[初中数学]有理数全章教案 人教版

合集下载

数学人教版(2024)7年级上册 1.2.1 有理数的概念 教案02

数学人教版(2024)7年级上册 1.2.1 有理数的概念 教案02

第一章有理数1.2.1 有理数的概念0.3…负分数:如-52,-23,-17, -0.5, -150.5,… 引导:0.1=110,-0.5=−12, 0.3 = 13 ,事实上,有限小数和无限循环小数都可以化为分数,因此它们也可以看成分数。

指出:正分数、负分数统称为分数。

想一想:整数能化成分数吗?预设:2=21, 3=31,…正整数可以写成正分数的形式-2=−21, -3=−31,…负整数可以写成负分数的形式0=01,0也可以写成分数的形式 整数可以写成分数的形式指出:可以写成分数形式的数称为有理数。

可以写成正分数形式的数为正有理数,可以写成负分数形式的数为负有理数。

思考:你能试着对有理数进行分类吗?预设:有理数的分类(整分性):有理数的分类(正负性):例1:指出下列各数中的正有理数、负有理数,并分别指出其中的正整数、负整数:13,4.3,−38,8.5%,-30,-12%, 19 ,-7.5,20,-60,1.2解:正有理数:13,4.3, 8.5%, 19 ,20,1.2;其中正整数有13,20。

负有理数: −38, -30,-12%, -7.5,-60 ; 其中负整数有-30,-60。

例2:下列说法中,正确的是( ). A .在有理数中,0的意义仅仅表示没有 B .一个有理数,它不是正数就是负数 C .正有理数和负有理数组成有理数 D .0是自然数 答案:D强调:在有理数概念中,“0”很特殊: (1)0既不是正数,也不是负数; (2)0是整数,不是分数; (3)0既是非正数,又是非负数. 活动意图说明:【解析】本题主要考查了有理数的分类,理解有理数的相关定义是解题的关键.先根据正数的定义判断A 的正误,再根据非负数是正数或0判断B 的正误;再根据有理数也可分成整数和分数判断C ,D 的正误即可解答.解:A .由50%,1,2.5是正数,故正确,符合题意; B .由−2,−4为负数,故错误,不符合题意; C .1为整数,故错误,不符合题意; D .因为112是分数,故错误,不符合题意. 故选:A .【综合拓展类作业】5.如图,把下列各数填入相应的各圈里. 100,−99%,0,−2000,5.2,6,−0.3,116,−53【答案】见解析【解析】本题考查了有理数的分类,根据有理数的分类,即可求解. 解:整数为:100,0,−2000,6; 负数为:−99%,−2000,−0.3,−53; 则负整数为:−2000;本节课的主要内容是让学生明确有理数的概念,并能对有理数进行正确。

人教版(2024版)初中数学七年级上册 第一章有理数 1.2.1 有理数的概念 教学设计

人教版(2024版)初中数学七年级上册 第一章有理数 1.2.1 有理数的概念 教学设计

课堂教学设计1、复习、导入大于0 的数叫正数,小于0的数叫负数0既不是正数,也不是负数正数的符号用+ 表示,书写时可以省略负数的符号用-表示,书写时不能省略(1)汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正。

汽车向北行驶75km,记做______km(或____km),汽车向南行驶100km,记做________km;(2)如果向银行存入50元记为50元,那么-30.50元表示______________________;复习巩固话题迅速将学生的注意力吸引到课堂上来。

使学生生认知冲突,渴艺望了解其中的奥秘从而调动了学生学习的积极性。

2、精讲新课在小学阶段和上一节中,我们认识了很多数。

回想一下,到目前为止,我们认识了哪些数? 你能举几个例子吗?写在黑板上。

观察黑板上的这些数,能否将所写的数按如下类型进行归类呢?有限小数:0.5 0.25 0.125 1.3 -0.5进一步地,正整数可以写成正分数的形式,可以写成分数形式的数称为有理数(rational number)有理数分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数辨析学生自己尝试分类时,可能会很大略,教师赐予引导和鼓励,划分数的种类要从文字所表示的意义上去引导,这样学生易于理角军有限小数或无限循环小数都可以化成分数,为下-问题做好铺垫,通过将三者进行比较,归纳得出有理数是一个整数和-个非零整数的比的本质特征,让学生深入理解有理数的概念在多媒体上展示有理数的分类表,分分类的标准要引导学生去体会2、精讲新课小故事:有理数其实并不比别的数更“有道理”,事实上是一个翻译失误。

有理数(rational number)一词从西方传来,rational通常的意义是“理性的”,所以被误译为有理数。

但这个词实际上来源于古希腊,在古希腊语中是比率的意思。

所以意义也很明显,就是整数的“比”。

毕达哥拉斯学派认为,世界上一切对象都是由整数或整数之间的商组成,这就是“万物皆数”理论,也是人类对有理数最早的认识和总结。

人教版七年级数学第一章有理数教案

人教版七年级数学第一章有理数教案

人教版七年级数学第一章有理数教案正负数的表示方法及其意义,具有相反意义的量的表示方法.难点1.正负数的相加、相减及其意义.2.具有相反意义的量的表示方法.第二章有理数2.1有理数的概念(2课时)第1课时有理数的引入了解有理数的产生,知道什么是有理数,理解有理数的意义和特点.重点有理数的意义和特点.难点1.有理数的产生.2.有理数的特点.一、新课导入活动1:创设情境,导入新课教师投影展示教材第2页图片,让学生回顾自然数、整数、分数和正负数的概念,引出有理数的产生.活动2:体验有理数的产生教师出示一些无限不循环小数,如0.333…、0.…等,让学生思考这些数是否可以表示为分数的形式,引出有理数的概念.二、推进新课活动3:认识有理数的意义和特点教师讲解有理数的意义和特点,例如有理数是可以表示为两个整数之比的数,有理数包括正有理数、负有理数和0等.活动4:练与小结练:教材第3页练.小结:这堂课我们研究了什么?有理数的概念和特点是什么?你能简单概括一下吗?活动5:作业题2.1第1,2,3,4题有理数是数的范围的一次重要扩充,它包括了正有理数、负有理数和0等,是可以表示为两个整数之比的数,它的产生是为了能够更加准确地表示实际问题中的量,例如无限不循环小数就可以表示为有理数的形式,这样就使得数的范围更加广泛,更加符合实际应用的需要.学生在研究有理数的概念和特点时,应该理解有理数的意义和特点,并掌握有理数的表示方法,为后续的研究打下坚实的基础.理解负数及表示的量的意义。

在会计的账目本上,我们会看到一些数据,如+1800元,—6932元,这些数据代表着收入款额和支出款额。

在地形图上表示某地的高度时,需要以海平面为基准,用正数表示高于海平面的某地的海拔,负数表示低于海平面的某地的海拔。

记录账目时,通常用正数表示收入款额,负数表示支出款额。

在教学中,我们可以通过创设情境和实际例子来帮助学生理解正负数的含义。

例如,在地形图上表示某地的海拔时,我们可以让学生自己尝试用正负数表示高度。

最新人教版七年级上册数学第一章有理数全章教案

最新人教版七年级上册数学第一章有理数全章教案

最新人教版七年级上册数学第一章有理数全章教案1.1正数和负数的概念教学目标述评▲知识目标:(1). 让学生判断一个数字是正还是负,(2).使学生会用正数或负数表示生活中具有相反意义的量.▲ 能力目标:(1)使学生了解数是为了满足生产和生活的需要而产生、发展起来的。

(2). 列出前后意义相反的数量,培养学生的观察、归纳和概括能力。

(3).经历探索负数概念的形成过程,使学生建立正数与负数的数感。

(4)培养学生的数学应用意识,将数学应用于生活。

▲情感目标:借助情感因素,营造亲切、和谐、活泼的课堂气氛,鼓励全体学生积极参与教学活动。

以团结协作、严谨求实的学习作风、坚韧不拔的毅力和创新精神陪伴和支持他们。

2学情分析评论.从认知特征来看,七年级学生具有探究性、探究性和想象力。

我从教学中的动画视频开始,以孩子们喜欢的方式进入课堂。

在游戏中学习,在活动中成长,在实践中提高。

在教学中,借助情感因素,营造亲切、和谐、活泼的课堂气氛,鼓励全体学生积极参与教学活动。

以团结协作、严谨求实的学习作风、坚韧不拔的毅力和创新精神陪伴和支持他们。

营造自主探索、合作交流的氛围,在个人展示、讲解、观察、实践等活动中运用多媒体,提高教学效率,验证结论,激发学生学习兴趣。

3重点难点评论.要点:了解正数和负数是由实际需要产生的,能够用正数和负数来表示生活中常用的意义相反的量。

难点:学习负数的必要性,能准确地举出具有相反意义的量的典型例子。

4.教学过程4.1第一学时4.1.1教学活动活动1【导入】动画视频导入评论.小学已经学了六年数学,初中将继续学三年。

要学什么?数学自然与数字的研究密不可分。

早在古代,人们就开始了解数字及其混淆!(动画视频导入)活动2【活动】游戏中学习评论.古代人们的困惑是什么?什么是相反的行为?我们在比赛结束后见。

“反讽”游戏中,预习量的含义正好相反。

活动3【活动】小组讨论,合作交流评论.请列举在生活中具有相反意义的数量。

2023-2024人教部编版初中数学七年级上册第一章有理数教案有理数全章复习课(2)+(面向平行班)

2023-2024人教部编版初中数学七年级上册第一章有理数教案有理数全章复习课(2)+(面向平行班)

“有理数”的复习课(2)的教学设计:【课题】“有理数”的复习课(2)【设计与执教者】:【教学时间】:【学情分析】:本设计面向平行班学生,在学生学习有理数全章书后,对有理数的运算法则已有初步的了解,能进行有理数的加减、乘除、乘方的运算,但如何才能做到准确进行运算,并能正确运用运算律简化运算等方面还需加强,因此,希望通过本节课的复习,使学生进一步掌握基本技能和基本方法,提高有理数加减、乘除、乘方的运算熟练程度和准确率。

【学情目标】:系统复习有理数加、减、乘、除、乘方的运算法则及运算律,熟练进行有理数的加、减、乘、除、乘方及混合运算;会运用运算律进行有理数的简便运算,提高解题的速度和准确性。

【教学重点】:熟练进行有理数加减、乘除、乘方的混合运算【教学难点】:准确进行有理数加减、乘除、乘方的混合运算【教学突破点】:通过实例帮助学生掌握有理数加、减、乘、除、乘方的运算法则,会运用运算律进行有理数的简便运算,提高解题的速度和准确性,设计分层练习,让各层次的学生能在课堂上得到有效的训练。

【教法、学法设计】:分层教学,讲授、练习相结合。

【教学过程】:练习与测评: 一、基础题(1))6514()537()6155()5213(-+--+-- (2) )21()43()32(6)3(42+÷-+-⨯--⨯- (3)11136(2)4912⎛⎫-⨯--÷-⎪⎝⎭(4)2)6(1)]43(361)2411[(-÷-+++ 二、中等题:1、某摩托车厂本周计划每日生产250辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的辆数为正数)①本周六生产了多少辆?②产量最多的一天比产量最少的一天多生产了多少辆? ③本周平均每天实际生产多少辆? 解:①周六生产了241辆②34辆周五生产了259辆,周日生产了225辆产量最多的一天比产量最少的一天多生产了34辆 ③247辆 2473250725894375250=-=--++-+-+2、将-15、-12、-9、-6、-3、0、3、6、9,填入下列 小方格里,使大方格的横、竖、斜对角的三个数字之和都相等。

新人教版七年级上册数学第一章有理数全章教案

新人教版七年级上册数学第一章有理数全章教案

新人教版七年级上册数学第一章有理数全章教案第一章“有理数”教材分析本章是第三期教科书的第一章,不仅对前两个时期的内容进行了阐述,而且为进一步研究奠定了基础。

本章的主要内容是有理数的相关概念和运算。

首先从实例中引入负数,然后介绍有理数的一些概念。

在此基础上,介绍了有理数的加减运算。

引入负数是实际的需要,也是学习第三学段数学内容,特别是数与代数内容的需要。

引入数轴可以直观地用数轴上的一个点来表示有理数,从而直观地引入对数值和绝对值,为用数轴引入有理数的加法定律和乘法定律做准备。

引入相反数的概念,一方面,可以加深对相反意义的量的认识,另一方面,可以为学习绝对值、有理数减法等作准备。

引入绝对值的概念可以加深对有理数的理解:有理数是由符号和绝对值决定的。

当比较两个负数时,在有理数的运算中也应该使用绝对值的概念。

本章的重点是有理数的运算。

加法与乘法都是在介绍运算法则――着重是符号法则的基础上,进行基本运算,然后结合具体例子引入运算律,并运用运算律简化运算。

减法和除法的重点是如何转化为加法和乘法,从而使用加法和乘法的运算规则和法则。

乘方是几个相同因数的乘积,也就可以利用乘法运算。

科学记数法与乘方有关,因而可进一步加以介绍。

近似数在实际问题中有广泛的应用,有必要在本章作进一步的认识。

近似数的内容与乘方也有一定的联系,例如,大数的近似数用科学记数法表示,可以清楚地看出保留的有效数字的个数。

为了加强与相关操作的联系,计算机计算分散在相关内容中。

例如,教科书使用计算器计算一些负数的幂,然后探索负数幂的符号规律。

通过学习使用计算器进行有理数运算,可以用计算器完成更复杂的计算。

简单的有理数运算仍需要学生熟练地用笔算完成。

本章的教学要求如下:1.通过实际例子,感受引入负数的必要性。

会用正负数表示实际问题中的数量。

2.理解有理数的含义,能够用数轴上的点来表示有理数。

借助数轴理解对数值和绝对值的含义,能够找到有理数的对数值和绝对值(绝对值符号不含字母),能够比较有理数的大小。

人教版七年级数学上册第一章《有理数》全章教学设计

人教版七年级数学上册第一章《有理数》全章教学设计

第一章有理数镇中教课设计1.1.1 正数和负数( 1)[学习目标 ]1、理解正数和负数的观点,会判断一个数是正数仍是负数2、会用正数和负数来表示拥有相反意义的量3、理解数 0 的意义[学习过程 ]一、板书课题:(一)叙述:同学们,今日我们来学习第一章有理数.1.1.1 正数和负数(教师板书)二、出示目标(一)过渡语:要达到什么教课目的呢?请看投影(二)屏幕显示学习目标1、理解正数和负数的观点,会判断一个数是正数仍是负数2、会用正数和负数来表示拥有相反意义的量3、理解数 0 的意义三、自学指导(一)过渡语:如何才能当堂达到学习目标呢?请同学们依据指导认真自学。

(二)出示自学指导认真看课本( P1-3练习前方)① 理解正数的观点,会模仿正数的观点,解说负数的含义;②理解正数、负数和0 表示的实质含义,注意黄色书签的内容;③回答 P3“思虑”中的问题。

若有疑部问,能够小声讨教同桌或举手问老师。

6分钟后,比谁能正确做出检测题。

四、先学(一)学生看书,教师巡视,师敦促每一位学生认真、紧张的自学,鼓舞学生怀疑问难。

(二)检测1、过渡语:同学们,看完的请举手。

懂了的请举手。

好下边就比一比,看谁能正确做出检测题。

2、检测题 P3:1、2、3、43、学生练习,教师巡视。

(改集错误会进行二次备课)五、后教(一)改正:请同学们认真看一看这四名同学的板演,发现错解的请举手(指名改正)(二)议论:评第 1 题:(教师要重申停题格式)①正数找的对吗?为何对?师指引生回答:比0 大的数是正数(师板书)(如对,教师打√)②你还举一些正数的例子吗?③负数找的对吗?为何?师指引生回答:在正数前加“一”的数是负数④你能模仿正数的定义来谈谈负数的吗?师指引生回答:比0 小的数是负数。

(师板书)(如对,教师打√)评 2、3、4 题答案正确吗?为何?师指引生回答:数0 既不是正数也不是负数,是正、负数的分界限。

(师板书)重申“0”的意义不单是表示“没有”,还能够表示温度读报00C(表示标准),山脚的高度 0 米等(表示起点)。

新人教版七年级数学第1章有理数教案(全章)

新人教版七年级数学第1章有理数教案(全章)

第1课时正数和负数(1)第2课时正数和负数(2)第3课时 有理数教 学目 标1、掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2、了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3、体验分类是数学上的常用处理问题的方法。

教学重点 正确理解分类的标准和按照一定的标准进行分类 教学难点 正确理解有理数的概念教 学 互 动 设 计设计意图一、创设情境 导入新课在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个不同类型数(同时请3个同学在黑板上写出). 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与二、合作交流 解读探究【问题1】观察黑板上的9个数,并给它们进行分类. 学生思考讨论和交流分类的情况.学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.例如,对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.··…(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数”.正整数:如1,2,3 …; 零:0;负整数:如-1,-2,-3 …正分数:如21,32,715,0.1,5.3… 负分数:如-0.5,25-,32-,-715,-0.1,-150.25…; 所有的正整数组成正整数集合,所有的负整数组成负整数集合。

正整数、0、负整数统称为整数。

把一些数放在一起,就组成了一个集合,简称数集,在表示数集时要注意:⑴数集可以用大括号表示,也可用圆圈表示。

人教版七年级数学上册第一章《有理数》教案

人教版七年级数学上册第一章《有理数》教案

人教版七年级数学上册第一章《有理数》教案第一章有理数单元教学内容1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念.2.通过怎样用数简明地表示一条东西走向的马路旁的树、电线杆与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系.(2)数轴能反映数的性质.(3)数轴能解释数的某些概念,如相反数、绝对值、近似数.(4)数轴可使有理数大小的比较形象化.3.对于相反数的概念,从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.4.正确理解绝对值的概念是难点.根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值.(2)有理数的绝对值是一个非负数,即最小的绝对值是零.(3)两个互为相反数的绝对值相等,即│a│=│-a│.(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)若│a│=│b│,则a=b,或a=-b或a=b=0.三维目标1.知识与技能(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.(2)掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的解.(3)理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值.(4)会利用数轴和绝对值比较有理数的大小.2.过程与方法经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.3.情感态度与价值观使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言.重、难点与关键1.重点:正确理解有理数、相反数、绝对值等概念;会用正、负数表示具有相反意义的量,会求一个数的相反数和绝对值.2.难点:准确理解负数、绝对值等概念.3.关键:正确理解负数的意义和绝对值的意义.课时划分1.1 正数和负数 2课时1.2 有理数 5课时1.3 有理数的加减法 4课时1.4 有理数的乘除法 5课时1.5 有理数的乘方 4课时第一章有理数(复习)2课时1.1正数和负数第一课时三维目标一.知识与技能能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量.二.过程与方法借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性.三.情感态度与价值观培养学生积极思考,合作交流的意识和能力.教学重、难点与关键1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法.2.难点:正确理解负数的概念.3.关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解.教具准备投影仪.教学过程四、课堂引入我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的.人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数.在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.五、讲授新课(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+,…就是3,2,0.5,,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.(2)中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数.(3)数0既不是正数,也不是负数,但0是正数与负数的分界数.(4) 0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度.用正负数表示具有相反意义的量(5)、把0以外的数分为正数和负数,起源于表示两种相反意义的量.正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额.(6)请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义.(7)你能再举一些用正负数表示数量的实际例子吗?(8)例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.六、巩固练习课本第3页,练习1、2、3、4题.七、课堂小结为了表示现实生活中的具有相反意义的量,我们引进了负数.正数就是我们过去学过的数(除0外),在正数前放上“-”号,就是负数,但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数.八、作业布置1.课本第5页习题1.1复习巩固第1、2、3题.九、板书设计1.1正数和负数第一课时1、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+,…就是3,2, 0.5,,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.2、随堂练习。

第1章有理数全章精品教案

第1章有理数全章精品教案

新人教版七年级数学上册第1章有理数第3.1节有理数的加法第2课时精品教案教学目标知识技能:经历有理数加法运算律的探索过程,理解有理数加法的运算律.能用运算律简化有理数加法的运算.使学生逐渐养成,“算必讲理”的习惯,培养学生初步的推理能力与表达能力.数学思考:培养学生的观察能力和思维能力.经历对有理数的运算,领悟解决问题应选择适当的方法.解决问题:能运用加法运算律简化加法运算.理解加法运算律在加法运算中的作用,适当进行推理训练.情感态度:在数学学习中获得成功的体验.教学重点:加法交换律和结合律,及其合理、灵活的运用教学难点:合理运用运算律.教学内容:课本第19至21页.教学过程设计活动一.复习回顾,引入课题.1.回顾复习:小学时已学过的加法运算律有哪几条?2.学生回答后教师接着问:你能用自己的语言或举例子来说明一下加法的交换律与结合律吗?3.提出问题:这些运算律在有理数加法中适用吗?这就是这节课我们要研究的课题.教学说明:通过上述过程启发得出小学时学的加法运算律在有理数范围内仍适用.活动二.分析问题,探究新知.1.探讨加法运算律在有理数范围内是否适用.问题1:我们如何知道加法交换律在有理数范围内是否适用?(先由教师举一些实际例子来说明,然后鼓励学生举不同的数来验证)问题2:我们如何用语言来叙述有理数加法的交换律呢?(这个问题请学生回答,并互相补充)2.教师归纳后板书:“有理数加法中,两个数相加,交换加数的位置,和不变.”问题3 :你能把有理数加法的交换律用字母来表示吗?由学生回答得出a+b=b+a后,教师指出:①式子中的字母分别表示任意的一个有理数.(如:既可成表示整数,也可以表示分数;既可以表示正数,也可以表示负数或0).②在同一个式子中,同一个字母表示同一个数.3.有理数加法结合律的学习.“加法运算律对所有有理数都成立”先直接给出,让学生举例尝试,起到验证的作用.要让学生举不同的数验证,是为避免学生只由一个例子即得出某种结论.鼓动学生用自己的语言表达所发现的结论或规律,并用式子表示出来.让学生感受字母表示数的含义,同时也让学生体会到数学符号语言的简洁性.4.思考:如果四个或四个以上的有理数相加时,还能使用加法交换律与结合律吗?与同伴交流你的看法,并举例子来说明你的观点.活动三.知识应用,例题解析.例1.计算:(1)16+(-25)十24+(-35);(2)(-2.48)+(+4.33)+(-7.52)+(-4.33).师生共同分析完成,教师规范板书:解:(1)原式=16+24+ (-25)十(-35)(教师提问:依据是什么?)=(16+24)+[(-25)+(-35)〕(教师提问:依据是什么?) =40+(一60)=20教学说明:先让学生按从左到右的顺序依次相加,算一算,再让学生说一说,通过这两道题目的计算,你有什么体会?(使用运算律能使运算简便,简化运算的方法有:把正数和负数分别相加,有相反毅的先把相反数相加,能凑整的先凑整等等).例2.课本第19页例4.①让学生估计一下总重量是超过标准重量还是不足标准重量.②让学生思考如何计算,学生能给教科书提供的解法1 .即先10袋小麦的总质量,再计算总计超过多千克.此时可组织学生讨论:有没有不同的解法?(此时,如果已有学生提出教材的解法2的思路,则请学生讨论这种解法的合理性.并比较这两种解法.这是一个有理数应用的例子,这两种解法都应让学生掌握,尤其是解法2更是体现学习有理数加法运算的必要性.)教学说明:要注重学习小组内的合作与交流,让每个学生都能从与同伴的交流中获益.鼓励学生在已有知识的基础上对结论做进一步探索,同时也为接下去的应用打下基础.强调算理,让学生在具体运算中体会运算律对简化运算的作用.通过例1的学习让学生明白:加法的交换律与结合律通常是结合起来使用的.此处与书本相对增加了一道题,主要是考虑到存在互为相反数的两数相加的简便性.也是培养学业生能力的需要.活动四.知识巩固,课堂练习.课本第20页小练习活动五.知识梳理,课堂小结.通过这节课的学习,你有哪些收获,引导学生自己总结.活动六.知识反馈,作业布置.1.课本第25页第2,9,10题2.阅读课本第20页“实验与探究”有兴趣的可完成幻方.。

第1章有理数全章精品教案

第1章有理数全章精品教案

新人教版七年级数学上册第1章有理数第4.1节有理数的乘法第2课时精品教案教学目标知识技能:巩固有理数的乘法法则,探索多个有理数相乘时,积的符号的确定方法并能运用它进行有理数的乘法运算.能让学生在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解,能从交流中获益.数学思考:通过对问题的探索,培养观察、分析和概括的能力.解决问题:探索多个有理数相乘时,积的符号的确定方法并能运用它进行有理数的乘法运算.培养学生的观察、归纳、猜测、验证等能力.情感态度:能面对数学活动中的困难,有学好数学的自信心.教学难点:正确进行多个有理数的乘法运算教学重点:多个有理数相乘时积的符号的确定方法教学内容:课本第31至32页.教学过程设计活动一.创设情境,引入新课.1.阅读课本40页的观察与猜想,桌上有9张反面向上的扑克牌,每次翻动其中任意2张(包括已翻过的牌),使它们从一面向上变为另一面向上,这样一直做下去,观察能否使所有的牌都正面向上?2.利用学生课前准备的纸牌,以小组的形式开展试验,(若用多媒体可在课件中用动画的形式不停地翻动其中的任意两张牌)让其中一个小组的代表发表试验后的结论:不论翻多少次,都不会使9张牌都正面朝上.3.提问:从这个结果,你能想到其中的数学道理吗?教学说明:以游戏的形式,激起学生的探究欲望,使学生以饱满的热情投入到课堂中来.学生亲自动手,验证自己的想象,得出结论,再经过交流、思考,升华认识.问题的提出让学生意识到只有认真学习了本节课的知识,才能解释其中的选理,激起他们的学习兴趣.活动二.分析问题,探究新知.1.观察:下列各式的积是正的还是负的?2×3×4×(-5),2×3×(-4) ×(-5),2×(×3)× (×4)×(-5),(-2) ×(-3) ×(-4) ×(-5).2.思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?分组讨论交流,鼓励学生通过观察实例,用自己的语言表达所发现的规律.利用所得到的规律,引导学生探讨翻牌游戏中的数学道理.3.归纳:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.教学说明:这组式子利用负因数的个数逐个增加的形式,让学生马上可以得出积的符号和负因数的个数有关.培养学生善于观察,勤于思考的习惯,让学生体验获得结论的过程.使学生灵活应用所学知识,提高认识并通过活动,增强小组合作及资源共享意识.活动三.应用新知,体验成功.1.例1.课本第31页例3,在解题前先引导学生思考多个不是0的数相乘,先做哪一步,再做哪一步?2.提出问题让学生思考:你能看出下列式子的结果吗?如果能,请说明理由.7.8×(-8.1)×O× (-19.6)3.引导学生根据已有的知识进行解答,得出几个数相乘,其中因数为0时的特殊规律.4.练习:课本第32页小练习,让学生独立思考,完成计算.教学说明:学生有目的地去学习,能更好的掌握相关知识,在思维层次上进行总结,以更好的解决问题.培养学生通过观察全面地有条理思考数学问题,促进综合能力的发展.使学生熟悉运算方法,对所学知识加以巩固.活动四.知识巩固,课堂练习.课本第38页第7题(1)(2)(3)活动五.知识梳理,课堂小结.谈谈你本节课的收获有哪些?1.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.2.几个数相乘,其中有一个因数为0时,结果是0.活动六.知识反馈,作业布置.课本第38页第7题(4)-(8)小题.。

人教版七年级数学上册第一章有理数的概念(教案)

人教版七年级数学上册第一章有理数的概念(教案)
4.有理数的应用
-解决实际问题
-判断有理数的大小关系
-有理数的混合运算
5.练习题与例题
-各类有理数运算的练习题
-涉及实际应用的有理数问题
-提高学生对有理数概念的理解和应用能力例题解析
二、核心素养目标
1.培养学生数学抽象能力:通过有理数的概念学习,使学生能够抽象出数的本质属性,理解数的分类及其意义,形成数学的抽象思维。
-举例:应用有理数解决温度变化、方向位移等问题。
2.教学难点
(1)有理数概念的理解:学生容易混淆有理数与整数、分数的关系,难以把握有理数的本质。
-突破方法:通过具体例子,让学生感受到有理数包含整数和分数,理解有理数的无限性和可表示性。
(2)相反数和绝对值的概念:学生难以理解相反数的意义,以及绝对值表示的实际意义。
其次,在新课讲授环节,我注意到有些学生在理解有理数概念和性质时显得有些吃力。在讲解过程中,我尽量使用简洁明了的语言,并通过举例来阐述。然而,可能由于讲解速度过快,部分学生还没来得及消化吸收就进入了下一个环节。针对这个问题,我计划在今后的教学中适当放慢讲解速度,增加课堂互动,让学生有更多机会提问和思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.提升逻辑推理素养:引导学生掌握有理数的运算规律,学会运用逻辑推理解决问题,培养严谨的数学逻辑思维。
3.增强数学建模意识:通过实际问题的引入和解决,让学生学会运用有理数知识建立数学模型,提高解决实际问题的能力。

最新人教版初一数学七年级上册 第一章《有理数》全单元教学设计

最新人教版初一数学七年级上册 第一章《有理数》全单元教学设计

人教版七年级上学期数学教案第一章课题: 1.1 正数和负数(1)1.1 正数和负数(2)1.2.1 有理数1.2.2数轴课题:1.2.3 相反数课题: 1.2.4 绝对值课题: 1.3.1 有理数的加法(一)课题: 1.3.1 有理数的加法(二)课题: 1.3.2有理数的减法(1)课题: 1.3.2 有理数的减法(2)教学目标1,理解加减法混合运算统一为加法运算的意义,学会把加减法统一成加法.2,会正确熟练地进行有理数加减混合运算,发展学生的运算能力.3,会使用计算器进行有理数的加、减混合运算,培养学生的程序意识,提高学生的学习积极性与学习数学的兴趣,以及学好数学的信心.教学难点把加、减混合运算统一成加法运算知识重点本节的重点是能把加、减法统一成加法运算,并用加法运算律合理地进行运算。

教学过程(师生活动)设计理念设置情境引入课题一架飞机作特技表演,起飞后的高度变化如下表:此时飞机比起飞点高了多少千米?(组织学生小组讨论并得出答案)学生可能出现的算式:(1)4.5+(-3.2)+1.1+(-1.4)(2)4.5-3.2+1.1-1.4提出课题:有理数加减法混合运算.创设一个有趣的真实情境来激发学生学习加减混合计算的兴趣分析问题探究新知1,回顾小学加减法混合运算的顺序.(从左到右,依次计算)2,以教科书28页例6计算(-20)+(+3)-(-5)一(+7)为例来说明。

鼓励生来进行独立计算。

(这里要给学生充裕的时间,让学生算出答案,估计学生能解决这个问题3,教师引导:这个式子中有加法,也有减法,我们可不可以利用有理数的减法法则,把这个算式改变一下?再给算一算,你发现了什么?(学生小组合作,探讨把减法转化为加法,再利用运算来简化计算)教师巡回观祭,作适当稍导,若学生不能进一步计算,也可以在他们把减法转化为加法后,提示他们使用运算律。

(-20)+(3)一(-5)一(+7)=(-20)+(+3)+(+5)+(-7)=[(-20)+(-7)]+[(+3)+(+5)]=(-27)+(+8)=-194,学生交流汇报.(发现了什么?)充分鼓励学生大胆发现,勇敢交流.(如:计算结果与前面的算法是一样的;把减法都转化为加法可以使用运算律,计算会简单些等)5,归纳明确“减法可以转化为加法”.加减混合运算可以统一为加法运算,如:a+b-c=a+b+(-C).6,省略加号.教师引导:式子(-20)+(+3)十(+5)+(一7)是-20,+3,+5,-7的和,为了书写简单,可以省略式中的括号和加号,把它写为-20+3+5-7,读作:“负20正3正5负7的和”,或读作“负20加3加5减7",鼓励学生使用第一种读法;并让学生体会两种读法的区别.再根据教科书,规范书写例6的运算过程.通过这两种算法,为加减混合运算统一成加减法运算打下伏笔.这里的设计,一方面让学生体会混合运算中运算顺序确定的重要性,另一方面,先让学生按从左到右的顺序来计算,也是为了与接下去的加减混合运算统一成加法运算再利用运算律进行简侠便计算作出比较。

七年级数学上册第一章《有理数》教案

七年级数学上册第一章《有理数》教案

第一课时正数和负数(一)教学目标1.熟练区分正数和负数。

2.能利用正负数正确表示相反意义的量。

教学重难点:熟练区分正数和负数教学方法:探究学习教学设计一、课前铺垫:我们小学已经学过哪些数,请举例说明。

二、探究新知知识点一:会判断一个数是正数还是负数1.自学课本1—2页,并回答以下问题:(1)在引言中表示温度、净胜球数和产品增长率时用到了哪些数?它们的具体含义是什么?(2)像2, 0.2, 17等数叫做数;像-4,1234-, -6.25这样在正数前面加号的数叫做,既不是正数也不是负数。

你认为:叫做非负数。

针对性练习1.已知下列各数:13-,5,0,-4,47,其中正数的个数是( )A.0个B.1个C.2个D.3个2. 有下列六个数:-5,0,132,-0.3,+13,14-,其中负数的个数是( )A.1B.2C.3D.43.下列说法正确的个数是( )①零是正数;②零是负数;③零是偶数;④零是奇数;A.0个B.1个C.2个4. 已知下列各数:-8,50.9,35-, 0.3,其中非负数的个数是( )A.0个B.1个C.2个D.3个知识点二:认识正数和负数具体表示的是相反意义的量1.自学课本第3页,并结合以上问题回答以下问题:(1)通过以上内容的学习,其实正数和负数是表示生活中具有意义的量。

(2)列举自己见到的生活中用正、负数表示的量2.尝试表示在日常生活中常会遇到下面的一些量。

(1)温度是零上10℃表示为,零下5℃表示为。

(2)收入500元表示为,支出237元表示为。

(3)水位升高1.2米表示为,下降0.7米表示为。

针对性练习1.规定正常水位为0m,高于正常水位0.2m时记做+0.2m,则下列说法错误的是( )A.高于正常水位1.5m记做+1.5mB.低于正常水位0.5m记做-0.5mC.-1m表示比正常水位低1mD.+2m表示水深2m2.规定电梯上升为“+”,那么电梯上升-10m表示( )A.电梯下降10mB.电梯上升10mC.电梯上升0mD.电梯没有动3.温度计液面在0℃以上第五个刻度处,表示的温度是零上5℃,记做+5℃; 温度计液面在0℃以下第五个刻度处,表示的温度是零下5℃,记做 ,它是数。

2023年初中数学有理数教案人教版初中数学有理数教学设计(3篇)

2023年初中数学有理数教案人教版初中数学有理数教学设计(3篇)

2023年初中数学有理数教案人教版初中数学有理数教学设计(3篇)初中数学有理数教案人教版初中数学有理数教学设计篇一学问与力量:在现实背景中,理解有理数乘方的意义,把握有理数乘方的运算。

过程与方法:培育学生观看、分析、比拟、归纳、概括的力量,渗透转化的思想。

情感态度与价值观:培育学生勤思,仔细,勇于探究的精神,并联系实际,加强理解,体会数学给我们的生活带来的便利。

教学重点:正确理解乘方的意义,把握乘方的运算法则,进展有理数乘方运算。

教学难点:正确理解乘方、底数、指数的概念并合理运算。

教材分析:本节内容从小学所学过的一个数的平方与立方动身,介绍了乘方的概念,然后,结合有理数乘方的运算,叙述了乘方的运算方法。

跟这局部内容有关联的是后面“科学计数法”、“有理数的混合运算”等局部内容。

教学方法:教法:引导探究法、尝试指导法,充分表达学生主体地位;学法:学生观看思索,自主探究,合作沟通。

教学用具:电脑多媒体。

课时安排:一课时。

教学过程:教学环节、教师活动、学生活动、设计意图。

创设情境:(出示珠穆朗玛峰图片)引语:同学们,珠穆朗玛峰高吗?对,它的海拔有8848千米,可是将一张纸连续对折30次,会有12个珠穆朗玛峰高,你们感觉奇妙吗?就让我们带着这份奇妙走进数学课堂。

要求学生折纸试验,对折一次变成了几层?对折2次变成了几层?连续对折30次,应当列一个怎样的算式?对折100次呢?假如把这些式子写出来,太麻烦,下面咱们一起来熟悉一位数学新朋友,信任他能帮你解决这个难题。

板书课题:拿出课前预备好的纸,每个学生都试验一下,思索回答下列问题。

激情导入,激发学生的求知欲。

提醒学习目标:电脑展现学习目标、学生感悟、使学生了解本节学习内容。

学生自学:请大家仔细自读课本71-72页,思索以下问题。

约六分钟后,同桌或前后桌同学围绕疑难问题,争论沟通,比谁的自学力量强,自学效率高。

电脑展现:1.了解有理数乘方的概念。

2.理解幂,指数,底数。

人教版初中数学全章教案第一章有理数

人教版初中数学全章教案第一章有理数

第一章有理数教学目标〔知识与技能〕1、了解正数、负数的实际意义,会判断一个数是正数还是负数。

2、掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。

3、理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值.4、会利用数轴和绝对值比较有理数的大小。

5、理解乘方的意义,会进行乘方的计算。

掌握有理数加减、乘除、乘方的混合运算。

6、通过实例进一步感受大数,并能用科学记数法表示;了解近似数和有效数字的概念。

〔过程与方法〕1、经历探索有理数运算法则和运算律的过程,体会类比、转化、数形结合等思想方法.2、培养学生应用数学知识的意识,提高学生运用知识解决实际问题的能力。

〔情感、态度与价值观〕1、通过教学活动,激励学生学习数学的兴趣;使学生感受数学知识与现实世界的联系。

2、给学生渗透辩证唯物主义思想。

重点难点有理数的运算是重点;准确理解负数、绝对值的意义和运算符号的确定是难点。

课时分配1.1正数和负数………………………………… 2课时1.2有理数……………“……………………… 5课时1.3有理数的加减法…………………………… 3课时1.4有理数的乘除法…………………………… 5课时1.5有理数的乘方……………………………… 4课时本章小结………………………………………… 2课时1.1.1 正数和负数的概念〔教学目标〕1、了解负数产生是生活、生产的需要;2、掌握正、负数的概念和表示方法,理解数0表示的量的意义;3、理解具有相反意义的量的含义。

〔重点难点〕正确理解正、负数的概念,数0表示的量的意义和具有相反意义的量是重点;正确理解负数、数0表示的量的意义是难点。

〔教学过程〕一、负数的引入我们知道,数产生于人们实际生产和生活的需要。

[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3……;为了表示“没有”、“空位”引进了数0,测量和分配有时不能得到整数的结果,为此产生了分数和小数。

有理数教案人教版

有理数教案人教版

有理数教案人教版【篇一:人教版初一数学有理数教案整章】教学内容:教科书第16—17页,2.1正数和负数教学目的和要求:1.了解负数产生的背景是从实际需要产生的。

2.会判断一个数是正数还是负数。

3.会用正负数表示生活中常用的具有相反意义的量。

4.培养学生的数学应用意识,渗透对立统一的辩证思想。

教学重点和难点:重点:了解正数与负数是由实际需要产生的及会用正负数表示生活中常用的具有相反意义的量。

难点:学习负数的必要性,能准确地举出具有相反意义的量的典型例子。

教学工具和方法:工具:应用投影仪,投影片。

方法:分层次教学,讲授、练习相结合。

教学过程:一、复习引入:1.你看过电视或听过广播中的天气预报吗?中国地形图上的温度阅读。

(可让学生模拟预报)请大家来当小小气象员,记录温度计所示的气温25oc,10oc,零下10oc,零下30oc。

为书写方便,将测量气温写成25,10,―10,―30。

2.让学生回忆我们已经学了哪些数?它们是怎样产生和发展起来的?在生活中为了表示物体的个数或事物的顺序,产生了数1,2,3,?;为了表示“没有”,引入了数0;有时分配、测量的结果不是整数,需要用分数(小数)表示。

总之,数是为了满足生产和生活的需要而产生、发展起来的。

二、讲授新课:1.相反意义的量:在日常生活中,常会遇到这样一些量(事情):例1:汽车向东行驶3千米和向西行驶2千米。

例2:温度是零上10℃和零下5℃。

例3:收入500元和支出237元。

例4:水位升高1.2米和下降0.7米。

例5:买进100辆自行车和买出20辆自行车。

①试着让学生考虑这些例子中出现的每一对量,有什么共同特点?(具有相反意义。

向东和向西、零上和零下、收入和支出、升高和下降、买进和卖出都具有相反意义)第 1 页共 55 页②你能举出几对日常生活中具有相反意义的量吗?2.正数和负数:①能用我们已经学的来很好的表示这些相反意义的量吗?例如,零上5℃用5来表示,零下5℃呢?也用5来表示,行吗?说明:在天气预报图中,零下5℃是用―5℃来表示的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

让学生再举出几个 日常生活中的具有 相反意义的量.
让学生分组讨论,在 生活中还有哪些地 方有这样的数?
教 师 活 动 内 容、方 式
学生活动方式、内容
旁注
就拿温度为例,通常规定零上为正,于是零下 为负,零上 10℃就用 10℃表示,零下 5℃用 -5℃来 表示. 为了表示具有相反意义的量 , 我们引进了象 -5,-2,-237,-3.6 这样的数, 这是一种新数,叫做负 数 (negative number). 过 去 学 过 的 那 些 数 ( 零 除 外 ), 如 10,3,500,5.5 等 , 叫 做 正 数 (positive number). 正数前面有时也可放上一个"+"号, 如 5 可以写成+5, +5 和 5 是一样的. 注意: 0 既不是正数,也不是负数. 例.下列各数中,哪些是正数? 哪些是负数? +6;-21;54;0;
本课教育评注(课堂设计理念,实际教学效果及改进设想)
学生相互讨论,再举 有关实例。
教 师 活 动 内 容、方 式 2. 某工厂赢利了 10 万元记作+10 万元,那么它亏 损了 8 万元应记为 . 3.下列各数中,哪些是正数?哪些是负数?
学生活动方式、内容 学生分小组讨论,探 索解题方法。
旁注
22 ;-3.14;0.001;-99 7 4.“一个数,如果不是正数,必定就是负数.” 这句话对不对?为什么? 5.在中国地形图上,在珠穆朗 玛峰和吐鲁番 盆地处都标有表明它们的高度的数,如图所 示 . 这个数通常称为 海拔高度,它是相对 于海平面来说的 . 请 说出图中所示的数 8848 和-155 表示的 实际意义。海平面的 高度用什么数表示?
+1;-25;5;0;
先让学生相互讨论,探索解题方法; 教师再指名学生回答。 三、课堂小结
为了表示具有相反意义的量 , 我们引进 了象-5,-2,-237,-3.6 这样的数, 这是一种新 数,那就是负数。
注意: 0 既不是正数,也不是负数。 四、随堂练习 课本 P16 T1-4 五、课堂作业 课本 P17 T1-4
22 ;-3.14;0.001;-999 7
让学生口述
练习:把下列各数填入相应的集合中: -18, 95%
22 3 , 3.1416, 0, 2005, , -0.142857, 7 5
… 正数集合 负数集合

在日常生活中,常会遇到这样的一些量: 例 1.汽车向东行驶 3 公里和向西行驶 2 公里; 例 2.温度是零上 10℃和零下 5℃; 例 3.收入 500 元和支出 237 元; 例 4.水位升高 5.5 米和下降 3.6 米等等. 这里出现的每一对量,虽然有着不同的具体内 容,但有着一个共同特点,它们都是具有相反意义 的量,向东和向西、零上和零下;收入和支出;升 高和下降都具有相反的意义. 这些例子中出现的每一对量,有什么共同特点? 你能再举出几个日常生活中的具有相反意义的 量吗? 练习: 1.某日傍晚黄山的气温由中午的零上 3℃下降 了 8℃,则这天傍晚黄山的气温是( ) A. -8℃ B. -11℃ C. 11℃ D. -5℃
课题 班级
2.1 比 0 小的数
课时 课型ຫໍສະໝຸດ 2-1 新授授课时间 授课人
教学目标
1、借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理 数应用的广泛性。 2、会判断一个数是正数还是负数,能应用正负数表示生活中的具有相反 的意义的量。 重点:体会负数引入的必要性和有理数应用的广泛性, 能应用正负数表示 生活中的具有相反的意义的量。 难点:能应用正负数表示生活中的具有相反的意义的量,养成把数学应用 于生活实际问题的习惯。 投影片,小黑板 1.搜集生活中有关用负数表示的量; 2.阅读课本 P14-15 的内容; 3.完成课本 P15 的练一练。 教 师 活 动 内 容、方 式 学生活动方式、内容 旁注
教 学 重、难点
教、学具 预习要求
一、创设情境 我们知道,为了表示物体的个数或事物的顺序, 产生了数 1,2,3,...; 为了表示“没有” ,引入了 数 0;有时分配、测量的结果不是整数,需要用分数 (小数)表示. 总之,数是为了满足生产和生活的需 要而产生发展起来的. 在天气预报电视屏幕上,我们经常看到,这一 天上海的最低温度是 -5℃,读作负 5℃,表示零下 5℃。这里,出现了一种新数——负数. 我们将会看到,除了表示温度以外,还有许多 量需要用负数来表示.有了负数,数的家族引进了新 的成员,将变得更加绚丽多彩,更加便于应用. 本章将与你一起认识负数,把数的范围扩充到 有理数,并研究有理数的大小比较和运算. 二、新知讲解: 在天气预报的电视屏幕上我们发现, 零下 5℃可 以用-5℃来表示. 一般地,对于具有相反意义的量, 我们可把其中一种意义的量规定为正的,用过去学 过的数表示,把与它意义相反的量规定为负的,用 过去学过的数(零除外)前面放上一个“-”(读作负) 号来表示.
相关文档
最新文档