数学建模之软件篇mathematica使用介绍

合集下载

数学软件Mathematica

数学软件Mathematica
最后一个分量
Take[list,k]
前 k 个分量
Take[list,-k]
最后 k 个分量
Take[list,{i}]
{list[[i]]}
Take[list,{i,j}]
{list[[i]],list[[i+1]], ..., list[j]}
list[[i;;j]]
同上
Take[list,{i,j,h}]
Degree
角度到弧度的转换系数,Pi/180
E
自然对数的底,2.71828...
EulerGamma
Euler 常数:
GoldenRatio
黄金分割数:
I
虚部单位
Infinity
无穷大
Pi
圆周率
整数,有理数,实数(任意精度和机器精度),复数
*
基本运算符
基本运算:
+ - * /
加减乘除
{list[[i]],list[[i+h]], ... }
list[[i;;j;;h]]
同上
*
列表修改
Drop[list,{k}]
删除第 k 个分量
Drop[list,k]
删除前 k 个分量
Drop[list,-k]
In[2]:= g[x_,y_]:=2*x+y (* 函数 *)
In[3]:= f[2,3] (* 结果是什么? *)
*
字符串
字符串:用双引号括起来的字符序列
字符串相关函数
Characters[str]
转化为字符列表
StringJoin[s1,s2,...]
字符串合并
s1<>s2<>...

Mathematica应用简介

Mathematica应用简介

输出结果: {{-13,-20,0,17},{3,19,17,0}} 为方程组的基础解系, 所以,可写出通解:
X = k1 (13,20,0,17) T + k 2 (3,19,17,0) T
解方程组:
用LinearSolve命令求解 输入命令: A=. (清除先前A的值) A={{1/2,1/3,1},{1,5/3,3},{2,4/3,5}}; b={1,3,2};
3、由菜单输入:单击工具栏 Input→Create Table/Matrix/Palette项, 即可打开创建矩阵的对话框,输入行数、 列数,再单击OK,就立即在工作窗口得 到一个空白矩阵,填入数据即可。
矩阵基本运算及命令
命令格式 A+B,A-B 功能 矩阵A和B相加(减),但A与B 但 与 必须是行列数分别相同的同形矩 阵才能相加( 阵才能相加(减) 数K乘矩阵A
数学运算式和符号窗口
单击文件File菜单的子菜单Palettes中的 第4项Basic Input后,就会出现如图的数 学运算式和数学符号窗口。
二、Mathematica的输入与输 出显示
用户在工作窗口输入,按组合键Shift+Enter或 小键盘上的Enter键运行后,系统会自动进行处 理,并按每一次输入的顺序编号,在输入的内 容前自动添加输入提示符“In[编号]=:”; 在输出内容前自动添加输出提示符“Out[编 号]=” 如: In[6]=: 2^3-3^2 Out[6]= -1 表明第6次输入的是“2^3-3^2”,第6次输入 的运算结果是-1
求基础解系命令NullSpace[A]
求齐次线性方程组 3x1 + 4 x2 5 x3 + 7 x4 = 0 2 x 3x + 3x 2 x = 0 1 2 3 4 的基础解系 4 x1 + 11x 2 13x3 + 16 x 4 = 0 7 x1 2 x 2 + x3 + 3x 4 = 0 输入命令: A={{3,4,-5,7},{2,-3,3,-2},{4,11,13,16},{7,-2,1,3}}; NullSpace[A]

数学建模之软件篇Mathematica使用介绍

数学建模之软件篇Mathematica使用介绍

第一章 数学软件Mathematica简介
6.%在Mathematica中代表什么含义
几乎所有的计算都可能用到前面已经计算好的结果,这时 Mathematica提供了一种简单的调用方式:
第一章 数学软件Mathematica简介
7.如何计算结果的近似值
在实际应用中,我们通常需要的是一个精确度很高的数值结果, 而不是一个绝对准确但表示非常复杂的结果,比如Sin[2/3]或者一个 一元四次方程的解。但如果参与运算的量都是精确的,则Mathematica 按精确值的方式输出。我们常用N函数把结果转换为数值结果。
表称为List,是由大括号“{ }”括起来的若干元素,元素间用逗号分 隔。其直接形式为:表名={元素1,元素2,…}。所以Mathematica中的表 其实就是我们通常所用的集合。它可以用来表示集合、矩阵、数组、向 量、数列等一些我们在计算机中常用的结构。 (1)参数表 在后面的学习中,我们经常会在Mathematica的内部函数的参数中看见 大括号,这就是参数表。下面我们列出常用参数表的含义:
取值范围可以是:Intergers,Rationals,Real,Complexes(即整数,有 理数,实数,复数)。
例:
第二章 初等数学篇
7.Mathematica中常用的多项式操作函数
在Mathematica中,你可以对多项式(包括一元和多元多项式)直接 进行加、减、乘、除、乘方等运算,此外系统还提供了丰富的函数以满足 用户对多项式操作的需要。 下面给出多项式的常用操作函数:
第二章 初等数学篇
3.Mathematica中的表指什么
(5)表的运算
第二章 初等数学篇
4.如何求解一元n次方程
解一元多项式方程主要的函数是Solve,该函数的目标是尽量找出方程 的精确解。Mathematica总可以解出四阶及以下的多项式方程,对于三次或 四次方程,结果可能相当复杂。在解四次以上的多项式方程时, Mathematica碰到数学理论上的障碍(即一般的四次以上的多项式方程不能 根式求解)而可能给不出精确解,但总可以给出数值解,并且对某些高次 方程Solve是可以给出精确结果的.

mathematic使用指南

mathematic使用指南

第一章Mathematica的启动的运行Mathematica是美国Wolfram公司生产的一种数学分析型的软件,以符号计算见长,也具有高精度的数值计算功能和强大的图形功能。

目前最新版本是Mathematica4.0,本附录仅介绍Mathematica4.0的一些常用功能,须深入掌握Mathematica的读者可查阅相关书籍。

在Windows环境下安装好Mathematica4.0,用鼠标双击Mathematica图标(刺球状),在显示器上显示如图1-1的工作窗口,这时可以键入你想计算的东西,比如键入1+1,然后同时按下Shift键和Enter键(数字键盘上只要按Enter键),这时Mathematica开始工作,计算出结果后,窗口变为图1-2。

图1-1 Mathematica的工作窗口Mathematica第一次计算时因为要启动核(kernel),所需时间要长一些,也可以在Mathematica 启动后第一次计算之前,手工启动核,方法是用鼠标点击:Kernel->Start Kernel->Local.这样第一次计算就很快了。

图1-2 完成运算后的Mathematica的窗口图1-2中的“In[1]:=”表示第一个输入;“Out[1]=”表示第一个输出结果。

接下来可键入第二个输入,按这样的方式可利用Mathematica进行“会话式”计算。

要注意的是:“In[1]:= ”和“Out[1]=”是系统自动添加的,不需用户键入。

Mathematica还提供“批处理”运行方式,即可以将Mathematica作为一种算法语言,编写程序,让计算机执行,这在第七章将会作简要介绍。

第二章 Mathematica的基本运算功能2.1 算术运算Mathematica最基本的功能是进行算术运算,包括加(+),减(-),乘(*),除(/),乘方(^),阶乘(!)等。

注意:1 在Mathematica中,也可用空格代表乘号;数字和字母相乘,乘号可以省去,例如:3*2可写成3 2,2*x可写成2x,但字母和字母相乘,乘号不能省去。

Mathematica入门(一)

Mathematica入门(一)

NUDT
Mathematica入门 入门
表的操作 Join[ t1 , t2] Union[ t1 , t2] 将表 t1 和表 t2连接成一个表 将表 t1 和表 t2 的并集组成一个表
某些特殊属性表的建立 Table[ f , {i,imin , imax , stepi} , { j , jmin , jmax , stepj}]
t1 = 1, 2, 4 t2 = 1, 3, Sin x , Cos x
8 8@ @ <D D 8 <
表元素的操作 t[[n]] 表示表 t 的第 n 个元素(同Part[t , n]的意义 个元素( 的意义) 的意义 t[[i , j]] 表示表 t 中第 i 个子表的第 j 个元素 Length[ t ] 表示表 t 的元素个数
p = x + 2 x y+ y p . x® 1
2
p = x2 + 2 x y + y2 p . x ® 1, y ® 2
8 <
NUDT
Mathematica入门 入门
(5)表 表是存贮多个数、变量或算式等对象的一种数据结构, 表是存贮多个数、变量或算式等对象的一种数据结构,一 个表用一对花括号表示,其成员(元素) 个表用一对花括号表示,其成员(元素)在括号内用逗号 隔开,同一个表的成员可以是不同的数据类型, 隔开,同一个表的成员可以是不同的数据类型,表的成员 还可以是一个表(子表)。 还可以是一个表(子表)。
1
-1.5
-1
-0.5 -0.5
0.5
1
1.5
-2
-1
1
2
-1
-1
-2
NUDT
Mathematica入门 入门

Mathematica用法I

Mathematica用法I

Plot3D[z,{x,a,b},{y,c,d}] 三维曲面绘图
ParametricPlot3D[{x,y,z},{u, a,b},{v,c,d}]
三维曲面参数方程绘图
Print[x,y,...]
在屏幕输出变量的值
初学者易犯的错误 ⑴ 大小写错误:系统的内部操作命令及内部函数的首写字
母都是大写,第二个单词的首字母一般也是大写; ⑵ 括号错误:大、中、小三种括号用法错误;或括号个数
绝对值 幂函数 x y 平方根 以 e 为底的指数函数 以 e 和 b 为底的对数函数 m 除以 n 的余数 m 除以 n 的整数商 三角函数 反三角函数 生成 [a,b] 内的一个随机实数 生成 [a,b] 内的一个随机整数 判断 n 是否为素数 求方程(组)的精确解 用Newton法求方程组的一个近似解
① 所有命令和内置函数都是以大写字母开始 ② 函数的参数是在方括号中给出 ③ 乘法运算符可以用空格代替(不建议这么做) ④ 可以运行单个命令或语句,也可输入全部语句后
再按执行键shift+Enter ⑤ 命令(语句)分隔符:回车或分号 ⑥ 如果不需要显示运行结果:在语句后面加分号 ⑦ 输入和输出标识符:In[n]: 和 Out[n]:
请同学们在Notebook上完成如下输入,观察输出结果。
Abs[2+3 I]
Power[2,1ቤተ መጻሕፍቲ ባይዱ0]
Sqrt[-3]
Exp[0]
Mod[100,9]
Sin[Pi/4]
PrimeQ[97]
N[Pi,1000000]
Random[Integer,{1,14}]
(2)符号计算功能 Mathematica的主要特点就是进行符号运算,如下所示:

数学软件Mathematica的应用

数学软件Mathematica的应用

数学软件Mathematica的应用一、数学软件Mathematica简介★Mathematica是由美国Wolfram公司研究开发的一款著名的数学软件;★Mathematica能够完成符号运算、数学图形的绘制等,功能非常强大;★Mathematica能够做精确计算;★Mathematica的界面操作非常友好;★Mathematica是数学建模常用的数学软件之一。

二、利用模板进行微积分运算File(文件)→Palettes(模板)→BasicInput(基本输入)File(文件)→Palettes(模板)→BasicCalculations(基本计算)三、Mathematica中一些常用的函数(1(2(3((5(6(8)数值分析函数在Mathematica 中,一个逻辑表达式的值有三个:真(True )、假(False )和“非真非假”。

条件控制函数If(1) If 语句的结构与一般的程序设计语言中的If 的结构类似。

它有三种情况:If[逻辑表达式,表达式1]当逻辑表达式的值为真时则计算表达式1,表达式1的值就是整个If 结构的值;If[逻辑表达式,表达式1,表达式2]当逻辑表达式的值为真时则计算表达式1,为假时则计算表达式2; If[逻辑表达式,表达式1,表达式2,表达式3]当逻辑表达式的值为真时则计算表达式1,为假时则计算表达式2,其它情况则计算表达式3。

循环控制语句Mathematica 中有3种描述循环的语句,它们是Do,While 和For 语句。

下面是其一般形式:For[初值,条件,修正,循环体] While[条件,循环体] Do[循环体,{循环围}]四、结合图形进行分析1.作出函数xx f y 1sin )(==在区间]1,1[-上的图像,观察当0→x 时函数的变化情况;作出函数xx x f y 1sin)(==在区间]1,1[-上的图像,观察当0→x 时函数的变化情况;2.作出双曲抛物面xy z =的图形; 3.作weierstracs 函数)13cos(21)(1x x f n n nπ∑∞==(处处连续但处处不可导)的图像;4.x ∈(-5,5), y ∈(-5,5)的所有根;五、验证与探索1.x sin 的泰勒级数2.x sin 的无穷乘积猜想六、算法与程序1.分形图(迭代)2.将矩阵化为行最简形(步骤)七、实际问题的Mathematica 求解1.椭圆弧长的计算问题计算椭圆βα≤≤⎩⎨⎧==t t b y ta x ,sin cos 的弧长及近似值。

Mathematica使用简介

Mathematica使用简介
a1
a1 x2
6.
2 x+y → →
x2
a1 2x y
作用:例如对x求微分,得如下结果:
如果希望知道D的用法,怎么办? HELP 查看帮助命令
二、绘图命令
Plot[f,{x,xmin,xmax}] 从xmin到xmax绘制绘制f(x)的函数图 Plot[{f1,f2,f3,…},{x, xmin,xmax}] 同时绘制多个函数图
x cos t 例,单位圆的参数形式为 y sin t
则画圆操作如下: ParametricPlot[{Cos[t],Sin[t]},{t,-Pi,Pi}]
(ii)三维参数作图
ParametricPlot3D[参数形式函数,{自变量1,下限,上限}, {自变量2,下限,上 限},,选项]
数学表达式的二维格式输入
Expression input Edit菜单 a1 2 例:输入数学表 x 2x y 达式:
步骤 1. 2. 3. 4. 5. 按键顺序 x (ctrl+6) 2 → + a (ctrl+-) 1 (ctrl +/) (ctrl+2) 显示结果
x
x
x2
2
x2 a 1
2) 如果希望多个图形左右或上下排成一长图而 重叠,则可以用GraphicsArray 命令 Show[GraphicsArray[{g1, g2, …}]] 将图形横向并排 Show[GraphicsArray[{ {g1}, {g2}, …}]] 将图形纵向排列 Show[GraphicsArray[{ {g1, g2, …}, …}]] 将图形以二维矩阵的形式排列
5.
图形的合并与排列

数学建模常用软件Mathematica介绍

数学建模常用软件Mathematica介绍
x2 , x 1 f x 2 x, x 1
可以键入f[x_]:=If[x<=1,x^2,2-x] 或 f[x_]:=Which[x<=1,x^2,x>1,2-x]
类似可以定义多元函数。 例如
目录
上页
下页
返回
结束
3. 用Mathematica画函数的图象
3.1 基本一元函数作图
目录
上页
下页
返回
结束
1.4 查询与帮助
在对某个函数的具体用法感到不确定时,可在工 作区输入查询命令?函数名,如果想查询的更精确 一些,可使用命令??函数名。另外,Help菜单中 提供了大量的帮助信息,读者也可以通过Help菜单 来了解和学习Mathematica的更多功能和用法。
目录
上页
下页
返回
结束
目录 上页 下页 返回 结束
1. Mathematica入门
1.1 Mathematica的启动 正确安装Mathematica软件,在开始菜单里或者 桌面上找到Mathematica,双击便会出现下面的窗口, 表示Mathematica已经启动。
目录
上页
下页
返回
结束
1.2 Mathematica的工作界面 空白区域为Notebook窗口(工作区),其上方为主 菜单,右方为基本输入模板。
1.5 Mathematica文件的保存
Mathematica中所做的工作,在“File”菜单中点 取“Save As…”,弹出对话框 ,和大多数软件一 样,在文件名处键入你所要保存文件的文件名, 并选择好你打算保存文件的存储位置,回车即完成 文件的保存。保存的文件以“.nb”(Notebook的缩 写) 为后缀。是系统默认的Mathematica语言程序文件。

Mathematica软件使用入门

Mathematica软件使用入门

Mathematica软件使用入门目录第一章基本知识与基本操作 (3)1.1 Mathematica的基本语法特征 (3)1.2 Mathematica的启动、基本操作 (5)1.3 操作小技巧 (7)1.4 数值计算 (8)1.5 赋值与替换 (9)1.6 自定义函数 (10)1.7 方程与方程组解 (11)1.8 解不等式与不等式组 (12)1.9 由递推式求数列的通项公式 (14)1.10 作函数图像 (15)页脚内容1第二章运用Mathematica实现高等数学中的基本运算 (17)2.1 求极限运算 (17)2.2 求导数与微分 (20)2.3 求不定积分 (28)2.4 求定积分 (29)第三章实验练习题 (32)Mathematica是当今世界上最为流行的计算机代数系统之一.Mathematica系统是美国物理学家Stephen.Wolfram领导的一个小组开发的,后来他们成立了Wolfram研究公司.1987年推出了系统的1.0版;现在的最新版本是8.0版.页脚内容2Mathematica可以做:符号计算和数值计算问题,如:能做多项式的计算、因式分解和展开等;做各种有理式计算,求多项式、有理式方程和超越方程的精确解和近似解;做向量、矩阵的各种计算;求极限、导数、积分,做幂级数展开,求解某些微分方程等;做任意位数的整数或分子分母为任意大整数的有理数的精确计算,做具有任意位精度的数值(实、复数值)的计算.可以很方便地画出用各种方式表示的一元和二元函数的图形,通过图形,可以立即形象地掌握函数的某些特性,而这些特性一般是很难从函数的符号表达式中看清楚.第一章基本知识与基本操作1.1 Mathematica的基本语法特征使用Mathematica,一定要牢牢记住:Mathematica中大写小写是有区别的,如Name、name、NAME等是不同的变量名或函数名;系统所提供的功能大部分以系统函数的形式给出,内部函数一般写全称,而且一定是以大写英文字母开头,如Sin[x],Cos[z]等;页脚内容3页脚内容4乘法即可以用*,又可以用空格表示,如 2 3=2*3=6 , 2 Sin[x]=2* Sin[x]乘幂可以用“^”表示,如x^0.5 表示: Tan[x]^y 表示:自定义的变量可以取几乎任意的名称,长度不限,但不可以数字开头.当你赋予变量任何一个值,除非你: 明显地改变该值或 使用Clear[变量名] 或 使用“变量名=.”取消该值,否则它将始终保持原值不变.一定要注意四种括号的用法:( ): 表示项的结合顺序,如: (x+(y^x+1/(2x))); [ ]: 表示函数,如:Log[x], Sin[x];{ }: 表示一个“表”(即是一组数字、或任意表达式、或函数等的一个有序集合),如:{2x,Sin[12 Pi],A ,1}, {1+A,y*x ,1,2};[[ ]]: 双方括号表示“表”或“表达式”的下标,如: a[[2,3]]表示:23a ; {3,5,7}[[2]]=5.Mathematica 的语句书写十分方便,一个语句可以分为多行写,同一行可以写多个语句(但要以分号间隔).当语句以分号结束时,语句计算后不做输出(输出语句除外),否则将输出计算的结果.0.5xyTan[x]Mathematica命令中的标点符号必须是英文的.1.2 Mathematica的启动、基本操作1.2.1 启动“Mathematica”:在windows操作系统中安装了Mathematica后,与其他的常用软件一样,可从“开始”→“程序”→“Mathematica5”Mathematica的主窗口并出现第一个notebook窗口(Untitled-1):1.2.2 简单使用:例1.1 计算+33的值①在“Untitled-1”窗口中输入:329/412+3^3②按下“Shift+Enter”(或数字键盘上的Enter键),就得到计算结果:页脚内容5其中“In[1]:=”是Mathematica自动加上的,表示第一个输入;“Out[1]:=”表示第一个输出.一般地:In[n]:= 表示第n个输入Out[n]:=表示第n个输出.注意:“In[n]:=”自动加上的,不能人工输入!1.2.3 保存结果:保存方法同一般的Windows软件:“文件”→“保存”“另存为”窗口→在“查找范围”内找到目标文件夹→输入文件名(比如输入“1”)→“”.Mathematica 4或Mathematica 5的文件的后缀是“nb”,当输入“1”时,即产生文件“1.nb”.1.2.4打开文件1.nb启动Mathematica →“文件”→“打开”打开”窗口:→在“查找范围”内找到文件“1.nb”→“”即可.页脚内容61.2.5 退出Mathematica:与一般应用软件一样,单击右上方的“”按钮(或用菜单:“文件”→“退出”).1.3 操作小技巧1.3.1Ctrl+K的用途如果只知道命令的首写字母,可在输入该首写字母(要大写),再按下“Ctrl+K”组合键,则所有以该字母为首的命令都列出来,只要用鼠标双击命令名就输入了该命令.1.3.2使用前面已有的结果举例如下:例1.2 做如下操作:①输入:Integrate[x^2*(11-Sin[x]),{x,-1,1}]按:“Shift+Enter”;②输入:%+1,按:“Shift+Enter”;③输入:%+1,按:“Shift+Enter”;④输入:%1+1,按:“Shift+Enter”;Integrate[f,x]是求:()f x dxIntegrate[f,{x,xmin,xmax}]是求:页脚内容7⑤输入:%3+1,按:“Shift+Enter”,计算结果如下:可见,“%”表示前一个计算结果;“%n”表示第n个计算结果.1.3.3 删除行:见下图示1.4 数值计算请看下例:只要选定且删1.5 赋值与替换X=. 或Clear[x] 清除赋给x的值expr/.{x->xval,y->yval} 用xval、yval分别替换expr中的x、y.例1.3输入:x=3;y=4;w=x+y 计算清除变量的定义和值输入:Clear[x,y];计算输入:z=(x+y)^2 计算将(x+y)^2赋给z页脚内容9页脚内容10输入:z/.x->5 计算输入:Clear[x,y]; 计算 输入:u=x+y 计算 输入:u/.{x->5,y->6} 计算 计算结果如下:1.6 自定义函数用户可以自行定义函数,一个函数一旦被定义好之后就可以象系的内部函数一样使用. 例1.4 如要定义函数 f(x)=x 2+3x-2变量替换:变量替换:分别用5、6代替表达式u 中的“:=”是定义符.左边f 是函数名,方括号内x 是自变量,其页脚内容11只要键入: f[x_]:=x^2+3x-2即可.又如要定义分段函数2+1 < 0()= 2sin 0x x g x x x ⎧⎨≥⎩可键入:g[x_]:= Which[x<0,x^2+1,x>=0,2Sin[x]] 或g[x_]:=If[x<0,x^2+1,2Sin[x]] 请见以下计算结果:1.7 方程与方程组解 例1.5 ① 解方程:0652=+-x x输入:Solve[x^2-5x+6==0,x]Solve 是解方程或方程组的函数.其格式为:Solve[eqns,vars] 其中方程用exp==0的形式(其中页脚内容12即可.② 解方程组输入:Solve[{x+y==1,3x^2-y^2==0},{x,y}] 即可(结果见下图).1.8 解不等式与不等式组 例1.6 ① 解不等式组2213x y x y +=⎧⎨-=⎩加载解不等式的程序包,这是必须的,可谓是固定的格式, “< ”为键盘上的小于号, “`”为数字键1的左侧的 Algebra —— 代数类页脚内容13⎪⎩⎪⎨⎧>-<--0101222x x x输入: <<Algebra`InequalitySolve` InequalitySolve[{x^2-5x-6<0,x^2-1>0}, x] 即可. ② 解不等式3)3(12>--x x输入: <<Algebra`InequalitySolve` InequalitySolve[Abs[x-1](x^2-3) > 3, x] 即可(结果见下图)注: Mathematica 系统有内部函数.还有一些系统扩展的功能但不是作为内部函数的、以文件的形式存页脚内容14储在磁盘上的文件,要使用它们,必须用一定的方式来调用这些文件,这些文件我们称之为程序包. 调用方式之一如上所述: <<Algebra`InequalitySolve` 或用:Needs["Algebra`InequalitySolve`"] 1.9 由递推式求数列的通项公式例1.7 设 求数列的通项公式 只要输入:<<DiscreteMath`RSolve`RSolve[{a[n]==n *a[n-1], a[1]==1}, a[n], n] 即可(结果见下图)11,1,nn a na a -==1.10 作函数图像例1.8在同一坐标系中作出2-1y x 和y=sinx在[-2,2]内的图像.输入:Plot[{x^2-1,Sin[x]},{x,-2,2}]结果见下图例1.9作出sinxcosy的三维图形输入:Plot3D[Sin[x]*Cos[y],{x,-2Pi,2Pi},{y,-2Pi,2Pi},PlotPoints->100]即可(结果见下图)增加取样点提高光滑度页脚内容15页脚内容16页脚内容17第二章 运用Mathematica 实现高等数学中的基本运算极限、导数和积分是高等数学中的主要概念和基本运算,如果你在科研中遇到较复杂的求极限、求导数或求积分问题,Mathematica 可以帮你快速解决这些问题。

mathematica参数范围

mathematica参数范围

mathematica参数范围Mathematica是一种功能强大的数学软件,具有广泛的应用领域。

本文将围绕Mathematica的参数范围展开,介绍其在数学建模、数据分析和图形绘制等方面的应用。

一、数学建模在数学建模中,Mathematica的参数范围可以帮助我们确定问题的解集、函数的定义域和值域等。

例如,我们可以使用Mathematica 来求解一个多元函数的最优解。

通过设定参数范围,我们可以找到函数在该范围内的最大值或最小值,并得到相应的参数取值。

二、数据分析Mathematica的参数范围对于数据分析是非常重要的。

我们可以使用Mathematica来对数据进行可视化分析,并通过设定参数范围来筛选出符合条件的数据。

例如,在气象数据分析中,我们可以设定参数范围为温度在20℃到30℃之间,湿度在60%到80%之间,从而得到符合这一范围的气象数据。

三、图形绘制Mathematica的参数范围对于图形绘制也起到了至关重要的作用。

我们可以使用Mathematica绘制各种复杂的图形,如函数图像、曲线图、三维图等。

通过设定参数范围,我们可以控制图形的形状、大小和颜色等属性,从而得到符合我们需求的图形。

四、科学计算Mathematica作为一款科学计算软件,可以进行各种数值计算和数学推导。

在科学计算中,参数范围的设定对于结果的准确性和可靠性非常重要。

例如,在微积分中,我们可以通过设定参数范围来计算函数的导数、积分和极限等。

五、工程应用Mathematica的参数范围在工程应用中也有着广泛的应用。

例如,在电路设计中,我们可以使用Mathematica来计算电路中的电流、电压和功率等参数。

通过设定参数范围,我们可以得到电路在不同工作状态下的性能指标,从而指导工程设计和优化。

六、教学辅助Mathematica的参数范围在教学辅助中也有着重要的作用。

教师可以使用Mathematica来演示数学问题的解法,通过设定参数范围来帮助学生理解和掌握知识。

Mathematica使用入门数学软件Mathematica课件

Mathematica使用入门数学软件Mathematica课件

16
内置函数
Mathematica 具有超过 3000 个内置函数,具体见 “帮助” “参考资料中心” 的左下角处的 “函数索引”
Mathematica 函数命名规则 ① 第一个字母大写,后面跟小写字母,如 Sin[x], Log[x] ② 大多数函数名与数学中的名称相同 ③ 当函数名分为几段时,每一段的头一个字母大写,后面 的用小写字母,如:ArcSin[x]
In[1]:= Clear[x,y]; In[2]:= f=2*x+y; In[3]:= f./{x->2,y->3} (* f(2,3) 的值 *) In[3]:= f./{2->5} (*把 2 替换成 5*)
14
数的基本运算
Mathematica 中的实数分精确数和双精度数
N[x,n] N[x] IntegerPart[x]
可以运行单个命令或语句 也可以运行多个语句:输入全部语句后再按执行键 命令(语句)分隔符:回车或分号 如果不需要显示运行结果:在语句后面加分号
输入和输出标识符:In[n]: 和 Out[n]
In[1]:= Sin[Pi/4]+Cos[Pi/4]
Out[1]= 2
8
数学公式的输入
数学公式的输入
lim(1 1
n
2
黄金分割数:1 1 5 2
虚部单位
1 ln n) 0.577215 n
无穷大
圆周率
11
基本运算符
基本运算:
算术运算 +-*/ ^ !
加减乘除 幂 阶乘(运算级别比加减乘除和幂运算高)
比较运算与逻辑运算 == > < >= <= != && || ! Xor

mathmatic使用说明

mathmatic使用说明

Mathematica教程M athematica是美国Wolfram研究公司生产的一种数学分析型的软件,以符号计算见长,也具有高精度的数值计算功能和强大的图形功能。

假设在Windows环境下已安装好Mathematica4.0,启动Windows后,在“开始”菜单的“程序”中单击,就启动了Mathematica4.0,在屏幕上显示如图的Notebook窗口,系统暂时取名Untitled-1,直到用户保存时重新命名为止输入1+1,然后按下Shif+Enter键,这时系统开始计算并输出计算结果,并给输入和输出附上次序标识In[1]和Out[1],注意In[1]是计算后才出现的;再输入第二个表达式,要求系统将一个二项式展开,按Shift+Enter输出计算结果后,系统分别将其标识为In[2]和Out[2].如图在Mathematica的Notebook界面下,可以用这种交互方式完成各种运算,如函数作图,求极限、解方程等,也可以用它编写像C那样的结构化程序。

在Mathematica系统中定义了许多功能强大的函数,我们称之为内建函数(built-in function), 直接调用这些函数可以取到事半功倍的效果。

这些函数分为两类,一类是数学意义上的函数,如:绝对值函数Abs[x],正弦函数Sin[x],余弦函数Cos[x],以e为底的对数函数Log[x],以a为底的对数函数Log[a,x]等;第二类是命令意义上的函数,如作函数图形的函数Plot[f[x],{x,xmin,xmax}],解方程函数Solve[eqn,x],求导函数D[f[x],x]等。

必须注意的是:如果输入了不合语法规则的表达式,系统会显示出错信息,并且不给出计算结果,例如:要画正弦函数在区间[-10,10]上的图形,输入plot[Sin[x],{x,-10,10}],则系统提示“可能有拼写错误,新符号‘plot’ 很像已经存在的符号‘Plot’”,实际上,系统作图命令“Plot”第一个字母必须大写,一般地,系统内建函数首写字母都要大写。

第零讲 Mathematica软件使用简介

第零讲 Mathematica软件使用简介

第零讲Mathematica软件使用简介一、系统概述Mathematica是美国Wolfram研究公司开发的一个功能强大的计算机数学软件系统,也称为符号计算系统。

Mathematica提供了范围广泛的数学计算功能,支持在各个领域的人们所需要的各种计算。

它是从事各种理论工作(数学、物理、……)的科学工作者、从事实际工作的工程技术人员、以及学校教师和学生的首选计算平台。

Mathematica的主要功能包括三个方面:符号演算、数值计算和图形技术。

例如,它可以做多项式的各种计算(四则计算、展开、因式分解等);求整式方程、有理式方程和的等的精确解和近似解;数值的或一般表达式的向量和矩阵的各种计算;求一般函数表达式的极限、导函数、积分、幂级数展开、求解某些微分方程等;任意位的整数的精确计算、分子分母为任意非零整数的有理数的精确计算(四则计算、乘方等)以及任意位精确度的数值(实数值或复数值)计算。

使用Mathematica还可以非常方便地作出以各种方式表示的一元和二元函数的图形,可以根据需要自由选择画图的范围和精确度。

因此,Mathematica的出现所带来的思维和解题工具的革新必将对各种需要数学计算和绘制函数图形的工作领域产生深远的影响。

Wolfram研究公司自从1988年推出Mathematica系统的1.0 DOS版本以来,历经多次升级和改版,目前已发出For Windows的 5.0版本。

本精品课程主要以Mathematica4.2 for Microsoft Windows版本为例简要介绍该系统的功能及其应用。

1.Mathematica的工作环境Mathematica的运行环境要成功安装并稳定地运行Mathematica for Windows4.2,用户的计算机必须满足以下基本配置条件:·P3或更高型号处理器的个人或多媒体计算机;·Microsoft Windows98、Windows2000、Windows XP或以上版本;·硬盘空间至少200MB,建议1GB以上Mathematica的工作窗口及使用运行Mathematica系统后,将出现下图所示的主窗口:Mathematica4.2的工作窗口有两种类型:笔记本(Notebook)工作窗口和基于文本(Text Based)的工作窗口,这两个工作窗口分别由Mathematica提供的两个基本组成系统――输入输出控制系统(Front End系统)和内核系统(Kernel系统)所包含的交互接口来实现。

Mathematica使用教程

Mathematica使用教程

Mathematica使⽤教程Mathematica 使⽤教程⼀、要点Mathematica 是⼀个敏感的软件. 所有的Mathematica 函数都以⼤写字母开头; 圆括号( ),花括号{ },⽅括号[ ]都有特殊⽤途, 应特别注意; 句号“.”,分号“;”,逗号“,”感叹号“!”等都有特殊⽤途, 应特别注意; ⽤主键盘区的组合键Shfit+Enter 或数字键盘中的Enter键执⾏命令.⼆、介绍案例1. 输⼊与输出例1 计算 1+1:在打开的命令窗⼝中输⼊1+2+3并按组合键Shfit+Enter 执⾏上述命令,则屏幕上将显⽰:In[1] : =1+2+3 Out[1] =6这⾥In[1] : = 表⽰第⼀个输⼊,Out[1]= 表⽰第⼀个输出,即计算结果.2. 数学常数Pi 表⽰圆周率π; E 表⽰⽆理数e; I 表⽰虚数单位i ; Degree 表⽰π/180; Infinity 表⽰⽆穷⼤.注:Pi,Degree,Infinity 的第⼀个字母必须⼤写,其后⾯的字母必须⼩写.3. 算术运算Mathematica 中⽤“+”、“-”、“*”、“/” 和“^”分别表⽰算术运算中的加、减、乘、除和乘⽅.例2 计算π+ --213121494891100.输⼊ 100^(1/4)*(1/9)^(-1/2)+8^(-1/3)*(4/9)^(1/2)*Pi则输出 3103π+这是准确值. 如果要求近似值,再输⼊N[%] 则输出这⾥%表⽰上⼀次输出的结果,命令N[%]表⽰对上⼀次的结果取近似值. 还⽤ %% 表⽰上上次输出的结果,⽤ %6表⽰Out[6]的输出结果.注:关于乘号*,Mathematica 常⽤空格来代替. 例如,x y z 则表⽰x*y*z,⽽xyz 表⽰字符串,Mathematica 将它理解为⼀个变量名. 常数与字符之间的乘号或空格可以省略.4. 代数运算例3 分解因式 232++x x输⼊ Factor[x^2+3x+2] 输出 )x 2)(x 1(++ 例4 展开因式 )2)(1(x x ++输⼊ Expand[(1+x)(2+x)] 输出 2x x 32++例5 通分 3122+++x x 输⼊ Together[1/(x+3)+2/(x+2)]输出 )x 3)(x 2(x38+++例6 将表达式)3)(2(38x x x+++ 展开成部分分式输⼊ Apart[(8+3x)/((2+x)(3+x))]输出 3x 12x 2+++ 例7 化简表达式 )3)(1()2)(1(x x x x +++++输⼊ Simplify[(1+x)(2+x)+(1+x)(3+x)]输出 2x 2x 75++三、部分函数1. 内部函数Mathematica 系统内部定义了许多函数,并且常⽤英⽂全名作为函数名,所有函数名的第⼀个字母都必须⼤写,后⾯的字母必须⼩写. 当函数名是由两个单词组成时,每个单词的第⼀个字母都必须⼤写,其余的字母必须⼩写. Mathematica 函数(命令)的基本格式为函数名[表达式,选项] 下⾯列举了⼀些常⽤函数:算术平⽅根x Sqrt[x] 指数函数x e Exp[x]对数函数x a log Log[a,x]对数函数x ln Log[x]三⾓函数 Sin[x], Cos[x], Tan[x], Cot[x], Sec[x], Csc[x] 反三⾓函数ArcSin[x], ArcCos[x], ArcTan[x], ArcCot[x], AsrcSec[x], ArcCsc[x]双曲函数 Sinh[x], Cosh[x], Tanh[x], 反双曲函数 ArcSinh[x], ArcCosh[x], ArcTanh[x] 四舍五⼊函数 Round[x] (*取最接近x 的整数*) 取整函数 Floor[x] (*取不超过x 的最⼤整数*) 取模 Mod[m,n] (*求m/n 的模*) 取绝对值函数 Abs[x] n 的阶乘 n! 符号函数Sign[x] 取近似值 N[x,n] (*取x 的有n 位有效数字的近似值,当n 缺省时,n 的默认值为6*)例8 求π的有6位和20位有效数字的近似值.输⼊ N[Pi] 输出输⼊ N[Pi, 20] 输出注:第⼀个输⼊语句也常⽤另⼀种形式:输⼊ Pi235] 输出 (3) 输⼊ Round[] 输出 -2 例10 计算表达式)6.0arctan(226sin 2ln 1132+-+-e π的值输⼊ 1/(1+Log[2])*Sin[Pi/6]-Exp[-2]/(2+2^(2/3))*ArcTan[.6] 输出2. ⾃定义函数在Mathematica 系统内,由字母开头的字母数字串都可⽤作变量名,但要注意其中不能包含空格或标点符号.变量的赋值有两种⽅式. ⽴即赋值运算符是“=”,延迟赋值运算符是“: =”. 定义函数使⽤的符号是延迟赋值运算符“: =”.例11 定义函数 12)(23++=x x x f ,并计算)2(f ,)4(f ,)6(f . 输⼊Clear[f,x]; (*清除对变量f 原先的赋值*) f[x_]:=x^3+2*x^2+1; (*定义函数的表达式*) f[2] (*求)2(f 的值*)f[x]/.{x->4} (*求)4(f 的值,另⼀种⽅法*)x=6; (*给变量x ⽴即赋值6*)f[x] (*求)6(f 的值,⼜⼀种⽅法*)输出17 97 289注:本例1、2、5⾏的结尾有“;”,它表⽰这些语句的输出结果不在屏幕上显⽰.四、解⽅程在Mathematica 系统内,⽅程中的等号⽤符号“==”表⽰. 最基本的求解⽅程的命令为 Solve[eqns, vars]它表⽰对系数按常规约定求出⽅程(组)的全部解,其中eqns 表⽰⽅程(组),vars 表⽰所求未知变量. 例12 解⽅程0232=++x x 输⼊Solve[x^2+3x+2==0, x] 输出 }}1x {},2x {{-→-→例13 解⽅程组 =+=+1dy cx by ax输⼊ Solve[{a x + b y == 0,c x + d y ==1}, {x,y}]输出+-→-→ad bc a y ,ad bc b x例14 解⽆理⽅程a x x =++-11输⼊ Solve[Sqrt[x-1]+ Sqrt[x+1] == a, x]输出 ??+→24a 4a 4x 很多⽅程是根本不能求出准确解的,此时应转⽽求其近似解. 求⽅程的近似解的⽅法有两种,⼀种是在⽅程组的系数中使⽤⼩数,这样所求的解即为⽅程的近似解;另⼀种是利⽤下列专门⽤于求⽅程(组)数值解的命令: NSolve[eqns, vars] (*求代数⽅程(组)的全部数值解*)FindRoot[eqns, {x, x0}, {y, y0} ,]后⼀个命令表⽰从点),,(00 y x 出发找⽅程(组)的⼀个近似解,这时常常需要利⽤图像法先⼤致确定所求根的范围,是⼤致在什么点的附近.例15 求⽅程013=-x 的近似解输⼊ NSolve[x^3-1== 0, x]输出 {{→x →x →x 输⼊ FindRoot[x^3-1==0,{x, .5}] 输出 {→x 1.}下⾯再介绍⼀个很有⽤的命令:Eliminate[eqns, elims] (*从⼀组等式中消去变量(组)elims*) 例16从⽅程组 ??=+=-+-+=++11)1()1(1222222y x z y x z y x 消去未知数y 、z .输⼊Eliminate[{x^2+y^2+z^2 ==1,x^2+(y-1)^2 + (z-1)^2 ==1, x + y== 1},{y, z}]输出 0x 3x 22==+-注:上⾯这个输⼊语句为多⾏语句,它可以像上⾯例⼦中那样在⾏尾处有逗号的地⽅将⾏与⾏隔开, 来迫使Mathematica 从前⼀⾏继续到下⼀⾏在执⾏该语句. 有时候多⾏语句的意义不太明确,通常发⽣在其中有⼀⾏本⾝就是可执⾏的语句的情形,此时可在该⾏尾放⼀个继续的记号“\”, 来迫使Mathematica 继续到下⼀⾏再执⾏该语句.五、保存与退出Mathematica 很容易保存Notebook 中显⽰的内容,打开位于窗⼝第⼀⾏的File 菜单,点击Save 后得到保存⽂件时的对话框,按要求操作后即可把所要的内容存为 *.nb ⽂件. 如果只想保存全部输⼊的命令,⽽不想保存全部输出结果,则可以打开下拉式菜单Kernel,选中Delete All Output,然后再执⾏保存命令. ⽽退出Mathematica 与退出Word 的操作是⼀样的.六、查询与帮助查询某个函数(命令)的基本功能,键⼊“函数名”,想要了解更多⼀些,键⼊“函数名”,例如,输⼊Plot则输出Plot[f,{x,xmin,xmax}] generates a plot of f as a functionof x from xmin to xmax. Plot[{f1,f2,…},{x,xmin,xmax}] plots several functions fi 它告诉了我们关于绘图命令“Plot”的基本使⽤⽅法.例17 在区间]1,1y=的图形.[-上作出抛物线2x输⼊ Plot[x^2,{x,-1,1}]则输出例18 .输⼊ Plot[{Sin[x],Cos[x]},{x,0,2Pi}]则输出Plot则Mathematica会输出关于这个命令的选项的详细说明,请读者试之.此外,Mathematica的Help菜单中提供了⼤量的帮助信息,其中Help菜单中的第⼀项Help Browser(帮助游览器)是常⽤的查询⼯具,读者若想了解更多的使⽤信息,则应⾃⼰通过Help菜单去学习.编辑本段Mathematica 基本运算a+mathematica数学实验(第2版) b+c 加a-b 减a b c 或 a*b*c 乘a/b 除-a 负号a^b 次⽅Mathematica 数字的形式256 整数实数11/35 分数2+6I 复数常⽤的数学常数Pi 圆周率,π=…E 尤拉常数,e=2.…Degree ⾓度转换弧度的常数,Pi/180I 虚数,其值为√-1Infinity ⽆限⼤指定之前计算结果的⽅法% 前⼀个运算结果%% 前⼆个运算结果%%…%(n个%) 前n个运算结果%n 或 Out[n] 前n个运算结果复数的运算指令a+bI 复数Conjugate[a+bI] 共轭复数Re[z], Im[z] 复数z的实数/虚数部分Abs[z] 复数z的⼤⼩或模数(Modulus)Arg[z] 复数z的幅⾓(Argument)Mathematica 输出的控制指令expr1; expr2; expr3 做数个运算,但只印出最後⼀个运算的结果expr1; expr2; expr3; 做数个运算,但都不印出结果expr; 做运算,但不印出结果编辑本段常⽤数学函数Sin[x],Cos[x],Tan[x],Cot[x],Sec[x],Csc[x] 三⾓函数,其引数的单位为弪度Sinh[x],Cosh[x],Tanh[x],… 双曲函数ArcSin[x],ArcCos[x],ArcTan[x] 反三⾓函数ArcCot[x],ArcSec[x],ArcCsc[x]ArcSinh[x],ArcCosh[x],ArcTanh[x],… 反双曲函数Sqrt[x] 根号Exp[x] 指数Log[x] ⾃然对数Log[a,x] 以a为底的对数Abs[x] 绝对值Round[x] 最接近x的整数Floor[x] ⼩於或等於x的最⼤整数Ceiling[x] ⼤於或等於x的最⼩整数Mod[a,b] a/b所得的馀数n! 阶乘Random[] 0⾄1之间的随机数(最新版本已经不⽤这个函数,改为使⽤RandomReal[])Max[a,b,c,...],Min[a,b,c,…] a,b,c,…的极⼤/极⼩值编辑本段数之设定x=a 将变数x的值设为ax=y=b 将变数x和y的值均设为bx=. 或 Clear[x] 除去变数x所存的值变数使⽤的⼀些法则xy 中间没有空格,视为变数xyx y x乘上y3x 3乘上xx3 变数x3x^2y 为 x^2 y次⽅运算⼦⽐乘法的运算⼦有较⾼的处理顺序编辑本段四个常⽤处理代数的指令Expand[expr] 将 expr展开Factor[expr] 将 expr因式分解Simplify[expr] 将 expr化简成精简的式⼦FullSimplify[expr] Mathematica 会尝试更多的化简公式,将 expr化成更精简的式⼦编辑本段多项式/分式转换的函数ExpandAll[expr] 把算是全部展开Together[expr] 将 expr各项通分在并成⼀项Apart[expr] 把分式拆开成数项分式的和Apart[expr,var] 视var以外的变数为常数,将 expr拆成数项的和Cancel[expr] 把分⼦和分母共同的因⼦消去编辑本段分母/分⼦的运算Denominator[expr] 取出expr的分母Numerator[expr] 取出expr的分⼦ExpandDenominator[expr] 展开expr的分母ExpandNumerator[expr] 展开expr的分⼦编辑本段多项式的另⼆种转换函数Collect[expr,x] 将 expr表⽰成x的多项式,如Collect[expr,{x,y,…}] 将 expr分别表⽰成 x,y,…的多项式FactorTerms[expr] 将 expr的数值因⼦提出,如 4x+2=2(2x+1)FactorTerms[expr,x] 将 expr中把所有不包含x项的因⼦提出FactorTerms[expr,{x,y,…}] 将 expr中把所有不包含{x,y,...}项的因⼦提出编辑本段三⾓函数、双曲函数和指数的运算TrigExpand[expr] 将三⾓函数展开TrigFactor[expr] 将三⾓函数所组成的数学式因式分解TrigReduce[expr] 将相乘或次⽅的三⾓函数化成⼀次⽅的基本三⾓函数之组合ExpToTrig[expr] 将指数函数化成三⾓函数或双曲函数TrigToExp[expr] 将三⾓函数或双曲函数化成指数函数复数、次⽅乘积之展开ComplexExpand[expr] 假设所有的变数都是实数来对 expr展开ComplexExpand[expr,{x,y,…}] 假设x,y,..等变数均为复数来对 expr展开PowerExpand[expr] 将多项式项次、系数与最⾼次⽅之取得Coefficient[expr,form] 於 expr中form的系数Exponent[expr,form] 於 expr中form的最⾼次⽅Part[expr,n] 或 expr[[n]] 在 expr项中第n个项代换运算⼦expr/.x->value 将 expr⾥所有的x均代换成valueexpr/.{x->value1,y->value2,…} 执⾏数个不同变数的代换expr/.{{x->value1},{x->value2},…} 将 expr代⼊不同的x值expr清除f的定义Remove[f] 将f⾃系统中清除掉含有预设值的Patterna_+b_. b的预设值为0,即若b从缺,则b以0代替x_ y_ y的预设值为1x_^y_ y的预设值为1条件式的⾃订函数lhs:=rhs/;condition 当condition成⽴时,lhs才会定义成rhsIf指令If[test,then,else] 若test为真,则回应then,否则回应elseIf[test,then,else,unknow] 同上,若test⽆法判定真或假时,则回应unknow 极限Limit[expr,x->c] 当x趋近c时,求expr的极限Limit[expr,x->c,Direction->1]Limit[expr,x->c,Direction->-1]微分D[f,x] 函数f对x作微分D[f,x1,x2,…] 函数f对x1,x2,…作微分D[f,{x,n}] 函数f对x微分n次D[f,x,NonConstants->{y,z,…}] 函数f对x作微分,将y,z,…视为x的函数全微分Dt[f] 全微分dfDt[f,x] 全微分Dt[f,x1,x2,…] 全微分Dt[f,x,Constants->{c1,c2,…}] 全微分,视c1,c2,…为常数不定积分Integrate[f,x] 不定积分∫f dx定积分Integrate[f,{x,xmin,xmax}] 定积分Integrate[f,{x,xmin,xmax},{y,ymin,ymax}] 定积分数列之和与积Sum[f,{i,imin,imax}] 求和Sum[f,{i,imin,imax,di}] 求数列和,引数i以di递增Sum[f,{i,imin,imax},{j,jmin,jmax}]Product[f,{i,imin,imax}] 求积Product[f,{i,imin,imax,di}] 求数列之积,引数i以di递增Product[f,{i,imin,imax},{j,jmin,jmax}]函数之泰勒展开式Series[expr,{x,x0,n}] 对 expr於x0点作泰勒级数展开⾄(x-x0)n项Series[expr,{x,x0,m},{y,y0,n}] 对x0和y0展开关系运算⼦a==b 等於a>b ⼤於a>=b ⼤於等於aa<=b ⼩於等於a!=b 不等於逻辑运算⼦!p notp||q||… orp&&q&&… andXor[p,q,…] exclusive orLogicalExpand[expr] 将逻辑表⽰式展开基本⼆维绘图指令Plot[f,{x,xmin,xmax}]画出f在xmin到xmax之间的图形Plot[{f1,f2,…},{x,xmin,xmax}]同时画出数个函数图形Plot[f,{x,xmin,xmax},option->value]指定特殊的绘图选项,画出函数f的图形Plot[]⼏种常⽤选项的指令选项预设值说明AspectRatio 1/GoldenRatio 图形⾼和宽之⽐例,⾼/宽Axes True 是否把坐标轴画出AxesLabel Automatic 为坐标轴贴上标记,若设定为AxesLabel->{ylabel},则为y轴之标记。

01第一篇Mathematica入门

01第一篇Mathematica入门

01第⼀篇Mathematica⼊门第⼀篇Mathematica⼊门⼀、MathematicaMathematica是集⽂本编辑、数值计算、逻辑分析、图形、声⾳、动画于⼀体的⾼度优化的专家系统.它是⽬前⽐较流⾏的数学软件之⼀.Mathematica最显著的特点是⾼精度的运算功能、强⼤的作图功能以及逻辑编程功能.Mathematica是美国WolframResearch公司开发的⼀套专门⽤于进⾏数学计算的软件.从1988年问世⾄今,已⼴泛运⽤到⼯程技术、应⽤数学、计算机科学、财经、⽣物、⽣命科学、以及太空等领域,数以万计的论⽂、科学报告、计算机绘图等都是Mathematica的杰作. 1995年发表的Mathematica3.0版是数学软件史的⼀⼤创新,⽽现在的Mathematica4.1版,则达到了这类软件的顶峰. Mathematica除了提供数值处理与绘图的功能外,还具有符号计算以及处理多项式的各种运算、函数的微分、积分、解微分⽅程、统计、编程,甚⾄可以制作电脑动画及⾳效等等.Mathematica的基本系统是使⽤C语⾔编写的,因此能⽅便地移植到各种计算机系统上.尽管Mathematica有各种各样的版本,但它们有⼀个共同的内核,Mathematica的各种运算都是由内核来完成的.给内核配置不同的前端处理器,就成为适⽤于各种环境的版本.它的DOS版本的特点是运算速度快,对系统的配置要求较低;它在Windows环境下的特点是图⽂并茂,操作⽅便.这⾥介绍的是在Windows环境下的Mathematica4.1版本.Mathematica4.1对计算机的硬件要求如下:1.操作系统:Windows95以上.2.CPU:Inter586级以上的中央处理器.3.硬盘空间:除了要具备120MB的硬盘空间安装Mathematica4.1外,还需具有100MB左右的剩余硬盘空间⽤于进⾏交换⽂件和复杂的运算.4.内存:64MB以上.⼆、Mathematica界⾯简介双击Mathematica的图标即可运⾏Mathematica的主程序.主程序会同时打开⼀个新的⼯作窗⼝和⼀个基本输⼊模板(Basic Input palette).每⼀个⼯作窗⼝代表⼀个⽂件,⽂件名显⽰在⼯作窗⼝的标题栏上,默认的⽂件名为Untitled-1.nb.位于标题栏下的是菜单栏,包括(File,Edit,Cell,Format,Input,Kernel,Find,Window,Help项). ⽤户可以同时打开多个⼯作区,并且可以对每⼀个⼯作区使⽤不同的名字保存.Mathematica将它们分别命名为Untitled-1;Untitled-2;Untitled-3;….1.⼯作区窗⼝⼯作区是显⽰⼀切输⼊、输出窗⼝.⽆论直接输⼊各种算式或命令,还是已经编好的程序,所有的操作都在这个窗⼝运⾏.⼯作区窗⼝也称作Notebook.2.基本输⼊模板基本输⼊模板由⼀系列按钮组成,⽤以输⼊特殊符号、运算符号、常⽤表达式等.⽤⿏标左键单击⼀个按钮,就可以将它所表⽰的符号输⼊到当前的⼯作区窗⼝中.当启动Mathematica4.1之后,基本输⼊模板会显⽰在屏幕的右边,如果没有,则选择File 下拉菜单中的palette -Basic Input命令激活它.3.主菜单Mathematica的菜单项很多,以下只介绍⼀些最实⽤的菜单项.(1)File菜单File下拉菜单项中的New,Open,Close及Save命令⽤于新建、打开、关闭及保存⽤户的⽂件,这些选项与Word相同.另外有⼏个选项是Mathematica特有的,其中最有⽤的是:●Palettes⽤于打开各种模板;●Generate Palette from Selection⽤于⽣成⽤户⾃制的模板;●Notebooks记录最近使⽤过的⽂件.●模板单击Palettes项,会弹出7个英⽂选项,其中第三项BasicInput(基本输⼊模板)就是启动时已经显⽰在屏幕上的模板.其余最有⽤的选项是第⼆项BasicCalculations(基本计算模板).这个模板分类给出了各种基本计算的按钮.单击各项前⾯的⼩三⾓,会⽴即显⽰该项所包含的⼦项.再次单击各⼦项前⾯的⼩三⾓,则显⽰出⼦项中的各种按钮.若单击其中的某个按钮就可以把该运算命令(函数)输⼊到⼯作区窗⼝中,然后在各个⼩⽅块中键⼊数学表达式,就可以让Mathematica进⾏计算了.有了这两个模板,使得⽤户⽆须死记⼤量的命令和相关的参数,便于查询和输⼊.(2) cell(单元)●单元的样式Mathematica4.1的⼯作窗⼝由不同的单元(cell)组成.例如,输⼊表达式的单元称为输⼊单元(input cell),输出表达式的单元称为输出单元(output cell).每⼀个单元都有其特定的样式(style). 输⼊单元默认的样式名称为input,输出单元默认的样式名称为output.注:在新建⼀个单元时,默认为input.●单元的打开与关闭双击最外层单元的括号,即可关闭该单元,只显⽰最外层.同样只要双击已关闭单元的括号,即可打开该单元.●单元的删除选中所要删除单元的括号,按Delete键即可删除所选单元的内容.(3)Help(帮助)在Mathematica4.1中增加了Help Browser帮助系统.在Help Browser中不但汇集了Mathematica4.1的所有命令和使⽤⽅法,⽽且包含了其完整的使⽤⼿册及各种⼯具栏的使⽤⽅法.单击Help菜单中的Help命令,即可激活Help Browser帮助系统.Help Browser共分六⼤帮助信息:1.Built-in Functions 查询Mathematica4.1的所有内部命令与函数的使⽤⽅法.2.Add-ons 查询Mathematica4.1所带的函数库(packages)命令与函数的⽤法.3.The Mathematica Book Mathematica的完整⼿册.4.Getting Started/Demos初学者使⽤说明与范例.5.Other Information 其他信息,如数学表达式的⼆维格式的输⼊⽅法等.6.Master Index⽤索引的⽅法查询Mathematica的关键词.选择搜索主题的类别之后,输⼊关键词,单击Go To按钮开始搜索主题,或者在最左边的选择列表中选择搜索主题的类别之后,再逐渐缩⼩查询范围.例如:要查询Limit命令的使⽤⽅法,可以直接在Help Browser中输⼊Limit再单击Go To按钮,或选择Algebraic Computation-Calculus-Limit找到有关Limit命令的说明.4.退出Mathematica当结束⼯作时,可以选择“File”菜单中的“Exit”选项或单击关闭按纽. Mathematica 会询问是否保存对打开⼯作区内容的修改,选择“Yes”,系统要求指定⽂件名,⽤户可以任意给定⼀个⽂件名并指定位置,确认后系统将该⽂件保存在⽤户所指定的位置,再次打开该⽂件可以继续上次的运算;选择“Don’t Save”放弃保存;选择“Cancel”取消这次操作并返回Mathematica.三、⾃制模板由于BasicCalculations(基本计算模板)的内容太多,查找不⽅便,因此⾃制模板是⼀个⾮常重要的内容.⾃制模板的步骤如下:1.单击主菜单的input项,弹出⼦菜单.选中⼦菜单中的CreateTabel/Matrix/Palette(建⽴表、矩阵、模板)选项出现对话框.2.在对话框中,选中Make: Palette,在键⼊⾏数和列数,则在窗⼝⽣成⼀个可编辑的原始模板.3.⽤⿏标左键单击原始模板中的第⼀个⼩⽅块,然后在打开的BasicCalculations模板中单击⼀个今后经常使⽤的按钮,就可以将它复制到原始模板中.如此循环往复直⾄全部输⼊完成.4.单击File菜单中的Generate Palette from Selection项,就可以建⽴⼀个⾃⼰的模板了.5.单击⾃制模板右上⾓的关闭按钮,Mathematica将询问是否保存⾃制模板,若保存,则出现对话框,将对话框中显⽰的⽂件名“Untitled-1.nb”改成“⾃定义模板.nb”保存到存放Mathematica模板的⽬录D:\Mathematica\4.1\SystemFiles\FrontEnd\Palettes 下,再次启动时,这个模板的名字就会出现在File菜单的Palette选项中,可与Mathematica的模板⼀样使⽤.四、Mathematica 的常⽤语法1.Mathematica 的基本运算Mathematica 的基本运算包括加(+) ;减(-) ;乘(*) 、除(/) 、乘⽅(?) 等.我们可以按照⼀般数学表达式的⼿写格式输⼊这些基本运算,然后按下Shift+Enter 组合键得到输出结果.例如:In[1]:=Out[1]:= 6 In[2]:= 3^2 Out[2]:= 9说明:(1)Mathematica 将输⼊的指令⽤标题“In[n]:=”标识,输出结果⽤“Out[n]:=”标识,其中“n ”表⽰已经输⼊的指令数.(2)Shift+Enter 在Mathematica 中是执⾏运算的命令.2.输⼊和计算数学表达式(1)键盘直接输⼊和运⾏expr : 直接输⼊表达式.例如:在⼯作窗中输⼊,再按Shift+Enter 组合键,执⾏运算.这时,⼯作32)63(2-+?窗会显⽰如下运算:In[1]:=-??3Out[1]:= ??N[expr] 计算表达式的近似数值,Mathematica 默认的有效数字位数为16位,但按标准输出只显⽰前6位有效数字,若要全部显⽰,则⽤N[expr]//InputForm 命令.N[expr ,n] 计算表达式的具有任意指定数字位数的近似值(指定的数字位数n 应该⼤于16),结果在末位是四舍五⼊的. NumberForm[expr , n] 将表达式⽤n 个有效数字表⽰.例1 求的近似值,有效数字分别为6位、8位、16位、32位.e 解: In[1]:= N ??Out[1]:= 2.71828In[2]:= N u m b e r F o r m ?N ,8?Out[2]:= 2.7182818 In[3]:= N[ ]//InputForm Out[3]:= 2.718281828459045 In[4]:= N[ ,32]Out[4]:= 2.7182818284590452353602874713527(2)利⽤基本输⼊模板直接输⼊我们可以利⽤基本输⼊模板所提供的⼀些特殊符号、运算符号、常⽤表达式来输⼊表达式.3.简单的调⽤⽅式有时在后⾯的计算要调⽤到前⾯已经计算过的结果,这时Mathematica 提供了⼀种简单的调⽤⽅式:命令意义%%%%%…% (个%),或 %n n读取前⼀个输出结果.读取前第⼆个输出结果.读取前第个输出结果.n 例如 In[1]:= 3^4Out[1]:= 81 In[2]:= %?5 Out[2]:= 405 In[3]:= %1?%2Out[3]:= 4864.长表达式的输⼊Mathematica 是允许⼀个表达式占⽤多个输⼊⾏的,但需注意的是:必须在指令或语法告⼀段落⽽⼜不完整的地⽅使⽤Enter 键进⾏换⾏.5.有关代数式的⼏个命令(1)多项式的展开与因式分解命令意义[多项式]Expand 对多项式进⾏展开运算.[多项式]Factor 对多项式进⾏因式分解.例2 将多项式展开5)1(y x ++解 In[1]:= Expand[(1+x+y)^5]Out[1]:= 1?5x ?10x 2?10x 3?5x 4?x 55y 20xy例3 将多项式分解因式2223-+-x x x 通过管线不仅可以解路须同时切断习题电源,线缆敷设完毕,要进⾏检查和检测处理。

Mathematica 软件使用简介

Mathematica 软件使用简介

Mathematica 软件使用简介Mathematica 是一个功能强大的常用数学软件, 它是由美国物理学家Stephen Wolfram领导的Wolfram Research公司用C语言开发的数学系统软件。

不但可以解决数学中的数值计算问题, 还可以解决符号演算问题, 并且能够方便地绘出各种函数图形。

这里介绍的命令可以适用于Windows操作系统的Mathematica2.2以上版本运行。

一、Mathematica 的进入/退出如果你的计算机已经安装了Mathematica 软件, 系统会在Windows【开始】菜单的【程序】子菜单中加入启动Mathematica命令的图标:图1.1 启动Mathematica用鼠标单击它就可以启动Mathematica系统进入Mathematica系统工作界面:图1.2 Mathematica2.2工作界面图图1.3 Mathematica4.0工作界面图Mathematica系统工作界面是基于Windows 环境下的Mathematica 函数或程序运行与结果显示的图形用户接口, 是Mathematica的工作屏幕。

界面上方的主菜单和工具条的功能类似于Windows中的Word软件。

其中的空白位置称为Notebook用户区, 在这里可以输入文本、实际的Mathematica命令和程序等来达到使用Mathematica的目的。

在用户区输入的内容被 Mathematica用一个具有扩展名为“.ma”(Mathematica2.2)或“.mb”(Mathematica4.0)在的文件名来纪录,该文件名是退出Mathematica时保存在用户区输入内容的默认文件名,一般是文件名:“Newn b-1.ma”或“Newnb-1.mb”。

退出Mathematica系统像关闭一个Word文件一样, 只要用鼠标点击Mathematica系统集成界面右上角的关闭按钮即可。

关闭前, 屏幕会出现一个对话框, 询问是否保存用户区的内容, 如果单击对话框的“否(N)”按钮, 则关闭Notebook窗口, 退出Mathematica系统; 如果单击对话框的“是(Y)”按钮, 则先提示你用一个具有扩展名为 .ma或.mb的文件名来保存用户区内的内容, 再退出Mathematica系统。

数学建模首选软件Mathematica画图专讲(很全)

数学建模首选软件Mathematica画图专讲(很全)
选择项参数]
下一部分
绘空间参数曲线{ x=x(t) , y=y(t), z=z(t) }的图形命令: ParametricPlot3D[{x[t],y[t],z[t]}, 要绘图形的参数t的范围 , 选择 项参数]

绘参数曲面{ x=x(u, v) , y=y(u, v), z=z(u, v) }的图形命 令: ParametricPlot3D[{x[u,v], y[u,v], z[u,v]}, 要绘图形的参数u , v的范围, 选择项参数]
返回
例4: 利用图形显示命令分析下列函数的性质:
(1)f(x)=(x2-x)sinx,x∈[0,16] (2)f(x)=
sin x 2 x
2
, x∈[-5,5]
(3)f1(x)=sinx f2(x)=sin2x,x∈[0,2π]
x sin t (4) y sin 2t t [0,2 ]
2.2.2 在同一个坐标系画多条曲线的命令
命令形式1:Plot[{f1[x], f2[x],…, fn[x]},{x, xmin, xmax}] 功能:在同一个坐标系画出函数f1[x], f2[x],…, fn[x] 的图形, 图形范围是自变量x满足xmin x xmax的部分,其选择项 参数值取默认值。
(6) 选项参数名称: AxesLabel 含义: 是否设置图形坐标轴标记 参数取值: 该参数的默认值为None;作为平面图形输出参数时, 该 选项参数取值为 {“字符串1” , “字符串2”}, 表示将“字符串 1”设置为横坐标轴标记,“字符串2”设置为纵坐标轴标记; 作 为空间图形输出参数时, 该选项参数取值为{“字符串1” , “字 符串2” , “字符串3”}, 表示将“字符串1”设置为横坐标标 记,“字符串2”设置为纵坐标标记,“字符串3”设置为竖坐标 标记。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档