一些确定的元素组成的总体叫做集合。
2. 元素与集合的关系1. 集合用大写字母 ,,,C B A 表示2. 元素用小写字母 ,,,c b a 表示3. 元素与集合的关系有且仅有两种:属于(用符号""∈表示)和不属于(用符号""∉表示)。
4. 不含任何元素的集合叫做空集,记做∅。
注意 空集属于任何集合。
3. 集合中元素的性质1. 确定性2. 互异性3. 无序性4. 集合的分类1. 无限集,2. 有限集。
5. 常用数集及其符号表示6. 集合的表示方法1. 列举法 如2. 描述法 如7. 练习1. 已知集合{}2,1,0=A ,则集合{}A y x A y A x y x B ∈-∈∈-=,,中元素的个数是2. 已知集合{}5,4,3,2,1=A ,则集合{}A y x A y A x y x B ∈-∈∈=,,),(中元素的个数是3. i 是虚数单位,若集合{}1,0,1-=S ,则S i A ∈. S i B ∈2. S i C ∈3. S i D ∈2. 二、 集合间的基本关系1. 已知集合{}3,2,1=A ,{}3,2=B 则,集合A 与集合B 的关系2. 集合{}1,0,1-共有 个子集。
三、 集合的基本运算1. 已知集合{}m A ,3,1=,{}m B ,1=,A B A =⋃,则m=2. 已知M ,N 为集合I 的非空子集,且M ,N 不相等,若=⋃∅=⋂N M M C N I 则,3. 已知集合{}2,1,0,1,2--=A ,{}0)2)(1(<+-=x x x B ,则=⋂B A4. 已知全集{}8,7,6,5,4,3,2,1=U ,集合{}6,5,3,2=A ,集合{}7,6,4,3,1=B ,则集合=⋂B C A U5. 若集合{}432,,,i i i i A =(i 是虚数单位),{}1,1-=B ,则=⋂B A6. 设集合{}0)2)(1(<-+=x x x A ,集合{}31<<=x x B ,则=⋃B A7. 已知集合{}0322≥--=x x x A ,{}22≤≤-=x x B ,则=⋂B A8. 已知集合U=R ,{}0≤=x A ,{}1≥=x x B ,则集合=⋃)(B A C U9. 设全集{}2≥∈=x N x U ,集合{}52≥∈=x N x A ,则=A C U10.已知集合{}1log 04<<=x x A ,{}2≤=x x B ,则=⋂B A11.已知集合{}023>+∈=x R x A ,{}0)3)(1(>-+∈=x x R x B ,则=⋂B A。
离散数学第三章集合的基本概念和运算
3.1 集合的基本概念
3.2 集合的基本运算
3.3 集合中元素的计数
3.1 集合的基本概念
1.子集:若 B⊆A⇔∀x(x∈B→x∈A),则称B为A的子集. 2.真子集:若 B⊆A ∧ B≠A,则称B为A的真子集. 3.集合相等: B⊆A ∧ A⊆B⇔A=B,称集合A与B相等. 4.空集:不含任何元素的集合称为空集.记作φ. 空集是一切集合的子集;空集是唯一的. 5.n元集:含有n个元素的集合称为n元集. 6.全集:如果所涉及的集合都是某个集合的子集,则称这个集 合为全集(E). 7.幂集:设A为集合,把A的全体子集构成的集合,称为A的幂集 记作P(A),P(A)={x|x⊆A}. 若A是n元集,则P(A)有2n个元集(n元集有2n个子集).
二.集合运算的算律 幂等律:A∪A=A, A∩A=A;
结合律: (A∪B)∪C=A∪(B∪C), (A∩B)∩C=A∩(B∩C); 交换律: A∪B=B∪A , A∩B=B∩A; 分配律: A∪(B∩C)=(A∪B)∩(A∪C), A∩(B∪C)=(A∩B)∪(A∩C); 同一律: A∪φ=A, 排中律: A∪~A=E; A∩E=A; 零律: A∪E=E, A∩φ=φ;
| Ai I A j I Ak | +... + ( −1) m | A1 I A2 I ...I Am | ∑
推论: 推论:在S中至少具有一条性质的元素数是
| A1 U A 2 U ... U A m |= +
1≤ i < j < k ≤ m
∑|A
i =1
m
i
|−
1≤ i < j ≤ m
∑|AI
i
二.包含排斥原理 包含排斥原理
集合的概念及运算
10.集合 M={m | m=2a-1, aZ} 与 N={n | n=6b1, bZ} 之间的 关系是 N M .
11.已知 R 为全集, A={x | log 1(3-x)≥-2}, B={x | x 5 ≥1}, 求 +2 2 CRA∩B. (-2, -1)∪{3} 12.调查 100 名有携带药品出国的旅游者, 其中 75 人带有感冒 药, 80 人带有胃药, 那么既带感冒药又带胃药的人数的最大值 和最小值分别为多少? 解: 设既带感冒药又带胃药的人数为 x, 既不带感冒药又不带 胃药的人数为 a. 记这100名出国旅游者组成全集 I , 其中带感冒药的人组成集 合 A, 带胃药的人组成集合 B. 则 x=card(A∩B) 且 card(A)=75, card(B)=80, 依题意得: a+card(A)+card(B)-x=100, 0≤a≤20. ∴x=a+55, 0≤a≤20. ∴55≤x≤75. 故既带感冒药又带胃药的人数的最大值为 75, 最小值为 55. 13.已知函数 f(x)=ax2-1, aR, xR, 设集合 A={x | f(x)=x}, 集 合 B={x | f[f(x)]=x}, 且 A=B, 求实数 a 的取值范围.
2, a+b, 0}, 则 a2006+b2007= 1 . 1.若{a, b , 1}={ a a 2.若集合 M={-1, 1, 2}, N={y | y=x2, x∈M}, 则 M∩N 是 ( B ) A. {1, 2, 4} B. { 1 } C. {1, 4} D. x+1 3.若集合 M={12, a}, 集合P={x | x -2 ≤0, x∈Z} 且 M∩P={0}, 记 M∪P=S, 则集合 S 的真子集个数是 ( D) A. 8 B. 7 C. 16 D. 15 4.已知集合 S, M, N, P 如图所示, 则图中阴影部分表示的集合 S 是( D) A. M∩(N∪P) B. M∩Cs(N∩P) P M N C. M∪Cs(N∩P) D. M∩Cs(N∪P)
《集合》知识点总结
《集合》知识点总结一、集合的基本概念1、集合:一些指定的对象集在一起就成为一个集合,其中每一个对象称为元素。
2、集合的表示:用大括号{}或小括号()表示,元素与集合的关系为“属于”或“不属于”。
3、集合的特性:确定性、互异性、无序性。
二、常见集合的表示方法1、自然数集:N2、整数集:Z3、有理数集:Q4、实数集:R三、集合的运算1、交集:取两个集合的公共元素组成的集合,记作A∩B。
2、并集:把两个集合合并起来,记作A∪B。
3、补集:把属于一个集合但不在该集合的元素组成的集合,记作CuA。
四、集合间的关系1、子集:若一个集合A的每一个元素都是另一个集合B的元素,则称A是B的子集。
2、真子集:如果A是B的子集,且A≠B,则称A是B的真子集。
3、相等:当且仅当两个集合的元素完全相同,且不强调元素的顺序时,两个集合相等。
五、集合的基本运算性质1、若A、B为两个集合,有A∩B=B∩A。
2、若A、B为两个集合,有Cu(A∩B)=CuA∪CuB。
3、若A、B、C为三个集合,有(A∩B)∩C=A∩(B∩C)。
4、若A、B为两个集合,有(CuA)∪B=(A∪B)∩CuB。
5、若A、B、C为三个集合,有(A∪B)∩C=(A∩C)∪(B∩C)。
6、若A、B为两个集合,有(CuA)∩B=Cu(A∪B)。
7、若A、B为两个集合,有(CuA)∪(CuB)=Cu(A∩B)。
集合知识点总结一、集合、元素及其关系1、集合的基本概念:集合是一个不重复的元素的集合,常用大写字母表示集合,如A={1,2,3},B={apple,banana,cherry}。
2、集合的表示方法:常用的表示方法有列举法和描述法。
列举法是把集合中的元素一一列举出来,适用于元素数量较少的集合;描述法是用集合中元素的共同特征来描述集合,如自然数集N={n|n是自然数}。
3、集合的元素关系:如果集合A中的任意一个元素都是集合B中的元素,那么称A是B的子集,记作A⊆B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(9)集合P x,1,Q y,1,2 其中x,y 1,2, ,
9 且P Q,把满足上述条件的一对有序整数(x , y)
作为一个点,这样的点的个数是( B )
(A)9
(B)14
(C)15
(D)21
返回
能力·思维·方法
1.已知全集为R,A={y|y=x2+2x+2},
B={y|y=x2+2x-8},求:
{2,4,5},那么 (CsM)∩(CsN)等于( A )
(A)Φ
(B){1,3}
(C){4}
(D){2,5}
(5)若
a,ab
,1
a2 ,a b,0
,则a2002+b2003=__1__.
(6)已知集合M={-1, 1, 2}, 集合N={y|y=x2,x∈M },
则M∩N是( B ) (A) {1, 2, 4}
(即A S),由S中所有不属于A的元素组成的集合,
叫做集合A在全集S中的补集(或余集).
三、集合之间的运算性质
1.交集的运算性质 A∩B=B∩A,A∩B A,A∩B B,A∩A=A, A∩Φ=Φ,A BA∩B=A 2.并集的运算性质 A∪B=B∪A,A∪B A,A∪B B,A∪A=A, A∪Φ=A,A BA∪B=B 3.补集的运算性质 CS(CSA)=A,CSΦ=S,A∩CSA=Φ, A∪CSA=S CS(A∩B)=(CSA)∪(CSB), CS(A∪B)=(CSA)∩(CSB)
课后作业: 课本P42第1——6题,P43第1——3题.
限个),无限集(元素个数是无限个),空集(不含任何 元素).
3.集合中元素的性质 对于一个给定的集合,它的元素具有确定性、
互异性、无序性
4.集合的表示方法 ①列举法; ②描述法; ③图示法; ④字母法
二、元素与集合、集合与集合之间的关系
1. 元素与集合是“∈”或“ ”(或“ ”)的关系
元素与集合之间是个体与整体的关系,不存在 大小与相等关系.
集合的概念及运算
安吉县昌硕高级中学高一数学组
要点·疑点
一、集合的基本概念及表示方法
1.集合与元素 一般地,某些指定的对象集在一起就成为一个
集合,也简称集,通常用大写字母A、B、C…表示.
集合中的每一个对象叫做Байду номын сангаас合的一个元素,通常用
小写字母a、b、c…表示
2.集合的分类 集合按元素多少可分为:有限集(元素个数是有
T={x︱x=4k±1,k∈Z},那么 ( C )
(A)S真包含于T (B)T真包含于S
(C)S=T
(D)S≠T
(3)如果X={x︱x2-x=0},Y ={x︱x2+x=0}, 那么X∩Y等于( B )
(A)0 (B){0} (C)Φ (D){-1,0,1}
(4)S={1,2,3,4,5},M={1,3,4},N=
(4)运算关系
①交集:由所有属于集合A且属于集合B的元素所组 成的集合叫做集合A与B的交集,记为A∩B,即 A∩B={x|x∈A,且x∈B}
②并集:由所有属于集合A或属于集合B的元素所组 成的集合叫做集合A与B的并集,记为A∪B,即 A∪B={x|x∈A,或x∈B}
③补集:一般地设S是一个集合,A是S的一个子集
【解题回顾】(1)注意下面的等价关系①A∪B=B A B② A∩B=AA B;(2)用“数形结合思想”解题时,要特别 注意“端点”的取舍问题
3.已知三个集合A={x∣x2-3x+2=0}, B= {x∣x2-ax+(a-1)=0}, C={x∣x2-bx+2=0},且
B 不包含于A,C A,求a、b的值
返回
四、有限集合的子集个数公式 设有限集合A中有n个元素,则A的子集个数有
2n个,其中真子集的个数为2n-1个,非空子集个数 为2n-1个,非空真子集个数为2n-2个
返回
课前热身
(1)如果X={x︱x>-1},那么(D)
(A)0 X
(B){0}∈X
(C)Φ ∈X
(D){0} X
(2)如果S={x︱x=2n+1,n∈Z},
(1)A∩B; (2)A∪CRB;
(3)(CRA)∩(CRB)
【解题回顾】本题涉及集合的不同表示方法,准确认识 集合A、B是解答本题的关键;对(3)也可计算CR(A∪B)。
2.已知集合A={x|x2-x-6<0},B={x|0<x-m<9} (1) 若A∪B=B,求实数m的取值范围; (2) 若A∩B≠φ,求实数m的取值范围.
(B) { 1 }
(C) {1,4}
(D) Φ
(7) 已知集合M
12,a,集合P
x
x x
1 2
0,x
Z,
M∩P={ 0 },若M∪P=S. 则集合S的真子集个数是
(D )
(A) 8
(B) 7
(C) 16
(D) 15
(8)集合S,M,N,P如图所示,则图中阴影部分所 表示的集合是( D ) (A) M∩(N∪P) (B) M∩CS(N∩P) (C) M∪CS(N∩P) (D) M∩CS(N∪P)
2.集合与集合之间的关系 (1)包含关系
如果x∈A,则x∈B,则集合A是集合B的子集, 记为A B或B A 显然AA,Φ A
(2)相等关系 对于集合A、B,如果AB,同时B A,那么称
集合A等于集合B,记作A=B
(3)真子集关系 对于集合A、B,如果A B,并且A≠B,我们
就说集合A是集合B的真子集 显然,空集是任何非空集合的真子集