高三一轮复习1.1集合的概念与运算教案
高中数学集合含义教案
高中数学集合含义教案
教学目标:
1. 知识目标:理解集合的概念和符号表示法,掌握集合的基本概念和运算规则。
2. 能力目标:能够应用集合的知识解决实际问题,提高逻辑思维能力和抽象化能力。
3. 情感目标:培养学生对数学知识的兴趣,增强数学学习的自信心和动力。
教学重难点:
1. 集合的定义和概念理解;
2. 集合的表示法和运算规则;
3. 集合运算的解题方法。
教学过程:
一、导入(5分钟)
教师通过观察现实生活中的集合的例子引入集合的概念,引导学生理解集合的含义和应用。
二、讲解(15分钟)
1. 集合的定义:集合是由若干个元素组成的整体;
2. 集合的表示法:用大括号{}表示,元素之间用逗号隔开;
3. 集合的基本运算:并集、交集、差集等;
4. 集合之间的关系:包含关系、相等关系等。
三、练习(20分钟)
1. 完成集合的表示练习;
2. 计算给定集合的并集、交集等;
3. 解答集合运算的应用题。
四、总结(5分钟)
通过对今天课堂内容的总结,强调集合的重要性和应用,引导学生深入理解和应用集合的
知识。
五、作业布置(5分钟)
布置作业:完成课堂练习题和课外拓展题,巩固集合运算的知识。
教学反思:
通过引入现实例子和丰富练习的方式,学生更容易理解集合的概念和运算规则,提高了学
生的学习兴趣和能力。
在今后的教学中,需要进一步引导学生应用集合知识解决实际问题,并注重激发学生的数学思维和创造力。
高中数学集合运算教案
高中数学集合运算教案
一、教学目标:
1. 理解集合及其基本概念;
2. 掌握集合之间的基本运算;
3. 能够应用集合运算解决实际问题。
二、教学重点:
1. 集合的定义和基本概念;
2. 并集、交集、差集和补集的运算规律;
3. 集合运算的应用。
三、教学内容:
1. 集合的定义和表示方法;
2. 集合之间的基本运算:并集、交集、差集和补集;
3. 集合运算的性质和规律。
四、教学过程:
1. 集合的定义和表示方法(10分钟)
教师介绍集合的概念,并举例说明集合的表示方法,如集合的写法和集合元素的描述。
2. 集合之间的基本运算(20分钟)
教师介绍并集、交集、差集和补集的定义,并通过实例演示如何进行这些运算。
3. 集合运算的性质和规律(15分钟)
教师讲解集合运算的性质和规律,如交换律、结合律、分配律等,并通过练习加深学生对
这些规律的理解。
4. 集合运算的应用(15分钟)
教师讲解如何利用集合运算解决实际问题,如概率、逻辑等方面的问题,并进行相关练习。
五、教学反馈:
教师对学生进行集合运算的练习,检验学生掌握情况,并及时纠正错误,强化学生对集合运算的理解。
六、作业布置:
布置相关的集合运算练习题,让学生巩固所学知识,并要求学生在下节课前完成。
七、拓展延伸:
引导学生拓展集合运算的相关知识,如集合的性质、集合与函数的关系等,并鼓励学生自主学习。
数学高中集合运算教案设计
数学高中集合运算教案设计
教学目标:
1. 理解集合的概念和基本运算法则
2. 掌握集合的并、交、差等运算方法
3. 能够用集合运算解决简单的实际问题
教学重点和难点:
重点:集合的概念和运算法则
难点:运用集合运算解决实际问题
教学准备:教学课件、习题集、黑板、粉笔
教学过程:
一、导入(5分钟)
教师简要介绍集合的概念,引出集合运算的内容,并提出今天的学习目标。
二、讲解与演示(15分钟)
1. 讲解集合的并、交、差等运算方法,并通过例题进行演示。
2. 引导学生理解集合运算的基本思想和运算规则。
三、练习与讨论(20分钟)
1. 让学生在黑板上进行练习,练习集合的并、交、差等运算。
2. 学生进行小组讨论,讨论集合运算的应用场景,并分享自己的解题思路。
四、展示与总结(10分钟)
1. 随机选几组学生展示他们的解题过程和答案。
2. 教师总结集合运算的要点,并强调学生在今后的学习和应用中需要重点掌握的内容。
五、作业布置(5分钟)
布置相关的习题作业,要求学生在家继续巩固和深化对集合运算的理解和掌握。
教学反馈:
教师可以通过批改作业和学生的课堂表现来评估学生对集合运算的掌握程度,及时纠正学生的错误并给予指导。
高中数学第一章集合教案1
高中数学第一章集合教案1
教学目标:使学生掌握集合的基本概念和表示方法,了解集合的运算及其性质。
一、集合的定义和表示方法
1. 集合的基本概念
- 了解集合的概念和元素的概念
- 掌握集合的表示方法:列举法、描述法
2. 集合的符号表示
- 学习如何用符号表示集合:A={1,2,3,4,5}
二、集合的运算及其性质
1. 集合的运算
- 了解集合的交集、并集、差集等运算
- 学习集合的运算规则和性质:交换律、结合律、分配律
2. 集合的运算应用
- 能够解决实际问题中的集合运算
三、集合的性质和定理
1. 集合的性质
- 了解集合的基本性质:互斥、重复、子集等
- 学习如何判断两个集合是否相等
2. 集合的定理
- 掌握集合的代数定理和逻辑定理
教学步骤:
1. 引入新知识,通过生动有趣的例子引出集合的概念和表示方法
2. 介绍集合的运算及其性质,让学生掌握集合的基本运算规则
3. 练习集合的运算和性质,加深学生的理解和掌握程度
4. 引导学生应用集合运算解决实际问题,培养学生的应用能力
5. 总结本节课的内容,强调重点,帮助学生做好知识的复习和巩固
教学反馈:通过课堂练习、作业布置等方式对学生的学习情况进行及时反馈,发现问题及时纠正,提高学生的学习效果。
教学资源:教科书、课件、练习题等
教学评价方法:通过课堂练习、小测验、作业等不同方式对学生的学习情况进行评价,及时发现问题,实施个性化教学。
2022届高考数学大一轮总复习(人教新课标文科)配套学案1 集合的概念和运算
第一章 集合与常用规律用语学案1 集合的概念与运算 导学目标:1.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集.3.理解两个集合的并集与交集的含义,会求两个简洁集合的并集与交集.4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.5.能使用韦恩(Venn)图表达集合的关系及运算.自主梳理1.集合元素的三个特征:确定性、互异性、无序性.2.元素与集合的关系是属于或不属于关系,用符号∈或∉表示. 3.集合的表示法:列举法、描述法、图示法、区间法. 4.集合间的基本关系对任意的x ∈A ,都有x ∈B ,则A ⊆B (或B ⊇A ).若A ⊆B ,且在B 中至少有一个元素x ∈B ,但x ∉A ,则A B (或B A ). 若A ⊆B 且B ⊆A ,则A =B . 5.集合的运算及性质设集合A ,B ,则A ∩B ={x |x ∈A 且x ∈B },A ∪B ={x |x ∈A 或x ∈B }. 设全集为U ,则∁U A ={x |x ∈U 且x ∉A }. A ∩∅=∅,A ∩B ⊆A ,A ∩B ⊆B , A ∩B =A ⇔A ⊆B .A ∪∅=A ,A ∪B ⊇A ,A ∪B ⊇B , A ∪B =B ⇔A ⊆B .A ∩∁U A =∅;A ∪∁U A =U . 自我检测 1.(2021·长沙模拟)下列集合表示同一集合的是( ) A .M ={(3,2)},N ={(2,3)}B .M ={(x ,y )|x +y =1},N ={y |x +y =1}C .M ={4,5},N ={5,4}D .M ={1,2},N ={(1,2)} 答案 C 2.(2009·辽宁)已知集合M ={x |-3<x ≤5},N ={x |-5<x <5},则M ∩N 等于( ) A .{x |-5<x <5} B .{x |-3<x <5} C .{x |-5<x ≤5} D .{x |-3<x ≤5} 答案 B解析 画数轴,找出两个区间的公共部分即得M ∩N ={x |-3<x <5}.3.(2022·湖北)设集合A ={(x ,y )|x 24+y 216=1},B ={(x ,y )|y =3x },则A ∩B 的子集的个数是( )A .4B .3C .2D .1 答案 A解析 易知椭圆x 24+y 216=1与函数y =3x 的图象有两个交点,所以A ∩B 包含两个元素,故A ∩B 的子集个数是4个.4.(2022·潍坊五校联考)集合M ={y |y =x 2-1,x ∈R },集合N ={x |y =9-x 2,x ∈R },则M ∩N 等于( )A .{t |0≤t ≤3}B .{t |-1≤t ≤3}C .{(-2,1),(2,1)}D .∅ 答案 B解析 ∵y =x 2-1≥-1,∴M =[-1,+∞). 又∵y =9-x 2,∴9-x 2≥0.∴N =[-3,3].∴M ∩N =[-1,3]. 5.(2021·福州模拟)已知集合A ={1,3,a },B ={1,a 2-a +1},且B ⊆A ,则a =________. 答案 -1或2解析 由a 2-a +1=3,∴a =-1或a =2,经检验符合.由a 2-a +1=a ,得a =1,但集合中有相同元素,舍去,故a =-1或2.探究点一 集合的基本概念例1 (2021·沈阳模拟)若a ,b ∈R ,集合{1,a +b ,a }={0,ba,b },求b -a 的值.解题导引 解决该类问题的基本方法为:利用集合中元素的特点,列出方程组求解,但解出后应留意检验,看所得结果是否符合元素的互异性.解 由{1,a +b ,a }={0,ba,b }可知a ≠0,则只能a +b =0,则有以下对应关系:⎩⎪⎨⎪⎧a +b =0,ba =a ,b =1①或⎩⎪⎨⎪⎧a +b =0,b =a ,b a =1.②由①得⎩⎪⎨⎪⎧a =-1,b =1,符合题意;②无解.∴b -a =2.变式迁移1 设集合A ={1,a ,b },B ={a ,a 2,ab },且A =B ,求实数a ,b . 解 由元素的互异性知, a ≠1,b ≠1,a ≠0,又由A =B ,得⎩⎪⎨⎪⎧ a 2=1,ab =b ,或⎩⎪⎨⎪⎧a 2=b ,ab =1,解得a =-1,b =0. 探究点二 集合间的关系例2 设集合M ={x |x =5-4a +a 2,a ∈R },N ={y |y =4b 2+4b +2,b ∈R },则下列关系中正确的是( ) A .M =N B .M N C .M N D .M ∈N解题导引 一般地,对于较为简单的两个或两个以上的集合,要推断它们之间的关系,应先确定集合中元素的形式是数还是点或其他,属性如何.然后将所给集合化简整理,弄清每个集合中的元素个数或范围,再推断它们之间的关系.答案 A。
(新人教)高三数学第一轮复习教案1.1.1集合(1)
一.课题:集合(1)二.教学目标:1.理解集合的概念和性质.2.了解元素与集合的表示方法.3.熟记有关数集.4.培养学生认识事物的能力三.教学重、难点:集合概念、性质.四.教学过程:(一)复习:回顾初中代数中涉及“集合”提法(二)新课讲解:1.定义:一般地,某些指定的对象集在一起就成为一个集合(集).进一步指出:集合中每个对象叫做这个集合的元素.由此上述例中集合的元素是什么?(例(1)的元素为1、3、5、7,例(2)的元素为到两定点距离等于两定点间距离的点,例(3)的元素为满足不等式323x x +>+的实数x ,例(4)的元素为所有直角三角形,例(5)为高一·三班全体男同学.)请同学们另外举出三个例子,并指出其元素.一般用大括号表示集合,则上几例可表示为……由以上四个问题可知,集合元素具有三个特征:(1)确定性;(2)互异性;(3)无序性.元素与集合的关系有“属于∈”及“不属于∉( ∉ 也可表示为 )两种.请同学们熟记上述符号及其意义.∈请同学回答:已知a b c m ++=,2{|}A x ax bx c m =++=,判断1与A 的关系. [1A ∈]五.课堂练习:课本P 5,练习1、2补充练习:若23{1,3,1}m m m -∈-+,求m 。
[1m =-或2]m =-六.小结:1.集合的概念2.集合元素的三个特征:其中“集合中的元素必须是确定的”应理解为:对于一个给定的集合,它的元素的意义是明确的.“集合中的元素必须是互异的”应理解为:对于给定的集合,它的任何两个元素都是不同的.3.常见数集的专用符号.七.课后作业:课本P 7,习题1.1 第1题.。
高三数学一轮复习 第1章 集合与常用逻辑用语第1课时 集合的概念与运算精品课件
• 集合是高中数学的基础内容,也是高考数学的必考内容,难度 不大,一般是一道选择题或填空题.通过对近两年高考试题的统 计分析可以看出,对集合内容的考查一般以两种方式出现:一是 考查集合的概念、集合间的关系及集合的运算.
• (3){x|x2-ax-1=0}和{a|方程x2-ax-1=0有实根}的意义不 同.{x|x2-ax-1=0}表示由二次方程x2-ax-1=0的解构成的集 合,而集合{a|方程x2-ax-1=0有实根}表示方程x2-ax-1=0有 实数解时参数a的范围构成的集合.
【变式训练】 1.现有三个实数的集合,既可以表示为a,ba,1, 也可表示为{a2,a+b,0},则 a2 011+b2 011=________.
命题与量 词、 基本 逻辑 联结 词
1.了解命题的概念. 2.了解逻辑联结词“或”、“且”、“非”的含义. 3.理解全称量词与存在量词的含义. 4.能正确地对含有一个量词的命题进行否定.
充分条件、
必要
条件 1.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四
与命
种命题的相互关系.
题的 2.理解必要条件、充分条件与充要条件的意义.
①集合 S={a+b 3|a,b 为整数}为封闭集; ②若 S 为封闭集,则一定有 0∈S; ③封闭集一定是无限集; ④若 S 为封闭集,则满足 S⊆T⊆R 的任意集合 T 也是封闭集. 其中的真命题是________.(写出所有真命题的序号)
序号 结论
理由
• 【全解全析】对于任意整数 a1,b1,a2,b2,有 a1+b1 3+a2+b2 3
B.{a|a≤2或a≥4}
高考一轮复习教案数学(理)新课标 第一篇 集合与常用逻辑用语 1 集合的概念与运算
第1讲集合的概念与运算【2013年高考会这样考】1.考查集合中元素的互异性.2.求几个集合的交、并、补集.3.通过给的新材料考查阅读理解能力和创新解题的能力.【复习指导】1.主要掌握集合的含义、集合间的关系、集合的基本运算,立足基础,抓好双基.2.练习题的难度多数控制在低中档即可,适当增加一些情境新颖的实际应用问题或新定义题目,但数量不宜过多.基础梳理1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法、区间法.(4)常用数集:自然数集N;正整数集N*(或N+);整数集Z;有理数集Q;实数集R.(5)集合的分类:按集合中元素个数划分,集合可以分为有限集、无限集、空集.2.集合间的基本关系(1)子集:对任意的x∈A,都有x∈B,则A⊆B(或B⊇A).(2)真子集:若A⊆B,且A≠B,则A B(或B A).(3)空集:空集是任意一个集合的子集,是任何非空集合的真子集.即∅⊆A,∅B(B≠∅).(4)若A含有n个元素,则A的子集有2n个,A的非空子集有2n-1个.(5)集合相等:若A⊆B,且B⊆A,则A=B.3.集合的基本运算(1)并集:A∪B={x|x∈A,或x∈B}.(2)交集:A∩B={x|x∈A,且x∈B}.(3)补集:∁U A={x|x∈U,且x∉A}.(4)集合的运算性质①A∪B=A⇔B⊆A,A∩B=A⇔A⊆B;②A∩A=A,A∩∅=∅;③A∪A=A,A∪∅=A;④A∩∁U A=∅,A∪∁U A=U,∁U(∁U A)=A.一个性质要注意应用A⊆B、A∩B=A、A∪B=B、∁U A⊇∁U B、A∩(∁U B)=∅这五个关系式的等价性.两种方法韦恩图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心.三个防范(1)空集在解题时有特殊地位,它是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.(2)认清集合元素的属性(是点集、数集或其他情形).(3)在解决含参数的集合问题时,要检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致结论错误.双基自测1.(人教A版教材习题改编)设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于().A.{x|3≤x<4} B.{x|x≥3}C.{x|x>2} D.{x|x≥2}解析B={x|3x-7≥8-2x}={x|x≥3},∴结合数轴得:A∪B={x|x≥2}.答案 D2.(2011·浙江)若P ={x |x <1},Q ={x |x >-1},则( ).A .P ⊆QB .Q ⊆PC .∁R P ⊆QD .Q ⊆∁R P解析 ∵∁R P ={x |x ≥1}∴∁R P ⊆Q .答案 C3.(2011·福建)i 是虚数单位,若集合S ={-1,0,1},则( ).A .i ∈SB .i 2∈SC .i 3∈S D.2i ∈S解析 ∵i 2=-1,∴-1∈S ,故选B.答案 B4.(2011·北京)已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是( ).A .(-∞,-1]B. [1,+∞) C .[-1,1] D .(-∞,-1]∪[1,+∞)解析 因为P ∪M =P ,所以M ⊆P ,即a ∈P ,得a 2≤1,解得-1≤a ≤1,所以a 的取值范围是[-1,1].答案 C5.(人教A 版教材习题改编)已知集合A ={1,3,m },B ={3,4},A ∪B ={1,2,3,4},则m =________.解析 A ∪B ={1,3,m }∪{3,4}={1,2,3,4},∴2∈{1,3,m },∴m =2.答案 2考向一 集合的概念【例1】►已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.[审题视点] 分m +2=3或2m 2+m =3两种情况讨论.解析 因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3,所以m =1不合乎题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3合乎题意.所以m =-32.答案 -32集合中元素的互异性,一可以作为解题的依据和突破口;二可以检验所求结果是否正确.【训练1】 设集合A ={-1,1,3},B ={a +2,a 2+2},A ∩B ={3},则实数a 的值为________.解析 若a +2=3,a =1,检验此时A ={-1,1,3},B ={3,5},A ∩B ={3},满足题意.若a 2+2=3,则a =±1.当a =-1时,B ={1,3}此时A ∩B ={1,3}不合题意,故a =1.答案 1考向二 集合的基本运算【例2】►(2011·天津)已知集合A ={x ∈R ||x +3|+|x -4|≤9},B =⎩⎨⎧⎭⎬⎫x ∈R |x =4t +1t -6,t ∈(0,+∞),则集合A ∩B =________.[审题视点] 先化简集合A ,B ,再求A ∩B .解析 不等式|x +3|+|x -4|≤9等价于⎩⎨⎧ x ≥4,x +3+x -4≤9或⎩⎨⎧ -3<x <4,x +3+4-x ≤9或⎩⎨⎧ x ≤-3,-x -3+4-x ≤9,解不等式组得A =[-4,5],又由基本不等式得B =[-2,+∞),所以A ∩B =[-2,5].答案 {x |-2≤x ≤5}集合运算时首先是等价转换集合的表示方法或化简集合,然后用数轴图示法求解.【训练2】 (2011·江西)若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -2x ≤0,则A ∩B =( ).A .{x |-1≤x <0}B .{x |0<x ≤1}C .{x |0≤x ≤2}D .{x |0≤x ≤1}解析 ∵A ={x |-1≤x ≤1},B ={x |0<x ≤2},∴A ∩B ={x |0<x ≤1}.答案 B考向三 集合间的基本关系【例3】►已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,求实数m 的取值范围.[审题视点] 若B ⊆A ,则B =∅或B ≠∅,故分两种情况讨论.解 当B =∅时,有m +1≥2m -1,得m ≤2,当B ≠∅时,有⎩⎨⎧ m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上:m ≤4.已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图帮助分析,而且经常要对参数进行讨论.【训练3】 (2011·江苏)设集合A =⎩⎪⎨⎪⎧ (x ,y )⎪⎪⎪ m 2≤(x -2)2+y 2≤m 2,⎭⎪⎬⎪⎫x ,y ∈R ,B ={(x ,y )|2m ≤x +y ≤2m +1,x ,y ∈R }.若A ∩B ≠∅,则实数m 的取值范围是________.解析 ①若m <0,则符合题的条件是:直线x +y =2m +1与圆(x -2)2+y 2=m 2有交点,从而|2-2m -1|2≤|m |,解得2-22≤m ≤2+22,与m <0矛盾; ②若m =0,代入验证,可知不符合题意;③若m >0,则当m 2≤m 2,即m ≥12时,集合A 表示一个环形区域,集合B 表示一个带形区域,从而当直线x +y =2m +1与x +y =2m 中至少有一条与圆(x -2)2+y 2=m 2有交点,即符合题意,从而有|2-2m |2≤|m |或|2-2m -1|2≤|m |,解得2-22≤m ≤2+2,由于12>2-22,所以12≤m ≤2+ 2.综上所述,m 的取值范围是12≤m ≤2+ 2. 答案 ⎣⎢⎡⎦⎥⎤12,2+2难点突破1——集合问题的命题及求解策略在新课标高考中,可以看出,集合成为高考的必考内容之一,考查的形式是一道选择题或填空题,考查的分值约占5分,难度不大.纵观近两年新课标高考,集合考题考查的主要特点是:一是注重基础知识的考查,如2011年安徽高考的第8题;二是与函数、方程、不等式、三角等知识相结合,在知识的交汇点处命题,如2011年山东高考的第1题,与不等式相结合;三是在集合的定义运算方面进行了新的命题,如2011年浙江高考的第10题.一、集合与排列组合【示例】► (2011·安徽)设集合A ={1,2,3,4,5,6},B ={4,5,6,7,8},则满足S ⊆A 且S ∩B ≠∅的集合S 的个数是( ).A .57B .56C .49D .8二、集合与不等式的解题策略【示例】► (2011·山东)设集合M ={x |x 2+x -6<0},N ={x |1≤x ≤3},则M ∩N 等于( ).A.[1,2) B.[1,2] C.(2,3] D.[2,3]三、集合问题中的创新问题【示例】►(2011·浙江)设a,b,c为实数,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).记集合S={x|f(x)=0,x∈R},T={x|g(x)=0,x∈R}.若|S|,|T|分别为集合S,T的元素个数,则下列结论不可能的是().A.|S|=1且|T|=0 B.|S|=1且|T|=1C.|S|=2且|T|=2 D.|S|=2且|T|=3。
2020版高考数学一轮复习教案- 第1章 第1节 集合
第 章 集合与常用逻辑用语 第一节 集 合[考纲传真] 1.了解集合的含义,体会元素与集合的属于关系;能用自然语 言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间 包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的 含义.3.(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交 集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能 使用 Venn 图表达集合间的基本关系及集合的基本运算.1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性. (2)元素与集合的关系:属于或不属于,分别记为∈和∉. (3)集合的三种表示方法:列举法、描述法、Venn 图法. (4)常见数集的记法集合 自然数集 正整数集 整数集 有理数集 实数集 符号NN *(或N +)ZQR2.集合间的基本关系表 示文字语言符号语言记法关系A ⊆基 本子集集合 A 的元素都是集合 B 的元素x ∈A ⇒x ∈BB 或 B ⊇ 关 A 系真子集集合 A 是集合 B 的子集,但集合 A ⊆B ,∃x 0∈B ,x 0∉AA B 或B 中至少有一个元素不属于 AB A相等集合 A ,B 的元素完全相同 A ⊆B ,B ⊆A ⇒A =B A = B空集不含任何元素的集合.空集是任 何集合 A 的子集∀x ,x ∉∅,∅⊆A ∅3.集合的基本运算 表示 文字语言符号语言图形语言记法运算 交集属于 A 且属于 B 的元素组成 的集合{x |x ∈A 且x ∈B }A ∩B并集属于 A 或属于 B 的元素组成 的集合{x |x ∈A 或x ∈B }A ∪B补集全集 U 中不属于 A 的元素组 成的集合{x |x ∈U ,x ∉A }∁U A[常用结论]1.若有限集 A 中有 n 个元素,则集合 A 的子集个数为 2n ,真子集的个数为 2n -1.2.A ⊆B ⇔A ∩B =A ⇔A ∪B =B .3.A ∩∁U A =∅;A ∪∁U A =U ;∁U (∁U A )=A .[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)任何集合都至少有两个子集. ( )(2)已知集合 A ={x |y =x 2},B ={y |y =x 2},C ={(x ,y )|y =x 2},则 A =B =C .( )(3)若{x 2,x }={-1,1},则 x =-1. ( ) (4)若 A ∩B =A ∩C ,则 B =C .( )[解析] (1)错误.空集只有一个子集,就是它本身,故该说法是错误的. (2)错误.集合 A 是函数 y =x 2 的定义域,即 A =(-∞,+∞);集合 B 是函 数 y =x 2 的值域,即 B =[0,+∞);集合 C 是抛物线 y =x 2 上的点集.因此 A ,B ,C 不相等.(3)正确.(4)错误.当A=∅时,B,C 可为任意集合.[答案](1)×(2)×(3)√(4)×2.(教材改编)若集合A={x∈N|x≤10},a=2 2,则下列结论正确的是() A.{a}⊆A B.a⊆AC.{a}∈A D.a∉AD[由题意知A={0,1,2,3},由a=2 2知,a∉A.]3.设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4} B.{1,2,3}C.{2,3,4} D.{1,3,4}A[A∪B={1,2,3,4}.]4.设集合A={0,2,4,6,8,10},B={4,8},则∁A B=()A.{4,8} B.{0,2,6}C.{0,2,6,10} D.{0,2,4,6,8,10}C[∁A B={0,2,6,10}.]5.若集合A={x|-2<x<1},B={x|x<-1 或x>3},则A∩B=() A.{x|-2<x<-1} B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}A[∵A={x|-2<x<1},B={x|x<-1 或x>3},∴A∩B={x|-2<x<-1}.]集合的含义与表示1.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M 中的元素个数为()A.3B.4C.5D.6B[因为集合M 中的元素x=a+b,a∈A,b∈B,所以当b=4,a=1,2,3 时,x=5,6,7.当b=5,a=1,2,3 时,x=6,7,8.由集合元素的互异性,可知x=5,6,7,8.即M={5,6,7,8},共有4 个元素.]2.若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a=()9 9 9A. B. C.0 D.0 或2 8 8D[若集合A 中只有一个元素,则方程ax2-3x+2=0 只有一个实根或有两个相等实根.2当a=0 时,x=,符合题意;39当a≠0 时,由Δ=(-3)2-8a=0 得a=,89所以a 的取值为0 或.]8b3.已知a,b∈R,若{a,,1}={a2,a+b,0},则a2 019+b2 019 为()aA.1 B.0 C.-1 D.±1bC[由已知得a≠0,则=0,a所以b=0,于是a2=1,即a=1 或a=-1,又根据集合中元素的互异性可知a=1 应舍去,因此a=-1,故a2 019+b2 019=(-1)2 019+02 019=-1.] 4.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________.1[由A∩B={3}知a+2=3 或a2+4=3.解得a=1.][规律方法]与集合中的元素有关的问题的求解策略1确定集合中的元素是什么,即集合是数集还是点集.2看这些元素满足什么限制条件.3根据限制条件列式求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性.集合间的基本关系【例 1】 (1)已知集合 A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则( )A .B ⊆A B .A =BC .AB D .BA(2)(2019·大庆模拟)集合 A =Error!,B ={y |y =x 2+1,x ∈A },则集合 B 的子 集个数为( )A .5B .8C .3D .2(3)已知集合 A ={x ∈R |x 2+x -6=0},B ={x ∈R |ax -1=0},若 B ⊆A ,则实 数 a 的取值集合为________.C.1 1(1)C (2)B (3){, [(1)A ={1,2},B ={1,2,3,4},则 A B ,故选-,0}3 2x +1(2)由 ≤0 得-1≤x <3,则 A ={-1,0,1,2},B ={y |y =x 2+1,x ∈A }= x -3 {1,2,5},其子集的个数为 23=8 个.(3)A ={-3,2},若 a =0,则 B =∅,满足 B ⊆A ,11 1 1 1若 a ≠0,则 B ={,由 B ⊆A 知, =-3 或 =2,故 a =- 或 a = ,a}aa 3 21 1因此 a 的取值集合为{.]-, ,0}3 2[规律方法] 1.集合间基本关系的两种判定方法 1化简集合,从表达式中寻找两集合的关系. 2用列举法或图示法等表示各个集合,从元素或图形中寻找关系.2.根据集合间的关系求参数的方法,已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图化抽象为直观进行求解.易错警示:B⊆A A≠∅,应分B=∅和B≠∅两种情况讨论.(1)(2018·长沙模拟)已知集合A={0},B={-1,0,1},若A⊆C⊆B,则符合条件的集合C的个数为()A.1 B.2 C.4 D.8(2)已知集合A={x|x2-2x≤0},B={x|x≤a},若A⊆B,则实数a 的取值范围是________.(1)C(2)[2,+∞)[(1)由A⊆C⊆B 得C={0}或{0,-1}或{0,1}或{0,-1,1},故选C.(2)A={x|0≤x≤2},要使A⊆B,则a≥2.]集合的基本运算►考法1集合的运算【例2】(1)(2018·全国卷Ⅲ)已知集合A={x|x-1≥0},B={0,1,2},则A∩B =()A.{0}B.{1}C.{1,2} D.{0,1,2}(2)(2018·全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=()A.{x|-1<x<2} B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}(3)(2019·桂林模拟)已知集合M={x|-1<x<3},N={-1,1},则下列关系正确的是()A.M∪N={-1,1,3} B.M∪N={x|-1≤x<3}C.M∩N={-1} D.M∩N={x|-1<x<1}(1)C(2)B(3)B[(1)由题意知,A={x|x≥1},则A∩B={1,2}.(2)法一:A={x|(x-2)(x+1)>0}={x|x<-1 或x>2},所以∁R A={x|-1≤x≤2},故选B.法二:因为A={x|x2 -x-2>0},所以∁R A={x|x2 -x-2≤0}={x|-1≤x≤2},故选B.(3)M∪N={x|-1≤x<3},M∩N={1},故选B.]►考法2利用集合的运算求参数【例3】(1)设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a 的取值范围是()A.-1<a≤2 B.a>2C.a≥-1 D.a>-1(2)集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为()A.0B.1 C.2D.4(3)(2019·厦门模拟)已知集合A={x|x<a},B={x|x2-3x+2<0},若A∩B=B,则实数a的取值范围是()A.a≤1 B.a<1C.a≥2 D.a>2(1)D(2)D(3)C[(1)由A∩B≠∅知,集合A,B有公共元素,作出数轴,如图所示:易知a>-1,故选D.(2)由题意可知{a,a2}={4,16},所以a=4,故选D.(3)B={x|1<x<2},由A∩B=B知B⊆A,则a≥2,故选C.][规律方法]解决集合运算问题需注意以下三点:1看元素组成,集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.2看集合能否化简,集合能化简的先化简,再研究其关系并进行运算,可使问题简单明了,易于求解.3要借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,并注意端点值的取舍.(1)(2019·东北三省四市联考)设集合A={x||x|<1},B={x|x(x-3) <0},则A∪B=()A.(-1,0) B.(0,1)C.(-1,3) D.(1,3)(2)(2019·西安模拟)设集合A={x|x2-3x+2≥0},B={x|x≤2,x∈Z},则(∁R A)∩B=()A.{1}B.{2} C.{1,2}D.∅(3)(2017·全国卷Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3} B.{1,0}C.{1,3} D.{1,5}(4)(2019·长沙模拟)已知集合A={1,3,9,27},B={y|y=log3x,x∈A},则A∩B =()A.{1,3} B.{1,3,9}C.{3,9,27} D.{1,3,9,27}(1)C(2)D(3)C(4)A[(1)A={x|-1<x<1},B={x|0<x<3},所以A∪B={x|-1<x<3},故选C.(2)A={x|x≤1 或x≥2},则∁R A={x|1<x<2}.又集合B={x|x≤2,x∈Z},所以(∁R A)∩B=∅,故选D.(3)∵A∩B={1},∴1∈B.∴1-4+m=0,即m=3.∴B={x|x2-4x+3=0}={1,3}.故选C.(4)因为A={1,3,9,27},B={y|y=log3x,x∈A}={0,1,2,3},所以A∩B={1,3}.]1.(2018·全国卷Ⅰ)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=() A.{0,2}B.{1,2}C.{0} D.{-2,-1,0,1,2}A[由题意知A∩B={0,2}.]2.(2018·全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.4A[由x2+y2≤3 知,-3≤x≤3,-3≤y≤ 3.又x∈Z,y∈Z,所以x∈{-1,0,1},y∈{-1,0,1},所以A中元素的个数为9,故选A.]3.(2017·全国卷Ⅰ)已知集合A={x|x<2},B={x|3-2x>0},则()A.A∩B=Error!B.A∩B=∅C.A∪B=Error!D.A∪B=RA[因为B={x|3-2x>0}=Error!,A={x|x<2},所以A∩B=Error!,A∪B ={x|x<2}.故选A.]4.(2015·全国卷Ⅰ)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.2D[分析集合A中元素的特点,然后找出集合B中满足集合A中条件的元素个数即可.集合A中元素满足x=3n+2,n∈N,即被3 除余2,而集合B中满足这一要求的元素只有8 和14.故选D.]。
高考数学一轮复习 1.1集合教案-人教版高三全册数学教案
课题 第一章 集合与常用逻辑用语 第一节 集 合教学目标:知识与技能:了解集合的含义,元素与集合的属于关系,理解集合之间的包含与相等关系,理解子集与补集的关系。
过程与方法:会求两个集合的交,并,补集,能使用韦恩图表达集合的关系及运算。
情感、态度与价值观:教学过程中,要让学生充分体验集合的具体应用,应用集合解决实际问题的方法。
教学重点:集合的交,并,补关系及运算教学难点:使用韦恩图表达集合的关系及运算教 具:多媒体、实物投影仪教学过程:一、复习引入:1.集合的含义与表示方法2.集合间的基本关系3.集合的基本运算二、例题讲解例1判断下面结论是否正确(请在括号中打“√”或“×”).(1)已知集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A=B=C.( )(2)含有n 个元素的集合的子集个数是2n ,真子集个数是2n-1,非空真子集的个数是2n-2.( )(3)A ∩B= 的充要条件是A=B= .( )(4)A ∩B=A ⇔A ⊆B.( )(5)A ∪B=A ⇔B ⊆A.( )(6) (A ∪B)=( A)∩( B).( )【解析】(1)错误.集合A 是函数y=x2的定义域,即A=(-∞,+∞);集合B 是函数y=x2的值域,即B=[0,+∞);集合C 是满足方程y=x2的实数x,y 的集合,也可以看作是函数y=x2图象上的点组成的集合,因此这三个集合互不相等.(2)正确.空集的子集个数为1个,即 ;含有1个元素的集合{a1}的子集个数为2个,即 ,{a1};含有2个元素的集合{a1,a2}的子集个数为4个,即 ,{a1},{a2},{a1,a2}……归纳可得含有n 个元素的集合的子集个数为2n 个,故其真子集个数是2n-1,非空真子集的个数是2n-2.(3)错误.A ∩B= 时,只要集合A,B 没有公共元素即可,不一定是A=B= .(4)正确.当A ⊆B 时,显然A ∩B=A ;当A ∩B=A 时,对任意x ∈A ,得x ∈A ∩B ,得x ∈B ,即x ∈A ⇒x ∈B ,故A ⊆B .(5)正确.当B ⊆A 时,显然A ∪B=A ; ∅∅当A∪B=A时,对任意x∈B,则x∈A∪B,得x∈A,即x∈B⇒x∈A,即B⊆A.(6)正确.设x∈ (A∪B),则x (A∪B),得x A且x B,即x∈ A且x∈ B,即x∈( A)∩( B),即 (A∪B)⊆( A)∩( B);反之,当x∈( A)∩( B)时,得x∈ A且x∈ B得x A且x B,得x (A∪B),得x∈ (A∪B),即 (A∪B) ( A)∩( B).根据集合相等的定义得 (A∪B)=( A)∩( B).答案:(1)× (2)√ (3)× (4)√ (5)√ (6)√考向 1 集合的基本概念【典例1】(1)(2012·新课标全国卷)已知集合A={1,2,3,4,5}, B={(x,y)|x∈A,y∈A,x-y ∈A},则B中所含元素的个数为( )(A)3 (B)6 (C)8 (D)10(2)已知A={a+2,(a+1)2,a2+3a+3},若1∈A,则实数a构成的集合B的元素个数是( )(A)0 (B)1 (C)2 (D)3【思路点拨】(1)集合B中的元素是满足x∈A,y∈A,x-y∈A的有序实数对,根据要求分类列举求解.(2)据1∈A逐个讨论求解a值,根据集合元素的互异性得集合B中元素的个数.【规范解答】(1)选D.方法:x=2时,y=1,x-y=1,此时(x,y)=(2,1),此时(x,y)有1个;x=3时,y=1,2,此时x-y=2,1,(x,y)有2个;x=4时,y=1,2,3,此时x-y=3,2,1,(x,y)有3个;x=5时,y=1,2,3,4,此时x-y=4,3,2,1,(x,y)有4个.所以集合B中的元素个数为1+2+3+4=10.(2)选B.若a+2=1,则a=-1,代入集合A,得A={1,0,1},与集合元素的互异性矛盾;若(a+1)2=1,得a=0或-2,代入集合A,得A={2,1,3}或A={0,1,1},后者与集合元素的互异性矛盾,故a=0符合要求;若a2+3a+3=1,则a=-1或-2,代入集合A,得A={1,0,1}或A={0,1,1},都与集合元素的互异性相矛盾.综上可知,只有a=0符合要求,故集合B中只有一个元素.【互动探究】在本例(1)的集合B中如果去掉x-y∈A的限制条件,其他条件均不变,则集合B中含有的元素个数是多少?【解析】当x=1时,y=1,2,3,4,5,同理当x=2,3,4,5时,y=1,2,3,4,5,所以集合B中含有5×5=25个元素【变式训练】定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为( )(A)0 (B)2 (C)3 (D)6【解析】选D.根据指定的法则,集合A*B中的元素是A,B中的元素的乘积,根据集合元素的性质,得A*B={0,2,4},故集合A*B中所有元素之和为6.考向 2 集合间的基本关系【典例2】(1)(2014·三明模拟)已知集合A={x|x2-3x+2=0,x ∈R},B={x|0<x<5,x ∈N},则满足条件A ⊆C ⊆B 的集合C 的个数为 ( )(A)1 (B)2 (C)3 (D)4(2)若集合A={1,a,b},B={a,a2,ab},且A ∪B=A ∩B,则实数a 的取值集合是 .【思路点拨】(1)求出A,B 中的元素,由A ⊆C ⊆B,知集合C 的个数由B 中有A 中没有的元素个数决定.(2)A ∪B=A ∩B ⇔A=B ,得出关于a,b 的方程组,解出a,b ,再根据集合元素的性质加以检验得出结论.【规范解答】(1)选D.A={x|x2-3x+2=0,x ∈R}={1,2},B={x|0<x<5,x ∈N}={1,2,3,4},由A ⊆C ⊆B,方法一:则C 中含有除1,2之外的3,4两元素中的0个、1个、2个,即C 的个数可以看作是集合{3,4}的子集的个数,有22=4个.方法二:则C 可能为{1,2},{1,2,3},{1,2,4},{1,2,3,4}共4个(2)方法一:因为A ∪B=A ∩B,所以A=B ,所以{1,b}={a2,ab}, 所以 解得 反代回A,B 集合知,只有 适合,所以 即实数a 的取值集合是{-1}.【变式训练】(1)已知M={x|x-a=0},N={x|ax-1=0},若M ∩N=N ,则实数a 的值为( )(A)1 (B)-1 (C)1或-1 (D)0或1或-1【解析】选D .M ∩N=N ⇔N ⊆M .当a=0时,N= ,符合要求, 当a ≠0时,只要 即a=±1即可. (2)设集合A={x,y,x+y},B={0,x2,xy},若A=B ,则实数对(x,y)的取值集合是_________.【解析】由A=B ,且0∈B ,故集合B 中的元素x2≠0,xy ≠0,故x ≠0,y ≠0,那么只能是集合A 中的x+y=0,此时就是在条件x+y=0下,{x,y}={x2,xy}, 答案:{(1,-1),(-1,1)}考向 3 集合的基本运算【典例3】(1)(2012·福建高考)已知集合M={1,2,3,4},N={-2,2},下列结论成立的是( )(A)N ⊆M (B)M ∪N=M (C)M ∩N=N (D)M ∩N={2}(2)(2012·辽宁高考)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则( A)∩( B)为( )(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6}【思路点拨】(1)根据集合M ,N 中元素的特点逐一验证.(2)可以根据补集定义求出 A, B ,再根据交集定义得出结论,还可以利用Venn 图解决.【规范解答】(1)选D.显然M ∩N={2}. (2)选B.方法:集合( A)∩( B)= (A ∪B)={7,9}.如图所示:【拓展提升】小结:集合的运算律 221ab,1a b ab b a =⎧⎧=⎨⎨==⎩⎩,或,∅1a a =,(1)交换律:A∪B=B∪A,A∩B=B∩A.(2)结合律:(A∪B)∪C=A∪(B∪C);(A∩B)∩C=A∩(B∩C).(3)分配律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C).【变式训练】(1)已知集合M={y|y=2x},集合N={x|y=lg(2x-x2)},则M∩N=( )(A)(0,2) (B)(2,+∞)(C)[0,+∞] (D)(-∞,0)∪(2,+∞)【解析】选A. 集合M为函数y=2x的值域,即M=(0,+∞),集合N是函数y=lg(2x-x2)的定义域,由不等式2x-x2>0,解得N=(0,2),所以M∩N=(0,2).三,布置作业思考辨析,考点自测,知能巩固。
1.1集合的概念及运算(讲义)-2023届高考一轮复习
1.1集合的概念及运算【考试要求】.了解集合的含义,体会元素与集合的属于关系,能用集合语言描述不同的具体问题;1.理解集合间包含与相等的含义,能识别给定集合的子集;.在具体情境中,了解全集与空集的含义;2.理解两个集合的并集、交集与补集的含义,会求两个简单集合的并集、交集与补集,能使用Venn图表示集合间的基本关系及集合的基本运算。
【考点提示】.以选择题、填空题的形式考查集合的交集、并集、补集运算;1.以集合为载体,考查函数的定义域、值域、方程、不等式及曲线间的交点问题;.以考查集合含义及运算为主,同时考查集合语言和思想的运用。
【要点梳理】1.集合的含义与表示(1)集合的含义:指定某些对象的全体称为集合,集合的每个对象称为元素;(2)集合中元素的特性:确定性、互异性、无序性;(3)元素与集合的关系:属于记为,反4;不属于记为agA;(4)集合的表示方法:列举法、描述法、图示法;(5)常用数集及其符号表示:自然数集:JV;正整数集:N*或"整数集:Z;有理数集:。
;实数集:区;(6)集合的分类:按集合中元素个数划分,集合可以分为有限集、无限集、空集;.集合的基本关系(1)子集:一般地,对于两个集合A , B,集合A中任何一个元素均为集合「中的元素,那么称集合A是集合B的子集,记作:AqB或(2)相等:如果且那么A = B;(3)真子集:对于两个集合A, B,如果且AwB,那么称集合A是集合B的真子集,记作:A曙8或A;(4)空集:不含任何元素的集合,空集是任意集合的子集,是任意非空集合的真子集,可以表示为:0GA或0思3 (B^0);(5)假设一个集合A中有〃个元素,那么集合A有2:个子集,2"-1个真子集。
2.集合的运算(1)集合的基本运算【基础自测】]假设集合 A = {2£ N IX W 12022 } , 贝 Ij()A. tzeAB. [a}eAC.[a}^AD. a^A答案:D2.(21•全国乙理)集合3 = {5|5 = 2〃 + 1,〃£2}, 2={Z|E=4〃+1/£Z},那么S"=()A. 0B. SC. TD. Z答案:c3.(21•全国甲理)设集合M={x[0<xv4}, N = {x|1wxW5}那么MAN=()A. {x|O<x<l}B. {x|-<x<4}C. {x|4<x<5}D. {x|0<x<5}答案:B4.(21 •全国乙文)全集。
高三数学一轮复习(1)集合概念、子集
集合的概念及运算(1) 总第1个教案【复习目标】:准确理解和使用集合概念;理解元素与集合、集合与集合之间的关系,能识别给定集合的子集.学会对简单的含参变量的讨论. 【复习重点】:注重集合中元素的形式,集合元素的互异性、子集与真子集、空集的特殊性 【复习难点】:根据集合的含义求参数;分类讨论思想的培养 1、已知集合A ={}N a a a ∈<≤,40 ,用列举法能够表示为 2、已知集合A ={}m m m ++22,2,若A ∈3,则=m 3、下列集合表示同一集合的有(1)(){}2,3= M ,(){}3,2= N (2)(){}{}1,1,=+==+=y x y N y x y x M (3){}5,4 =M ,{}4,5 =N (4){}21,=M ,{}),(=21N 4、设集合A ={}R a a a x x ∈+-=,452,{}R b b b y y B ∈++==,2442 ,则A 、B 的关系是5、已知集合A =[)4,1,B =()a ,∞-,B A ⊆,则∈a 二、交流质疑 精讲点拔例1、 若R b a ∈,,集合{}⎭⎬⎫⎩⎨⎧=+b a ba b a ,,,,01,求a b -的值. 变式训练:已知集合A ={}b a b a a 2,,++,B ={}2,,acac a .若A =B ,求c 的值例2、已知集合A ={}R a x ax x ∈=+-,0232.(1) 若A 是空集,求a 的取值范围;(2) 若A 中只有一个元素,求a 的值,并将这个元素写出来;(3) 若A 中至多有一个元素,求a 的取值范围.变式练习:已知1≤a 时,集合[]a a -2,中有且只有3个整数,则a 的取值范围是_______.例3、(1)若集合{}{}01,062=+==-+ax x S x x x P =,且P S ⊆,求由a 的可取值组成的集合。
(2)集合{}52≤≤-x x A =,集合{}121-≤≤+m x m x B =.若A B ⊆,求实数m 的取值范围。
2020版高考数学大一轮复习 第一章集合与常用逻辑用语 教案(含解析)
2020版高考数学大一轮复习第一章集合与常用逻辑用语§1.1集合的概念及运算最新考纲1.通过实例,了解集合的含义,体会元素与集合的“属于”关系.2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3.理解集合之间包含与相等的含义,能识别给定集合的子集.4.在具体情境中,了解全集与空集的含义.5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.7.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法2.集合间的基本关系A B(或B A)3.集合的基本运算概念方法微思考1.若一个集合A有n个元素,则集合A有几个子集,几个真子集.提示2n,2n-1.2.从A∩B=A,A∪B=A可以得到集合A,B有什么关系?提示A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)任何一个集合都至少有两个子集.( ×)(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.( ×)(3)若{x2,1}={0,1},则x=0,1.( ×)(4){x|x≤1}={t|t≤1}.( √)(5)若A∩B=A∩C,则B=C.( ×)题组二教材改编2.若集合A={x∈N|x≤2020},a=22,则下列结论正确的是( )A.{a}⊆A B.a⊆AC.{a}∈A D.a∉A答案 D3.已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为________.答案 2解析 集合A 表示以(0,0)为圆心,1为半径的单位圆上的点,集合B 表示直线y =x 上的点,圆x 2+y 2=1与直线y =x 相交于两点⎝ ⎛⎭⎪⎫22,22,⎝ ⎛⎭⎪⎫-22,-22,则A ∩B 中有两个元素. 题组三 易错自纠4.已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m 等于( ) A .0或 3 B .0或3 C .1或 3 D .1或3或0答案 B解析 A ={1,3,m },B ={1,m },A ∪B =A ,故B ⊆A ,所以m =3或m =m ,即m =3或m =0或m =1,其中m =1不符合题意,所以m =0或m =3,故选B.5.已知集合A ={x |x 2-4x +3<0},B ={x |2<x <4},则(∁R A )∪B =______________. 答案 {x |x ≤1或x >2}解析 由已知可得集合A ={x |1<x <3}, 又因为B ={x |2<x <4},∁R A ={x |x ≤1或x ≥3}, 所以(∁R A )∪B ={x |x ≤1或x >2}.6.若集合A ={x ∈R |ax 2-4x +2=0}中只有一个元素,则a =________. 答案 0或2解析 若a =0,则A =⎩⎨⎧⎭⎬⎫12,符合题意;若a ≠0,则由题意得Δ=16-8a =0,解得a =2. 综上,a 的值为0或2.题型一 集合的含义1.已知集合A ={0,1,2},则集合B ={(x ,y )|x ≥y ,x ∈A ,y ∈A }中元素的个数是( ) A .1B .3C .6D .9 答案 C解析 当x =0时,y =0;当x =1时,y =0或y =1; 当x =2时,y =0,1,2.故集合B ={(0,0),(1,0),(1,1),(2,0),(2,1),(2,2)},即集合B 中有6个元素.2.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ∈Z ,且32-x ∈Z ,则集合A 中的元素个数为( ) A .2B .3C .4D .5答案 C 解析 因为32-x∈Z ,所以2-x 的取值有-3,-1,1,3,又因为x ∈Z ,所以x 的值分别为5,3,1,-1,故集合A 中的元素个数为4.3.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. 答案 -32解析 由题意得m +2=3或2m 2+m =3, 则m =1或m =-32,当m =1时,m +2=3且2m 2+m =3,根据集合中元素的互异性可知不满足题意; 当m =-32时,m +2=12,而2m 2+m =3,故m =-32.思维升华 (1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合.(2)如果是根据已知列方程求参数值,一定要将参数值代入集合中检验是否满足元素的互异性.题型二 集合间的基本关系例1 (1)集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =n2+1,n ∈Z, N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y =m +12,m ∈Z,则两集合M ,N 的关系为( ) A .M ∩N =∅ B .M =N C .M ⊆N D .N ⊆M答案 D解析 由题意,对于集合M ,当n 为偶数时,设n =2k (k ∈Z ),则x =k +1(k ∈Z ),当n 为奇数时,设n =2k +1(k ∈Z ),则x =k +1+12(k ∈Z ),∴N ⊆M ,故选D.(2)已知集合A ={x |x 2-2019x +2019<0},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是________________________________________________________________________. 答案 [2019,+∞)解析 由x 2-2019x +2019<0,解得1<x <2019,故A ={x |1<x <2019}.又B ={x |x <a },A ⊆B ,如图所示,可得a ≥2019. 引申探究本例(2)中,若将集合B 改为{x |x ≥a },其他条件不变,则实数a 的取值范围是____________. 答案 (-∞,1]解析 A ={x |1<x <2019},B ={x |x ≥a },A ⊆B ,如图所示,可得a ≤1.思维升华 (1)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.跟踪训练1 (1)已知集合A ={y |0≤y <a ,y ∈N },B ={x |x 2-2x -3≤0,x ∈N },若A B ,则满足条件的正整数a 所构成集合的子集的个数为________. 答案 8解析 B ={x |x 2-2x -3≤0,x ∈N }={x |-1≤x ≤3,x ∈N }={0,1,2,3},当a 分别取1,2,3时,所得集合A 分别为{0},{0,1},{0,1,2},均满足A B ,当a =4时,A ={0,1,2,3},不满足AB ,同理,当a ≥5时均不满足A B .所以满足条件的正整数a 所构成的集合为{1,2,3},其子集有8个.(2)已知集合A ={x |-1<x <3},B ={x |-m <x <m }.若B ⊆A ,则m 的取值范围为__________. 答案 (-∞,1]解析 当m ≤0时,B =∅,显然B ⊆A . 当m >0时,因为A ={x |-1<x <3},B ⊆A , 所以在数轴上标出两集合,如图,所以⎩⎪⎨⎪⎧m >0,-m ≥-1,所以0<m ≤1.综上所述,m 的取值范围为(-∞,1].题型三 集合的基本运算命题点1 集合的运算例2 (1)(2019·全国Ⅰ)已知集合A ={}x |x 2-x -2>0,则∁R A 等于( )A .{x |-1<x <2}B .{x |-1≤x ≤2}C .{x |x <-1}∪{x |x >2}D .{x |x ≤-1}∪{x |x ≥2} 答案 B解析 ∵x 2-x -2>0,∴(x -2)(x +1)>0,∴x >2或x <-1,即A ={x |x >2或x <-1}.在数轴上表示出集合A ,如图所示.由图可得∁R A ={x |-1≤x ≤2}. 故选B.(2)(2019·海南联考)已知集合A ={x |3x 2+x -2≤0},B ={x |log 2(2x -1)≤0},则A ∩B 等于( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤23 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 23≤x ≤1 C.{}x | -1≤x ≤1 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x ≤23 答案 D解析 由题意得A =⎣⎢⎡⎦⎥⎤-1,23,B =⎝ ⎛⎦⎥⎤12,1,∴A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x ≤23,故选D. 命题点2 利用集合的运算求参数例3 (1)(2019·惠州模拟)已知集合A ={x |x <a },B ={x |x 2-3x +2<0},若A ∩B =B ,则实数a 的取值范围是( ) A .a <1 B .a ≤1 C .a >2 D .a ≥2答案 D解析 集合B ={x |x 2-3x +2<0}={x |1<x <2}, 由A ∩B =B 可得B ⊆A ,作出数轴如图.可知a ≥2.(2)设集合A ={-1,0,1},B =⎩⎨⎧⎭⎬⎫a -1,a +1a ,A ∩B ={0},则实数a 的值为________. 答案 1解析 0∈⎩⎨⎧⎭⎬⎫a -1,a +1a ,由a +1a≠0,则a -1=0,则实数a 的值为1.经检验,当a =1时满足题意.(3)设集合A ={0,-4},B ={x |x 2+2(a +1)x +a 2-1=0,x ∈R }.若A ∩B =B ,则实数a 的取值范围是______. 答案 (-∞,-1]∪{1} 解析 因为A ∩B =B ,所以B ⊆A ,因为A ={0,-4},所以B ⊆A 分以下三种情况:①当B =A 时,B ={0,-4},由此可知,0和-4是方程x 2+2(a +1)x +a 2-1=0的两个根, 由根与系数的关系,得 ⎩⎪⎨⎪⎧Δ=4(a +1)2-4(a 2-1)>0,-2(a +1)=-4,a 2-1=0,解得a =1;②当B ≠∅且B A 时,B ={0}或B ={-4}, 并且Δ=4(a +1)2-4(a 2-1)=0, 解得a =-1,此时B ={0}满足题意; ③当B =∅时,Δ=4(a +1)2-4(a 2-1)<0, 解得a <-1.综上所述,所求实数a 的取值范围是(-∞,-1]∪{1}.思维升华 (1)一般来讲,集合中的元素若是离散的,则用Venn 图表示;集合中的元素若是连续的,则用数轴表示,此时要注意端点的情况.(2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化. 跟踪训练2 (1)(2019·烟台模拟)已知集合A ={x |x 2+x -2≤0},B ={x |y =log 2x ,x ∈R },则A ∩B 等于( ) A .∅ B .[1,+∞) C .(0,2] D .(0,1]答案 D解析 由集合A ={x |x 2+x -2≤0}={x |-2≤x ≤1},B ={x |y =log 2x ,x ∈R }={x |x >0},所以A ∩B ={x |0<x ≤1}=(0,1],故选D.(2)已知集合A ={x |x 2-x -12≤0},B ={x |2m -1<x <m +1},且A ∩B =B ,则实数m 的取值范围为( ) A .[-1,2) B .[-1,3] C .[2,+∞) D .[-1,+∞)答案 D解析 由x 2-x -12≤0,得(x +3)(x -4)≤0, 即-3≤x ≤4,所以A ={x |-3≤x ≤4}. 又A ∩B =B ,所以B ⊆A .①当B =∅时,有m +1≤2m -1,解得m ≥2; ②当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上,m 的取值范围为[-1,+∞). 题型四 集合的新定义问题例4(1)(2019·沈阳模拟)已知集合A ={x ∈N |x 2-2x -3≤0},B ={1,3},定义集合A ,B 之间的运算“*”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中的所有元素数字之和为( ) A .15B .16C .20D .21 答案 D解析 由x 2-2x -3≤0,得(x +1)(x -3)≤0,得A ={0,1,2,3}.因为A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },所以A *B 中的元素有:0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去),3+3=6,所以A *B ={1,2,3,4,5,6},所以A *B 中的所有元素数字之和为21.(2)设数集M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪m ≤x ≤m +34,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪n -13≤x ≤n,且M ,N 都是集合U ={x |0≤x ≤1}的子集,定义b -a 为集合{x |a ≤x ≤b }的“长度”,则集合M ∩N 的长度的最小值为________. 答案112解析 在数轴上表示出集合M 与N (图略),可知当m =0且n =1或n -13=0且m +34=1时,M ∩N 的“长度”最小.当m =0且n =1时,M ∩N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪23≤x ≤34, 长度为34-23=112;当n =13且m =14时,M ∩N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪14≤x ≤13, 长度为13-14=112.综上,M ∩N 的长度的最小值为112.思维升华 解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,应用到具体的解题过程之中.(2)用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素.跟踪训练3 用C (A )表示非空集合A 中元素的个数,定义A *B =⎩⎪⎨⎪⎧C (A )-C (B ),C (A )≥C (B ),C (B )-C (A ),C (A )<C (B ).若A ={1,2},B ={x |(x 2+ax )(x 2+ax +2)=0},且A *B =1,设实数a 的所有可能取值组成的集合是S ,则C (S )=________. 答案 3解析 因为C (A )=2,A *B =1,所以C (B )=1或C (B )=3.由x 2+ax =0,得x 1=0,x 2=-a .关于x 的方程x 2+ax +2=0,当Δ=0,即a =±22时,易知C (B )=3,符合题意;当Δ>0,即a <-22或a >22时,易知0,-a 均不是方程x 2+ax +2=0的根,故C (B )=4,不符合题意;当Δ<0,即-22<a <22时,方程x 2+ax +2=0无实数解,当a =0时,B ={0},C (B )=1,符合题意,当-22<a <0或0<a <22时,C (B )=2,不符合题意.综上,S ={0,-22,22},故C (S )=3.1.已知集合A ={y |y =|x |-1,x ∈R },B ={x |x ≥2},则下列结论正确的是( ) A .-3∈A B .3∉B C .A ∩B =B D .A ∪B =B答案 C解析 由题意知A ={y |y ≥-1},因此A ∩B ={x |x ≥2}=B ,故选C.2.设集合M ={-1,1},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1x<2,则下列结论中正确的是( ) A .N M B .M N C .N ∩M =∅ D .M ∪N =R答案 B解析 由题意得,集合N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1x <2=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <0或x >12,所以M N .故选B.3.设集合A ={x ∈Z |x 2-3x -4<0},B ={x |2x≥4},则A ∩B 等于( ) A .[2,4)B .{2,4}C .{3}D .{2,3}答案 D解析 由x 2-3x -4<0,得-1<x <4,因为x ∈Z ,所以A ={0,1,2,3},由2x≥4,得x ≥2,即B ={x |x ≥2},所以A ∩B ={2,3}.4.(2019·全国Ⅱ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( ) A .9B .8C .5D .4 答案 A解析 将满足x 2+y 2≤3的整数x ,y 全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个. 故选A.5.(2019·济南模拟)设全集U =R ,集合A ={x |x -1≤0},集合B ={x |x 2-x -6<0},则右图中阴影部分表示的集合为( )A .{x |x <3}B .{x |-3<x ≤1}C .{x |x <2}D .{x |-2<x ≤1}答案 D解析 由题意可得A ={x |x ≤1},B ={x |-2<x <3}, ∴A ∩B ={x |-2<x ≤1},故选D.6.(2019·潍坊模拟)设集合A =N ,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪xx -3≤0,则A ∩B 等于( ) A .[0,3) B .{1,2} C .{0,1,2} D .{0,1,2,3}答案 C解析 由集合A =N 和B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪xx -3≤0={x |0≤x <3},所以A ∩B ={0,1,2},故选C. 7.(2017·全国Ⅱ)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B 等于( ) A .{1,-3}B .{1,0}C .{1,3}D .{1,5} 答案 C解析 ∵A ∩B ={1},∴1∈B .∴1-4+m =0,即m =3. ∴B ={x |x 2-4x +3=0}={1,3}.故选C.8.已知集合A ={x |-1<x <0},B ={x |x ≤a },若A ⊆B ,则a 的取值范围为( ) A .(-∞,0]B .[0,+∞)C .(-∞,0)D .(0,+∞)答案 B解析 用数轴表示集合A ,B (如图),由A ⊆B ,得a ≥0.9.(2019·郑州模拟)已知集合P ={x |y =-x 2+x +2,x ∈N },Q ={x |ln x <1},则P ∩Q =________. 答案 {1,2}解析 由-x 2+x +2≥0,得-1≤x ≤2,因为x ∈N , 所以P ={0,1,2}.因为ln x <1,所以0<x <e , 所以Q =(0,e),则P ∩Q ={1,2}.10.若全集U =R ,集合A ={x |x 2-x -2≥0},B ={x |log 3(2-x )≤1},则A ∩(∁U B )=________________. 答案 {x |x <-1或x ≥2}解析 集合A ={x |x 2-x -2≥0}={x |x ≤-1或x ≥2}, ∵log 3(2-x )≤1=log 33,∴0<2-x ≤3, ∴-1≤x <2,∴B ={x |-1≤x <2}, ∴∁U B ={x |x <-1或x ≥2}, ∴A ∩(∁U B )={x |x <-1或x ≥2}.11.设集合A ={-1,1,2},B ={a +1,a 2-2},若A ∩B ={-1,2},则a 的值为________. 答案 -2或1解析 ∵集合A ={-1,1,2},B ={a +1,a 2-2},A ∩B ={-1,2},∴⎩⎪⎨⎪⎧a +1=-1,a 2-2=2或⎩⎪⎨⎪⎧a +1=2,a 2-2=-1,解得a =-2或a =1.经检验,a =-2和a =1均满足题意.12.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是________. 答案 [1,+∞)解析 由题意知,A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ).由A ⊆B ,画出数轴,如图所示,得c ≥1.13.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =______,n =________. 答案 -1 1解析 A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1}, 由A ∩B =(-1,n ),可知m <1,则B ={x |m <x <2},画出数轴,可得m =-1,n =1.14.设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,且k +1∉A ,那么称k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个. 答案 6解析 依题意可知,由S 的3个元素构成的所有集合中,不含“孤立元”时,这三个元素一定是连续的三个自然数.故这样的集合共有6个.15.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪x 24+y 22=1,B ={(x ,y )|y =kx +m ,k ∈R ,m ∈R },若对任意实数k ,A ∩B ≠∅,则实数m 的取值范围是____________. 答案 [-2,2]解析 由已知,无论k 取何值,椭圆x 24+y 22=1和直线y =kx +m 均有交点,故点(0,m )在椭圆x 24+y 22=1上或在其内部,∴m 2≤2,∴-2≤m ≤ 2. 16.已知A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪y =log 36-xx -2,B ={x |x 2-2x +1-a 2≤0}(a >0),若A ∪B =B ,则实数a的取值范围是______. 答案 [5,+∞)解析 由6-xx -2>0可得(x -2)(x -6)<0,∴2<x <6,∴A =(2,6).又x 2-2x +1-a 2≤0可化为[x -(1-a )][x -(1+a )]≤0. 又a >0,∴B =[1-a,1+a ]. 由A ∪B =B ,得A ⊆B ,∴⎩⎪⎨⎪⎧2≥1-a ,6≤1+a ,∴a ≥5.∴实数a的取值范围是[5,+∞).2020版高考数学大一轮复习第一章集合与常用逻辑用语§1.2充要条件、全称量词与存在量词最新考纲1.理解必要条件、充分条件与充要条件的意义.2.通过生活和数学中的丰富实例,理解全称量词和存在量词的意义,能正确地对含有一个量词的命题进行否定.1.充分条件、必要条件与充要条件的概念2.全称量词和存在量词(1)全称量词:短语“所有的”“任意一个”等在逻辑中通常叫做全称量词,用符号“∀”表示.(2)存在量词:短语“存在一个”“至少有一个”等在逻辑中通常叫做存在量词,用符号“∃”表示.3.全称命题、特称命题及含一个量词的命题的否定概念方法微思考若条件p,q以集合的形式出现,即A={x|p(x)},B={x|q(x)},则由A⊆B可得,p是q 的充分条件,请写出集合A,B的其他关系对应的条件p,q的关系.提示若A B,则p是q的充分不必要条件;若A⊇B,则p是q的必要条件;若A B,则p是q的必要不充分条件;若A=B,则p是q的充要条件;若A⊈B且A⊉B,则p是q的既不充分也不必要条件.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)q是p的必要条件时,p是q的充分条件.( √)(2)若p是q的充要条件,则命题p和q是两个等价命题.( √)(3)全称命题一定含有全称量词.( ×)(4)∃x0∈M,p(x0)与∀x∈M,綈p(x)的真假性相反.( √)题组二教材改编2.命题“正方形都是矩形”的否定是___________________________.答案存在一个正方形,这个正方形不是矩形3.“x-3=0”是“(x-3)(x-4)=0”的______条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)答案充分不必要题组三易错自纠4.(2019·郑州质检)命题“∃x0∈R,x20-x0-1>0”的否定是( )A.∀x∈R,x2-x-1≤0B.∀x∈R,x2-x-1>0C.∃x0∈R,x20-x0-1≤0D.∃x0∈R,x20-x0-1≥0答案 A5.已知p:x>a是q:2<x<3的必要不充分条件,则实数a的取值范围是________.答案(-∞,2]解析由已知,可得{x|2<x<3}{x|x>a},∴a≤2.6.若“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________.答案 1解析 ∵函数y =tan x 在⎣⎢⎡⎦⎥⎤0,π4上是增函数,∴y max =tan π4=1.依题意知,m ≥y max ,即m ≥1.∴m 的最小值为1.题型一 充分、必要条件的判定例1 (1)已知α,β均为第一象限角,那么“α>β”是“sin α>sin β”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 D解析 取α=7π3,β=π3,α>β成立,而sin α=sin β,sin α>sin β不成立.∴充分性不成立;取α=π3,β=13π6,sin α>sin β,但α<β,必要性不成立.故“α>β”是“sin α>sin β”的既不充分也不必要条件.(2)已知条件p :x >1或x <-3,条件q :5x -6>x 2,则q 是p 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 由5x -6>x 2,得2<x <3,即q :2<x <3. 所以q ⇒p ,p ⇏q ,所以q 是p 的充分不必要条件,故选A. 思维升华 充分条件、必要条件的三种判定方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断,适用于定义、定理判断性问题.(2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母范围的推断问题.跟踪训练1 (1)(2019·福建省莆田一中月考)王安石在《游褒禅山记》中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”,请问“有志”是到达“奇伟、瑰怪,非常之观”的( ) A .充要条件 B .既不充分也不必要条件 C .充分不必要条件 D .必要不充分条件答案 D解析 非有志者不能至,是必要条件;但“有志”也不一定“能至”,不是充分条件. (2)(2019·济南模拟)若集合A ={x |1<x <2},B ={x |x >b ,b ∈R },则A ⊆B 的一个充分不必要条件是( ) A .b ≥2 B .1<b ≤2 C .b ≤1 D .b <1答案 D解析 ∵A ={x |1<x <2},B ={x |x >b ,b ∈R },∴A ⊆B 的充要条件是b ≤1,∴b <1是A ⊆B 的充分不必要条件,故选D.题型二 含有一个量词的命题命题点1 全称命题、特称命题的真假例2 (1)(2019·沈阳模拟)下列四个命题中真命题是( ) A .∀n ∈R ,n 2≥nB .∃n 0∈R ,∀m ∈R ,m ·n 0=mC .∀n ∈R ,∃m 0∈R ,m 20<n D .∀n ∈R ,n 2<n 答案 B解析 对于选项A ,令n =12,即可验证其不正确;对于选项C ,D ,可令n =-1加以验证,均不正确,故选B.(2)下列命题中的假命题是( ) A .∀x ∈R,2x -1>0 B .∀x ∈N *,(x -1)2>0 C .∃x 0∈R ,lg x 0<1 D .∃x 0∈R ,tan x 0=2答案 B解析 当x ∈N *时,x -1∈N ,可得(x -1)2≥0,当且仅当x =1时取等号,故B 不正确;易知A ,C ,D 正确,故选B.命题点2 含一个量词的命题的否定例3 (1)已知命题p :“∃x 0∈R ,0e x-x 0-1≤0”,则綈p 为( ) A .∃x 0∈R ,0e x-x 0-1≥0e x-x0-1>0B.∃x0∈R,0C.∀x∈R,e x-x-1>0D.∀x∈R,e x-x-1≥0答案 C解析根据全称命题与特称命题的否定关系,可得綈p为“∀x∈R,e x-x-1>0”,故选C.(2)(2019·福州质检)已知命题p:∀x1,x2∈R,[f(x2)-f(x1)](x2-x1)≥0,则綈p是( ) A.∃x1,x2∈R,[f(x2)-f(x1)](x2-x1)≤0B.∀x1,x2∈R,[f(x2)-f(x1)](x2-x1)≤0C.∃x1,x2∈R,[f(x2)-f(x1)](x2-x1)<0D.∀x1,x2∈R,[f(x2)-f(x1)](x2-x1)<0答案 C解析已知全称命题p:∀x1,x2∈R,[f(x2)-f(x1)]·(x2-x1)≥0,则綈p:∃x1,x2∈R,[f(x2)-f(x1)](x2-x1)<0,故选C.思维升华(1)判定全称命题“∀x∈M,p(x)”是真命题,需要对集合M中的每一个元素x,证明p(x)成立;要判断特称命题是真命题,只要在限定集合内找到一个x=x0,使p(x0)成立.(2)对全(特)称命题进行否定的方法①找到命题所含的量词,没有量词的要结合命题的含义先加上量词,再改变量词;②对原命题的结论进行否定.跟踪训练2 (1)(2019·东北三校联考)下列命题中是假命题的是( )A.∃x0∈R,log2x0=0 B.∃x0∈R,cos x0=1C.∀x∈R,x2>0 D.∀x∈R,2x>0答案 C解析因为log21=0,cos0=1,所以选项A,B均为真命题,02=0,选项C为假命题,2x>0,选项D为真命题,故选C.3x+1)≤0,则( )(2)已知命题p:∃x0∈R,log2(0A.p是假命题;綈p:∀x∈R,log2(3x+1)≤0B.p是假命题;綈p:∀x∈R,log2(3x+1)>0C.p是真命题;綈p:∀x∈R,log2(3x+1)≤0D.p是真命题;綈p:∀x∈R,log2(3x+1)>0答案 B解析因为3x>0,所以3x+1>1,则log2(3x+1)>0,所以p是假命题;綈p:∀x∈R,log2(3x +1)>0.故选B.题型三充分、必要条件的应用例4已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.解 由x 2-8x -20≤0,得-2≤x ≤10, ∴P ={x |-2≤x ≤10}.由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈P 是x ∈S 的必要条件, 即所求m 的取值范围是[0,3]. 引申探究若本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. 解 若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,方程组无解,即不存在实数m ,使x ∈P 是x ∈S 的充要条件.思维升华 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意: (1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解. (2)要注意区间端点值的检验.跟踪训练3 (1)若“x >2m 2-3”是“-1<x <4”的必要不充分条件,则实数m 的取值范围是__________. 答案 [-1,1]解析 依题意,可得(-1,4)(2m 2-3,+∞), 所以2m 2-3≤-1,解得-1≤m ≤1.(2)设n ∈N *,则一元二次方程x 2-4x +n =0有整数根的充要条件是n =________. 答案 3或4解析 由Δ=16-4n ≥0,得n ≤4, 又n ∈N *,则n =1,2,3,4. 当n =1,2时,方程没有整数根; 当n =3时,方程有整数根1,3,当n =4时,方程有整数根2.综上可知,n =3或4. 题型四 命题中参数的取值范围例5已知f (x )=ln(x 2+1),g (x )=⎝ ⎛⎭⎪⎫12x -m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是________________.答案 ⎣⎢⎡⎭⎪⎫14,+∞ 解析 当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时,g (x )min =g (2)=14-m ,由f (x )min ≥g (x )min ,得0≥14-m ,所以m ≥14.引申探究本例中,若将“∃x 2∈[1,2]”改为“∀x 2∈[1,2]”,其他条件不变,则实数m 的取值范围是________________.答案 ⎣⎢⎡⎭⎪⎫12,+∞ 解析 当x ∈[1,2]时,g (x )max =g (1)=12-m ,由f (x )min ≥g (x )max ,得0≥12-m ,∴m ≥12.思维升华 对于含量词的命题中求参数的取值范围的问题,可根据命题的含义,利用函数值域(或最值)解决.跟踪训练4(1)已知命题“∀x ∈R ,x 2-5x +152a >0”的否定为假命题,则实数a 的取值范围是______________.答案 ⎝ ⎛⎭⎪⎫56,+∞ 解析 由“∀x ∈R ,x 2-5x +152a >0”的否定为假命题,可知原命题必为真命题,即不等式x 2-5x +152a >0对任意实数x 恒成立.设f (x )=x 2-5x +152a ,则其图象恒在x 轴的上方.故Δ=25-4×152a <0,解得a >56,即实数a 的取值范围为⎝ ⎛⎭⎪⎫56,+∞.(2)已知c >0,且c ≠1,设命题p :函数y =c x为减函数.命题q :当x ∈⎣⎢⎡⎦⎥⎤12,2时,函数f (x )=x +1x >1c恒成立.如果p 和q 有且只有一个是真命题,则c 的取值范围为________________.答案 ⎝ ⎛⎦⎥⎤0,12∪(1,+∞)解析 由命题p 为真知,0<c <1, 由命题q 为真知,2≤x +1x ≤52,要使x +1x >1c 恒成立,需1c <2,即c >12,当p 真q 假时,c 的取值范围是0<c ≤12;当p 假q 真时,c 的取值范围是c >1.综上可知,c 的取值范围是⎝ ⎛⎦⎥⎤0,12∪(1,+∞).利用充要条件求参数范围逻辑推理是从事实和命题出发,依据规则推出其他命题的素养.逻辑推理的主要形式是演绎推理,它是得到数学结论、证明数学命题的主要方式,也是数学交流、表达的基本思维品质. 例已知p :⎪⎪⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0(m >0),q 是p 的必要不充分条件,则实数m 的取值范围为__________. 答案 [9,+∞)解析 ∵q 是p 的必要不充分条件. 即p 是q 的充分不必要条件, 由x 2-2x +1-m 2≤0(m >0), 得1-m ≤x ≤1+m (m >0).∴q 对应的集合为{x |1-m ≤x ≤1+m ,m >0}. 设M ={x |1-m ≤x ≤1+m ,m >0}. 又由⎪⎪⎪⎪⎪⎪1-x -13≤2,得-2≤x ≤10, ∴p 对应的集合为{x |-2≤x ≤10}. 设N ={x |-2≤x ≤10}. 由p 是q 的充分不必要条件知,NM ,∴⎩⎪⎨⎪⎧m >0,1-m <-2,1+m ≥10或⎩⎪⎨⎪⎧m >0,1-m ≤-2,1+m >10,解得m ≥9.∴实数m 的取值范围为[9,+∞).素养提升 例题中得到实数m 的范围的过程就是利用已知条件进行推理论证的过程,数学表达严谨清晰.1.以下四个命题中既是特称命题又是真命题的是( ) A .锐角三角形有一个内角是钝角 B .至少有一个实数x ,使x 2≤0 C .两个无理数的和必是无理数 D .存在一个负数x ,1x>2答案 B解析 A 中锐角三角形的内角都是锐角,所以A 是假命题;B 中当x =0时,x 2=0,满足x 2≤0,所以B 既是特称命题又是真命题;C 中因为2+(-2)=0不是无理数,所以C 是假命题;D 中对于任意一个负数x ,都有1x <0,不满足1x>2,所以D 是假命题.2.命题“∀x ∈R ,∃n 0∈N *,使得n 0≤x 2”的否定形式是( ) A .∀x ∈R ,∃n 0∈N *,使得n 0>x 2B .∀x ∈R ,∀n ∈N *,使得n >x 2C .∃x 0∈R ,∃n 0∈N *,使得n 0>x 20 D .∃x 0∈R ,∀n ∈N *,使得n >x 20 答案 D解析 ∀改写为∃,∃改写为∀,n ≤x 2的否定是n >x 2,则该命题的否定形式为“∃x 0∈R ,∀n ∈N *,使得n >x 20”.故选D.3.(2019·西安模拟)设a ,b ∈R ,则“(a -b )a 2<0”是“a <b ”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件答案 A解析 由(a -b )a 2<0可知a 2≠0,则一定有a -b <0,即a <b ;但a <b 即a -b <0时,有可能a =0,所以(a -b )a 2<0不一定成立,故“(a -b )a 2<0”是“a <b ”的充分不必要条件,故选A.4.(2019·石家庄模拟)“log 2(2x -3)<1”是“4x>8”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 由log 2(2x -3)<1⇒0<2x -3<2⇒32<x <52,4x >8⇒2x >3⇒x >32,所以“log 2(2x -3)<1”是“4x>8”的充分不必要条件,故选A.5.(2019·天津河西区模拟)设a ∈R ,则“a =3”是“直线ax +2y +3a =0和直线3x +(a -1)y =a -7平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 C解析 若直线ax +2y +3a =0和直线3x +(a -1)y =a -7平行,则⎩⎪⎨⎪⎧a (a -1)-6=0,a (7-a )-9a ≠0,即a =3,即“a =3”是“直线ax +2y +3a =0和直线3x +(a -1)y =a -7平行”的充要条件.6.下列命题中,真命题是( ) A .∃x 0∈R ,0e x≤0 B .∀x ∈R,2x >x 2C .a +b =0的充要条件是ab=-1 D .“a >1,b >1”是“ab >1”的充分条件 答案 D解析 因为y =e x>0,x ∈R 恒成立,所以A 不正确; 因为当x =-5时,2-5<(-5)2,所以B 不正确;“a b=-1”是“a +b =0”的充分不必要条件,C 不正确; 当a >1,b >1时,显然ab >1,D 正确.7.已知p :x ≥k ,q :(x +1)(2-x )<0,如果p 是q 的充分不必要条件,则实数k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞) D .(-∞,-1]答案 B解析 由q :(x +1)(2-x )<0,得x <-1或x >2,又p 是q 的充分不必要条件,所以k >2,即实数k 的取值范围是(2,+∞),故选B.8.若∃x 0∈⎣⎢⎡⎦⎥⎤12,2,使得2x 20-λx 0+1<0成立是假命题,则实数λ的取值范围是( )A .(-∞,22]B .(22,3] C.⎣⎢⎡⎦⎥⎤22,92 D .{3}答案 A解析 因为∃x 0∈⎣⎢⎡⎦⎥⎤12,2,使得2x 20-λx 0+1<0成立是假命题,所以∀x ∈⎣⎢⎡⎦⎥⎤12,2,2x 2-λx+1≥0恒成立是真命题,即∀x ∈⎣⎢⎡⎦⎥⎤12,2,λ≤2x +1x 恒成立是真命题,令f (x )=2x +1x ,则f ′(x )=2-1x 2,当x ∈⎣⎢⎡⎭⎪⎫12,22时,f ′(x )<0,当x ∈⎝ ⎛⎦⎥⎤22,2时,f ′(x )>0,所以f (x )≥f ⎝ ⎛⎭⎪⎫22=22,则λ≤2 2.9.已知f (x )是R 上的奇函数,则“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的__________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”) 答案 充分不必要解析 ∵函数f (x )是奇函数,∴若x 1+x 2=0,则x 1=-x 2,则f (x 1)=f (-x 2)=-f (x 2),即f (x 1)+f (x 2)=0成立,即充分性成立;若f (x )=0,满足f (x )是奇函数,当x 1=x 2=2时,满足f (x 1)=f (x 2)=0,此时满足f (x 1)+f (x 2)=0,但x 1+x 2=4≠0,即必要性不成立.故“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的充分不必要条件.10.若命题“对∀x ∈R ,kx 2-kx -1<0”是真命题,则k 的取值范围是________________. 答案 (-4,0]解析 “对∀x ∈R ,kx 2-kx -1<0”是真命题,当k =0时,则有-1<0;当k ≠0时,则有k <0且Δ=(-k )2-4×k ×(-1)=k 2+4k <0,解得-4<k <0,综上所述,实数k 的取值范围是(-4,0].11.已知命题“∃x 0∈R ,使2x 20+(a -1)x 0+12≤0”是假命题,则实数a 的取值范围是________. 答案 (-1,3)解析 原命题的否定为∀x ∈R,2x 2+(a -1)x +12>0,由题意知,其为真命题,即Δ=(a -1)2-4×2×12<0,则-2<a -1<2,即-1<a <3.12.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R,B ={x |-1<x <m +1,m ∈R },若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是____________.答案 (2,+∞)解析 因为A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R={x |-1<x <3},x ∈B 成立的一个充分不必要条件是x ∈A ,所以A B ,所以m +1>3,即m >2.13.已知α,β∈(0,π),则“sin α+sin β<13”是“sin(α+β)<13”的______________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”) 答案 充分不必要解析 因为sin(α+β)=sin αcos β+cos αsin β<sin α+sin β,所以若sin α+sin β<13,则有sin(α+β)<13,故充分性成立;当α=β=π2时,有sin(α+β)=sin π=0<13,而sin α+sin β=1+1=2,不满足sin α+sin β<13,故必要性不成立.所以“sin α+sin β<13”是“sin(α+β)<13”的充分不必要条件.14.(2019·山东济南一中月考)已知不等式|x -m |<1成立的充分不必要条件是13<x <12,则m的取值范围是____________.答案 ⎣⎢⎡⎦⎥⎤-12,43 解析 解不等式|x -m |<1,得m -1<x <m +1.由题意可得⎝ ⎛⎭⎪⎫13,12(m -1,m +1),故⎩⎪⎨⎪⎧m -1≤13,m +1≥12且等号不同时成立,解得-12≤m ≤43.15.已知函数f (x )=x +4x ,g (x )=2x+a ,若∀x 1∈⎣⎢⎡⎦⎥⎤12,1,∀x 2∈[2,3],f (x 1)≥g (x 2)恒成立,则实数a 的取值范围是______________. 答案 (-∞,-3]解析 由题意知f (x )min ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤12,1≥g (x )max (x ∈[2,3]),因为f (x )在⎣⎢⎡⎦⎥⎤12,1上为减函数,g (x )在[2,3]上为增函数,所以f (x )min =f (1)=5,g (x )max =g (3)=8+a ,所以5≥8+a ,即a ≤-3.16.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y =x 2-32x +1,0≤x ≤2,B ={x |x +m 2≥2},p :x ∈A ,q :x ∈B ,p 是q 的充分条件,则实数m 的取值范围是________________. 答案 ⎝ ⎛⎦⎥⎤-∞,-54∪⎣⎢⎡⎭⎪⎫54,+∞解析 由y =x 2-32x +1=⎝ ⎛⎭⎪⎫x -342+716,0≤x ≤2,得716≤y ≤2,∴A =⎣⎢⎡⎦⎥⎤716,2.又由题意知A ⊆B , ∴2-m 2≤716,∴m 2≥2516.∴m ≥54或m ≤-54.。
2021年高考数学一轮复习第1课时集合的概念与运算教学案
2021年高考数学一轮复习第1课时集合的概念与运算教学案【教学目标】1.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集.3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.5.能使用Venn 图表达集合的关系及运算.【基础训练】1.下列集合中, 表示同一集合的是 .① P={1 , 2} , Q={(1 , 2)} ② P={3 , 2} , Q={2 , 3}③ P={(x , y)|x+y=1} , N={y|y+x=1} ④ P={(3 , 2)} , Q={(2 , 3)}2.满足集合{1 , 2 , 3} M {1 , 2 , 3 , 4 , 5}的集合M 的个数_____________.3.设集合,,则等于 ___________.4.设集合,.若,则实数a 的取值范围是 .5. 若集合2{(,)|4}A x y y x x ==--,,若集合有两个元素,则实数的取值范围是________6.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 .【合作探究】1.已知集合,试求集合的所有子集.2.设,{}22|2(1)10B x x a x a =+++-=,(1)若,求的取值范围;(2)若,求的取值范围.3.已知集合,,,如果集合A ,B ,C 满足,,求b ,c.4.已知A={x|x 2-px+p 2-19=0}, B={x|log 2(x 2-5x+8)=1},C={x|2=1}, 又AB, AC=, 求p 的值.【能力提升】1.已知集合A={x|m-2x+3=0,m ∈R}.(Ⅰ)若A 中只有一个元素,求m 的值;(Ⅱ)若A 中至多只有一个元素,求m 的取值范围.2.对于复数,若集合具有性质“对任意,必有”,则当2211a b c b =⎧⎪=⎨⎪=⎩,,时,求的值.【课堂检测】1. 已知集合,,且,求实数的取值范围.2.已知集合{|(2)(31)0}A x x x a =---<,函数的定义域为集合. ⑴若,求集合;⑵若,求实数的值.3.已知集合,若(R 为实数集),{}|013R B C A x x x ⋂=<<<<或2,求集合B4. 已知集合A=B=(1)当m=3时,求;(2)若AB ,求实数的值.。
高三数学一轮复习精品教案1:1.1集合 (1)教学设计
1.1集__合1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)集合中元素与集合的关系:元素与集合之间的关系有属于和不属于两种,表示符号为∈和∉.(3)集合的表示法:列举法、描述法、Venn图.2.集合间的基本关系3.集合的基本运算1.认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.2.要注意区分元素与集合的从属关系;以及集合与集合的包含关系.3.易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身.4.运用数轴图示法易忽视端点是实心还是空心.5.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误. 『试一试』1.(2013·南通二模)设全集U =R ,A =⎩⎨⎧⎭⎬⎫xx -2x +1<0,B =⎩⎨⎧⎭⎬⎫x sin x ≥32,则A ∩B =________. 『解析』由题意知A =(-1,2),B =⎣⎡⎦⎤2k π+π3,2k π+2π3,k ∈Z ,则A ∩B =⎣⎡⎭⎫π3,2. 『答案』⎣⎡⎭⎫π3,22.已知集合M ={1,m +2,m 2+4},且5∈M ,则m 的值为________.『解析』由题意知m +2=5或m 2+4=5.解得m =3或m =±1.经检验m =3,或m =1符合题意.『答案』1或33.已知集合A ={x |y =x 2},B ={(x ,y )|y =x },则A ∩B =________. 『答案』∅1.判断集合关系的方法有三种 (1)一一列举观察;(2)集合元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断集合关系;(3)数形结合法:利用数轴或Venn 图. 2.解决集合的综合运算的方法解决集合的综合运算时,一般先运算括号内的部分.当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算;当集合是用不等式形式表示时,可运用数轴求解. 3.数形结合思想数轴和Venn 图是进行交、并、补集运算的有力工具,数形结合是解集合问题的常用方法,解题时要先把集合中各种形式的元素化简,使之明确化,尽可能地借助数轴、直角坐标系或Venn 图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解题. 『练一练』1.(2014·南京学情调研)已知集合A ={x |x 2<3x +4,x ∈R },则A ∩Z 中元素的个数为________. 『解析』由x 2<3x +4得-1<x <4,所以A ={x |-1<x <4},故A ∩Z ={0,1,2,3}. 『答案』42.(2013·南通期末)已知A ,B 均为集合U ={2,4,6,8,10}的子集,且A ∩B ={4},(∁U B )∩A ={10},则A =________.『解析』因为(∁U B )∪B =U ,故A =A ∩(B ∪∁U B )=(A ∩B )∪(A ∩∁U B )={4,10}. 『答案』{4,10}对应学生用书P21.(2013·江苏高考)集合{-1,0,1}共有________个子集. 『解析』由题意知,所给集合的子集个数为23=8. 『答案』82.已知集合M ={1,m },N ={n ,log 2n },若M =N ,则(m -n )2 013=________. 『解析』由M =N 知⎩⎪⎨⎪⎧ n =1,log 2n =m 或⎩⎪⎨⎪⎧n =m ,log 2n =1, ∴⎩⎪⎨⎪⎧m =0,n =1或⎩⎪⎨⎪⎧m =2,n =2. 『答案』-1或03.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. 『解析』因为3∈A ,所以m +2=3或2m 2+m =3. 当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.『答案』-32『备课札记』 『类题通法』1.研究集合问题,一定要抓住元素,看元素应满足的属性,对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2.对于集合相等首先要分析已知元素与另一个集合中哪一个元素相等,分几种情况列出方程(组)进行求解,要注意检验是否满足互异性.『典例』 (1)(2013·南京二模)已知集合A ={x |x 2-2x ≤0,x ∈R },B ={x |x ≥a },若A ∪B =B ,则实数a 的取值范围是________.(2)已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.『解析』 (1)由A ∪B =B 可知A ⊆B .又A =『0,2』,所以实数a 的取值范围是(-∞,0』. (2)由log 2x ≤2,得0<x ≤4,即A ={x |0<x ≤4},而B =(-∞,a ), 由于A ⊆B ,如图所示,则a >4,即c =4.『答案』 (1)(-∞,0』 (2)4『备课札记』 『类题通法』1.已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、V enn 图帮助分析. 2.当题目中有条件B ⊆A 时,不要忽略B =∅的情况. 『针对训练』1.(2014·苏锡常镇一模)已知集合A ={x |x 2-x ≤0,x ∈R },设函数f (x )=2-x +a (x ∈A )的值域为B ,若B ⊆A ,则实数a 的取值范围是________.『解析』A =『0,1』,B ={f (x )|f (x )=2-x +a ,x ∈A }=⎣⎡⎦⎤12+a ,1+a .又因为B ⊆A ,即⎣⎡⎦⎤12+a ,1+a ⊆『0,1』,则有⎩⎪⎨⎪⎧a +12≥0,a +1≤1,解得-12≤a ≤0.『答案』⎣⎡⎦⎤-12,0 2.已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A .则实数m 的取值范围为________. 『解析』∵B ⊆A ,(1)当B =∅时,m +1≤2m -1,解得m ≥2. (2)当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2, 综上得m ≥-1. 『答案』『-1,+∞)『典例』 (1)(2013·南京三模)如图,已知集合A ={2,3,4,5,6,8},B ={1,3,4,5,7},C ={2,4,5,7,8,9},用列举法写出图中阴影部分表示的集合为________.(2)(2014·无锡期末)已知集合A =⎩⎨⎧⎭⎬⎫x ⎝⎛⎭⎫12x >14,B ={x |log 2(x -1)<2},则A ∩B=________.『解析』 (1)A ∩C ={2,4,5,8},又4,5在集合B 中,2,8不在集合B 中,故阴影部分表示的集合为{2,8}.(2)由⎝⎛⎭⎫12x >14得⎝⎛⎭⎫12x >⎝⎛⎭⎫122,解得x <2,即A =(-∞,2).又由log 2(x -1)<2,得0<x -1<4,解得1<x <5,即B =(1,5),从而A ∩B =(1,2). 『答案』 (1){2,8} (2)(1,2)『备课札记』 『类题通法』集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 『针对训练』设U =R ,集合A ={x |x 2+3x +2=0},B ={x |x 2+(m +1)x +m =0}.若(∁U A )∩B =∅,则m 的值是________.『解析』A ={-2,-1},由(∁U A )∩B =∅,得B ⊆A ,∵方程x 2+(m +1)x +m =0的判别式Δ=(m +1)2-4m =(m -1)2≥0,∴B ≠∅. ∴B ={-1}或B ={-2}或B ={-1,-2}. ①若B ={-1},则m =1;②若B ={-2},则应有-(m +1)=(-2)+(-2)=-4,且m =(-2)·(-2)=4,这两式不能同时成立,∴B ≠{-2};③若B ={-1,-2},则应有-(m +1)=(-1)+(-2)=-3,且m =(-1)·(-2)=2,由这两式得m =2.经检验知m =1和m =2符合条件. ∴m =1或2. 『答案』1或2以集合为背景的新定义问题是近几年高考命题创新型试题的一个热点,此类题目常常以“问题”为核心,以“探究”为途径,以“发现”为目的,这类试题只是以集合为依托,考查考生理解问题、解决创新问题的能力.归纳起来常见的命题角度有: 1创新集合新定义; 2创新集合新运算; 3创新集合新性质. 角度一 创新集合新定义创新集合新定义问题是通过重新定义相应的集合,对集合的知识加以深入地创新,结合原有集合的相关知识和相应数学知识,来解决新定义的集合创新问题.1.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合有________个. 『解析』具有伙伴关系的元素组是-1;12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.『答案』3角度二 创新集合新运算创新集合新运算问题是按照一定的数学规则和要求给出新的集合运算规则,并按照此集合运算规则和要求结合相关知识进行逻辑推理和计算等,从而达到解决问题的目的.2.如图所示的Venn 图中,A ,B 是非空集合,定义集合A B 为阴影部分表示的集合.若x ,y ∈R ,A ={x |y =2x -x 2},B ={y |y =3x ,x >0},则A B 为________. 『解析』因为A ={x |0≤x ≤2},B ={y |y >1}, A ∪B ={x |x ≥0},A ∩B ={x |1<x ≤2}, 所以A B =∁A ∪B (A ∩B )={x |0≤x ≤1或x >2}. 『答案』『0,1』∪(2,+∞) 角度三 创新集合新性质创新集合新性质问题是利用创新集合中给定的定义与性质来处理问题,通过创新性质,结合相应的数学知识来解决有关的集合性质的问题.3.对于复数a ,b ,c ,d ,若集合S ={a ,b ,c ,d }具有性质“对任意x ,y ∈S ,必有xy ∈S ”,则当⎩⎪⎨⎪⎧a =1,b 2=1,c 2=b时,b +c +d 等于________.『解析』∵S ={a ,b ,c ,d },由集合中元素的互异性可知当a =1时,b =-1,c 2=-1,∴c =±i ,由“对任意x ,y ∈S ,必有xy ∈S ”知±i ∈S ,∴c =i ,d =-i 或c =-i ,d =i , ∴b +c +d =(-1)+0=-1. 『答案』-1『备课札记』 『类题通法』解决新定义问题应注意的问题(1)遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质; (2)按新定义的要求,“照章办事”逐步分析、验证、运算,使问题得以解决; (3)对于选择题,可以结合选项通过验证,排除、对比、特值等方法解决.『课堂练通考点』1.(2013·苏北四市二模)已知集合A ={0,2,a 2},B ={1,a },若A ∪B ={0,1,2,4},则实数a 的值为________.『解析』由题意得a 2=a =4或⎩⎪⎨⎪⎧ a =0,a 2=4或⎩⎪⎨⎪⎧ a =2,a 2=4或⎩⎪⎨⎪⎧a 2=1,a =4,解得a =2. 『答案』22.(2013·新课标全国卷Ⅰ改编)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =________.『解析』n =1,2,3,4时,x =1,4,9,16,∴集合B ={1,4,9,16},∴A ∩B ={1,4}. 『答案』{1,4}3.设集合A ={1,2},则满足A ∪B ={1,2,3}的集合B 的个数是________. 『解析』根据已知,满足条件的集合B 为{3},{1,3},{2,3},{1,2,3}. 『答案』44.创新题设S 为复数集C 的非空子集.若对任意x ,y ∈S ,都有x +y ,x -y ,xy ∈S ,则称S 为封闭集.下列命题:①集合S ={a +b i|a ,b 为整数,i 为虚数单位}为封闭集; ②若S 为封闭集,则一定有0∈S ; ③封闭集一定是无限集;④若S 为封闭集,则满足S ⊆T ⊆C 的任意集合T 也是封闭集. 其中的真命题是________.(写出所有真命题的序号)『解析』①对,当a ,b 为整数时,对任意x ,y ∈S ,x +y ,x -y ,xy 的实部与虚部均为整数;②对,当x =y 时,0∈S ;③错,当S ={0}时,是封闭集,但不是无限集;④错,设S ={0}⊆T ,T ={0,1},显然T 不是封闭集.因此,真命题为①②. 『答案』①②5.创新题设P ,Q 为两个非空实数集合,定义集合P *Q ={z |z =a ÷b ,a ∈P ,b ∈Q },若P ={-1,0,1},Q ={-2,2},则集合P *Q 中元素的个数是________. 『解析』当a =0时,无论b 取何值,z =a ÷b =0; 当a =-1,b =-2时,z =(-1)÷(-2)=12;当a =-1,b =2时,z =(-1)÷2=-12;当a =1,b =-2时,z =1÷(-2)=-12;当a =1,b =2时,z =1÷2=12.故P *Q =⎩⎨⎧⎭⎬⎫0,-12,12,该集合中共有3个元素.『答案』36.已知全集U =R ,集合A ={x |x 2-2x >0},B ={x |y =lg(x -1)},则(∁U A )∩B =________. 『解析』解不等式x 2-2x >0,即x (x -2)>0,得x <0或x >2,故A ={x |x <0或x >2}; 集合B 是函数y =lg(x -1)的定义域, 由x -1>0,解得x >1,所以B ={x |x >1}.如图所示,在数轴上分别表示出集合A,B,则∁U A={x|0≤x≤2},所以(∁U A)∩B={x|0≤x≤2}∩{x|x>1}={x|1<x≤2}.『答案』(1,2』。
高三数学一轮复习精品教案10:§1.1集合的概念与运算教学设计
§1.1集合的概念与运算课前·考点引导考情分析考点新知了解集合的含义;体会元素与集合的“属于”关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的数学对象或数学问题;了解集合之间包含与相等的含义;能识别给定集合的子集;了解全集与空集的含义. 学会区分集合与元素,集合与集合之间的关系. 学会自然语言、图形语言、集合语言之间的互化. 集合含义中掌握集合的三要素.④ 不要求证明集合相等关系和包含关系.回归教材1.已知集合A ={m +2,2m 2+m },若3∈A ,则m =________. 『答案』-32『解析』因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3,所以m =1不合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3满足题意.所以m =-32.2.已知集合{a |0≤a <4,a ∈N },用列举法可以表示为________. 『答案』{}0,1,2,3『解析』因为a ∈N ,且0≤a <4,由此可知实数a 的取值为0,1,2,3. 3.已知集合A =『1,4),B =(-∞,a ),A B ,则a ∈________.『答案』『4,+∞)『解析』在数轴上画出A 、B 集合,根据图象可知.4.设集合A ={x |x =5-4a +a 2,a ∈R },B ={y |y =4b 2+4b +2,b ∈R },则A 、B 的关系是________. 『答案』A =B『解析』化简得A ={x |x ≥1},B ={y |y ≥1},所以A =B . 5.满足条件{1}M{1,2,3}的集合M 的个数是________.『答案』4个『解析』满足条件{1}M{1,2,3}的集合M有{1},{1,2},{1,3},{1,2,3},共4个.知识清单1. 集合的含义及其表示(1) 集合的定义:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.其中集合中的每一个对象称为该集合的元素.(2) 集合中元素的特征:确定性、互异性、无序性.(3) 集合的常用表示方法:列举法、描述法、Venn图法.(4) 集合的分类:若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类可分为点集、数集等.应当特别注意空集是一个特殊而又重要的集合,解题时切勿忽视空集的情形.(5) 常用数集及其记法:自然数集记作N;正整数集记作N或N+;整数集记作Z;有理数集记作Q;实数集记作R;复数集记作C.2. 两类关系(1) 元素与集合之间的关系包括属于与不属于关系,反映了个体与整体之间的从属关系.(2) 集合与集合之间的关系①包含关系:如果集合A中的每一个元素都是集合B的元素,那么集合A称为集合B的子集,记为A B或B A,读作“集合A包含于集合B”或“集合B包含集合A”.②真包含关系:如果A B,并且A≠B,那么集合A称为集合B的真子集,读作“集合A真包含于集合B”或“集合B真包含集合A”.③相等关系:如果两个集合所含的元素完全相同,即A中的元素都是B中的元素且B中的元素都是A中的元素,则称这两个集合相等.(3) 含有n个元素的集合的子集共有2n个,真子集共有2n-1个,非空子集共有2n-1个,非空真子集有2n-2个.课中·技巧点拨题型精选题型1正确理解和运用集合概念例1已知集合A={x|ax2-3x+2=0,a∈R}.(1) 若A 是空集,求a 的取值范围;(2) 若A 中只有一个元素,求a 的值,并将这个元素写出来; (3) 若A 中至多有一个元素,求a 的取值范围. 解: (1) 若A 是空集,则Δ=9-8a <0,解得a >98.(2) 若A 中只有一个元素,则Δ=9-8a =0或a =0,解得a =98或a =0;当a =98时这个元素是43;当a =0时,这个元素是23. (3) 由(1)(2)知,当A 中至多有一个元素时,a 的取值范围是a ≥98或a =0.备选变式(教师专享)已知a ≤1时,集合『a ,2-a 』中有且只有3个整数,则a 的取值范围是________. 『答案』-1<a ≤0『解析』因为a ≤1,所以2-a ≥1,所以1必在集合中.若区间端点均为整数,则a =0,集合中有0,1,2三个整数,所以a =0适合题意;若区间端点不为整数,则区间长度2<2-2a <4,解得-1<a <0,此时,集合中有0,1,2三个整数,-1<a <0适合题意.综上,a 的取值范围是-1<a ≤0. 变式训练设集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 2+14,k ∈Z ,N ={x |x =k 4+12,k ∈Z },则M ________N . 『答案』真包含于 题型2 集合元素的互异性例2 已知a 、b ∈R ,集合A ={a ,a +b ,1},B =⎩⎨⎧⎭⎬⎫b ,b a ,0,且AB ,B A ,求a -b 的值. 解:∵ AB ,BA ,∴ A =B .∵ a ≠0,∴ a +b =0,即a =-b ,∴ ba =-1,∴ b =1,a =-1,∴ a -b =-2. 备选变式(教师专享)已知集合A ={a ,a +b , a +2b },B ={a ,ac , ac 2}.若A =B ,则c =________. 『答案』-12『解析』分两种情况进行讨论.① 若a +b =ac 且a +2b =ac 2,消去b 得a +ac 2-2ac =0.当a =0时,集合B 中的三元素均为零,和元素的互异性相矛盾,故a ≠0.∴ c 2-2c +1=0,即c =1.但c =1时,B 中的三元素又相同,此时无解. ② 若a +b =ac 2且a +2b =ac ,消去b 得2ac 2-ac -a =0. ∵ a ≠0,∴ 2c 2-c -1=0,即(c -1)(2c +1)=0. 又c ≠1,故c =-12.变式训练集合A =⎩⎨⎧⎭⎬⎫a ,b a ,1,集合B ={a 2,a +b ,0},若A =B ,求a 2 013+b 2 014的值.解:由于a ≠0,由ba =0,得b =0,则A ={a ,0,1},B ={a 2,a ,0}.由A =B ,可得a 2=1.又a 2≠a ,则a ≠1,则a =-1. 所以a 2 013+b 2 014=-1.题型3 根据集合的含义求参数范围例3 集合A ={x |-2≤x ≤5},集合B ={x |m +1≤x ≤2m -1}. (1) 若BA ,求实数m 的取值范围;(2) 当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围. 解:(1) 当m +1>2m -1即m <2时,B =满足BA ;当m +1≤2m -1即m ≥2时,要使BA 成立,则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤5,解得2≤m ≤3.综上所述,当m ≤3时有B A .(2) 因为x ∈R ,且A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},又没有元素x 使x ∈A 与x ∈B 同时成立,则 ① 若B =,即m +1>2m -1,得m <2时满足条件;② 若B ≠,则要满足条件⎩⎪⎨⎪⎧m +1≤2m -1,m +1>5,解得m >4.或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2,无解. 综上所述,实数m 的取值范围为m <2或m >4. 备选变式(教师专享)已知集合A ={y |y =-2x ,x ∈『2,3』},B ={x |x 2+3x -a 2-3a >0}.若A B ,求实数a的取值范围.解:由题意有A =『-8,-4』,B ={x |(x -a )(x +a +3)>0}. ① 当a =-32时,B =⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈R ,x≠-32,所以A B 恒成立;② 当a <-32时,B ={x |x <a 或x >-a -3}.因为AB ,所以a >-4或-a -3<-8,解得a >-4或a >5(舍去),所以-4<a <-32;③ 当a >-32时,B ={x |x <-a -3或x >a }.因为A B ,所以-a -3>-4或a <-8(舍去),解得-32<a <1.综上,当AB 时,实数a 的取值范围是(-4,1).新题推荐(教师专享)1. 设集合A ={x |x <2},B ={x |x <a },且满足A 真包含于B ,则实数a 的取值范围是____________. 『答案』(2,+∞)『解析』利用数轴可得实数a 的取值范围是(2,+∞).2. 已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中元素的个数为________. 『答案』10『解析』B 中所含元素有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4). 3. 若x ∈A ,则1x∈A ,就称A 是“伙伴关系集合”,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是________. 『答案』3『解析』具有伙伴关系的元素组是-1;12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.4. 已知全集U =R ,集合M ={x |-2≤x -1≤2}和N ={x |x =2k -1,k =1,2,…}的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有________个.『答案』2『解析』由题图示可以看出阴影部分表示集合M 和N 的交集,所以由M ={x |-1≤x ≤3},得M ∩N ={1,3},有2个.5. 设P 、Q 为两个非空实数集合,定义集合P +Q ={a +b |a ∈P ,b ∈Q },若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数为________. 『答案』8『解析』(1) ∵ P +Q ={a +b |a ∈P ,b ∈Q },P ={0,2,5},Q ={1,2,6},∴ 当a =0时,a +b 的值为1,2,6;当a =2时,a +b 的值为3,4,8;当a =5时,a +b 的值为6,7,11,∴ P +Q ={1,2,3,4,6,7,8,11},∴ P +Q 中有8个元素. 6.已知集合A ={x |ax =1}, B ={x |x 2-1=0},若A ⊆B ,则a 的取值构成的集合是_______ 『答案』{-1,0,1}『解析』由题意,得B ={-1,1},因为A ⊆B ,所以当A =∅时,a =0;当A ={-1}时,a =-1;当A ={1}时,a =1. 又A 中至多有一个元素,所以a 的取值构成的集合是{-1,0,1}. 精品题库1. 已知A ={x |x 2-2x -3≤0},若实数a ∈A ,则a 的取值范围是________. 『答案』『-1,3』『解析』由条件,a 2-2a -3≤0,从而a ∈『-1,3』. 2. 现有含三个元素的集合,既可以表示为,,1b a a ⎧⎫⎨⎬⎩⎭,也可表示为{a 2,a +b ,0},则a 2 013+b 2 013=________. 『答案』-1『解析』由已知得ba =0及a ≠0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a 2 013+b 2 013=(-1)2 013=-1. 3. 已知集合A ={x |(x -2)『x -(3a +1)』<0},B =20(1)x ax x a ⎧⎫-<⎨⎬-+⎩⎭. (1) 当a =2时,求A ∩B ;(2) 求使B 真包含于A 的实数a 的取值范围.解:(1) A ∩B ={x |2<x <5}. (2) B ={x |a <x <a 2+1}. ①若a =13时,A =,不存在a 使BA ;②若a >13时,2≤a ≤3;③若a <13时,-1≤a ≤-12.故a 的取值范围是⎣⎡⎦⎤-1,-12∪『2,3』. 4. 已知A ={a +2,(a +1)2,a 2+3a +3}且1∈A ,求实数a 的值. 解:由题意知:a +2=1或(a +1)2=1或a 2+3a +3=1, ∴ a =-1或-2或0,根据元素的互异性排除-1,-2, ∴ a =0即为所求. 疑难指导1. 研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清其元素表示的意义是什么.注意区分{x |y =f (x )}、{y |y =f (x )}、{(x ,y )|y =f (x )}三者的不同.对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2. 判断两集合的关系常有两种方法:一是化简集合,从表达式中寻找两集合间的关系;二是用列举法表示各集合,从元素中寻找关系.3. 已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素间的关系,进而转化为参数满足的关系.解决这类问题常常需要合理利用数轴、Venn 图帮助分析.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§集合的概念与运算【2014高考会这样考】 1.考查集合中元素的互异性,以集合中含参数的元素为背景,探求参数的值;2.求几个集合的交、并、补集;3.通过集合中的新定义问题考查创新能力.【复习备考要这样做】 1.注意分类讨论,重视空集的特殊性;2.会利用Venn图、数轴等工具对集合进行运算;3.重视对集合中新定义问题的理解.1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法2.(1)子集:对任意的x∈A,都有x∈B,则A⊆B(或B⊇A).(2)真子集:若A⊆B,且A≠B,则A⊂B(或B⊃A).(3)空集:空集是任意一个集合的子集,是任何非空集合的真子集.即∅⊆A,∅⊂B(B≠∅).(4)若A含有n个元素,则A的子集有2n个,A的非空子集有2n-1个.(5)集合相等:若A⊆B,且B⊆A,则A=B.3.集合的运算4.并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.补集的性质:A∪(∁U A)=U;A∩(∁U A)=∅;∁U(∁U A)=A.[难点正本疑点清源]1.正确理解集合的概念正确理解集合的有关概念,特别是集合中元素的三个特征,尤其是“确定性和互异性”在解题中要注意运用.在解决含参数问题时,要注意检验,否则很可能会因为不满足“互异性”而导致结论错误.2.注意空集的特殊性空集是不含任何元素的集合,空集是任何集合的子集.在解题时,若未明确说明集合非空时,要考虑到集合为空集的可能性.例如:A ⊆B ,则需考虑A =∅和A≠∅两种可能的情况. 3. 正确区分∅,{0},{∅}∅是不含任何元素的集合,即空集.{0}是含有一个元素0的集合,它不是空集,因为它有一个元素,这个元素是0.{∅}是含有一个元素∅的集合.∅⊆{0},∅⊆{∅},∅∈{∅},{0}∩{∅}=∅.题型一 集合的基本概念例1 (1)下列集合中表示同一集合的是 ( B ) A .M ={(3,2)},N ={(2,3)} B .M ={2,3},N ={3,2}C .M ={(x ,y)|x +y =1},N ={y|x +y =1}D .M ={2,3},N ={(2,3)} 例如:(2)设a ,b∈R ,集合{1,a +b ,a}=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =___2_.思维启迪:解决集合问题首先要考虑集合的“三性”:确定性、互异性、无序性,理解集合中元素的特征. 解析 (1)选项A 中的集合M 表示由点(3,2)所组成的单点集,集合N 表示由点(2,3)所组成的单点集,故集合M 与N 不是同一个集合.选项C 中的集合M 表示由直线x +y =1上的所有的点组成的集合,集合N 表示由直线x +y =1上的所有的点的纵坐标组成的集合,即N ={y|x +y =1}=R ,故集合M 与N 不是同一个集合.选项D 中的集合M 有两个元素,而集合N 只含有一个元素,故集合M 与N 不是同一个集合.对选项B ,由集合元素的无序性,可知M ,N 表示同一个集合.(2)因为{1,a +b ,a}=⎩⎨⎧⎭⎬⎫0,b a ,b ,a≠0, 所以a +b =0,得ba =-1,所以a =-1,b =1.所以b -a =2.探究提高 (1)用描述法表示集合时要把握元素的特征,分清点集、数集;(2)要特别注意集合中元素的互异性,在解题过程中最容易被忽视,因此要对计算结果进行检验,防止所得结果违背集合中元素的互异性. 若集合A ={x|ax 2-3x +2=0}的子集只有两个,则实数a = 0或98_.解析 ∵集合A 的子集只有两个,∴A 中只有一个元素. 当a =0时,x =23符合要求.当a≠0时,Δ=(-3)2-4a×2=0,∴a=98.故a =0或98.题型二 集合间的基本关系例2 已知集合A ={x|-2≤x≤7},B ={x|m +1<x<2m -1},若B ⊆A ,求实数m 的取值范围.思维启迪:若B ⊆A ,则B =∅或B≠∅,要分两种情况讨论. 解:①当B =∅时,有m +1≥2m-1,则m≤2. ②当B≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-22m -1≤7m +1<2m -1,解得2<m≤4.综上,m 的取值范围为m≤4.变式:(1)集合A 与B 中的等号问题,(四种情况:两开两闭,一开一闭) (2)集合A 与B 的关系。
例如:,,A B A B A B ⊂⋂=∅⋂≠∅等探究提高 (1)集合中元素的互异性,可以作为解题的依据和突破口;(2)对于数集关系问题,往往利用数轴进行分析;(3)对含参数的方程或不等式求解,要对参数进行分类讨论.已知集合A ={x|log 2x≤2},B =(-∞,a),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =_4___. 解析 由log 2x≤2,得0<x≤4,即A ={x|0<x≤4}, 而B =(-∞,a),由于A ⊆B ,如图所示,则a>4,即c =4. 变式:集合A 与B 的关系。
题型三 集合的基本运算例3 设U =R ,集合A ={x|x 2+3x +2=0},B ={x|x 2+(m +1)x +m =0}.若(∁U A)∩B=∅,则m 的值是_1或2__.思维启迪:本题中的集合A ,B 均是一元二次方程的解集,其中集合B 中的一元二次方程含有不确定的参数m ,需要对这个参数进行分类讨论,同时需要根据(∁U A)∩B=∅对集合A ,B 的关系进行转化. 解析 A ={-2,-1},由(∁U A)∩B=∅,得B ⊆A ,∵方程x 2+(m +1)x +m =0的判别式Δ=(m +1)2-4m =(m -1)2≥0,∴B≠∅. ∴B={-1}或B ={-2}或B ={-1,-2}. ①若B ={-1},则m =1;②若B ={-2},则应有-(m +1)=(-2)+(-2)=-4,且m =(-2)·(-2)=4,这两式不能同时成立, ∴B≠{-2};③若B ={-1,-2},则应有-(m +1)=(-1)+(-2)=-3,且m =(-1)·(-2)=2,由这两式得m =2. 经检验知m =1和m =2符合条件. ∴m=1或2.探究提高 本题的主要难点有两个:一是集合A ,B 之间关系的确定;二是对集合B 中方程的分类求解.集合的交、并、补运算和集合的包含关系存在着一些必然的联系,这些联系通过Venn 图进行直观的分析不难找出来,如A∪B=A ⇔B ⊆A ,(∁U A)∩B=∅⇔B ⊆A 等,在解题中碰到这种情况时要善于转化,这是破解这类难点的一种极为有效的方法.设全集是实数集R ,A ={x|2x 2-7x +3≤0},B ={x|x 2+a<0}. (1)当a =-4时,求A∩B 和A∪B; (2)若(∁R A)∩B=B ,求实数a 的取值范围. 解 (1)∵A={x|12≤x≤3},当a =-4时,B ={x|-2<x<2},∴A∩B={x|12≤x<2},A∪B={x|-2<x≤3}.(2)∁R A ={x|x<12或x>3},当(∁R A)∩B=B 时,B ⊆∁R A ,即A∩B=∅. ①当B =∅,即a≥0时,满足B ⊆∁R A ;②当B≠∅,即a<0时,B ={x|--a<x<-a}, 要使B ⊆∁R A ,需-a ≤12,解得-14≤a<0.综上可得,实数a 的取值范围是a≥-14.题型四 集合中的新定义问题例4 设符号@是数集A 中的一种运算:如果对于任意的x ,y∈A,都有x@y =xy∈A,则称运算@对集合A 是封闭的.设A ={x|x =m +2n ,m 、n∈Z },判断A 对通常的实数的乘法运算是否封闭?解 设x =m 1+2n 1,y =m 2+2n 2,那么xy =(m 1+2n 1)×(m 2+2n 2)=(m 1n 2+m 2n 1)2+m 1m 2+2n 1n 2. 令m =m 1m 2+2n 1n 2,n =m 1n 2+m 2n 1,则xy =m +2n , 由于m 1,n 1,m 2,n 2∈R ,所以m ,n∈R . 故A 对通常的实数的乘法运算是封闭的.探究提高 本题旨在考查我们接受和处理新信息的能力,解题时要充分理解题目的含义,进行全面分析,灵活处理.已知集合S ={0,1,2,3,4,5},A 是S 的一个子集,当x∈A 时,若有x -1∉A ,且x +1∉A ,则称x 为A 的一个“孤立元素”,那么S 中无“孤立元素”的4个元素的子集共有___6_____个.解析 由成对的相邻元素组成的四元子集都没有“孤立元素”,如{0,1,2,3},{0,1,3,4},{0,1,4,5},{1,2,3,4},{1,2,4,5},{2,3,4,5},这样的集合共有6个.集合中元素特征认识不明致误典例:(5分)(2012·课标全国)已知集合A ={1,2,3,4,5},B ={(x ,y)|x∈A,y∈A,x -y∈A},则B 中所含元素的个数为 ( D )A .3B .6C .8D .10易错分析 本题属于创新型的概念理解题,准确地理解集合B 是解决本题的关键,该题解题过程易出错的原因有两个,一是误以为集合B 中的元素(x ,y)不是有序数对,而是无序的两个数值;二是对于集合B 的元素的性质中的“x∈A,y∈A,x -y∈A”,只关注“x∈A,y∈A”,而忽视“x-y∈A”的限制条件导致错解.解析 ∵B={(x ,y)|x∈A,y∈A,x -y∈A},A ={1,2,3,4,5}, ∴x=2,y =1;x =3,y =1,2;x =4,y =1,2,3;x =5,y =1,2,3,4.∴B={(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4)}, ∴B 中所含元素的个数为10. 答案 D温馨提醒 判断集合中元素的性质时要注意两个方面:一是要注意集合中代表元素的字母符号,区分x 、y 、(x ,y);二是准确把握元素所具有的性质特征,如集合{x|y =f(x)}表示函数y =f(x)的定义域,{y|y =f(x)}表示函数y =f(x)的值域,{(x ,y)|y =f(x)}表示函数y =f(x)图象上的点.遗忘空集致误典例:(4分)若集合P ={x|x 2+x -6=0},S ={x|ax +1=0},且S ⊆P ,则由a 的可取值组成的集合为⎩⎨⎧⎭⎬⎫0,13,-12易错分析 从集合的关系看,S ⊆P ,则S =∅或S≠∅,易遗忘S =∅的情况. 解析 (1)P ={-3,2}.①当a =0时,S =∅,满足S ⊆P ;②当a≠0时,方程ax +1=0的解集为x =-1a ,为满足S ⊆P 可使-1a =-3或-1a=2,即a =13或a =-12.故所求集合为⎩⎨⎧⎭⎬⎫0,13,-12. 温馨提醒 (1)根据集合间的关系求参数是高考的一个重点内容.解答此类问题的关键是抓住集合间的关系以及集合元素的特征.(2)在解答本题时,存在两个典型错误.一是忽略对空集的讨论,如S =∅时,a =0;二是易忽略对字母的讨论.如-1a 可以为-3或2.因此,在解答此类问题时,一定要注意分类讨论,避免漏解.方法与技巧1. 集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到.解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2. 对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号.3. 对离散的数集间的运算,或抽象集合间的运算,可借助Venn 图.这是数形结合思想的又一体现. 失误与防范1. 空集在解题时有特殊地位,它是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.2. 解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系.3. 解答集合题目,认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.4. Venn 图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心.5. 要注意A ⊆B 、A∩B=A 、A∪B=B 、∁U A ⊇∁U B 、A∩(∁U B)=∅这五个关系式的等价性.A 组 专项基础训练一、选择题(每小题5分,共20分)1. (2012·广东)设集合U ={1,2,3,4,5,6},M ={1,2,4},则∁U M 等于 ( C )A .UB .{1,3,5}C .{3,5,6}D .{2,4,6}解析 ∵U={1,2,3,4,5,6},M ={1,2,4},∴∁U M ={3,5,6}.2. (2011·课标全国)已知集合M ={0,1,2,3,4},N ={1,3,5},P =M∩N,则P 的子集共有( B ) A .2个 B .4个 C .6个 D .8个解析 ∵M={0,1,2,3,4},N ={1,3,5},∴M∩N={1,3}.∴M∩N 的子集共有22=4个.3. (2012·山东)已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A)∪B 为 ( C ) A .{1,2,4}B .{2,3,4}C .{0,2,4}D .{0,2,3,4}解析 ∵∁U A ={0,4},B ={2,4},∴(∁U A)∪B={0,2,4}.4. 已知集合M ={x|x x -1≥0,x∈R },N ={y|y =3x 2+1,x∈R },则M∩N 等于 ( C )A .∅B .{x|x≥1}C .{x|x>1}D .{x|x≥1或x<0}解析 由xx -1≥0,得⎩⎪⎨⎪⎧x≠1,x x -1≥0,∴x>1或x≤0,∴M={x|x>1或x≤0},N ={y|y≥1}, M∩N={x|x>1}.二、填空题(每小题5分,共15分)5. 已知集合A ={1,3,a},B ={1,a 2-a +1},且B ⊆A ,则a =_-1或2__.解析 由a 2-a +1=3,得a =-1或a =2,经检验符合.由a 2-a +1=a ,得a =1,由于集合中不能有相同元素,所以舍去.故a =-1或2.6. 已知集合A ={(0,1),(1,1),(-1,2)},B ={(x ,y)|x +y -1=0,x ,y∈Z },则A∩B=_{(0,1),(-1,2)}_.解析 A 、B 都表示点集,A ∩B 即是由A 中在直线x +y -1=0上的所有点组成的集合,代入验证即可. 7.(2012·天津)已知集合A ={x∈R ||x +2|<3},集合B ={x∈R |(x -m)(x -2)<0},且A∩B= (-1,n),则m =_-1__,n =_1__.解析 A ={x|-5<x<1},因为A∩B={x|-1<x<n}, B ={x|(x -m)(x -2)<0},所以m =-1,n =1. 三、解答题(共22分)8. (10分)已知集合A ={x|x 2-2x -3≤0},B ={x|x 2-2mx +m 2-4≤0,x∈R ,m∈R }. (1)若A∩B=[0,3],求实数m 的值; (2)若A ⊆∁R B ,求实数m 的取值范围.解 由已知得A ={x|-1≤x≤3}, B ={x|m -2≤x≤m+2}.(1)∵A∩B=[0,3],∴⎩⎪⎨⎪⎧m -2=0,m +2≥3. ∴m=2.(2)∁R B ={x|x<m -2或x>m +2},∵A ⊆∁R B ,∴m-2>3或m +2<-1,即m>5或m<-3.9.(13分)已知集合A ={y|y 2-(a 2+a +1)y +a(a 2+1)>0},B ={y|y =12x 2-x +52,0≤x≤3}.(1)若A∩B=∅,求a 的取值范围;(2)当a 取使不等式x 2+1≥ax 恒成立的a 的最小值时,求(∁R A)∩B. 解 A ={y|y<a 或y>a 2+1},B ={y|2≤y≤4}.(1)当A∩B=∅时,⎩⎪⎨⎪⎧a 2+1≥4,a≤2,∴3≤a≤2或a≤- 3.(2)由x 2+1≥ax,得x 2-ax +1≥0,依题意Δ=a 2-4≤0,∴-2≤a≤2.∴a 的最小值为-2. 当a =-2时,A ={y|y<-2或y>5}.∴∁R A ={y|-2≤y≤5},∴(∁R A)∩B={y|2≤y≤4}. B 组 专项能力提升一、选择题(每小题5分,共15分)1. (2012·湖北)已知集合A ={x|x 2-3x +2=0,x∈R },B ={x|0<x<5,x∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( D ) A .1 B .2 C .3 D .4解析 用列举法表示集合A ,B ,根据集合关系求出集合C 的个数. 由x 2-3x +2=0得x =1或x =2,∴A={1,2}.由题意知B ={1,2,3,4},∴满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.2. (2011·安徽)设集合A ={1,2,3,4,5,6},B ={4,5,6,7,8},则满足S ⊆A 且S∩B≠∅的集合S 的个数是 ( B )A .57B .56C .49D .8解析 由S ⊆A 知S 是A 的子集,又∵A={1,2,3,4,5,6},∴满足条件S ⊆A 的S 共有26=64(种)可能.又∵S∩B≠∅,B ={4,5,6,7,8},∴S 中必含4,5,6中至少一个元素,而在满足S ⊆A 的所有子集S 中,不含4,5,6的子集共有23=8(种),∴满足题意的集合S 的可能个数为64-8=56.3. (2011·湖北)已知U ={y|y =log 2x ,x>1},P ={y|y =1x ,x>2},则∁U P 等于( A )C .(0,+∞)D .(-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞ 解析 ∵U={y|y =log 2x ,x>1}={y|y>0}, P ={y|y =1x ,x>2}={y|0<y<12},∴∁U P ={y|y≥12}=⎣⎢⎡⎭⎪⎫12,+∞. 二、填空题(每小题5分,共15分)4. (2012·陕西改编)集合M ={x|lg x>0},N ={x|x 2≤4},则M∩N=(1,2]___.解析 M ={x|lg x>0}={x|x>1}, N ={x|x 2≤4}={x|-2≤x≤2},∴M∩N={x|x>1}∩{x|-2≤x≤2}={x|1<x≤2}.5. 已知M ={(x ,y)|y -3x -2=a +1},N ={(x ,y)|(a 2-1)x +(a -1)y =15},若M∩N=∅,则a 的值为 1,-1,52,-4.解析 集合M 表示挖去点(2,3)的直线,集合N 表示一条直线,因此由M∩N=∅知,点(2,3)在集合N 所表示的直线上或两直线平行,由此求得a 的值为1,-1,52,-4.6. 设A ={x||x|≤3},B ={y|y =-x 2+t},若A∩B=∅,则实数t 的取值范围是 (-∞,-3)_____. 解析 A ={x|-3≤x≤3},B ={y|y≤t},由A∩B=∅知,t<-3.。