有限元分析简介
三维问题有限元分析(包括轴对称问题)
建立每个有限元的平衡方程,通过求解这些方程来得到近似解。
离散化
将连续的问题离散化,将整个求解域划分为有限个小的子域(称为有限元),每个子域上定义节点。
有限元方法的基本原理
解方程
通过求解整体矩阵的方程,得到各个节点的值,从整体矩阵,用于表示整个求解域上的问题。
详细描述
三维弹性力学问题的有限元分析
总结词
详细描述了三维热传导问题有限元分析的基本原理、方法和应用。
详细描述
三维热传导问题是有限元分析的另一个重要领域,主要研究热量在物体中的传递和分布。通过将连续的物体离散化为有限个小的单元,可以建立单元之间的热量传递关系,从而得到整个物体的温度分布。这种方法广泛应用于工程领域,如传热学、热能工程等。
边界条件处理
轴对称问题的有限元方法
轴对称问题有限元分析的实现流程
建立系统方程
根据有限元近似解法,将微分方程转化为离散化的系统方程。
划分网格
根据问题的几何形状和特点,将求解区域划分为一系列离散的网格单元。
建立数学模型
根据实际问题,建立相应的数学模型,包括物理方程、边界条件和初始条件。
求解系统方程
采用适当的数值方法(如直接法、迭代法等),求解离散化的系统方程,得到每个离散单元上的近似解。
轴对称问题具有旋转对称性,即其解在绕对称轴旋转时保持不变。
轴对称问题的定义和特性
特性
定义
将连续的物理问题离散化为有限个离散的单元,每个单元具有特定的形状和大小。
离散化
在每个离散单元上,使用近似函数来逼近真实解。常用的近似函数包括多项式、样条函数等。
近似解法
对于轴对称问题,边界条件通常与对称轴相关。需要对边界条件进行特殊处理,以确保离散化后的系统方程满足原始问题的约束。
有限元法概述
大型商用的FEM通用软件分类
目前已经出现了许多大型结构分析通用软件,最早的 是美国国家宇航局(NASA)在1956年委托美国计算科学 公司和贝尔航空系统公司开发的ANASTRAN有限元分析 系统,该系统发展到现在已有几十个版本。此外,比较知 名的有限元分析软件还有德国的ASKA,英国PAFEC,法 国AYATUS,美国ABAUS、ADNA、ANSYS、BERSAF E、BOSOR、COSMOS、ELAS、MARC、STARNYNE 等。下面仅介绍几种当前比较流行的有限元软件。 (1) ANSYS。 ANSYS是融结构、流体、电场、磁 场和声场分析于一体的大型通用有限元分析软件。其主要 特点是具有较好的前处理功能,如几何建模、网络划分、
电磁场分析、声场分析、压电分析以及多物理场的耦分 析,可以模拟多物理介质的相互作用,具有灵敏度分析 及优化分析能力;后处理的计算结果有多种显示和表达 能力。ANSYS软件系统主要包括ANSYS/Mutiphysics 多物理场仿真分析工具、LS-DYNA显示瞬态动力分析 工具、Design Space设计前期CAD集成工具、Design Xploere多目标快速优化工具和FE-SAFE结构疲劳耐久 性分析等。ANSYS已在工业界得到较广泛的认可和应 用。
现代设计理论及方法
有限元分析法
(Finite Element Analysis , FEA)
概述
1、有限元法简介
有限元法是求解数理方程的一种数值计算方法,是将 弹性理论、计算数学和计算机软件有机结合在一起的一种 数值分析技术,是解决工程实际问题的一种有力的数值计 算工具。 目前,有限单元法在许多科学技术领域和实际工程问 题中得到了广泛的与应用,如,机械制造、材料加工、航 空航天、土木建筑、电子电气、国防军工、石油化工、船 舶、铁路、汽车和能源等,并受到了普遍的重视。 现有的商业化软件已经成功应用于固体力学、流体力 学、热传导、电磁学、声学和生物学等领域,能够求解由 杆、梁、板、壳和块体等单元构成的弹性、弹塑性或塑性 问题,求解各类场分布问题,求解水流管道、电路、润滑、 噪声以及固体、流体、温度间的相互作用等问题。
有限元分析方法
有限元分析方法有限元分析方法是一种在数字计算机上定量分析变形、弹性以及现代结构的受力情况的方法。
有限元分析方法的发展日趋完善,是加强建筑物结构抗震能力的有力工具。
一、有限元分析方法的概念有限元分析方法是一种基于有限元分析原理的数学方法,它是一种用于计算低维受力系统的通用数值方法,尤其是用于非线性力学系统的数值分析方法。
在有限元数值分析中,计算对象由许多有限个结构物构成,这些结构物称为有限元。
每个有限元都有一定的体积和形状,如线元、面元和体元。
有限元分析的基本思想就是将复杂的物理结构模型分解为若干较小的有限元模型,再将这些小的有限元模型组合成一个完整的物理模型,并对其进行连续性研究,从而精确地确定受力构件的变形、位移、应力、变形能量等物理参数。
二、有限元分析方法在工程中的应用有限元分析方法可以用于结构分析、计算机辅助设计和工程校核。
有限元分析方法可以用于预测结构的受力情况、拓扑设计和优化,这对于重要的结构失效的防护和抗震性能的提高有重要意义。
在计算机辅助设计领域,有限元分析方法可以用于几何形状优化,减轻材料重量并提高刚度,这是一种非常有效的技术。
在建筑工程中,有限元分析方法可以用于计算建筑物的受力情况,确定其最大荷载量,为建筑物的改造和重建提供参考。
三、有限元分析方法的发展趋势随着计算机技术的发展,有限元分析方法的发展也在不断推进。
近年来,以网格化数值计算为基础的有限元分析方法已经取得了巨大的进展,如实施大型网格化分析、更加准确和可靠的模型细分、更准确的网格分解技术、更有效的数值求解技术等。
这些技术将使有限元分析技术更容易、更有效地应用于计算机辅助设计、工程校核和抗震分析等领域。
总之,有限元分析方法是一种重要的力学分析方法,它在结构分析、计算机辅助设计以及建筑物抗震性能的研究中都起着重要作用。
随着计算机技术的发展,有限元分析方法的发展也在不断发展,为实现地震安全建筑的建设做出贡献。
有限元分析法
2个移动自由度 1个转动自由度
3个移动自由度 (平面杆单元2个) 3个移动自由度(平面梁2个) 3个转动自由度(平面梁1个) 3个移动自由度(平面2个) 3个转动自由度(平面1个)
梁结构
弹簧结构
网格划分方法
. . .. . ..
线性
体(三维实体)
. . . . . ... .. .. . ..
二次
低阶单 元
更高阶单元
线单元
• 线单元: 用于螺栓(杆),弹簧,桁架或细长构件
面单元
• 壳单元: –Shell (壳)单元 每块面板的主尺寸不低于其厚度的10倍。
面单元
-平面应力 分析是用来分析诸如承受面内载荷的平 板、承受压力或远离中心载荷的薄圆盘等结构。
details ignored
Geometric model for FEA
单元类型选择
Element type:
3节点三角形平面应力单元
单元特性定义
Element properties:
材料特性:E, µ 单元厚度:t
网格划分
模型检查 • • • • 低质量单元 畸形单元 重合节点 重合单元
2 nodes
. .
A
. .
..
B
1 node
. .
. .
A
. .
B
具有公共节点的单元 之间存在信息传递
. .
分离但节点重叠的单元 A和B之间没有信息传递 (需进行节点合并处理)
第2节 有限元建模方法
Finite element model
Input data
有限元法概述
(2)MSC/NASTRAN。 MSC/NASTRAN是在原NAST RAN基础上进行大量改进后的系统软件,主要包括MS C.Patran并行框架式有限元前后处理及分析系统、 MS C.GS-Mesher快速有限元网格、 MSC.MARC非线性有 限元软件等。其中MSC.MARC具有较强的结构分析能
.
5.在产品制造或工程施工前预先发现潜在的问题; 6. 模拟各种试验方案,减少试验时间和经费; 7. 进行机械事故分析,查找事故原因。
轴承强度分析
.
汽车碰撞实验
.
刹车制动时地盘的应力分析
.
钢板精轧机热轧制分析
.
三维椭圆封头开孔补强
.
水轮机叶轮的受力分析模拟
.
人体股骨端受力分析
.
半导体芯片温度场的数值仿真
知量时称为混合法。 位移法易于实现计算自动化,所以,在有限单元法
中位移法应用范围最广。
.
2、有限元法的发展
有限单元法基本思想的提出,可以追溯到Courantl在1 943年的工作,他第一次尝试应用定义在三角形区域上的 分片连续函数和最小位能原理相结合,来求解St·Venant 扭转问题。相继一些应用数学家、物理学家和工程师由于 各种原因都涉足过有限单元的概念。
.
4、有限元的特点
(1) 概念清楚,容易理解。可以在不同的专业背景和水平 上建立起对该方法的理解。从使用的观点来讲,每个人的 理论基础不同,理解的深度也可以不同,既可以通过直观的 物理意义来学习,也可以从严格的力学概念和数学概念推 导。
《有限元分析概述》课件
PART 05
有限元分析的未来发展与 挑战
新技术与新方法的探索
人工智能与机器学
习
利用人工智能和机器学习技术, 自动构建有限元模型、优化求解 过程和提高分值算法和 求解技术,提高有限元分析的稳 定性和精度。
多物理场耦合
探索多物理场耦合的有限元分析 方法,以解决复杂工程问题中的 多物理场耦合问题。
边界条件的处理
在有限元分析中,边界条件的处理是重要的环节。边界条件通常通过在边界节点上施加约束或加载来实现,以模拟实际系统 的边界条件。
边界条件的处理方式需要根据具体问题进行分析和设定,以确保求解结果的准确性和可靠性。
求解与后处理
求解是有限元分析的核心步骤,涉及到建立方程组、求解方程组并得到离散化模型的结果。常用的求 解方法包括直接法、迭代法和优化算法等。
优化设计
03
根据计算结果,对结构进行优化设计,提高其性能或降低成本
。
PART 04
有限元分析的优缺点
有限元分析的优缺点
• 有限元分析(FEA)是一种数值 分析方法,用于解决各种工程问 题,如结构分析、热传导、流体 动力学等。它通过将复杂的物理 系统离散化为有限数量的简单单 元(或称为“有限元”)来模拟 系统的行为。这些单元通过节点 相互连接,形成一个离散化的模 型,可以用来预测系统的性能和 行为。
2023-2026
ONE
KEEP VIEW
有限元分析概述
REPORTING
CATALOGUE
目 录
• 有限元分析简介 • 有限元分析的基本原理 • 有限元分析的实现过程 • 有限元分析的优缺点 • 有限元分析的未来发展与挑战
PART 01
有限元分析简介
定义与背景
有限元分析简介
有限元分析作用
简单说包括评估设计和优化设计。 比如:通过有限元分析,可以在设计阶段对可能出现 的问题进行安全评判和设计参数修改,据有关资料,一个 新产品的问题有60%以上可以在设计阶段消除。
有限元分析不能代替试验,需要后期的试验验证。
物理系统举例
几何体 载荷 物理系统
结构
热
有限元分析基本思路
将一个连续体的求解区域离散(剖分)成有限个形 状简单的子区域(单元),各子区域相互连接在有限个 节点上,承受等效节点载荷(应力载荷、温度载荷、流 动载荷、磁载荷等);根据“平衡 ”条件分析并建立 各节点的载荷场方程,然后将它们组合起来进行综合求 解,以获得对复杂工程问题的近似数值解。
• 考虑惯性载荷就必须定义材料密度 (ρ)。
第四节 排气系统模态分析简介
分析目的
主要目的:一是吊钩位置选择优化;二是避频。
分析步骤
1、几何模型导入
2、几何模型简化、建立有限元模型
模型中包含材料信息,边界条件信息(载荷)等
3、参数输入
排气系统模态分析数据需求如下: (1)下表:
序号 1 名称 波纹管 参数要求 刚度(最好6个方向,主要是轴向和扭转,最好包括动刚度和 静刚度数值) 质量 刚度(最好3个方向,主要是减震方向,最好包括动刚度和静 刚度数值) 有效长度(车身悬挂和消声器吊钩轴心距离)或图纸、数模 3 4 5 催化器 前消吸音棉 后消吸音棉 载体质量 质量、位置 质量、位置
自由度约束
自由度约束就是给某个自由度(DOF)指定一已知 数值 (值不一定是零)。
定义
• 结构分析中的固定位移(零或者非零值) 。
集中载荷
集中载荷 就是作用在模型的一个点上的载荷。
定义
有限元分析的原理及应用
有限元分析的原理及应用1. 引言有限元分析(Finite Element Analysis, FEA)是一种工程数值模拟方法,通过将大型、复杂的物理问题离散成多个小的有限元单元,并对每个单元进行数值计算,最终得到整体系统的解。
本文将介绍有限元分析的原理及其在工程领域的应用。
2. 有限元分析的原理有限元分析的原理可以概括为以下几个步骤:2.1. 建立几何模型首先,根据实际问题的几何形状,以及需要分析的部分,建立一个几何模型。
这个模型可以是二维的或三维的,可以通过计算机辅助设计(CAD)软件绘制,也可以通过测量现场物体的尺寸来获得。
2.2. 网格划分在建立好几何模型后,需要将其离散化为有限多个小的有限元单元。
常见的有限元单元有三角形、四边形和六面体等。
划分过程决定了数值计算的精度,越精细的划分可以得到更精确的结果,但同时也会增加计算量。
2.3. 建立数学模型和边界条件有限元分析需要建立一个数学模型来描述物理问题。
这个数学模型可以是线性的,也可以是非线性的,取决于具体的问题。
在建立数学模型时,还需要考虑边界条件,即模型的边界上可能存在的约束或加载。
2.4. 求解数学模型有了数学模型和边界条件后,需要对其进行求解。
求解过程可以采用迭代方法或直接求解方法,具体取决于问题的复杂程度和计算要求。
在这一步中,需要进行数值计算,得到对应的物理量,例如应力、位移、温度等。
2.5. 后处理在得到数学模型的解后,需要进行后处理,将数值结果转化为可视化或可以使用的形式。
后处理可以包括绘制位移云图、应力云图等,以及针对特定问题进行统计分析。
3. 有限元分析的应用有限元分析在工程领域有广泛的应用。
以下列举了一些常见的应用领域:3.1. 结构力学有限元分析在结构力学中的应用非常广泛。
通过有限元分析,可以对结构的强度、刚度、变形等进行分析和优化。
常见的应用包括建筑结构、桥梁、飞机、汽车、船舶等领域。
3.2. 热传导有限元分析可以用于模拟物体内部的温度分布和热传导过程。
有限元分析法概述
第十一章 有限元分析方法概述1、基本概念有限元分析方法是随着电子计算机的发展而迅速发展起来的一种现代没计计算方法。
它是20世纪50年代首先在连续体力学领域—飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快就广泛地应用于求解热传导、电磁场、流体力学等连续性问题。
在工程分析和科学研究中,常常会遇到大量的由常微分方程、偏微分方程及相应的边界条件描述的场问题,如位移场、应力场和温度场等问题。
求解这类场问题的方法主要有两种:用解析法求得精确解;用数值解法求其近似解。
应该指出,能用解析法求出精确解的只是方程性质比较简单且几何边界相当规则的少数问题。
而对于绝大多数问题,则很少能得出解析解。
这就需要研究它的数值解法,以求出近似解。
目前工程中实用的数值解法主要有三种:有限差分法、有限元法和边界元法。
其中,以有限元法通用性最好,解题效率高,目前在工程中的应用最为广泛。
下面通过一个具体例子,分别采用解析法和数值解法进行求解,从而体会一下有限元分析方法的含义及其相关的一些基本概念。
如下图所示为一变横截面杆,杆的一端固定,另一端承受负荷P ,试求杆沿长度方向任一截面的变形大小。
其中,杆的上边宽度为1w ,下边宽度为2w ,厚度为t ,长度为L ,杆的材料弹性模量为E 。
已知P =4450N ,1w =50mm ,2w =25mm ,t =3mm ,L =250mm ,E =72GPa 。
① 采用解析法精确求解假设杆任一横截面面积为)(y A ,其上平均应力为σ,应变为ε。
根据静力平衡条件有:0)(=-y A P σ根据虎克定律有:εσE =而任一横截面面积为:t y L w w w y A )()(121-+= 任一横截面产生的应变为:dydu=ε将上述方程代入静力平衡条件,进行变换后有:dy y EA Pdu )(=沿杆的长度方向对上式两边进行积分,可得:⎰⎰⎰-+==y yudy y Lw w w Et P dy y EA P du 01210)()(将)(y A 表达式代入上式,并对两边进行积分,得杆沿长度方向任一横截面的变形量:]ln )[ln()()(112112w y Lw w w w w Et PL y u --+-=当y 分别取0、62.5、125、187.5、250值时,变截面杆相应横截面处的沿杆长方向的变形量分别为:m u m u m u m u m u 6564636211080.142 ;1083.96 ;1027.59 ;1051.27 ;0----⨯=⨯=⨯=⨯==② 采用数值解法近似求解将变横截面杆沿长度方向分成独立的4小段,每一小段采用等截面直杆近似,等截面直杆的横截面面积为相应的变截面杆横截面面积的平均面积表示,每一小段称为一个单元,小段之间通过节点连接起来。
第二章有限元分析基本理论
第二章有限元分析基本理论有限元分析是一种数值计算方法,广泛应用于结构分析、流体力学、热传导等工程领域。
它通过将连续的物理问题离散化为有限个简单的子问题,再通过数值方法求解这些子问题,最终得到原始问题的近似解。
有限元分析的基本理论包括三个方面:离散化、加权残差和求解方法。
首先是离散化。
离散化是指将原始的连续问题转化为离散的子问题。
有限元分析中常用的离散化方法是将求解区域分割成有限的子域,称为单元。
每个单元内部的场量(如位移、温度等)可以用其中一种函数近似表示。
离散化的关键是选择适当的单元形状和适量的节点,使得子问题的离散解能够较好地近似原问题的解。
接下来是加权残差方法。
加权残差方法是有限元分析的核心思想,用于构造子问题的弱型方程。
弱型方程是原始问题的一种积分形式,由应力平衡和边界条件推导而来。
在加权残差方法中,我们引入加权函数,将弱型方程乘以权函数,再对整个求解区域进行积分,从而将连续问题转化为离散问题。
通过选择合适的权函数,可以使得该离散问题具有良好的数学特性,比如对称、正定等。
最后是求解方法。
有限元分析的求解方法主要包括直接法和迭代法。
直接法适用于小型问题,通过对离散问题的系数矩阵进行直接求解,得到场量的离散解。
而迭代法适用于大型问题,通过迭代求解线性代数方程组,得到场量的近似解。
迭代法的常用算法有雅可比法、高斯-赛德尔法、共轭梯度法等。
在求解中还需要注意计算误差的控制和收敛性的判定。
除了这三个基本理论,有限元分析还有一些相关的概念和技术。
例如,网格生成用于生成离散化的单元网格;后处理用于对离散解进行可视化和数据分析;材料模型用于描述材料的本构关系。
这些概念和技术在具体的有限元分析应用中,有着重要的作用。
综上所述,有限元分析的基本理论包括离散化、加权残差和求解方法。
离散化将连续问题转化为离散子问题,加权残差方法用于构造子问题的弱型方程,求解方法用于求解离散问题。
掌握这些基本理论,对于理解和应用有限元分析方法具有重要意义。
有限元分析的基本原理
有限元分析的基本原理有限元分析(Finite Element Analysis,FEA)是一种工程分析方法,它通过将复杂的结构分割成有限数量的简单单元,然后利用数学方法对每个单元进行分析,最终得出整个结构的行为。
有限元分析方法在工程领域得到了广泛的应用,可以用于求解结构的应力、挠度、热传导、流体流动等问题,是一种非常有效的分析工具。
有限元分析的基本原理可以归纳为以下几点:1. 离散化,有限元分析将连续的结构离散化为有限数量的单元,这些单元可以是三角形、四边形、四面体、六面体等形状。
每个单元都有自己的节点和自由度,通过对单元的组合,可以得到整个结构的离散模型。
2. 建立方程,对于每个单元,可以建立其位移与受力之间的关系,这通常可以通过弹性力学理论得到。
然后将所有单元的位移-受力关系组合成整个结构的方程,这个方程描述了整个结构的行为。
3. 求解方程,得到整个结构的方程之后,可以通过数值方法对其进行求解,得到结构在给定载荷下的响应,包括位移、应力、应变等信息。
4. 后处理,最后,对求解得到的结果进行后处理,可以得到结构的各种性能指标,比如最大应力、挠度、疲劳寿命等。
这些指标可以帮助工程师评估结构的安全性和可靠性。
有限元分析的基本原理非常简单,但在实际应用中却有着复杂的数学和计算机实现。
通过有限元分析,工程师可以更好地理解结构的行为,设计更安全、更经济的产品。
有限元分析方法的发展也为工程领域的发展提供了强大的支持,可以预测结构在各种复杂载荷下的响应,为工程设计提供了重要的参考依据。
总的来说,有限元分析是一种非常重要的工程分析方法,它的基本原理是将复杂的结构离散化,建立数学模型,通过数值方法求解得到结构的响应。
有限元分析方法的发展为工程领域的发展做出了重要贡献,相信在未来的发展中,它将发挥更加重要的作用。
什么是有限元分析
非变形体 (刚体)
材料力学
对象:简单变形体 特征:变形(小)
简单形状的体
变量:(1)材料物性描述 (2)变形方面描述 (3)力的平衡描述
方程:(1)物理本构方程 (2)几何变形方程 (3)力的平衡方程
三大变量→三大方程
结构力学
对象:数量众多的简单变形体 特征:变形(小)
简单形状的体(数量众多)
变量:(1)材料物性描述 (2)变形方面描述 (3)力的平衡描述
方程:(1)物理本构方程 (2)几何变形方程 (3)力的平衡方程
三大变量→三大方程
变形体
弹性力学
对象:任意变形体 特征:变形(小)
任意形状的体
变量:(1)材料物性描述 (2)变形方面描述 (3)力的平衡描述
方程:(针对微体dxdydz) (1)物理本构方程 (2)几何变形方程 (3)力的平衡方程
三大变量→三大方程
模型的建立
设定材料属性
E、G、μ等等
添加边界条件
约束、载荷
划分网格
运行求解
后处理
结果的提取 应力、应变、位移等等
• 边界条件的添加
边界条件——当研究一个物体,与该物体相连接的其他物体被拿掉时,用一个约束或者 载荷来替代被拿掉的物体。这个约束或者载荷就是边界条件。
固定铰链
添加边界条件
位移边界条件 力边界条件
弹性常数
物体变形后的形状 物体的变形程度 物体的受力状态
物体的材料特征
• 基本方程
力的平衡方程: 几何变形方程: 材料的物理方程(本构关系):
力→应力 位移→应变 应力→应变
力平衡方程
几何变形方程
本构关系
• 有限元法的思路
连续体
第一节 有限元分析概述
第一节 有限元分析概述对于一般的工程受力问题,希望通过平衡微分方程、变形协调方程、几何方程和本构方程联立求解而获得整个问题的精确解是十分困难的,一般几乎是不可能的。
随着20世纪五六十年代计算机技术的出现和发展、以及工程实践中对数值分析要求的日益增长,并发展起来了有限元的分析方法。
有限元法自1960年由Clough首次提出后,获得了迅速的发展;虽然首先只是应用于结构的应力分析,但很快就广泛应用于求解热传导、电磁场、流体力学、成形工艺等连续问题。
一、有限元法的基本概念对于连续体的受力问题,既然作为一个整体获得精确求解十分困难;于是,作为近似求解,可以假想地将整个求解区域离散化,分解成为一定形状有限数量的小区域(即单元),彼此之间只在一定数量的指定点(即节点)处相互连接,组成一个单元的集合体以替代原来的连续体,如图7-1弯曲凹模的受力分析所示;只要先求得各节点的位移,即能根据相应的数值方法近似求得区域内的其他各场量的分布;这就是有限元法的基本思想。
从物理的角度理解,即将一个连续的凹模截面分割成图7-1所示的有限数量的小三角形单元,而单元之间只在节点处以铰链相连接,由单元组合成的结构近似代替原来的连续结构。
如果能合理地求得各单元的力学特性,也就可以求出组合结构的力学特性。
于是,该结构在一定的约束条件下,在给定的载荷作用下,各节点的位移即可以求得,进而求出单元内的其他物理场量。
这就是有限元方法直观的物理的解释。
从数学角度理解,是将图7-1所示的求解区域剖分成许多三角形子区域,子域内的位移可以由相应各节点的待定位移合理插值来表示。
根据原问题的控制方程(如最小势能原理)和约束条件,可以求解出各节点的待定位移,进而求得其他场量。
推广到其他连续域问题,节点未知量也可以是压力、温度、速度等物理量。
这就是有限元方法的数学解释。
从有限元法的解释可得,有限元法的实质就是将一个无限的连续体,理想化为有限个单元的组合体,使复杂问题简化为适合于数值解法的结构型问题;且在一定的条件下,问题简化后求得的近似解能够趋近于真实解。
有限元分析
有限元分析在数学中,有限元法(FEM,Finite Element Method)是一种为求解偏微分方程边值问题近似解的数值技术。
求解时对整个问题区域进行分解,每个子区域都成为简单的部分,这种简单部分就称作有限元。
它通过变分方法,使得误差函数达到最小值并产生稳定解。
类比于连接多段微小直线逼近圆的思想,有限元法包含了一切可能的方法,这些方法将许多被称为有限元的小区域上的简单方程联系起来,并用其去估计更大区域上的复杂方程。
构的平衡条件),从而得到问题的解。
这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。
由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
简介英文:Finite Element有限单元法是随着电子计算机的发展而迅速发展起来的一种现代计算方法。
它是50年代首先在连续体力学领域-飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛地应用于求解热传导、电磁场、流体力学等连续性问题。
有限元法分析计算的思路和做法可归纳如下:折叠物体离散化将某个工程结构离散为由各种单元组成的计算模型,这一步称作单元剖分。
离散后单元与单元之间利用单元的节点相互连接起来;单元节点的设置、性质、数目等应视问题的性质,描述变形形态的需要和计算精度而定(一般情况单元划分越细则描述变形情况越精确,即越接近实际变形,但计算量所获得的结果只是近似的。
如果划分单元数目非常多而又合理,则所获得的结果就与实际情况相符合。
选择位移模式在有限单元法中,选择节点位移作为基本未知量时称为位移法;选择节点力作为基本未知量时称为力法;取一部分节点力和一部分节点位移作为基本未知量时称为混合法。
位移法易于实现计算自动化,所以,在有限单元法中位移法应用范围最广。
当采用位移法时,物体或结构物离散化之后,就可把单元总的一些物理量如位移,应变和应力等由节点位移来表示。
《有限元分析概述》课件
如何生成适合于有限元分析的网格,并优 化网格结构。
如何进行杆件的有限元分析,包括轴力、 弯曲和扭转。
3 二维和三维模型的分析
4 不同单元的选择及其特点
如何进行二维和三维模型的有限元分析, 包括平面应力、平面应变和轴对称。
不同类型的有限元单元的选择和应用,以 及它们的特点和限制。
有限元分析软件
ANSYS
有限元分析的应用领域
工程结构分析
有限元分析广泛应用于工程领域,包括建筑、桥梁、船舶、管线等结构的设计和分析。
汽车、航空航天、机械等领域应用
有限元分析在汽车、航空航天、机械等行业中被广泛应用于产品设计和优化。
地震、爆炸等自然灾害分析
有限元分析可以用于模拟和预测地震、爆炸等自然灾害对结构的影响,进而提高结构的抗震 和防爆性能。
COMSOL Multiphysics是一款多物理场耦合的 有限元分析软件,适用于多领域的工程分析。
有限元分析的未来发展
1 超级计算机的运用 2 多物理场耦合
随着计算机性能的提升, 有限元分析可以应用于 更大规模、更复杂的问 题。
有限元分析将更多的物 理场耦合在一起,进行 更全面的分析。
3 计算效率的提高
有限元分析的基本流程
1
,将结构进行建模。
2
离散
将结构分割成小的、简单的单元。
3
材料定义
定义每个单元的材料性质和力学行为。
4
载荷约束条件
对结构施加边界条件和加载条件。
5
求解
通过数值计算方法求解结构的行为特性。
有限元分析的相关问题
1 网格生成及其优化
2 杆件的分析
随着算法和计算技术的 进步,有限元分析的计 算效率将得到提高。
有限元分析及应用的内容
有限元分析及应用的内容有限元分析(Finite Element Analysis,简称FEA)是一种工程分析方法,通过将实际工程问题建模成有限元模型,采用数值计算方法对其进行求解,从而得到结构的应力、变形、热传导等结果。
其广泛应用于机械、航空航天、土木工程、电子等多个领域。
有限元分析的基本思想是将连续问题离散化成有限个简单的单元,再通过有限元法求得每个单元的解,最终拼接求出整个问题的解。
其核心步骤包括几何建模、单元划分、边界条件设置和求解等。
有限元分析的内容主要涉及以下几个方面:1. 结构力学分析:有限元分析广泛应用于结构力学分析中,可以进行静力、动力、热力、疲劳等各种类型的分析。
通过有限元法可以获得结构的应力、变形、位移、刚度和模态等信息,从而评估结构的安全性和性能。
2. 流体力学分析:有限元分析也可以用于流体力学分析中,如流体的流动、热传导等问题。
通过建立数值模型和使用适当的流体力学方程,结合有限元法可求解复杂的流体流动问题,如气体流动、液体冲击等。
3. 热传导分析:有限元分析可用于热传导问题的求解,如热传导、热辐射、热对流等。
通过建立热传导的数值模型、设置热边界条件和内部热源等,结合有限元法求解热传导问题,获得温度场和热通量等信息。
4. 模态分析:有限元分析可以进行模态分析,得到结构的固有频率、振型和振幅等信息。
模态分析在结构设计中起到重要的作用,可用于评估结构的稳定性、避免共振等问题。
5. 优化设计:有限元分析可结合优化算法进行结构的优化设计。
通过对结构的形状、材料、尺寸等参数进行改变,并以某种性能指标(如结构的最小重量、最大刚度等)作为目标函数,运用有限元分析求解器进行求解,最终得到最优的设计方案。
6. 疲劳分析:有限元分析可用于疲劳分析,通过数值模拟和加载历史条件等,得到结构在循环或随机载荷下的寿命预测。
疲劳分析对于评估结构在实际工况下的安全性和可靠性具有重要意义。
7. 耦合分析:有限元分析还可以进行结构与流体、热传导、电磁场等耦合分析。
有限元分析-详解
C、棱柱铰约束(Slider)
该约束只能施加于虚件之上,仅允许被约束的 对象沿指定放松的轴平移滑动,限制其它五个自由 度。一般施加过程为:单击 按钮,弹出图示对话 框。选择虚件加于Supports 栏,选择使用的坐标系, 并在需要放松的轴线方向输入1。单击确定完成定义。 如针对如图所示接触虚件示例,用加于虚件的取代 施加于Point1 的高级约束,结果相同。
Element Type 决定采用linear 线性直边单元亦或采 用parabolic 抛物线棱边单元,抛物线棱边单元能带 来更好的精度。
此外还可以通过如图所示对话框中的Local 卡片,通 过添加(Add)sage和sag来调整局部网格细密程度 和,带来更合适的分析精度。(注:全局网格划分越 细密或采用抛物线棱边单元同样能提高精度,但同时 计算耗时增加)。
网格和属性还可以通过模型管理工具条 来自行定义。其中:
图标用于给实体Solid 模型定义四面体单元;
图标用于给曲面surface 模型定义三角形单元,如 果用户决定把实体模型当作薄壳模型来处理,也可 以用于实体模型;
图标表示对线框wireframe 几何进行梁单元网格划 分,要求对象是在Generative Shape Design 或 Wireframe and Surface Design 中生成的部件, 或者在Structure Design 环境下生成的梁(不能对 Sketch 对象进行网格划分),且划分出的网格是一 维的。
CATIA有限元分析
有限元分析是实现安全设计的重要部分, 在日常设计工作中也经常得到应用。
一 、零件体有限元分析
零件体有限元分析的一般步骤为:
(1):建立零件模型并导入分析模块;
有限元分析在船舶结构设计中的应用
有限元分析在船舶结构设计中的应用随着船舶工业的不断发展,船舶结构的设计也日益复杂和严谨。
而有限元分析作为一种有效的工具,已经成为了船舶结构设计中不可或缺的一部分。
在此,本文将介绍有限元分析在船舶结构设计中的应用,以及其带来的好处和挑战。
1. 有限元分析简介有限元分析(Finite Element Analysis, FEA)是一种数学模拟分析方法。
它通过分割连续的物体为有限个离散子元,求解每个子元的节点,进而得出整体物体的内部受力、应变等物理特性。
有限元分析应用范围广泛,可以用于船舶、航空航天、建筑等领域的结构设计和分析。
在船舶结构设计中,有限元分析可以对船体结构进行静力计算、动力计算、疲劳及强度分析等方面的计算。
2. 有限元分析在船舶强度计算中的应用在船舶结构设计中,强度计算是至关重要的一部分。
有限元分析可以帮助船舶设计师对船体结构进行静力和动力分析、疲劳分析和强度分析等计算。
通过有限元分析的计算,可以准确预测船舶在航行过程中的受力情况,从而为优化船舶结构提供依据。
例如,某船舶的舵机荷载在使用过程中达到了一个比较高的峰值,这是由于船舶舵机设计参数不足或强度不够所导致的。
在这种情况下,有限元分析可以对舵机进行疲劳分析,预测出舵机在航行过程中可能出现的强度问题,并为进一步优化舵机设计提供支持。
3. 有限元分析在船舶设计优化中的应用有限元分析可以为船舶结构优化提供依据。
通过有限元分析的计算,船舶设计师可以对船体结构进行预测和比较,以评估船体结构的优劣。
例如,在设计某型号船舶的船头结构时,设计师可能会面临着一个问题:如何在保证船头稳定性的前提下,尽可能减小船头的阻力。
有限元分析可以对船头结构进行优化设计,通过对船头结构的静力计算、动力计算、疲劳及强度分析等方面的计算,为设计师提供优化方案,以达到降低阻力的目的。
4. 有限元分析在船舶结构安全性评估中的应用船舶结构的安全性评估是船舶设计中不可避免的一个环节。
有限元分析的基本原理
有限元分析的基本原理有限元分析(FiniteElementAnalysis,简称FEA)是一种基于数值分析的工程分析技术,是利用数学和计算机技术有效地解决各种工程问题的有效方法。
这种方法可以有效地估计结构的性能和可靠性、确定生产工艺中因果因素的存在及发挥、优化设计方案等。
因此,有限元分析在结构分析、装备设计和工艺优化等领域越来越受到重视。
有限元分析的基本原理是建立数学模型,将物体的形状细分为若干有限几何元(即称为有限元),再分析各有限元中的问题。
这样做是因为任何实际物体都不能用完美的几何形状来表示,而实际物体只有当它们由有限数量的有限元组成时,才能建立数学模型。
这样,连续体可以被视为由有限数量的有限元组成的接近它们的几何形状,而在实际中,这些有限元的几何形状可以是正方体、圆柱体或更复杂的几何形状。
有限元分析的基本步骤是:首先,建立物体的数学模型,该模型是一个定义连续体的几何形状和物理特性的多维函数;其次,将形状分解为有限的几何单元,每个几何单元独立地拥有自己的特征;第三,在各有限元上,建立恰当的有限元函数,并且求解整个模型所对应的所有方程;最后,根据有限元分析的结果,得到物体的性能及物理特性。
有限元分析有两个主要应用:结构分析和流体分析。
结构分析是指由于载荷(外力)或外界环境变化,而引起物体形变、应力以及破坏等现象的分析。
流体分析是指分析流体的动态特性,如流体的压力、速度和温度分布情况。
流体可以是有限的液体或气体体系,也可以是无限的气体或水,取决于流体的密度和粘度。
有限元分析是一种数值技术,它有助于我们更好地理解工程问题,更好地评估设备性能,并最终提高设备的可靠性和有效性。
它被广泛应用于航空航天、船舶制造、汽车工业等多个领域。
有限元分析的基本原理是通过将实际物体的几何形状分解成有限的几何单元,并建立恰当的有限元函数,以求解有限元问题。
通过深入理解有限元分析的基本原理,可以更好地实现结构设计、装备优化和新型技术研究等工作。
有限元分析简介
有限元软件ansys简介有限元分析(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。
它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。
由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
ANSYS是一种广泛的商业套装工程分析软件。
所谓工程分析软件,主要是在机械结构系统受到外力负载所出现的反应,例如应力、位移、温度等,根据该反应可知道机械结构系统受到外力负载后的状态,进而判断是否符合设计要求。
一般机械结构系统的几何结构相当复杂,受的负载也相当多,理论分析往往无法进行。
想要解答,必须先简化结构,采用数值模拟方法分析。
由于计算机行业的发展,相应的软件也应运而生,ANSYS 软件在工程上应用相当广泛,在机械、电机、土木、电子及航空等领域的使用,都能达到某种程度的可信度,颇获各界好评。
使用该软件,能够降低设计成本,缩短设计时间。
ANSYS 软件是融结构、热、流体、电磁、声学于一体的大型通用有限元软件,可广泛的用于核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、生物医学、水利、日用家电等一般工业及科学研究。
该软件提供了不断改进的功能清单,具体包括:结构高度非线性分析、电磁分析、计算流体力学分析、设计优化、接触分析、自适应网格划分及利用ANSYS 参数设计语言扩展宏命令功能。
有限元分析有限元分析(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。
它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019/3/20
上海理工大学机械学院
7
有限单元的类型
• 一维单元(线单元):通常用线段表示,具有横截面积。
2019/3/20
上海理工大学机械学院
8
有限单元的类型
二维单元(面单元):具有一定的厚度
2019/3/20
上海理工大学机械学院
9
有限单元的类型
三维单元(砖单元)
2019/3/20
2019/3/20 上海理工大学机械学院 4
有限元分析基础知识
学习有限元需要的知识
数学基础:高等数学、数值分析、变分原理 有限元基础:有限元法基本原理 力学基础:弹塑性力学 热学基础(计算传热相关问题):传热学 专业基础:各专业相关,如对于金属塑性成形领域应具有 塑性成形原理、冲压工艺学等相关知识 软件基础:使用过一个商用的有限元软件 编程基础:具有c或fortran的编程能力,可基于软件平台 进行相关子程序编写和二次开发 CAD基础:几何建模所需 英语基础:有助于无障碍的使用帮助文件
上海理工大学机械学院
2019/3/20
2
有限元分析的应用范围
应力应变分析、屈曲、振动分析 热传递、流体流动、电位或磁位分析 生物力学工程
有限元分析的优点
增加产品和工程的可靠性; 在产品的设计阶段发现潜在的问题 经过分析计算,采用优化设计方案,降低原材料成本, 缩短产品投向 市场的时间 模拟试验方案,减少试验次数,从而减少试验经费 进行机械事故分析,查找事故原因
2019/3/20 上海理工大学机械学院 3
有限元发展简史
小位移问题 一维单元. 1941年 Hrenikoff 二维单元. 1956年 Turner 三维单元. 1961年Gallagher等 场的问题 如流体传动,热传导问题
1965年英国的Zienkiewicz
大位移问题 1976年 Belytschko
上海理工大学机械学院
10
有限元分析应用实例
锻造模拟
2019/3/20
上海理工大学机械学院
11
机械加工模拟
2019/3/20
上海理工大学机械学院
12
汽车碰撞
2019/3/20
上海理工大学机械学院
13
焊接
2019/3/20
上海理工大019/3/20
上海理工大学机械学院
15
覆盖件拉伸模拟
2019/3/20
上海理工大学机械学院
16
其他
太阳能层压机上下箱体 受力分析
2019/3/20
上海理工大学机械学院
17
2019/3/20
上海理工大学机械学院
18
2019/3/20
上海理工大学机械学院
19
实例1 材料受力
2019/3/20
上海理工大学机械学院
20
实例2 板料拉伸
上海理工大学机械学院 5
2019/3/20
有限元分析软件
• • • • • ANSYS LS-DYNA NASTRAN DEFORM ABAQUS
2019/3/20
上海理工大学机械学院
6
通用软件进行有限元分析时的一般步骤
☺建模 ☺定义材料属性 ☺给定约束条件 ☺施加载荷 ☺网格划分 ☺有限元计算 ☺结果分析及优化
有限元仿真简介
有限元分析发展过程
有限元分析
• (FEA,Finite Element Analysis)
用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称 为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单 的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条 件),从而得到问题的解。这个解不是准确解,而是近似解,因为实 际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解, 而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之 有效的工程分析手段。 有限元是那些集合在一起能够表示实际连续域的离散单元。
2019/3/20
上海理工大学机械学院
21
2019/3/20
上海理工大学机械学院
22
仿真结果
2019/3/20
上海理工大学机械学院
23
THANKS
2019/3/20
上海理工大学机械学院
24