有理数全章复习教案
初一数学上册第一章有理数复习教案最新3篇
初一数学上册第一章有理数复习教案最新3篇篇一:数学《有理数》教案篇一一、教材分析:(一)教材的地位和作用:本节课的内容是《新人教版七年级数学》教材中的第一章第四节,“有理数的乘除法”是把“有理数乘法”和“有理数除法”的内容进行整合,在“有理数的加减混合运算”之后的一个学习内容。
在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。
“有理数的乘法”从具体情境入手,把乘法看做连加,通过类比,让学生进行充分讨论、自主探索与合作交流的形式,自己归纳出有理数乘法法则。
通过这个探索的过程,发展了学生观察、归纳、猜测、验证的能力,使学生在学习的过程中获得成功的体验,增强了自信心。
所以本节课的学习具有一定的现实地位。
(二)学情分析:因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。
同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。
另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。
(三)教学目标分析:基于以上的学情分析,我确定本节课的教学目标如下1、知识目标:让学生经历学习过程,探索归纳得出有理数的乘除法法则,并能熟练运用。
2、能力目标:在课堂学习过程中,使学生经历探索有理数乘除法法则的过程,发展观察、猜想、归纳、验证、运算的能力,同时在探索法则的过程中培养学生分类和归纳的数学思想。
3、情感态度和价值观:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。
4、教学重点:会进行有理数的乘除法运算。
5、教学难点:有理数乘除法法则的探索与运用。
确定教学目标的理由依据是:新课标中指出课堂教学中应体现知识与技能、过程与方法、情感态度与价值观的三维目标,同时也基于本节内容的地位与作用。
浙教版七年级上册第一章有理数章节复习教案+同步课堂练习+课后作业
有理数复习教案(七上)一、知识能力聚焦1.有理数例1:回顾我们小学阶段学过的所有数的种类: 整数、自然数、小数、分数、偶数、奇数、质数、合数、无限循环小数、无限不循环小数。
自然数回顾:1、定义:0,1,2,3,......叫做自然数2、分类: 0; 1; 质数(也叫素数,是只能被1和它本身整除的自然数);合数(除1和它本身外,还能被其他非零的自然数整除的数)3、作用:计数:一般地,用数数的方法得到的数据具有“计数”的含义。
例如:51枚金牌,是自然数最初的作用;测量:一般地,借助工具得到的数据具有“测量”的含义,测量的本质是比较。
例如:小明身高是168厘米;排序:为了表示某一种顺序的数据具有“排序”的含义,如年份、月份、名次等。
例如:2016年;标号:像门牌号、学号、座位号、车牌号、邮政编码、汽车路线等具有“标号”的含义。
例如:全班第10既不是正数也不是负数。
2.数轴和相反数 数轴:规定了原点、单位长度和正方向的直线叫做数轴。
相反数:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数。
0的相反数是0。
若a ,b 互为相反数,则有⎩⎨⎧=+=--=0,b a b a b a例2:相反数性质的运用。
(1)-2的相反数是,a 的相反数是,a-b 的相反数是。
(2)若a ,b 互为相反数,则3a+3b+2=;若c ,d 互为倒数,=222d c 。
(3)若a ,b 互为相反数,c ,d 互为倒数,计算:=++cd b a 122;=++dc c bc ac 22。
例3:0的相反数是0。
若b 12+-与a 互为相反数,那么a+b=。
3.绝对值绝对值:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。
在数轴上,表示互为相反数(0除外)的两个点,位于原点的两侧,并且到原点的距离相等,绝对值相等。
任何数的绝对值都为非负数:0≥a⎩⎨⎧<-≥=)0()0(a a a a a ⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数例4:去绝对值符号(1)=<a a 那么若,0,=-a ;=->b a b a 那么若,, =-a b ;=+<<b a b a 那么若,0,0, =--b a ;=-<>b a b a 那么若,0,0, =-a b , =ab ;(2)有理数在数轴上表示的点如下图所示,则的大小关系是 ,化简: b a b a -++= ,b a b a --+= 。
七年级数学上册有理数及其运算复习教案9篇
七年级数学上册有理数及其运算复习教案9篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!七年级数学上册有理数及其运算复习教案9篇七年级数学上册有理数及其运算复习教案篇1【教学目标】知识与技能:了解并掌握数据收集的基本方法。
七年级上册第一章有理数复习教案
第一章《有理数》复习一、基本概念 1.有理数生活中的一些具有相反意义的量: 1.飞机上升500米与下降500米; 2.向东走5米与向西走6米; 3.存入1000元和支出900元。
请你将右图连线:我们可以把一种意义的量规定为正.同时把另一种与它相反意义的量规定为负,分别称它们为 正数和负数。
0既不是正数,也不是负数。
〖练一练〗“一个数,如果不是负数,就是正数。
”这句话对吗,为什么?在小学学过的数(零除外)前面加一个“—”号表示负数! 在小学学过的数(零除外)前面加一个“+”号表示正数!(通常正号可以省略) 例1 如果温度上升8℃记作 +8,下降3℃记作 -3,那么下列各数分别表示什么?(1)+5 (2)―6.8 (3) 0正数 有理数 0负数1(口答)读出下列各数,它们各是哪一类数?7 ,-7.46 , 0 , +50/7, ―2/3,-2, -7, -8, +1.3, -0.82.填空:(1) 规定赢利为正,某公司去年亏损了 2.5万元,记做____万元,今年盈 利了3.2万元, 记做_____万元;(2)规定海平面以上的海拔高度为正.新疆乌鲁木齐市高于海平面918米,记做海拔____ 米;吐鲁番盆地最低点低于海平面155米,记做海拔____米.例2 下列给出的各数,哪些是正数?哪些是负数?哪些是整数? 哪些是分数?哪些是有理数?―8.4, 22, +17/6, 0.33, 0, ―3/5盈利 存入 增加 运进 上升 涨 输 进球 南失球 赢 支出 跌 亏损 减少 运出 下降 东【选一选】把”存入银行+50元”改成使用负数的说法是( )(A)取出+50元 (B)取出-50元 (C)存入+50元 (D)存入-50元你能解释”前进-50米”的意思吗?〖课内练习〗 1 填空:(1) 汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正. 汽车向北行驶75千米,记做____km,(或__km ),汽车向南行驶100km ,记做__km.(2)如果向银行存入50元记为50元,那么-30.50元表示________;(3)规定增加的百分比为正,增加25%记做__,-12 %表示__________.引进了负数之后,数的范围扩大了整数有理数分数小结①表示大小:②在实际中表示意义相反的量 上升5米记为:5, -8则表示下降8米。
第一章有理数全章教案
第一章有理数全章教案有理数教学目标〔知识与技能〕1、了解正数、负数的实际意义,会判断一个数是正数还是负数。
2、掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。
3、理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值.4、会利用数轴和绝对值比较有理数的大小。
5、理解乘方的意义,会进行乘方的计算。
掌握有理数加减、乘除、乘方的混合运算。
6、通过实例进一步感受大数,并能用科学记数法表示;了解近似数和有效数字的概念。
〔过程与方法〕1、经历探索有理数运算法则和运算律的过程,体会类比、转化、数形结合等思想方法.2、培养学生应用数学知识的意识,提高学生运用知识解决实际问题的能力。
〔情感、态度与价值观〕1、通过教学活动,激励学生学习数学的兴趣;使学生感受数学知识与现实世界的联系。
2、给学生渗透辩证唯物主义思想。
重点难点有理数的运算是重点;准确理解负数、绝对值的意义和运算符号的确定是难点。
课时分配1.1正数和负数2课时1.2有理数5课时1.3有理数的加减法3课时1.4有理数的乘除法5课时1.5有理数的乘方4课时本章小结2课时人教版数学第一章有理数全章教案1.1.1 正数和负数的概念〔教学目标〕1、了解负数产生是生活、生产的需要;2、掌握正、负数的概念和表示方法,理解数0表示的量的意义;3、理解具有相反意义的量的含义。
〔重点难点〕正确理解正、负数的概念,数0表示的量的意义和具有相反意义的量是重点;正确理解负数、数0表示的量的意义是难点。
〔教学过程〕一、负数的引入我们知道,数产生于人们实际生产和生活的需要。
[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3 ;为了表示“没有”、“空位”引进了数0,测量和分配有时不能得到整数的结果,为此产生了分数和小数。
在生活、生产、科研中经常遇到数的表示与数的运算的问题。
[投影4](1)北京冬季里某天的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?(2)有三个队参加的足球比赛中,红队胜黄队(4U1),黄队胜蓝队(1U0),蓝队胜红队(1U0),三个队的净胜球分别是2,-2,0,如何确定排名顺序?(3)2022年我国产量比上年增长1.8%,油菜籽产量比上年增长-2.7%,这里的增长-2.7%代表什么意思?上面三个问题中,哪些数的形式与以前学习的数有区别?数-3、-2、-2.7%与以前学习的数有区别。
人教有理数复习教案
人教-有理数-复习教案第一章:有理数的概念与分类1.1 复习有理数的定义:整数和分数统称为有理数。
1.2 复习有理数的分类:正有理数、负有理数和零。
1.3 复习有理数的符号表示:正数用“+”表示,负数用“-”表示,零用“0”表示。
1.4 复习有理数的性质:相等、相反、绝对值、加减乘除。
第二章:有理数的运算2.1 复习加法运算:同号相加,异号相减。
2.2 复习减法运算:减去一个数等于加上它的相反数。
2.3 复习乘法运算:正数乘以正数得正数,负数乘以负数得正数,正数乘以负数得负数,负数乘以正数得负数。
2.4 复习除法运算:除以一个不等于零的数等于乘以它的倒数。
第三章:有理数的乘方3.1 复习乘方的定义:一个数自乘若干次称为乘方。
3.2 复习乘方的计算法则:正数的任何次幂都是正数,负数的奇数次幂是负数,负数的偶数次幂是正数。
3.3 复习乘方的性质:乘方的乘法等于乘方的乘法,乘方的除法等于乘方的除法。
第四章:有理数的混合运算4.1 复习混合运算的顺序:先算乘方,再算乘除,算加减。
4.2 复习混合运算的法则:同号相乘得正,异号相乘得负。
4.3 复习混合运算的例子:解决实际问题,如计算购物时的总价等。
第五章:有理数的应用5.1 复习有理数在实际生活中的应用:计算费用、距离、温度等。
5.2 复习有理数的大小比较:正数大于零,零大于负数,正数大于负数。
5.3 复习有理数的解题步骤:分析问题,列出算式,计算结果,检验答案。
第六章:绝对值与相反数6.1 复习绝对值的定义:一个数的绝对值是它与零的距离。
6.2 复习绝对值的性质:正数的绝对值是它本身,零的绝对值是零,负数的绝对值是它的相反数。
6.3 复习相反数的定义:一个数与它的相反数的和为零。
6.4 复习相反数的性质:正数的相反数是负数,负数的相反数是正数,零的相反数是零。
第七章:实数与有理数的关系7.1 复习实数的定义:有理数和无理数的集合称为实数。
7.2 复习实数与有理数的关系:有理数是实数的一个子集,所有有理数都可以表示为分数的形式。
第1章《有理数》复习教案
答:只有符号不同的两个数叫做互为相反数;并说其中一个是另一个的相反数。零的相反数是零,a的相反数是-a。两个互为相反数的和为零。
课后反馈
教学过程
6.有理数的绝对值的意义是什么?如果两个数互为相反数,那么它们的绝对值有什么关系?试举例说明。
(5)在数轴上绝对值等于4的整数有_____;
(6)当a____0时,-a>a。
解:(1)<;由负数的绝对值大的反而小而得。(提问:为什么?)
(2)4;即求|9+(-13)|。
(3)22;即求|9|+|(-13)|。
注意:不要把两者混பைடு நூலகம்。
(4)-2,-1,0,1,2;由数轴上(绝对值小于3)的整数点而得到。
2.判断正误:
(1)零是最小的正整数;()错
(2)零是绝对值最小的有理数;()对
(3)-a一定小于0;()错
(4)|a|=|b|,那么a=b。()错
3.填空:
(1)如果a>b>0,那么-a____-b
(2)9与-13的和的绝对值是_____;
(3)9与-13的绝对值的和是_____;
(4)在数轴上绝对值小于3的整数有_____;
难点
教具准备
多媒体,投影仪
教学过程
我们已经学过了有理数全章内容。概括起来说,这一章我们学的是有理数的概念及其运算。这节课我们将复习有理数的意义及其有关概念。
复习提问:
1.为什么要引入负数?温度为-4℃是什么意思?
答:为了表示具有相反意义的量。温度为-4℃表示温度是零下4摄氏度。
2.什么是有理数?有理数集包括哪些数?
第1章有理数复习教案
第一章有理数复习教案一、知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。
有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。
有理数的运算是全章的重点。
在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
基础知识:1、正数(position number):大于0的数叫做正数。
2、负数(negation number):在正数前面加上负号“-”的数叫做负数。
3、0既不是正数也不是负数。
4、有理数(rational number):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
5、数轴(number axis):通常,用一条直线上的点表示数,这条直线叫做数轴。
数轴满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点(origin);(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度。
6、相反数(opposite number):绝对值相等,只有负号不同的两个数叫做互为相反数。
7、绝对值(absolute value)一般地,数轴上表示数a的点与原点的距离叫做数a 的绝对值。
记做|a|。
由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。
8、有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数。
加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。
表达式:a+b=b+a。
加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。
有理数 复习课 优秀教学设计(教案)
1. 知识梳理:
括到括号内的各项都要变号。
⑴有理数的加法法则:
⑻乘方:求 n 个相同因数的积的运算,叫做乘方,乘方的给果叫做幂。
1. 同号两数相加,和取相同的符号,并把绝对值相加;
2. 绝对值不等的异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对
2. 例题选讲:
值减去较小的绝对值;
例 1 下列说法是否正确,请就错误的改正过来。
⑹有理数的运算顺序:
先算乘方,再算乘除,最后算加减;如果有括号,则先算括号内,再算括号外。
⑺运算律:
①加法的交换律;
②加法的结合律;
③乘法的交换律;
④乘法的结合律;
⑤乘法对加法的分配律;
注:除法没有分配律。
2. 例题选讲:
例 1 下列说法是否正确,请就错误的改正过来。
⑴0 除以任何数都得零;
(
)
⑵若 a、b 为有理数,且 ac,b≠0,则 a+b≠0;(
四、教学目标:
⑺去括号与添括号:
1. 使学生系统掌握有理数这一章的有关运算法则;
去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不
2. 使学生提高有理数的计算能力。
变;括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。
五、教学设计:
添括号法则:在“+”号后边添括号,括到括号内的各项都不变;在“-”号后边添括号,
4
2
15
⑶ 22 (2)2 (6 1 ) 4 | (4) (2) |; 2 13
⑷ (3 1 ) (3 1
7
1 )
7
21
七年级数学第2章有理数本章复习教案华东师大版
第2章有理数【基本目标】引导学生自己回顾本章内容,以独立思考和小组讨论的学习方式,以便学生自己梳理知识,形成知识的联系,使新旧知识成为一个有机的整体.【过程与方法】通过小结与复习加深对正负数、相反数、绝对值概念的理解,通过练习,进一步提高学生的计算能力和解决简单实际问题的能力.【情感态度】培养学生反思意识,进一步体会数学来源于生活,应用于生活.【教学重点】1。
相关概念、法则、运算律的理解与掌握;2。
有理数混合运算的法则的应用及有理数的混合运算技巧.【教学难点】1.应用有理数的运算解决实际问题.2。
解题技巧的灵活性和解题思路的全面性和多样性。
一、知识框图,整体把握【教学说明】以框图的形式对本章内容做一个形象的解读,便于学生对本章的知识脉络有一个形象的了解,对各知识点之间的关系有一个形象的把握.二、释疑解惑,加深理解通过提问的方式回顾本章的主要内容,采用独立思考与同伴讨论的学习方式,让学生通过思考回答问题,加深对本章知识的理解.根据学生实际情况,教师给予适当的引导、归纳.1。
为什么要引入负数?举出实例说明正数和负数在表示相反意义的量时的作用.现实生活中存在很多个有相反意义的量,如:向东5米与向西5米,零上2℃与零下2℃,收入100元与支出100元,低于海平面150米与高出海平面800米……用正数表示其中一种量,负数表示和它相反意义的量,这样既简单又明白.例如吐鲁番盆地的海拔高度为—155m,表示吐鲁番盆地的海拔高度是低于海平面155m.2。
数的范围从正整数、零和正分数扩充到有理数后,增加了哪些数?减法中哪些原来不能进行的运算可以进行了?增加了负整数、负分数,解决了原来“小数不能减去大数"的问题,现在任何有理数都可以进行减法运算.3.怎样用数轴表示有理数?数轴与普通直线有什么不同?怎样用数轴解释绝对值和相反数?任何一个有理数都可以用数轴上的一个点表示,但数轴上的点不是都表示有理数,这一点,以后我们将要学习.数轴是一条特殊的直线,是规定了正方向、原点和单位长度的直线.原点、正方向、单位长度也称数轴的三要素,缺一不可.数轴上与原点的距离相等的两个点所表示的数是互为相反数.4.怎样比较有理数的大小?有理数的大小比较方法有两种;一是利用数轴,在数轴上较左边的点比右边的点所表示的数小;二是用绝对值,两个负数,绝对值大的反而小.正数大于零,负数小于零.5。
2023-2024人教部编版初中数学七年级上册第一章有理数教案有理数全章复习课(2)+(面向平行班)
“有理数”的复习课(2)的教学设计:【课题】“有理数”的复习课(2)【设计与执教者】:【教学时间】:【学情分析】:本设计面向平行班学生,在学生学习有理数全章书后,对有理数的运算法则已有初步的了解,能进行有理数的加减、乘除、乘方的运算,但如何才能做到准确进行运算,并能正确运用运算律简化运算等方面还需加强,因此,希望通过本节课的复习,使学生进一步掌握基本技能和基本方法,提高有理数加减、乘除、乘方的运算熟练程度和准确率。
【学情目标】:系统复习有理数加、减、乘、除、乘方的运算法则及运算律,熟练进行有理数的加、减、乘、除、乘方及混合运算;会运用运算律进行有理数的简便运算,提高解题的速度和准确性。
【教学重点】:熟练进行有理数加减、乘除、乘方的混合运算【教学难点】:准确进行有理数加减、乘除、乘方的混合运算【教学突破点】:通过实例帮助学生掌握有理数加、减、乘、除、乘方的运算法则,会运用运算律进行有理数的简便运算,提高解题的速度和准确性,设计分层练习,让各层次的学生能在课堂上得到有效的训练。
【教法、学法设计】:分层教学,讲授、练习相结合。
【教学过程】:练习与测评: 一、基础题(1))6514()537()6155()5213(-+--+-- (2) )21()43()32(6)3(42+÷-+-⨯--⨯- (3)11136(2)4912⎛⎫-⨯--÷-⎪⎝⎭(4)2)6(1)]43(361)2411[(-÷-+++ 二、中等题:1、某摩托车厂本周计划每日生产250辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的辆数为正数)①本周六生产了多少辆?②产量最多的一天比产量最少的一天多生产了多少辆? ③本周平均每天实际生产多少辆? 解:①周六生产了241辆②34辆周五生产了259辆,周日生产了225辆产量最多的一天比产量最少的一天多生产了34辆 ③247辆 2473250725894375250=-=--++-+-+2、将-15、-12、-9、-6、-3、0、3、6、9,填入下列 小方格里,使大方格的横、竖、斜对角的三个数字之和都相等。
人教有理数复习教案
人教-有理数-复习教案第一章:有理数的概念与分类1.1 复习有理数的定义:有理数是可以表示为两个整数比值的数,其中分母不为零。
1.2 复习有理数的分类:整数(正整数、零、负整数)、分数(正分数、负分数)。
1.3 复习有理数的性质:有理数具有封闭性、传递性、互补性。
第二章:有理数的运算2.1 复习加法运算:同号相加,取相同符号,并把绝对值相加;异号相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
2.2 复习减法运算:减去一个数,等于加上这个数的相反数。
2.3 复习乘法运算:同号得正,异号得负,并把绝对值相乘。
2.4 复习除法运算:除以一个不等于零的数,等于乘这个数的倒数。
第三章:有理数的乘方3.1 复习乘方的定义:乘方是指将一个数连乘若干次。
3.2 复习乘方的运算规则:负数的奇数次幂是负数,负数的偶数次幂是正数;正数的任何次幂都是正数;零的任何正数次幂都是零。
第四章:有理数的混合运算4.1 复习混合运算的顺序:先算乘方,再算乘除,算加减;同级运算,从左到右依次进行;如果有括号,先算括号里面的。
4.2 复习混合运算的运算律:加法结合律、乘法结合律、分配律。
第五章:有理数的应用5.1 复习有理数在实际生活中的应用:温度、速度、折扣等。
5.2 复习有理数在数学其他领域的应用:解方程、解不等式等。
5.3 复习有理数在科学研究中的应用:测量、计算等。
第六章:实数的扩充6.1 复习实数的概念:实数是有理数和无理数的集合。
6.2 复习无理数的概念:无理数是不能表示为两个整数比值的数,且无限不循环小数。
6.3 复习无理数的性质:无理数具有不可数性、非有界性。
第七章:实数的运算7.1 复习实数的加法运算:同号相加,取相同符号,并把绝对值相加;异号相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
7.2 复习实数的减法运算:减去一个数,等于加上这个数的相反数。
7.3 复习实数的乘法运算:同号得正,异号得负,并把绝对值相乘。
人教有理数复习教案
人教-有理数-复习教案第一章:有理数的概念与分类1.1 复习有理数的定义及性质理解有理数的定义:有理数是可以表示为两个整数比的数,其中分母不为零。
复习有理数的性质:整数和分数统称为有理数,有理数可以相加、相减、相乘、相除。
1.2 复习有理数的分类整数:正整数、零、负整数分数:正分数、负分数复习有理数的分类规则:正有理数、零、负有理数第二章:有理数的运算2.1 复习加法运算理解加法运算的定义:两个有理数相加得到一个新的有理数。
复习加法运算的性质:交换律、结合律2.2 复习减法运算理解减法运算的定义:减去一个有理数等于加上它的相反数。
复习减法运算的性质:结合律、交换律2.3 复习乘法运算理解乘法运算的定义:两个有理数相乘得到一个新的有理数。
复习乘法运算的性质:交换律、结合律、分配律2.4 复习除法运算理解除法运算的定义:一个有理数除以另一个有理数等于乘以其倒数。
复习除法运算的性质:结合律、交换律第三章:有理数的乘方3.1 复习乘方的定义理解乘方的定义:一个有理数自乘若干次的结果称为乘方。
3.2 复习乘方的运算规则复习乘方的运算规则:同号相乘为正,异号相乘为负;绝对值相乘后指数相加。
第四章:有理数的混合运算4.1 复习混合运算的定义理解混合运算的定义:涉及多种运算的算式称为混合运算。
4.2 复习混合运算的规则复习混合运算的规则:先算乘方,再算乘除,算加减;同级运算从左到右依次进行。
第五章:有理数的应用5.1 复习有理数在实际问题中的应用理解有理数在实际问题中的应用:解决生活中的加减乘除、距离、温度等问题。
5.2 复习有理数的应用题举例举例说明有理数在实际问题中的应用,如购物、长度转换、温度计算等。
第六章:实数与有理数的关系6.1 复习实数的概念理解实数的定义:实数包括有理数和无理数,是所有数字的集合。
6.2 复习实数与有理数的关系理解实数与有理数的关系:有理数是实数的一部分,包括整数和分数。
第七章:无理数的概念7.1 复习无理数的定义理解无理数的定义:无理数是不能表示为两个整数比的数,无法精确表示。
人教版七年级数学上册第一章 《有理数》总复习教案
人教版七年级数学上册第一章《有理数》总复习教案第一章《有理数》总复习一、内容分析小结与复习分作两个部分。
第一部分概述了正数与负数、有理数、相反数、绝对值等概念,以及有理数的加、减、乘、除、乘方的运算方法与运算律,从而给出全章内容的大致轮廓,第二部分针对这一章新出现的内容、方法等提出了5个问题;通过这5个问题引发学生的思考,主动进行新的知识的建构。
二、课时安排:小节与复习的要求是要把这一章内容系统化,从而进一步巩固和加深理解学习内容。
本章的主要内容可以概括为有理数的概念与有理数的运算两部分。
因此,本章总复习的二课时这样安排(测验课除外):第一课时复习有理数的意义及其有关概念;第二课时复习有理数的运算。
三、教学方法的确定:设计典型例题,检测学生知识,科学地进行小结与归纳。
四、教学安排:第一课时:本节课将复习有理数的意义及其有关概念。
其内容包括正负数、有理数、数轴、有理数大小的比较、相反数与绝对值等。
在教学过程中,应利用数轴来认识、理解有理数的有关概念,借助数轴,把这些概念串在一起形成一个用以描述有理数特征的系统。
另外,在运用有理数概念的同时,还应注意纠正可能出现的错误认识。
一、教学目标;1.理解五个重要概念:有理数、数轴、倒数、绝对值、倒数。
2.使学生提高区分概念的能力,正确运用概念解决问题。
3、能正确比较两个有理数的大小。
二、教学重点:有理数五个概念的理解与应用:有理数、数轴、倒数、绝对值、倒数。
三、教学难点:对绝对值概念的理解与应用。
四、教学过程:(一)知识梳理:1.正数和负数:(给出四个问题,帮助学生理解负数的必要性及其在生产生活中的应用。
)回答下列问题(1)温度为-4℃是什么意思?(2)如果向正北规定为正,那么走-70米是什么意思?(3)21世纪的第一年,日本的服务出口额比上一年增长了-7.3%,这里的“服务出口额比上一年增长了-7.3%”是什么意思?(4)请同学们谈一谈,为什么要引入负数?你还能举出生活中有关负数的例子吗?2.有理数的分类:(通过两个问题让学生掌握有理数的两种分类方法,理解有理数的含义。
第一章有理数复习学案
第一章有理数复习学案篇一:第一章有理数复习学案(共三课时)第一章有理数的回顾教学目标:1:识记有理数的基本概念;2:能运用相关基础知识解决简单的数学问题;3:掌握并会运用有理数的运算规则和运算律进行计算。
教学重点和难点:有理数的基本概念和算法。
教学过程:1.它们被称为倒数。
一个与另一个相反。
a的反数是(a是任意有理数);0的对立面是若a、b互为相反数,则.若a+b=0,则2.数字轴上代表数字a点和原点的数字a的绝对值称为数字a。
记住做| a |。
由绝对值的定义可得:|a-b|表示数轴上a点到b点的。
正数的绝对值就是它;如果a>0,则a=a;一个负数的绝对值是它的;若a<0,则a=-a;一0的绝对值是.若a=0,则a=0;1)数字轴比较:在数轴上的两个数,右边的数总比左边的数;正数都大于,负数都小于;正数一切负数;2)两个负数,也就是说,如果a<0,B<0,a聚焦于B,那么a<B3)做差法:∵a-b>0,∴;4)商法:∵ A/b>1,b>0,∵八:科学记数法大于一0的数字以的形式记录,其中A为(1?A<10)。
这种计数方法叫做科学计数法,N是一个正整数。
注意:指数n与原数整数位数之间的关系。
同步测试:(1)使用科学符号表示以下数字:230000=134000000000=(2)以下用科学符号表示的数字是什么?364.315×10=1.02×10=九:大致数字接近准确数而不等于准确数的数。
同步测试:如果以下问题中的数据准确,则为()a.今天的气温是28cb.月球与地球的距离大约是38万千米c、小明身高约148厘米。
有800名七年级学生十:有效数字从一个数字来看,所有数字都是这个数字的有效数字。
近似数与准确数的接近程度可用精确度表示。
例如,如果近似数字为20400,则它有一个最接近的有效数字2例2。
在相应的集合中填写以下数字:1,-0.20,31,325,-789,0,-23.13,0.618,-2021.π5?};?};?};?}.整数集:{负集:{分数集:{有理集:{例3、按规律填数:(1)2,7,12,17,(),(),??(2)1,2,4,8,16,(),(),??例4。
有理数全章复习教案
“有理数”的复习一、知识目标:1、理解五个重要概念:有理数、数轴、相反数、绝对值、倒数。
2、掌握四条法则:有理数的加、减、乘、除法则。
二、能力目标:1、会运用三条运算律进行有理数的简便运算。
2、初步领会有理数的两种方法(有理数大小的比较方法)的作用。
3、进一步体验有理数的一个规定(有理数的混合运算的顺序规定)。
三、重、难点重点是有理数的混合运算,并能熟练地运用它解决简单的应用题。
难点是绝对值的应用。
(一)概念的系统化1、负数的概念:(由于受小学算术数的影响,容易遗漏负数,判断正误:)(对的打“√”,错的打“×”)若一个数的绝对值等于5,则这个数是5 。
()若一个数的倒数等于它的本身,则这个数是1。
()若一个数的平方等于4,则这个数是2。
()若一个的立方等于它的本身,则这个数是0或1。
()2、数“0”的性质:因为0既不是正数,也不是负数,是正数和负数的分界点。
填空:相反数是它本身的数是__。
绝对值是它本身的数是__。
正整数次幂是它本身的数是__。
不为0的任何有理数的0次幂是__。
0与任何有理数相乘都得__。
3、运算律的应用:正确运用运算律可以使有理数计算简便。
一般原则:(1)把正、负数结合在一起;(2)把互为相反数结合在一起;(3)把同分母分数结合在一起;(4)把能凑整、凑0的两个数结合在一起。
4、最容易出错的两个重要性质:绝对值和平方,典型题分析:(1)有理数的绝对值总是什么数?____________(2)有理数的平方总是什么数?____________(3)若(a-1)2+(b+2)2=0,则a=______,b=______。
(4)若| a-b |+| b-3 | =0,则____________。
(5 ) | 3 - π | + | 4 –π | 的计算结果是____________。
(6 )已知:| x | =3, | y | = 2, 且x y < 0, 则x + y =____________。
七年级上第1章有理数复习教案(5篇材料)
七年级上第1章有理数复习教案(5篇材料)第一章有理数复习教学目标:1:识记有理数的基本概念;2:能够运用相关基础知识,解决简单的数学问题;3.掌握并运用有理数的运算规则和规律进行计算。
教学中的重点和难点:有理数的基本概念和算法。
教学过程:(一)有理数的基本概念一:正数和负数1、正数:大于0的数叫做正数。
2、负数:在正数前面加上负号“-”的数,比0小的数叫做负数。
3、0:既不是正数也不是负数,是正数和负数的分界。
4.同一个问题中,正数和负数分别代表意义相反的量。
二:有理数:可以写成分数的形式,这样的数叫做有理数。
有理数的两种分类三:数轴:定义原点、正方向、单位长度的直线称为数轴。
数轴满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点;(2)通常直线上的右(或上)方向为正方向,选择合适的长度作为单位长度。
数轴上表示的两个数中,右边的数总是大于左边的数;所有有理数都可以用数轴上的点来表示。
关于有理数和数轴的练习4:倒数绝对值相等,只有符号不同的两个数叫做互为相反数。
其中一个是另一个的相反数。
数a的相反数是-a,(a是任意一个有理数);0的相反数是0.若a、b互为相反数,则a+b=0.相反数的相关练习题五:倒数乘积是1的两个数互为倒数.a的倒数是;0没有倒数;若a与b互为倒数,则ab=1.倒数相关练习题倒数、相反数区别:1:互为倒数的两个数符号相同,互为相反数的两个数符号相反。
2:0没有倒数,0的相反数是0。
3:倒数对于本身的数是1或-1。
4:两个相反数之和为0,两个倒数之积为1。
示例:六:绝对值数轴上表示数a的点与原点的距离叫做数a的绝对值。
记做|a|。
由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。
a一个正数的绝对值是它本身;若a>0,则︱a︱= a;一个负数的绝对值是它的相反数;若a<0,则︱a︱=-a;0的绝对值是0.若a =0,则︱a︱= 0;对任何有理数a,总有︱a︱≥0.绝对值知识的相关练习题例题:七:有理数大小的比较:1)数轴比较:在数轴上的两个数,右边的数总比左边的数大;正数都大于0,负数都小于0;正数大于一切负数;2)两个负数,较大的绝对值较小。
教案有理数单元复习
教案有理数单元复习一、教学目标:1. 回顾和巩固有理数的概念、性质和运算规则。
2. 提高学生对有理数的理解和运用能力。
3. 培养学生的逻辑思维和解决问题的能力。
二、教学内容:1. 有理数的定义和分类整数:正整数、负整数、零分数:正分数、负分数2. 有理数的性质相反数、绝对值、倒数加法、减法、乘法、除法的运算规则3. 有理数的运算加法:同号相加、异号相加减法:减去一个数等于加上它的相反数乘法:正数乘以正数、负数乘以正数、正数乘以负数、负数乘以负数除法:除以一个数等于乘以它的倒数三、教学步骤:1. 引入:通过一些实际问题,引发学生对有理数的回忆和思考。
2. 复习:引导学生回顾有理数的定义、性质和运算规则,并提供一些例子进行解释和说明。
3. 练习:给出一些练习题,让学生独立完成,并解答他们的疑问。
4. 讨论:组织学生进行小组讨论,分享彼此的解题方法和经验,互相学习和借鉴。
5. 总结:对复习的内容进行总结和梳理,强调重点和难点,并提醒学生注意事项。
四、教学评价:1. 通过课堂练习和课后作业,评估学生对有理数的理解和运用能力。
2. 观察学生在讨论中的表现,评估他们的合作和沟通能力。
3. 综合评价学生的学习态度和进步情况,给予鼓励和指导。
五、教学资源:1. 教学PPT:展示有理数的定义、性质和运算规则。
2. 练习题:提供一些有理数运算的练习题,供学生练习使用。
3. 参考资料:提供一些有关有理数的参考资料,供学生自主学习和拓展。
六、教学活动:1. 案例分析:选取几个实际问题,让学生运用有理数知识解决问题,加深对有理数应用的理解。
2. 课堂小测:进行有理数单元的小测,检验学生复习效果。
七、教学拓展:1. 探索实数与有理数的关系:引导学生思考实数与有理数之间的联系,理解实数是有理数的一个拓展。
2. 数轴上的有理数:让学生在数轴上表示有理数,加深对有理数大小关系的理解。
八、教学难点与策略:1. 难点:有理数运算中的符号判断和计算。
第一章---有理数复习教学设计
第一章有理数复习教学设计一、学习目标1.能正确掌握数的分类,理解有理数、数轴、相反数、绝对值、倒数五个重要概念。
2. 掌握有理数的加、减、乘、除、乘方的运算法则,能进行有理数的加、减、乘、除、乘方的运算和简单的混合运算;3.养成“言必有据、做必有理、答必正确”的良好思维习惯。
增进“应用数学知识解决实际问题的数学思想。
二、知识重点:绝对值的概念和有理数的运算(包括法则、运算律、运算顺序、混合运算)是本章的重点。
三、知识难点:绝对值的概念及有关计算,有理数的大小比较,及有理数的运算是本章的难点。
四、考点:绝对值的有关概念和计算,有理数的有关概念及混合运算是考试的重点对象。
五、学习策略:先通过知识要点的小结与典型例题练习,然后进行检测,找出漏洞,再进行针对性练习,从而达到内容系统化和应用的灵活性。
六、知识框架:教学过程:第一课时有理数的基本概念和相关的基础知识(一)具有相反意义的量与正负数1、向东30米记作+30米,那么-50米记作().2、在-0.1,2,-9,-25,+1,0,12中,正数有_________,负数有_________.再向西走了17m,此时,小明在梧桐树的什么方向,距离梧桐树多远?4、一批螺帽产品的内径要求可以有±0.02 mm的误差,现抽查5个样品,超过规定的毫米值记为正数,不足值记为负数,检查结果如表.则合乎要求的产品数量为( ).A .1个B .2个C .3个D .5个5、有理数“0”的作用:(二)有理数的概念与分类__________________统称有理数。
有理数有两种分类方式,分别是:__________________________________________⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩有理数 或 ___________________________________⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩有理数 1. 将下列各数填入相应的集合中:15、-15、-5、215、 138-、0.1、0、-5.32、-80、123、-2.333.正数集合:{ …} 负数集合:{ …} 整数集合:{ …} 分数集合:{ …} 正整数集{ …}; 负分数集{ …}2. 最大的负整数是 ;最小的正整数是 ;最大的非正数是 ;最大的非负数是 .3.下面说法中正确的是( ).A .正整数和负整数统称整数B .分数不包括整数C .正分数,负分数,负整数统称有理数D .正整数和正分数统称正有理数(三)数轴1、规定了_________、_________和_________的_________叫做数轴2、数轴的画法及常见错误分析①画一条水平的______________;②在这条直线上适当位置取一实心点作为______________: ③确定向右的方向为______________,用______________表示;④选取适当的长度作单位长度,用细短线画出,并对应标注各数,同时要注意同一数轴的 要一致. ⑤数轴画法的常见错误举例:不统一没有3、有理数与数轴的关系一切有理数都可以用数轴上的表示出来.在数轴上,右边的点所对应的数总比左边的点所对应的数,正数都大于,负数都小于,正数大于一切负数.注意:数轴上的点不都是有理数,如 .4、在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“有理数”的复习
一、知识目标:
1、理解五个重要概念:有理数、数轴、相反数、绝对值、倒数。
2、掌握四条法则:有理数的加、减、乘、除法则。
二、水平目标:
1、会使用三条运算律实行有理数的简便运算。
2、初步领会有理数的两种方法(有理数大小的比较方法)的作用。
3、进一步体验有理数的一个规定(有理数的混合运算的顺序规定)。
三、重、难点
重点是有理数的混合运算,并能熟练地使用它解决简单的应用题。
难点是绝对值的应用。
(一)概念的系统化
1、负数的概念:(因为受小学算术数的影响,容易遗漏负数,判断正误:)(对的打“√”,错的打“×”)
若一个数的绝对值等于5,则这个数是5 。
()
若一个数的倒数等于它的本身,则这个数是1。
()
若一个数的平方等于4,则这个数是2 。
()
若一个的立方等于它的本身,则这个数是0 或1 。
()
2、数“0”的性质:因为0既不是正数,也不是负数,是正数和负数的分界点。
填空:
相反数是它本身的数是__。
绝对值是它本身的数是__。
正整数次幂是它本身的数是__。
不为0 的任何有理数的0次幂是__。
0与任何有理数相乘都得__。
3、运算律的应用:准确使用运算律能够使有理数计算简便。
一般原则:
(1)把正、负数结合在一起;
(2)把互为相反数结合在一起;
(3)把同分母分数结合在一起;
(4)把能凑整、凑0 的两个数结合在一起。
4、最容易出错的两个重要性质:绝对值和平方,典型题分析:
(1)有理数的绝对值总是什么数?____________
(2)有理数的平方总是什么数?____________
(3)若(a-1)2+(b+2)2=0,则a=______,b=______。
(4)若| a-b |+| b-3 | =0,则____________。
(5 ) | 3 - π | + | 4 –π | 的计算结果是____________。
(6 )已知:| x | =3, | y | = 2, 且x y < 0, 则x + y =____________。
( 7 )
化简a + | a + b | - | b – a | =___________。
(8 )如果| x – 3 | = 0 ,那么x =__________
四、典型示例,科学归纳.
例 1、指出下列各数的相反数、倒数、绝对值,并指出哪两个数互为相反数、互为倒数、绝对值相等;把各数分别表示在数轴上,并填在相对应的集合里。
8、-1/8、-1、-8、-(-1/8)、0。
整数集合( … ) 分数集合( …)
正数集合( …) 负数集合 ( …)
正整数集合( … ) 有理数集合 ( … )
例 2、指出绝对值小于5的整数,并按从小到大的顺序把它们排列起来。
例 3、比较大小:a 与2a.
解:
例 4、计算: ⎪⎭⎫ ⎝⎛--⨯⎪⎭⎫ ⎝⎛⨯--711414128
7431
五、强化训练,反馈矫正
1、 填空
(1)______是最小的正整数;______是最大的负整数;______的绝对值是它的本身;平方后等于它本身的数是______。
(2) 9与- 13的和绝对值是____________。
(3) 数轴上到原点的距离等于3的点对应的数是____________。
(4) 计算(- 1 )20+(-1 )21=____________。
(5) -2的倒数相反数是____________。
(6) 绝对值小于2.1的整数是____________。
(7) 3,-7,-2的和的绝对值比它们的绝对值的和大多少?______
2、 判断正误:
① (- 2 ) 2 与 –22 互为相反数。
②只有负数的绝对值才等于它的相反数。
③两数平方后,原来较大的数仍较大。
④若2.3 2=5.290,则0.23 2 =0.5229。
3、 比较下列各组数的大小:
(1)8
765--和;____________ (2)-(-0.01)和- 10。
____________ (3)-π和-3.14;____________ (4)a 和 –a 。
____________
4、 计算: (1)()42243611-⨯⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--+ (2)37
5235375236-----
(3)()4.0451252.012-⨯⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝
⎛+--- ⑾ )()()()(72323434322---⨯--÷-
一、填空题
(1)绝对值大于1小于5的数中,最小的奇数是______ 。
(2)|312|-比3
12-少____ (3)=-+-10099)2()2(____
(4)近似数2.58万,精确到____位,有____个有效数字。
(5)a=3,|b|=10,且|b-a|=-(b-a ),则a-b=____
(6)a ,b 互为相反数,c 与d 互为倒数,则2a-3dc+2b=____
(7)若0|1|232=-+b a ,则a=____,b=____。
(8)如图,将A 向右移20个单位长度,再向左移15个单位长度,
那么该点表示的数是____。
二、选择题
(9)任意整数a ,它的平方2a 的个位数字不可能出现在( )中。
A .3,4,9,0
B .2,3,7,8
C .4,5,6,7
D .1,5,6,9
(10)下列比较大小的式子中,错误的是____
A .(-8)×(+3)<|(-8)×(+3)|
B .3
13.0->- C .32)2()3(-<- D .0.01>-1000
11)下列说法中准确的个数是____
1.有理数a 的倒数是a
1。
2.两个有理数相减,差为正,则被减数大于减数。
3.符号相反的两个数是相反数。
4.任意两个有理数的和一定大于其中的一个加数。
A .1
B .2
C .3
D .4
(12)用四舍五入法得到a 的近似数为4.60,则这个数a 的范围是( )
A .64.460.4≤≤a
B .65.455.4≤≤a
C .605.4595.4<≤a
D .605.4595.4<<a
三、计算
(13))6514()537()6155()5213(-+--+-- (14))2
1()43()32(6)3(42+÷-+-⨯--⨯-
(15))3
4(1573)152(43)34()513(-÷+-⨯-+÷- (16)2)6(1)]43(361)2411[(-÷-+++
(17) -32-223318525)()()(--÷--⨯- (18) )(631-
÷(3
27291145-+-)
四、解答题
(19)已知有理数a ,b 在数轴上位置如图所示
请将下列各数表示在数轴上,并按从小到大的顺序排列,用“<”连接
a, b, -a, -b, a-b, 0, 1, -2
(20)某摩托车厂本周计划每日生产250辆摩托车,因为工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的辆数为正数)
①本周六生产了多少辆?
②产量最多的一天比产量最少的一天多生产了多少辆?
③本周平均每天实际生产多少辆?
(21)一口井,水面比井口低3米,一只蜗牛从水面沿着井壁往井口爬,第一次往上爬了0.5米后又往后滑了0.1米;第二次往上爬了0.42米,却又下滑了0.15米;第三次往上爬了0.7米,却下滑了0.15米;第四次往上爬了0.75米,却下滑0.1米;第五次往上爬了0.55米,没有下滑;
第六次往上爬0.4米.问蜗牛有没有爬出井口?。