抛物线高三一轮复习 ppt课件
合集下载
抛物线课件-2025届高三数学一轮复习
A. 2
B. 3
[解析]
2
C. 4
2
D. 8
由题意,知抛物线的焦点坐标为( ,0),椭圆的焦点坐标为(±
2
所以 = 2 ,解得 p =8,故选D.
D )
2 ,0),
5. 已知抛物线 y 2=2 px ( p >0)的焦点为 F ,点 M (2,2 2 )为抛物线上一点,则
|MF|=(
A. 2
2
即 p =2,所以A选项正确.
= − 3( − 1),
对于B,不妨设 M ( x 1, y 1), N ( x 2, y 2), x 1< x 2,联立方程得 2
= 4,
1
消去 y 并整理得3 x 2-10 x +3=0,解得 x 1= , x 2=3.由抛物线的定义得,| MN|=
x 1+ x 2+ p =
B )
B. 3
C. 4
D. 5
[解析] 因为点 M (2,2 2 )为抛物线上一点,所以将点 M 的坐标代入抛物线的方程
y 2=2 px ( p >0),可得 p =2,所以抛物线的方程为 y 2=4 x ,可得其准线方程为 x =
-1.根据抛物线的定义,得| MF |=2-(-1)=3.故选B.
三、知识点例题讲解及方法技巧总结
1
S △ AOB = ×| AB |× ×
2
2
由(2)的推导过程可得,
sin
1
||
2
+
= 2 ,
1−cos
1+cos
si
1
2
α= × 2 × ×
2
si
2
+
2025届高中数学一轮复习课件《抛物线(二)》ppt
x1,3,x2 三个数构成等差数列,则线段|AB|的长为( )
A.9
B.8
C.7
D.6
答案
高考一轮总复习•数学
第23页
解析:如图,设准线 l 与 x 轴交于点 M,过点 A 作准线 l 的垂线 AD,
交 l 于点 D.由抛物线的定义知|AD|=|AF|=4.因为点 F 是线段 AC 的中点,
所以|AD|=2|MF|=2p,所以 2p=4,解得 p=2.所以抛物线的方程为 y2=4x. 设 A(x1,y1),B(x2,y2),则|AF|=x1+p2=x1+1=4,所以 x1=3,所以 A(3,2 3).又 F(1,0),所以 kAF=32-31= 3,所以直线 AF 的方程为 y= 3(x-1),将此方程与 抛物线方程 y2=4x 联立后消去 y 并整理,得 3x2-10x+3=0,所以 x1+x2=130,所以|AB|=x1 +x2+p=130+2=136.故选 C.
y1y=px1+x→过A的切线, 由yy221y==2ppxx12,+x→过B的切线,
y22=2px2,
得两切线交点 Qy21py2,y1+2 y2,又由 y1y2=-p2 知 xQ
=-p2,即 Q 点轨迹方程为准线 x=-p2. 易验证 kQA·kQB=-1,即 QA⊥QB.
高考一轮总复习•数学
高考一轮总复习•数学
第4页
理清教材 强基固本
高考一轮总复习•数学
第5页
直线与抛物线的位置关系 联立yy2==k2xp+x,m, 得 k2x2+2(mk-p)x+m2=0. ①相切:k≠0,Δ=0; ②相交:k≠0,Δ>0 或 k=0; ③相离:k≠0,Δ<0.
高考一轮总复习•数学
第6页
2025届高中数学一轮复习课件《抛物线(一)》ppt
答案
高考一轮总复习•数学
第29页
解析:(1)∵抛物线方程为 y2=2px(p>0),∴准线为 x=-p2.
∵点 P(2,y0)到其准线的距离为 4,∴-p2-2=4. ∴p=4(负值舍去),∴抛物线的标准方程为 y2=8x.
(2)因为△FPM 为等边三角形,则|PM|=|PF|,由抛物线的定义得 PM 垂直于抛物线的准 线,设 Pm,m2p2,则点 Mm,-p2.因为焦点为 F0,p2,△FPM 是等边三角形,所以|PM|=4,
高考一轮总复习•数学
抛物线定义的应用策略
第17页
高考一轮总复习•数学
第18页
对点练 1 (1)(2024·陕西榆林模拟)如图 1,某建筑物的屋顶像抛物线,若将该建筑外形 弧线的一段按照一定的比例处理后可看成如图 2 所示的抛物线 C:x2=-2py(p>0)的一部分, P 为抛物线 C 上一点,F 为抛物线 C 的焦点.若∠OFP=120°,且|OP|= 221,则 p=( )
高考一轮总复习•数学
第10页
2.过抛物线 y2=4x 的焦点的直线 l 交抛物线于 P(x1,y1),Q(x2,y2)两点,如果 x1+x2 =6,则|PQ|=( )
A.9
B.8
C.7
D.6
解析:抛物线 y2=4x 的焦点为 F(1,0),准线方程为 x=-1.根据题意,得|PQ|=|PF|+ |QF|=x1+1+x2+1=x1+x2+2=8.故选 B.
即 px0=4.又 C 的准线方程为 x=-p2, 易知|FM|=x0+p2,显然|DM|=x0-p2.
由焦点联想准线.
因为 cos∠MFG=2 3 2,所以 sin∠MFG=13,因此||DFMM||=sin∠MFG=13,即xx00+-p2p2=13, 整理得 x0=p,与 px0=4 联立,解得 p=x0=2,
高三第一轮复习抛物线课件理
特点:对称性、 不变性、可逆性
应用:解决实际问 题,如求抛物线的 顶点、焦点等
注意事项:选择合 适的对称点或对称 直线,避免出现错 误
抛物线在实际生 活中的应用
物理中的抛物线运动
抛物线运动是物体在重力作用下,沿着抛物线轨迹运动的一种运动形式。 抛物线运动的特点是物体在运动过程中,速度、加速度和位移都是变化的。 抛物线运动的应用广泛,如炮弹、火箭、卫星等物体的运动都可以用抛物线运动来描述。 抛物线运动在物理学中具有重要的理论意义和实际应用价值。
抛物线与直线、圆的区别:抛物线是二次函数,其图像是一条曲线,而直线是直线方程,其 图像是一条直线;抛物线是二次函数,其图像是一条曲线,而圆是圆方程,其图像是一个圆。
与双曲线的联系与区别
抛物线与双曲线都是二次曲线,具有共同的性质和特点
抛物线是开口向上的曲线,双曲线是开口向下的曲线
抛物线与双曲线的焦点位置不同,抛物线的焦点在x轴上,双曲线的焦点在y轴 上
抛物线在工程学中的应用: 如桥梁设计、建筑设计等
抛物线在生物学中的应用: 如种群增长、生态平衡等
抛物线与其他曲 线的联系与区别
与直线、圆的关系
抛物线与直线的关系:抛物线是二次函数,其图像是一条曲线,而直线是直线方程,其图像是 一条直线。
抛物线与圆的关系:抛物线是二次函数,其图像是一条曲线,而圆是圆方程,其图像是一个圆。
抛物线的几何变 换
平移变换
平移变换的定义:将抛物线沿x轴或y轴移动一定距离 平移变换的公式:y=ax^2+bx+c,其中a、b、c为常数 平移变换的图形:抛物线沿x轴或y轴移动后的图形 平移变换的应用:解决实际问题,如求抛物线的顶点、对称轴等
伸缩变换
定义:将抛物线沿x轴或y轴进行伸缩变换,得到新的抛物线 伸缩变换公式:x'=kx,y'=ky,其中k为伸缩系数 伸缩变换对抛物线形状的影响:k>1时,抛物线变长;k<1时,抛物线变短 伸缩变换对抛物线顶点的影响:k>1时,顶点向上移动;k<1时,顶点向下移动 伸缩变换对抛物线对称轴的影响:伸缩变换不改变抛物线的对称轴位置
人教版高中数学高考一轮复习--抛物线(课件)
y=k(x+2),代入抛物线方程,整理得k2x2+(4k2-8)x+4k2=0,
由Δ=(4k2-8)2-4k2·
4k2=64(1-k2)≥0,
解得-1≤k≤1.
第二环节
关键能力形成
能力形成点1
抛物线的定义和标准方程
命题角度1 抛物线的定义及应用
例1 (1)过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标
交于A,B两点,|AB|=12,P为抛物线C的准线上一点,则△ABP的面积为( C )
A.18
B.24
C.36
D.48
依题意,不妨设抛物线 C 的方程为 y2=2px(p>0),
则焦点坐标为
,0
2
,将
x=2代入 y2=2px,可得
y=±p,
所以|AB|=2p=12,所以 p=6.
因为点 P 在准线上,所以点 P 到直线 l 的距离为 p=6,
如图,过点 M 作 MB⊥x 轴于点 B,
1
∵∠AMF=120°,∴∠BMF=30°,|BF|=2 − 2,
1
1
∴2|BF|=|MF|,即 2 2 - 2 = 2 + 2,解得 p=3.
故抛物线方程为 y2=6x.
7
(2)已知点 P 是抛物线 y =2x 上的动点,点 P 在 y 轴上的射影是点 M,点 A 2 ,4 ,
7
A.2
5
B.2
C.3
∵ =4,∴||=4||.
∴
||
||
=
3
.
4
过点 Q 作 QQ'⊥l,垂足为 Q',
设 l 与 x 轴的交点为 A,
由Δ=(4k2-8)2-4k2·
4k2=64(1-k2)≥0,
解得-1≤k≤1.
第二环节
关键能力形成
能力形成点1
抛物线的定义和标准方程
命题角度1 抛物线的定义及应用
例1 (1)过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标
交于A,B两点,|AB|=12,P为抛物线C的准线上一点,则△ABP的面积为( C )
A.18
B.24
C.36
D.48
依题意,不妨设抛物线 C 的方程为 y2=2px(p>0),
则焦点坐标为
,0
2
,将
x=2代入 y2=2px,可得
y=±p,
所以|AB|=2p=12,所以 p=6.
因为点 P 在准线上,所以点 P 到直线 l 的距离为 p=6,
如图,过点 M 作 MB⊥x 轴于点 B,
1
∵∠AMF=120°,∴∠BMF=30°,|BF|=2 − 2,
1
1
∴2|BF|=|MF|,即 2 2 - 2 = 2 + 2,解得 p=3.
故抛物线方程为 y2=6x.
7
(2)已知点 P 是抛物线 y =2x 上的动点,点 P 在 y 轴上的射影是点 M,点 A 2 ,4 ,
7
A.2
5
B.2
C.3
∵ =4,∴||=4||.
∴
||
||
=
3
.
4
过点 Q 作 QQ'⊥l,垂足为 Q',
设 l 与 x 轴的交点为 A,
高三第一轮复习--抛物线
角度一.动弦中点到坐标轴距离最短问题
例1.已知抛物线x 4 y上有一条长为6的动弦AB,
2
则AB的中点到x轴的最短距离为 3 A. 4 3 B. 2 C.1
D.2
AA1 BB1 由中位线定理得 MM 1 2 因为 AB AF BF AA1 BB1 AA1 BB1
p 0, 2
y
p 2
x 2 2 py p 0
p y 2
2 例: 1 y =4 x 2 4 x =8y
2 2 y 3x 2 5 y 4 x
2 3 x =8y 2 6 x = 9y
判断上述抛物线方程中哪些焦点是在x轴上,哪些 焦点在y轴?并判断焦点坐标及准线方程
p x 2
K
ห้องสมุดไป่ตู้
o
F
x
二、抛物线的标准方程
图形
标准方程 焦点坐标 准线方程
y 2 2 px
p 0
y 2 2 px p 0
p ,0 2
p ,0 2
x
p 2
p x 2
x2 2 py
p 0
p 0, 2
(2)因为 FA FB x1 , y1 1 x2 , y2 1 8 x1 x2 y1 1 y2 1 8 4k = 9 3 解得k 4 l的方程为4 x 3 y 3 0或4 x +3 y +3 0
点F:焦点 定义 定直线:准线 MF =1 MN
二、抛物线的标准方程
把方程 y2 = 2px (p>0)叫做抛物线的标准方 程,其中 p 为正常数,表示焦点在 x 轴正半上。
高考数学一轮复习第七章第七讲抛物线课件
解析:如图 D81,分别过 P,Q 两点作准线 x=-2p的垂线,
垂足分别为 P1,Q1.分别过 P,Q 两点ห้องสมุดไป่ตู้ x 轴
的垂线,垂足分别为 P2,Q2.准线 x=-p2交
x 轴于点 D-p2,0.
∵|PP1|=|PF|=4,|FP2|=12|PF|=2,
图 D81
∴|DF|=|DP2|-|FP2|=4-2=2. ∵|FQ2|=21|QF|=12|QQ1|, ∴|DF|=|QQ1|+|FQ2|=23|QF|. ∴32|QF|=2,|QF|=43. 答案:34
A.直线 AB 的斜率为 2 6 B.|OB|=|OF| C.|AB|>4|OF| D.∠OAM+∠OBM<180°
解析:如图 7-7-5,
图 7-7-5 ∵Fp2,0,M(p,0),且|AF|=|AM|,
∴A34p, 26p, 由抛物线焦点弦的性质可得 xA·xB=p42,则 xB=p3,
则 Bp3,- 36p,
F0,-p2 y≤0,x∈R
(续表) 准线方程 开口方向
焦半径 通径长
x=-p2 向右 x0+p2
x=p2 向左 -x0+2p
2p
y=-p2 向上 y0+p2
y=p2 向下 -y0+2p
【名师点睛】 如图 7-7-1,设 AB 是过抛物线 y2=2px(p>0)焦点 F 的弦,若 A(x1,y1),B(x2,y2),则
由yy= 2=k4(xx-,1), 得 k2x2-(2k2+4)x+k2=0,
得 xA·xB=1,① 因为|AF|=2|BF|,由抛物线的定义得 xA+1=2(xB+1), 即 xA=2xB+1,② 由①②解得 xA=2,xB=21, 所以|AB|=|AF|+|BF|=xA+xB+p=29. 答案:B
抛物线课件 高三数学一轮复习
解析:抛物线x2=4y的焦点F(0,1),准线方程为y=-1, 延长PM交准线于N,连PF,显然PN垂直于抛物线的准线,由抛物线定义知: |PA|+|PM|=|PA|+|PN|-1=|PA|+|PF|-1≥|AF|-1,当且仅当点P是线段AF与 抛物线的交点时取等号, 而|AF|= 5,所以|PA|+|PM|的最小值为 5-1.
解析:由题意知F(1,0),设A,B,C的横坐标 分别为x1,x2,x3,
由AF=13 (AB + AC),得1-x1=13(x2-x1+x3-x1), 所以x1+x2+x3=3,
由抛物线的定义得|AF|+|BF|+|CF|=x1+1+x2+ 1+x3+1=x1+x2+x3+3=6.
(2)[2024·广东广州模拟]设动点P在抛物线y=14x2上,点P在x轴上的射 影为点M,点A的坐标是(2,0),则|PA|+|PM|的最小值是___5_-__1__.
题后师说
求抛物线标准方程的常用方法
巩固训练2
(1)已知抛物线y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距
离大1,则抛物线的标准方程为( )
A.y2=x
B.y2=2x
C.y2=4x
D.y2=8x
答案: C 解析:由题意抛物线y2=2px(p>0)上任意一点到焦点F的距离与它到直线x=-1 的距离相同,因此-p2=-1,p=2,抛物线方程为y2=4x.故选C.
题后师说
抛物线定义的应用策略
巩固训练1
(1)[2024·辽 宁 辽 阳 模 拟 ] 已 知 抛 物 线 C : x2 = 2py(p>0) 的 焦 点 为 F ,
M(m,2)在抛物线C上,且|MF|=4,则p=( )
A.2
解析:由题意知F(1,0),设A,B,C的横坐标 分别为x1,x2,x3,
由AF=13 (AB + AC),得1-x1=13(x2-x1+x3-x1), 所以x1+x2+x3=3,
由抛物线的定义得|AF|+|BF|+|CF|=x1+1+x2+ 1+x3+1=x1+x2+x3+3=6.
(2)[2024·广东广州模拟]设动点P在抛物线y=14x2上,点P在x轴上的射 影为点M,点A的坐标是(2,0),则|PA|+|PM|的最小值是___5_-__1__.
题后师说
求抛物线标准方程的常用方法
巩固训练2
(1)已知抛物线y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距
离大1,则抛物线的标准方程为( )
A.y2=x
B.y2=2x
C.y2=4x
D.y2=8x
答案: C 解析:由题意抛物线y2=2px(p>0)上任意一点到焦点F的距离与它到直线x=-1 的距离相同,因此-p2=-1,p=2,抛物线方程为y2=4x.故选C.
题后师说
抛物线定义的应用策略
巩固训练1
(1)[2024·辽 宁 辽 阳 模 拟 ] 已 知 抛 物 线 C : x2 = 2py(p>0) 的 焦 点 为 F ,
M(m,2)在抛物线C上,且|MF|=4,则p=( )
A.2
高考数学总复习(一轮)(人教A)教学课件第八章 平面解析几何第7节 抛物线
解题时,需依据抛物线的标准方程,确定弦长公式是由交点横坐标
还是由交点纵坐标确定,同时还要注意坐标与距离关系.
(2)求解与抛物线有关的问题,要充分利用平面几何的性质.
角度二
抛物线性质的综合应用
[例4] (2024·陕西商洛模拟)已知F为抛物线y2=16x的焦点,P为该
||
抛物线上的动点,点A(-1,0),则
代入点P(-1,2),
解得 k=-4 或 m=,
2
2
所以 y =-4x 或 x =y.
2
y =-4x 或 x = y
.
提升·关键能力
类分考点,落实四翼
考点一
抛物线的定义及应用
[例1] (1)(2022·全国乙卷)设F为抛物线C:y2=4x的焦点,点A在C上,
点B(3,0),若|AF|=|BF|,则|AB|等于(
直径的圆与y轴相切.
1.思考辨析(在括号内打“√”或“×”).
(1)方程y=ax2(a≠0)表示的曲线是焦点在x轴上的抛物线,且其焦点
坐标是 (,0) ,准线方程是 x=- .( × )
(2)抛物线既是中心对称图形,又是轴对称图形.( × )
(3)二次函数y=ax2+bx+c(a≠0)图象就是抛物线.( √ )
设出对应的标准方程,由于标准方程只有一个参数p,只需一个条件
就可以确定抛物线的标准方程.
[针对训练]
(1)设圆C与圆x2+(y-3)2=1外切,与直线y=0相切,则圆心C的轨迹为
(
)
A.抛物线
B.双曲线
C.椭圆
D.圆
√
解析:(1)由题意知,圆C的圆心到点(0,3)的距离比到直线y=0的
还是由交点纵坐标确定,同时还要注意坐标与距离关系.
(2)求解与抛物线有关的问题,要充分利用平面几何的性质.
角度二
抛物线性质的综合应用
[例4] (2024·陕西商洛模拟)已知F为抛物线y2=16x的焦点,P为该
||
抛物线上的动点,点A(-1,0),则
代入点P(-1,2),
解得 k=-4 或 m=,
2
2
所以 y =-4x 或 x =y.
2
y =-4x 或 x = y
.
提升·关键能力
类分考点,落实四翼
考点一
抛物线的定义及应用
[例1] (1)(2022·全国乙卷)设F为抛物线C:y2=4x的焦点,点A在C上,
点B(3,0),若|AF|=|BF|,则|AB|等于(
直径的圆与y轴相切.
1.思考辨析(在括号内打“√”或“×”).
(1)方程y=ax2(a≠0)表示的曲线是焦点在x轴上的抛物线,且其焦点
坐标是 (,0) ,准线方程是 x=- .( × )
(2)抛物线既是中心对称图形,又是轴对称图形.( × )
(3)二次函数y=ax2+bx+c(a≠0)图象就是抛物线.( √ )
设出对应的标准方程,由于标准方程只有一个参数p,只需一个条件
就可以确定抛物线的标准方程.
[针对训练]
(1)设圆C与圆x2+(y-3)2=1外切,与直线y=0相切,则圆心C的轨迹为
(
)
A.抛物线
B.双曲线
C.椭圆
D.圆
√
解析:(1)由题意知,圆C的圆心到点(0,3)的距离比到直线y=0的
2025高考数学一轮复习-8.7-抛物线【课件】
(2)如图,过点 B 作 BQ 垂直准线于点 Q,交抛物线于点 P1,
x0+p2 |PF|=-x0+p2 |PF|=y0+p2
|PF|=-y0+p2
提醒:(1)焦点在 x 轴上时,方程的右端为±2px,左端为 y2,焦点在 y 轴上时,方程的 右端为±2py,左端为 x2.
(2)过焦点且垂直于对称轴的弦称为通径,长等于 2p,是过焦点最短的弦.
『基础过关』 思考辨析 1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)平面内与一个定点 F 和一条定直线 l 的距离相等的点的轨迹一定是抛物线.( × ) (2)抛物线既是中心对称图形,又是轴对称图形.( × ) (3)若直线与抛物线只有一个交点,则直线与抛物线一定相切.( × ) (4)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通 径,那么抛物线 x2=-2ay(a>0)的通径长为 2a.( √ ) (5)方程 y=ax2(a≠0)表示的曲线是焦点在 x 轴上的抛物线,且其焦点坐标是a4,0, 准线方程是 x=-a4.( × )
易错点睛:(1)求抛物线方程时容易忽视 p 的几何意义致错,解题时应注意. (2)直线与抛物线相交时,忽视与抛物线的对称轴平行的直线致错,如 6 题中忽视对 k =0 的讨论.
课堂考点突破
——精析考题 提升能力
考点一 抛物线的定义及其应用
【例 1】 (1)(2020·全国卷Ⅰ)已知 A 为抛物线 C:y2=2px(p>0)上一点,点 A 到 C 的
的点的轨迹
2.抛物线的标准方程和几何性质 标准方程 y2=2px(p>0) y2=-2px(p>0) x2=2py(p>0) x2=-2py(p>0) p 的几何意义:焦点 F 到准线 l 的距离
x0+p2 |PF|=-x0+p2 |PF|=y0+p2
|PF|=-y0+p2
提醒:(1)焦点在 x 轴上时,方程的右端为±2px,左端为 y2,焦点在 y 轴上时,方程的 右端为±2py,左端为 x2.
(2)过焦点且垂直于对称轴的弦称为通径,长等于 2p,是过焦点最短的弦.
『基础过关』 思考辨析 1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)平面内与一个定点 F 和一条定直线 l 的距离相等的点的轨迹一定是抛物线.( × ) (2)抛物线既是中心对称图形,又是轴对称图形.( × ) (3)若直线与抛物线只有一个交点,则直线与抛物线一定相切.( × ) (4)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通 径,那么抛物线 x2=-2ay(a>0)的通径长为 2a.( √ ) (5)方程 y=ax2(a≠0)表示的曲线是焦点在 x 轴上的抛物线,且其焦点坐标是a4,0, 准线方程是 x=-a4.( × )
易错点睛:(1)求抛物线方程时容易忽视 p 的几何意义致错,解题时应注意. (2)直线与抛物线相交时,忽视与抛物线的对称轴平行的直线致错,如 6 题中忽视对 k =0 的讨论.
课堂考点突破
——精析考题 提升能力
考点一 抛物线的定义及其应用
【例 1】 (1)(2020·全国卷Ⅰ)已知 A 为抛物线 C:y2=2px(p>0)上一点,点 A 到 C 的
的点的轨迹
2.抛物线的标准方程和几何性质 标准方程 y2=2px(p>0) y2=-2px(p>0) x2=2py(p>0) x2=-2py(p>0) p 的几何意义:焦点 F 到准线 l 的距离
高考数学一轮总复习课件:抛物线(二)
答案 (1)× (2)× (3)√ (4)√ (5)√ (6)√
2.(课本习题改编)过点(0,1)作直线,使它与抛物线y2=4x
仅有一个公共点,这样的直线有( C )
A.1条
B.2条
C.3条
D.4条
解析 两条切线,另一条平行于对称轴.
3.(2020·辽宁五校期末联考)已知AB是抛物线y2=2x的一条
【解析】 设斜率为k,则切线为y=k x+p2 ,代入y2=2px 中,得k2x2+p(k2-2)x+k24p2=0.
Δ=0,即p2(k2-2)2-4·k2·k24p2=0.解得k2=1,∴k=±1.
(2)(2021·河南新乡市模拟)若抛物线x2=ay(a≠0)的准线与抛
物线y=-x2-2x+1相切,则a=( B )
=2.故选C.
5.(2021·湖南长沙质检)设经过抛物线C的焦点的直线l与抛
物线C交于A,B两点,那么抛物线C的准线与以AB为直径的圆
的位置关系为( B )
A.相离
B.相切
C.相交但不经过圆心 D.相交且经过圆心
解析 设圆心为M,过点A,B,M分别作准线l的垂线,垂
足分别为A1,B1,M1(图略),则|MM1|=
【证明】 (1)∵y2=2px(p>0)的焦点为Fp2,0, 当k不存在时,直线方程为x=p2. 这时y1=p,y2=-p,则y1y2=-p2,x1x2=p42.
当k存在时,设直线方程为y=kx-p2(k≠0). 由y=kx-p2,消去x,得ky2-2py-kp2=0.①
y2=2px ∴y1y2=-p2,x1x2=(y41py22)2=p42. 因此,总有y1y2=-p2,x1x2=p42成立.
斜角为
π 6
的直线交C于A,B两点.若线段AB中点的纵坐标为
2.(课本习题改编)过点(0,1)作直线,使它与抛物线y2=4x
仅有一个公共点,这样的直线有( C )
A.1条
B.2条
C.3条
D.4条
解析 两条切线,另一条平行于对称轴.
3.(2020·辽宁五校期末联考)已知AB是抛物线y2=2x的一条
【解析】 设斜率为k,则切线为y=k x+p2 ,代入y2=2px 中,得k2x2+p(k2-2)x+k24p2=0.
Δ=0,即p2(k2-2)2-4·k2·k24p2=0.解得k2=1,∴k=±1.
(2)(2021·河南新乡市模拟)若抛物线x2=ay(a≠0)的准线与抛
物线y=-x2-2x+1相切,则a=( B )
=2.故选C.
5.(2021·湖南长沙质检)设经过抛物线C的焦点的直线l与抛
物线C交于A,B两点,那么抛物线C的准线与以AB为直径的圆
的位置关系为( B )
A.相离
B.相切
C.相交但不经过圆心 D.相交且经过圆心
解析 设圆心为M,过点A,B,M分别作准线l的垂线,垂
足分别为A1,B1,M1(图略),则|MM1|=
【证明】 (1)∵y2=2px(p>0)的焦点为Fp2,0, 当k不存在时,直线方程为x=p2. 这时y1=p,y2=-p,则y1y2=-p2,x1x2=p42.
当k存在时,设直线方程为y=kx-p2(k≠0). 由y=kx-p2,消去x,得ky2-2py-kp2=0.①
y2=2px ∴y1y2=-p2,x1x2=(y41py22)2=p42. 因此,总有y1y2=-p2,x1x2=p42成立.
斜角为
π 6
的直线交C于A,B两点.若线段AB中点的纵坐标为
抛物线的几何性质课件-2022届高三数学一轮复习
当 90 时,| AB | 2 p 也成立 sin 2
抛物线y2=2px ( p> 0 ) 的焦点弦的性质
如图所示:已知线段AB是抛物线y2=2px 弦,设A(x1, y1), B(x2, y2)
(
p>y0
l
)
的焦A点
3、当直线AB的倾斜角为θ时,
2p
| AB | sin2
2P
当直线AB⊥x轴时,即θ=900时,
y y0
与 y2 2 px联立,可得B点的纵坐标为 y p2 .
x p 2
y02 p 2p 2
.
BB1 / / x轴.
y0
典例9.
y2 3x
y l
A
o
F
x
DB
方法二:对f(θ)求导,研究单调性更简单
抛物线y2=2px ( p> 0 ) 的焦点弦的性质
如图所示:已知线段AB是抛物线y2=2px
x0= x1 2 x2
点P到准线的距离d=
x1
x2
p
x1
x2
p
OF B
x
点P到准线的距离d
2AB
2 r
2
2
抛物线y2=2px ( p> 0 ) 的焦点弦的性质
如弦图,所过示A,B:两已点知分线别段作A准B是线抛的物垂线线y,2A=21pxl y( p> 0 ) 的焦点
垂足分别为A1,B1,准线l与对称轴相
y
A
x2 y2
如图所示:在椭圆 a2 b2 1 和
x2
双曲线 a2
y2 b2
1 中,我们把过一
个焦点且垂直于对称轴的弦叫作
OF
x
通径
抛物线课件高三数学一轮复习
2
=0,解得 p =-42(舍去)或 p =6.故选C.
法二
根据抛物线的定义及题意得,点 A 到 C 的准线 x =- 的距离为
2
12,因为点 A 到 y 轴的距离为9,所以 =12-9,解得 p =6.故选C.
2
目录
高中总复习·数学(提升版)
2. (2024·全国乙卷13题)已知点 A (1, 5 )在抛物线 C : y 2=2 px
1|≥3,故点 M 到 x 轴的距离 d ≥2,故最短距离为2.
目录
高中总复习·数学(提升版)
抛物线的标准方程与几何性质
【例3】 (1)已知 F 为抛物线 C : y 2=2 px ( p >0)的焦点,过 F
作垂直于 x 轴的直线交抛物线于 M , N 两点,以 MN 为直径的圆交 y 轴
于 C , D 两点,且| CD |=3,则抛物线方程为(
上,则 A 到 C 的准线的距离为
9
4
.
解析:∵点 A (1, 5 )在抛物线 y 2=2 px 上,∴5=2 p ,得 p =
5
5
9
,∴点 A 到准线的距离为 xA + =1+ = .
2
2
4
4
目录
高中总复习·数学(提升版)
直线与抛物线的位置关系
【例4】 (多选)(2024·新高考Ⅱ卷10题)设 O 为坐标原点,直线 y
2. 抛物线性质的应用技巧
(1)利用抛物线方程确定其焦点、准线时,关键是将抛物线方程
化成标准方程;
(2)要结合图形分析,灵活运用平面图形的性Байду номын сангаас简化运算.
目录
高中总复习·数学(提升版)
=0,解得 p =-42(舍去)或 p =6.故选C.
法二
根据抛物线的定义及题意得,点 A 到 C 的准线 x =- 的距离为
2
12,因为点 A 到 y 轴的距离为9,所以 =12-9,解得 p =6.故选C.
2
目录
高中总复习·数学(提升版)
2. (2024·全国乙卷13题)已知点 A (1, 5 )在抛物线 C : y 2=2 px
1|≥3,故点 M 到 x 轴的距离 d ≥2,故最短距离为2.
目录
高中总复习·数学(提升版)
抛物线的标准方程与几何性质
【例3】 (1)已知 F 为抛物线 C : y 2=2 px ( p >0)的焦点,过 F
作垂直于 x 轴的直线交抛物线于 M , N 两点,以 MN 为直径的圆交 y 轴
于 C , D 两点,且| CD |=3,则抛物线方程为(
上,则 A 到 C 的准线的距离为
9
4
.
解析:∵点 A (1, 5 )在抛物线 y 2=2 px 上,∴5=2 p ,得 p =
5
5
9
,∴点 A 到准线的距离为 xA + =1+ = .
2
2
4
4
目录
高中总复习·数学(提升版)
直线与抛物线的位置关系
【例4】 (多选)(2024·新高考Ⅱ卷10题)设 O 为坐标原点,直线 y
2. 抛物线性质的应用技巧
(1)利用抛物线方程确定其焦点、准线时,关键是将抛物线方程
化成标准方程;
(2)要结合图形分析,灵活运用平面图形的性Байду номын сангаас简化运算.
目录
高中总复习·数学(提升版)
抛物线(高三一轮复习)
可知当A,P,H三点共线时周长最小,为6+2 2,故选C.
数学 N 必备知识 自主学习 关键能力 互动探究
— 21 —
命题点2 抛物线的标准方程
例2 (1)如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A,B,交其
准线于点C,准线与对称轴交于点M,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程
A.y2=4x或y2=16x B.y2=x或y2=8x C.y2=2x或y2=4x D.y2=x或y2=4x
数学 N 必备知识 自主学习 关键能力 互动探究
— 23 —
解析 (1)由抛物线定义,知|BF|等于B到准线的距离,因为|BC|=2|BF|,所以∠
BCM=30°,又|AF|=3,从而A
p2+32,3
数学 N 必备知识 自主学习 关键能力 互动探究
思维点睛► 求抛物线的标准方程的方法
(1)定义法; (2)待定系数法:当焦点位置不确定时,分情况讨论.
— 26 —
数学 N 必备知识 自主学习 关键能力 互动探究
— 27 —
针对训练
1.(2023·张家界质检)若点P到直线y=-1的距离比它到点(0,3)的距离小2,则点
2
3
,A在抛物线上,代入抛物线方程y2=
2px,得247=p2+3p,解得p=32. 故抛物线方程为y2=3x.
数学 N 必备知识 自主学习 关键能力 互动探究
(2)设P为(x0,y0),则M→P =(x0,y0-2), 又Fp2,0,∴M→F =p2,-2. ∵MF⊥PM,∴M→F ·M→P =0,
第八章 平面解析几何
第7讲 抛物线
数学 N 必备知识 自主学习 关键能力 互动探究 课标解读
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从而 r=|2
2+2 8+9
2|=4
2 17.
又直线 GB 的方程为 2 2x+3y+2 2=0.
所以点 F 到直线 GB 的距离
d=|2
2+2 8+9
2|=4
172=r.
这表明以点 F 为圆心且与直线 GA 相切的圆必与直线 GB 相切.
基础诊断
考点突破
【训练 1】 (1)(2017·徐州、宿迁、连云港三市模拟)已知点 F 为抛物 线 y2=4x 的焦点,该抛物线上位于第一象限的点 A 到其准线的 距离为 5,则直线 AF 的斜率为________. (2)动圆过点(1,0),且与直线 x=-1 相切,则动圆的圆心的轨迹 方程为__________. 解析 (1)由于点 F 为抛物线 y2=4x 的焦点,该抛物线上位于第 一象限的点 A 到其准线的距离为 5,则 xA+p2=xA+1=5,则 A(4,4),又 F(1,0),所以直线 AF 的斜率为44- -01=43.
抛物线 C2:x2=2py(p>0)的焦点到双曲线 C1 的渐近线的距离为 2, 则抛物线 C2 的方程为________. (2)(2016·全国Ⅰ卷改编)以抛物线 C 的顶点为圆心的圆交 C 于 A, B 两点,交 C 的准线于 D,E 两点.已知 AB=4 2,DE=2 5, 则 C 的焦点到准线的距离为________.
所以 m=±2 2,由抛物线的对称性,不妨设 A(2,2 2).
由 A(2,2 2),F(1,0)可得直线 AF 的方程为 y=2 2(x-1).
由yy= 2=24x2x-1, 得 2x2-5x+2=0,
解得 x=2 或 x=12,从而 B12,-
2.
基础诊断
考点突破
又 G(-1,0),
所以
kGA=22-2--10=2 3 2,kGB=-12-2--10=-2 3
第7讲 抛物线
基础诊断
考点突破
考试要求 1.抛物线的实际背景,抛物线在刻画现实世界和 解决实际问题中的作用,A级要求;2.抛物线的定义,几何 图形,标准方程及简单的几何性质,B级要求.
基础诊断
考点突破
知识梳理 1.抛物线的定义
(1)平面内与一个定点F和一条定直线l(F∉l)的距离 相等 的 点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做 抛物线的准线 . (2)其数学表达式:MF=d(其中d为点M到准线的距离).
F -p2,0
F0,p2
e=1
x=p2
y=-p2
F0,-p2 y=p2
范围
x≤0,y
y≤0,x∈
x≥0,y∈R
y≥0,R
∈R
R
开口方向 向右
向左
向上
向下
基础诊断
考点突破
诊断自测
1.判断正误(在括号内打“√”或“×”)
(1)平面内与一个定点 F 和一条定直线 l 的距离相等的点的轨迹一
定是抛物线.
基础诊断
考点突破
解析 (1)∵ax22-by22=1(a>0,b>0)的离心率为 2,
∴ac=2,即ac22=a2+a2 b2=4,∴ba= 3.
x2=2py(p>0)的焦点坐标为0,p2,ax22-by22=1(a>0,b>0)的渐近线
p
方程为 y=±bax,即 y=± 3x.由题意得
2 1+
32=2,解得 p=8.故
()
(2)方程 y=ax2(a≠0)表示的曲线是焦点在 x 轴上的抛物线,且其
焦点坐标是a4,0,准线方程是 x=-a4. (3)抛物线既是中心对称图形,又是轴对称图形.
() ()
(4)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的
线段叫做抛物线的通径,那么抛物线 x2=-2ay(a>0)的通径长
基础诊断
考点突破
(2)设动圆的圆心坐标为(x,y),则圆心到点(1,0)的距离与到直线 x
=-1 的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程
为 y2=4x.
答案
4 (1)3
(2)y2=4x
基础诊断
考点突破
考点二 抛物线的标准方程及其性质 【例 2】 (1)已知双曲线 C1:ax22-by22=1(a>0,b>0)的离心率为 2.若
基础诊断
考点突破
解析 (1)设 A,B 在准线上的射影分别为 A1,B1, 由于 BC=2BF=2BB1,则直线 l 的斜率为 3, 故 AC=2AA1=6,从而 BF=1,AB=4, 故ApA1=CACF=12,即 p=32,从而抛物线的方程为 y2=3x. (2)
基础诊断
考点突破
如图,由题意知,抛物线的焦点 F 的坐标为(1,0),又 AF=3,由抛 物线定义知,点 A 到准线 x=-1 的距离为 3,所以点 A 的横坐标为 2,将 x=2 代入 y2=4x 得 y2=8,由图知点 A 的纵坐标为 y=2 2, 所以 A(2,2 2),所以直线 AF 的方程为 y=2 2(x-1),
∴1p6+8=p42+5,解得 p=4(负值舍去),
∴C 的焦点到准线的距离为 4. 答案 (1)x2=16y (2)4
基础诊断
考点突破
规律方法 (1)求抛物线标准方程的常用方法是待定系数法, 其关键是判断焦点位置、开口方向,在方程的类型已经确定 的前提下,由于标准方程只有一个参数p,只需一个条件就 可以确定抛物线的标准方程. (2)在解决与抛物线的性质有关的问题时,要注意利用几何图 形的形象、直观的特点来解题,特别是涉及焦点、顶点、准 线的问题更是如此.
基础诊断
考点突破
2.(2016·四川卷改编)抛物线 y2=4x 的焦点坐标是________. 解析 抛物线 y2=ax 的焦点坐标为a4,0,故 y2=4x,则焦点坐 标为(1,0). 答案 (1,0)
基础诊断
考点突破
3.(2017·南京、盐城模拟)在平面直角坐标系 xOy 中,已知抛物线 C
所以 m=±2 2,由抛物线的对称性,不妨设 A(2,2 2).
由 A(2,2 2),F(1,0)可得直线 AF 的方程为 y=2 2(x-1).
由yy= 2=24x2x-1, 得 2x2-5x+2=0.
解得 x=2 或 x=12,
从而 B12,-
2.
基础诊断
考点突破
又 G(-1,0),
故直线 GA 的方程为 2 2x-3y+2 2=0.
基础诊断
考点突破
【训练 2】 (1)如图,过抛物线 y2=2px(p>0)的焦点 F 的直线交抛物 线于点 A,B,交其准线 l 于点 C,若 BC=2BF,且 AF=3,则 此抛物线的方程为________.
(2)(2016·西安模拟)过抛物线 y2=4x 的焦点 F 的直线交该抛物线 于 A,B 两点,O 为坐标原点.若 AF=3,则△AOB 的面积为 ________.
基础诊断
考点突破
2.抛物线的标准方程与几何性质
图形
标准 方程
y2=
y2=-
x2=
x2=-
2px(p>0) 2px(p>0) 2py(p>0) 2py(p>0)
p 的几何意义:焦点 F 到准线 l 的距离
基础诊断
考点突破
顶点
O(0,0)
对称轴
y=0
x=0
焦点
性 离心率
质 准线方程
Fp2,0 x=-p2
联立直线与抛物线的方程yy= 2=24x2,x-1,
解得x=12, y=- 2
或xy= =22,2,
由图知 B12,-
2,
所以
S△AOB=12×1×|yA-yB|=3
2
2 .
答案
(1)y2=3x
32 (2) 2
基础诊断
考点突破
考点三 直线与抛物线的位置关系 【例 3】(2017·苏北四市联考)已知点 F 为抛物线 E:y2=2px(p>0)
基础诊断
考点突破
考点一 抛物线的定义及应用 【例 1】 (1)(2016·浙江卷)若抛物线 y2=4x 上的点 M 到焦点的距离
为 10,则 M 到 y 轴的距离是________. (2)若抛物线 y2=2x 的焦点是 F,点 P 是抛物线上的动点,又有 点 A(3,2),则 PA+PF 取最小值时点 P 的坐标为________.
基础诊断
考点突破
当焦点在 y 轴负半轴上时,设方程为 x2=-2py(p>0),把点 P(-2, -4)的坐标代入得(-2)2=-2p×(-4),解得 p=12,此时抛物线的 标准方程为 x2=-y. 综上可知,抛物线的标准方程为 y2=-8x 或 x2=-y. 答案 y2=-8x 或 x2=-y
2 .
所以 kGA+kGB=0,从而∠AGF=∠BGF,这表明点 F 到直线 GA,
GB 的距离相等,故以 F 为圆心且与直线 GA 相切的圆必与直线 GB
相切.
基础诊断
考点突破
法二 (1)同法一.
(2)证明 设以点 F 为圆心且与直线 GA 相切的圆的半径为 r.
因为点 A(2,m)在抛物线 E:y2=4x 上,
基础诊断
考点突破
解析 (1)抛物线 y2=4x 的焦点 F(1,0).准线为 x=-1,由 M 到焦 点的距离为 10,可知 M 到准线 x=-1 的距离也为 10,故 M 的横 坐标满足 xM+1=10,解得 xM=9,所以点 M 到 y 轴的距离为 9. (2)将 x=3 代入抛物线方程 y2=2x,得 y=± 6. ∵ 6>2,∴A 在抛物线内部,如图.
的焦点,点 A(2,m)在抛物线 E 上,且 AF=3.
(1)求抛物线 E 的方程; (2)已知点 G(-1,0),延长 AF 交抛物线 E 于点 B,证明:以点 F 为圆心且与直线 GA 相切的圆,必与直线 GB 相切.