人教版初一第一章有理数教案

合集下载

人教版七年级数学上册《 第一章 有理数 》教学设计

人教版七年级数学上册《 第一章 有理数 》教学设计

人教版七年级数学上册《第一章有理数》教学设计一. 教材分析人教版七年级数学上册《第一章有理数》是学生在小学数学基础上,进一步深入学习数学的重要章节。

本章主要介绍有理数的概念、分类、运算及其性质。

内容主要包括:有理数的定义,有理数的分类,有理数的运算,有理数的性质,以及实数的概念。

这些内容是学生进一步学习数学的基础,对于培养学生的逻辑思维能力和数学素养具有重要意义。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于数学概念和运算有一定的认识。

但是,对于有理数的概念和性质,学生可能还比较陌生,需要通过实例和练习来加深理解。

此外,学生的学习习惯和思维方式也有所不同,需要教师进行针对性的引导和指导。

三. 教学目标1.理解有理数的定义,掌握有理数的分类,了解有理数的性质。

2.熟练掌握有理数的运算方法,能够进行简单的有理数计算。

3.培养学生的逻辑思维能力和数学素养,提高学生的数学学习兴趣。

四. 教学重难点1.有理数的定义和分类,有理数的性质。

2.有理数的运算方法,特别是乘除法和混合运算。

五. 教学方法1.采用问题导入法,通过实例引发学生的思考,引导学生自主探索和发现有理数的性质。

2.采用讲授法,教师讲解有理数的概念、分类和性质,引导学生理解和掌握。

3.采用练习法,通过大量的练习题,让学生熟悉和掌握有理数的运算方法。

4.采用小组合作学习法,让学生在小组内进行讨论和交流,培养学生的合作意识和团队精神。

六. 教学准备1.教材和人教版七年级数学上册《第一章有理数》的教学PPT。

2.与本章内容相关的练习题和测试题。

3.教学黑板和粉笔。

七. 教学过程1.导入(5分钟)通过问题导入法,引导学生思考:“什么是数?我们学过的数有哪些?”然后给出有理数的定义,引导学生自主探索和发现有理数的性质。

2.呈现(10分钟)教师讲解有理数的概念、分类和性质,通过PPT展示相关的内容,让学生直观地理解和掌握。

3.操练(10分钟)让学生进行有理数的运算练习,包括加减乘除法和混合运算。

人教版七年级数学第一章有理数教案

人教版七年级数学第一章有理数教案

人教版七年级数学第一章有理数教案正负数的表示方法及其意义,具有相反意义的量的表示方法.难点1.正负数的相加、相减及其意义.2.具有相反意义的量的表示方法.第二章有理数2.1有理数的概念(2课时)第1课时有理数的引入了解有理数的产生,知道什么是有理数,理解有理数的意义和特点.重点有理数的意义和特点.难点1.有理数的产生.2.有理数的特点.一、新课导入活动1:创设情境,导入新课教师投影展示教材第2页图片,让学生回顾自然数、整数、分数和正负数的概念,引出有理数的产生.活动2:体验有理数的产生教师出示一些无限不循环小数,如0.333…、0.…等,让学生思考这些数是否可以表示为分数的形式,引出有理数的概念.二、推进新课活动3:认识有理数的意义和特点教师讲解有理数的意义和特点,例如有理数是可以表示为两个整数之比的数,有理数包括正有理数、负有理数和0等.活动4:练与小结练:教材第3页练.小结:这堂课我们研究了什么?有理数的概念和特点是什么?你能简单概括一下吗?活动5:作业题2.1第1,2,3,4题有理数是数的范围的一次重要扩充,它包括了正有理数、负有理数和0等,是可以表示为两个整数之比的数,它的产生是为了能够更加准确地表示实际问题中的量,例如无限不循环小数就可以表示为有理数的形式,这样就使得数的范围更加广泛,更加符合实际应用的需要.学生在研究有理数的概念和特点时,应该理解有理数的意义和特点,并掌握有理数的表示方法,为后续的研究打下坚实的基础.理解负数及表示的量的意义。

在会计的账目本上,我们会看到一些数据,如+1800元,—6932元,这些数据代表着收入款额和支出款额。

在地形图上表示某地的高度时,需要以海平面为基准,用正数表示高于海平面的某地的海拔,负数表示低于海平面的某地的海拔。

记录账目时,通常用正数表示收入款额,负数表示支出款额。

在教学中,我们可以通过创设情境和实际例子来帮助学生理解正负数的含义。

例如,在地形图上表示某地的海拔时,我们可以让学生自己尝试用正负数表示高度。

人教版初一第一章有理数教案

人教版初一第一章有理数教案

第一章理数1.1正数和负数1.相反意义的量:在日常生活中,常会遇到这样一些量(事情):例1:汽车向东行驶3千米和向西行驶2千米。

例2:温度是零上10℃和零下5℃。

例3:收入500元和支出237元。

例4:水位升高1.2米和下降0.7米。

2.正负数的涵义:正数——大于0的数负数——正数前面加“-”号的数(小于0的数)0——既不是正数,也不是负数说明:①负数前面的“-”号的读法,“-5”应读作“负5”;②正数前面有时也可加上“+”(正)号,如将“5”写成“+5”;③“0”是第一个自然数,可看作正数与负数的分界点,“0”的内涵很丰富,它不仅仅表示没有,在实际意义中,“0”是用来表示基准的数。

3.巩固练习:①―10表示支出10元,那么+50表示;如果零上5度记作5°C,那么零下2度记作;如果上升10m记作10m,那么―3m表示;太平洋中的马里亚纳海沟深达11034米,可记作海拔米(即低于海平面11034米)。

比海平面高50m 的地方,它的高度记作海拨;比海平面低30m的地方,它的高度记作海拨;②下面说法正确的是()A.正数都带有“+”号B.不带“+”号的数都是负数C.小学数学中学过的数都可以看作是正数D.0既不是正数也不是负数③数学测验班平均分80分,小华85分,高出平均分5分记作+5,小松78分,记作。

④某物体向右运动为正,那么―2m表示,0表示。

⑤一种零件的内径尺寸在图纸上是10±0.05(单位mm),表示这种零件的标准尺寸是10mm,加工要求最大不超过标准尺寸,最小不超过标准尺寸。

4.课后思考练习1.-a一定是负数吗?2.在月球表面,“白天”的温度可达127°C,太阳落下后的“月夜”气温竟下降到-183°C,请问在月球上温差是多少度?1.2数轴数轴的画法:第一步:画一条直线(通常是水平的直线),在这条直线上任取一点O ,叫做原点,用这点表示数0;(相当于温度计上的0℃。

人教版初中七年级上册数学教案(完整版)

人教版初中七年级上册数学教案(完整版)

七上数学教案第一章有理数教学目标1.知识与技能①通过生活实例,了解学习有理数的必要性.②理解并掌握数轴、相反数、绝对值、有理数等有关概念.③通过本章的学习,掌握有理数的加、减、乘、除、乘方及简单的混合运算.2.过程与方法通过本章的学习,培养学生应用数学知识解决实际问题的能力. 3.情感、态度与价值观结合生活实例引入新课,通过师生共同参与的教学活动,激励学生学习数学的兴趣,让学生真正体验到数学知识来源于生活并服务于生活.教学重点、难点重点:有理数的运算.这一章的主要学习目标都可以归结到有理数的运算上,比如有理数的有关概念---数轴、相反数、绝对值,运算法则,运算律,近似数等内容的学习,直接目标都是落实到有理数的运算上.难点:负数概念的建立,绝对值意义,有理数法则的理解.课时分配内容课时1.1 正数和负数 11.2 有理数 41.3 有理数的加减法 51.4 有理数的乘除法 41.5 有理数的乘方 4单元复习与验收 2教学建议教师在教学过程中注意从实际问题(即联系实际生活的典型例子)引入,让学生参与数学活动,在教师的引导和学生大胆尝试的过程中,使学生自觉地发现问题,分析问题和解决问题,从而使学生自得知识,自觅规律.1.在进行有理数的有关概念的教学时:(1)注意从实际问题引入,使学生知道数学知识来源于生活.•如:从温度与海拔高度引入负数,从而得出有理数的概念;借助温度引出数轴,建立数(有理数)与形(数轴上的点)之间的联系.(2)注意借助数轴的直观性讲述相反数、绝对值,体会用字母表示数的优越性,体现代数的特点,•使学生对概念的认识能更深一步,并为今后学习整式、方程打下基础.2.讲解有理数运算时,有理数加法及乘法法则的导出借助数轴会更直观更形象更易于学生理解,法则要着重强调符号的确定,在此基础上注意绝对值的运算,提高学生计算准确率.1.1 正数和负数教学目标1.知识与技能①了解正数与负数的引入是实际生活的需要.②会判断一个数是正数还是负数.③会用正负数表示互为相反意义的量.2.过程与方法通过正负数的学习,培养学生应用数学知识的意识,训练学生运用新知识解决实际问题的能力.3.情感、态度与价值观通过师生共同的教学活动,激发学生学习数学的兴趣,让学生体验到数学知识来源于生活并为生活服务.教学重点难点重点:会判断一个数是正数还是负数,会运用正负数表示具有相反意义的量,理解0•的含义.难点:负数的引入和理解.教与学互动设计(一)创设情境,导入新课课件展示珠穆朗玛峰和吐鲁番盆地,由同学感受高于水平面和低于水平面的不同情况.(二)合作交流,解读探究1.举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东50米和向西120米等.想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?2.为了用数表示具有相反意义的量,我们把其中一种意义的量,如零上温度,前进、收入、上升、高出等规定为正的,而把与它相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算述里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).活动每组同学之间相互合作交流,一位同学任意说出具有相反意义的两个量,由其他同学用正负数表示.讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?•【总结】正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界.(三)应用迁移,巩固提高例1 举出几对具有相反意义的量,并分别用正、负数表示.【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.【点评】这是一道开放性试题,旨在考查学生用正负数表示具有相反意义量的能力.例2 在某次乒乓球检测中,一只乒乓球超过标准质量0.02克记作+0.02克,•那么-0.03克表示什么?【答案】表示比标准质量低0.03克.例 3 2001年美国的商品进出口总额比上年减少 6.4%可记为-6.4% ,中国增长7.5%可记为+7.5% .备选例题(2004·山东淄博)某项科学研究以45分钟为1个时间单位,•并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上升7:45应记为() A.3 B.-3 C.-2.5 D.-7.45【点拨】读懂题意是解决本题的关键.7:45与10相差135分钟.【答案】 B(四)总结反思,拓展升华为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数也不是负数.1.填空-1,2,-3,4,-5, 6 , -7 , -8 …第81个数是–81 ,第2005个数是–2005 .【提示】通过观察可见,数字绝对值的排列是按由小到大的顺序,符号是负正相间,第奇数个数为负,第偶数个数为正.【点评】本题属于找规律问题,从绝对值和符号两方面考虑. 2.表1-1-1是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):表1-1-1星期日一二三四五六(元)+16 +5.0 -1.2 -2.1 -0.9 +10 -2.6(1)本周小张一共用掉了多少钱?存进了多少钱?【答案】 6.8元,31元.(2)储蓄罐中的钱与原来多了还是少了?【答案】多了.(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.【答案】用文字说明,但前者更简洁.3.数学游戏:4个同学站成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复1.的游戏;(3)这不仅仅是游戏哟!在电脑中,•所有“命令”或“数据”都是用有理数(特别是二进制数)表示的.例如,没有特别的“翻译”程序,电脑就不明白你给屏幕上的卡通人下的是“站”还是“蹲”的命令,这时,就可输入正负数以区别不同的姿势.(五)课堂跟踪反馈夯实基础1.填空题(1)如果节约用水30吨记为+30吨,那么浪费20吨记为-20 吨.(2)如果4年后记作+4,那么8年前记作 -8 .(3)如果运出货物7吨记作-7吨,那么+100吨表示运进货物100吨.(4)一年内,小亮体重增加了3kg,记作+3,小阳体重减少了2 kg,则小阳增长了 2kg .2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,•水位上涨了1米,下午5时,水位又上涨了0.5米.(1)用正数或负数记录下午1时和下午5时的水位;(2)下午5时的水位比中午12时水位高多少?【答案】(1)下午1时,水位0.5米;下午5时,水位-1米(2)0.5+1=1.5(米)提升能力3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.【答案】 +2,-1,-0.2.4.有没有这样的有理数,它既不是正数,也不是负数?【答案】有,是0.5.下列各数中哪些是正数?哪些是负数?-15,-0.02,67,-171,4,-213,1.3,0,3.14,π【答案】正数:67,4,1.3,3.14,π;负数:-15,0.02,-1 71,-213开放探究6.同学聚会,约定在中午12点到会,早到的记为正,迟到的记为负,结果最早到的同学记为+3点,最迟到的同学记为-1.5点,•你知道他们分别是什么时候到的吗?最早到的同学比最迟到的同学早多少小时?【答案】最早的同学上午9点到,最迟的是下午1点半到,最早的比最迟的早到4.5个小时.7.新中考题(2004·玉林)冷库A的温度是-5℃,冷库B的温度是-15℃,•则温度高的是冷库A.教学反思:本节课是学生进入初中的第一节数学课,也是非常重要的一节课-----负数的引入.课堂上我主要采用了体验探究的教学方式,为学生提供了大量亲自操作的机会,使学生直接参与教学活动,学生在动手操作中对抽象的数学知识获取感性的认识,进而通过教师的引导加工总结上升为理性认识,从而获得新知,使学生的学习过程变为一个再创造的过程,同时让学生体会到获取知识的方法,感受在解决问题的过程中与他人合作的重要性,为学生今后获取新知以及探索和发现新知打下基础.1.2 有理数1.2.1 有理数教学目标1.知识与技能①理解有理数的意义.②能把有理数按要求分类.③了解0在有理数分类的作用.2.过程与方法经历本节的学习,培养学生分类讨论的意识和能正确地进行分类的能力.教学重点难点重点:会把已知各数填入相应的数集图里.难点:掌握有理数的两种分类.教与学互动设计(一)创设情境,导入新课讨论交流通过上节课的学习同学们已经知道,我们认识的数除了小学里所学的之外,还有另一类数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究学生列举:3,5.7,-7,-9,-10,0,13,25,-356, -7.4,5.2…议一议你能说说这些数的特点吗?学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.说明:我们把所有的这些数统称为有理数.试一试你能对以上各种类型的数作出一张分类表吗?有理数说明:以上分类,若学生思考有困难,可加以引导:因为整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含那些数?分数呢?做一做以上按整数和分数来分,那可不可以按数的性质(正数、负数)来分呢,试一试.有理数⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数零负整数负有理数负分数(3)数的集合把所有正数组成的集合,叫做正数集合.试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.(三)应用迁移,巩固提高例1 把下列各数填入相应的集合内: 127,3.1416,0,2004,-85,-0.23456,10%,10.l ,0.67,-89正数集合 负数集合 整数集合 分数集合 【答案】例2 以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?正数集合227,2004,10%,10.1,0.67,...负数集合-3.1416,-85,-0.23456,-89,...整数集合0,2004,-89,...分数集合127,-3.1416,-85,-0.23456,10%,10.1,0.67,...…………有理数⎧⎧⎪⎨⎪⎩⎨⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负分数有理数⎧⎪⎪⎪⎨⎪⎪⎪⎩正数整数分数负数零【答案】两者都错,前者丢掉了零,后者把正负数、整数、分数混为一谈,分类标准不清楚.【点评】以上是对各类有理数的特点及有理数的分类进行的训练,基础性强,需要重视例3以下结论中正确的有(B)①0是最小的正整数②0是最小的有理数③0不是负数④0既是非正数,也是非负数A.1个B.2个C.3个D.4个例4 如果用字母表示一个数,那a可能是什么样的数,一定为正数吗?与你的伙伴交流一下你的看法.【答案】不一定,a可能是正数,可能是负数,也可能是0.【点评】此题开放性较强.要求学生能用分类的思想对a全面认识,体会用字母表示数的意义.备选例题(2004·浙江温州)观察下列数,按某种规律在横线上填入适当的数,并说明你的理由.23,34,45,________,67,…你的理解是_________.【点拨】找出各项数的特点是本题关键所在,第一个数为23,后一个数是前一个数的分子,分母都加1所得的数.【答案】56(四)总结反思,拓展升华提问:今天你获得了哪些知识?由学生自己小结,然后教师总结:今天我们学习了有理数的定义和有理数的两种分类方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的含义.1.请你在图1-2-1的圈中填上适合的数,使得圈内的数依次为整数集、•有理数集、正数集、分数集、负数集.【答案】答案不唯一,如图1-2-2所示.2.有理数按正、负可分为⎧⎪⎨⎪⎩正有理数零负有理数-1250.4813按整数分,可分为⎧⎨⎩整数分数(1)你能自己再制定一个标准,对有理数进行另一种分类吗? (2)生活中,我们也常常对事物进行分类,请你举例说明. 【答案】 (1)如将有理数分成大于1的数,小于1的数,等于1的数.(2)例如对人按年龄可分为:婴儿、幼儿、儿童、少年、青年、中年、老年.3.下面两个圈分别表示负数集和分数集,你能说出两个图的重叠部分表示什么数的集合呢?答案 负分数 (五)课堂跟踪反馈 夯实基础1.把下列各数填入相应的大括号内: -7,0.125,12,-312,3,0,50%,-0.3 (1)整数集合{-7,3,0}(2)分数集合{0.125,12,-312,50%,-0.3} (3)负分数集合{-312,-0.3}(4)非负数集合{0.125,12,3,0,50%}分数集合负数集合(5)有理数集合{-7,0.125,12,-312,3,0,50%,-0.3}2.下列说法正确的是(D)A.整数就是自然数B.0不是自然数C.正数和负数统称为有理数D.0是整数而不是正数3.某商店出售的三种规格的面粉袋上写着(25±0.1)千克,(25±0.2•千克),(25±0.3)千克的字样,从中任意两袋,它们质量相差最大的是 0.6 千克.提升能力4.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?【答案】a可以表示正整数,正分数,0,负整数或负分数.5.某校对初一新生的男生进行了引体向上的测试,以能做5个为标准,•超过的次数记为正数,不足的次数记为负数,其中10名男生的测试成绩如下:-2 -1 2 -1 3 0 -1 -2 1 0(1)这10名男生有百分之几达标(即达标率)?(2)这10名男生共做了多少个引体向上?【答案】(1)50%;(2)5×10-1=49(个)开放探究6.应用创新题若向东8米记作+8米,如果一个人从A地出发先走+12米,再走-15米,又走+18米,最后走-20米,你能判断这个人此时在何处吗?【答案】在A地西边5米处.7.新中考题(2004·内蒙古赤峰)我市2004年元月某一天的天气预报中,宁城县的最低温度是-22℃,克旗的最低温度是-26℃,这一天宁城县的最低气温比克旗的最低气温高(A)A.4℃ B.-4℃ C.8℃ D.-8℃(六)资料采撷原始的计算工具计算是人类的一种思维活动,人类初期的计算主要是计数.最早用来帮助计数的工具是人类的四肢(手、脚、手指、脚趾)或身边的小石头、贝壳、绳子等.中国有句古话叫“屈指可数”,说明人们常用手指来计算简单的数.在美国纽约的博物馆里,珍藏着一件从秘鲁出土的古代文物,名叫“基普”,意即打了绳结的绳子.基普是古人用来计数和记事的.传说公元前6世纪,•波斯国王在一次征战中曾命令一支部队守桥,他把一条打了结的皮带交给留守将士,要他们每守一天解开一个结,一直守到皮带上的结全部解完了才准撤退.在没有文字的我国古代,人们用在绳子上打结的方法来计数和记事.一件事打一个结,大事打个大结,小事打个小结,办完了一件事就解掉一个结.古人不仅用绳结计数,而且还使用小石子等其他工具来计数.例如,他们饲养的羊,早晨放牧到草地里,晚上必须圈到栅栏里.这样,早晨从栅栏里放出来的时候,出来一只就往罐子里扔一块小石子;傍晚羊进栅栏时,进去一只就从罐子里拿出一块小石子.如果石子全部拿光了,就说明羊全部进圈了;如果罐子里还剩下石子,说明有羊丢失了,必须立刻寻找.教学反思:这节课的教学,我主要采用了探究式的教学方式,为学生提供合作交流的机会,引导学生在已有知识、经验、方法的基础上去思考问题,探寻结果.学生直接参与教学活动,学习积极性高,课堂气氛活跃,通过学生的讨论,抽象的问题简单化.另外教师也可以从学生的回答中受到启发,有方法型的,有技巧型的.教师参与学生的讨论可以增加学生的学习兴趣和动力,学生在讨论的过程中可以相互学习,取长补短,深刻体会到与他人合作的重要性.1.2.2 数轴教学目标1.知识与技能①掌握数轴三要素,能正确画出数轴.②能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.2.过程与方法①使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.②结合本节内容,对学生渗透数形结合的重要思想方法.3.情感、态度与价值观使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.教学重点难点重点:数轴的概念.难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计(一)创设情境,导入新课课件展示在一条东西方向的马路上,有一个学校,学校东50m 和西150m•处分别有一个书店和一个超市,学校西100m和160m处分别有一个邮局和医院,分别用A、B、C、D表示书店、超市、邮局、医院,你会画图表示这一情境吗?(学生画图)(二)合作交流,解读探究师:对照大家画的图,为了使表达更清楚,我们把0•左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来.•也就是本节内容──数轴.点拨(1)引导学生学会画数轴.第一步:画直线定原点第二步:规定从原点向右的方向为正(左边为负方向)第三步:选择适当的长度为单位长度(据情况而定)第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对比思考:原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴: 规定了原点、正方向和单位长度的直线叫数轴. 做一做 学生自己练习画出数轴.试一试:你能利用你自己画的数轴上的点来表示数4,1.5,-3,-72,0吗?讨论 若a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?与原点相距多少个单位长度;表示-a 的点在原点的什么位置上?•与原点又相距了多少个长度单位?小结 整数能在数轴上都找到点吗?分数呢?可见,所有的__________都可以用数轴上的点表示___________•都在原点的左边,______________都在原点的右边. (三)应用迁移,巩固提高例1 下列所画数轴对不对?如果不对,指出错在哪里.①4②-1021③④0⑤-101⑥0-3【答案】 ①错.没有原点 ②错.没有正方向 ③正确 ④错.没有单位长度 ⑤错.单位长度不统一 ⑥正确 ⑦错.正方向标错例2 试一试:用你画的数轴上的点表示4,1.5,-3,-73,0 【答案】图中A点表示4,B点表示1.5,C点表示-3,D点表示-73,E点表示0.例3 如果a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?•表示-a 的点在原点的什么位置上呢?【提示】 由数轴上数的特点不准得到,正数都在原点的右边,负数都在原点左边.【答案】 所有的有理数都可以在数轴上找个点与它对应,原点右边的点表示正数,原点左边的点表示负数.【点评】 数与数轴上的点结合,这是一种重要的数学思想,数形结合.例4 下列语句:①数轴上的点又能表示整数;②数轴是一条直线;•③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(B)⑦-1-2021-1-45EDC BAA.1个B.2个C.3个D.4个【提示】题中,结合数轴上的点与有理数的特点,可见①中错误的;②、③是正确的;④中可以含有0,•⑤中应该是所有的有理数都可以在数轴上找出对应的点,但并不是数轴上的点都表示有理数.例5 (1)与原点的距离为2.5个单位的点有两个,它们分别表示有理数 2.5 •和-2.5 .(2)一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7•个单位到达终点,那么终点表示的数是+3 .例6 在数轴上表示-212和123,并根据数轴指出所有大于-212而小于123的整数.【答案】 -2,-1,0,1【点评】本题反映了数形结合的思想方法.例7 数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若这个数轴上随意画出一条长2000cm的线段AB,则线段AB盖住的整点是(C)A.1998或1999 B.1999或2000C.2000或2001 D.2001或2002【提示】分两种情况分析:(1)当线段AB的起点是整点时,•终点也落在整点上,那就盖住2001个整点;(2)是当线段AB的起点不是整点时,•终点也不落在整点上,那么线段AB盖住了2000个整点.【点评】本题体现了新课程标准的探索和实践能力.备选例题(2004·新疆生产建设兵团)在数轴上,离原点距离等于3的数是________.【点拨】 不要忽视在原点的左右两边.【答案】 ±3(四)总结反思,拓展升华数轴是非常重要的工具,它使数和直线上的点建立了对立关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.一条直线的流水线上,依次有5个卡通人,•它们站立的位置在数轴上依次用点M 1、M 2、M 3、M 4、M 5表示,如图:(1)点M 4和M 2所表示的有理数是什么?(2)点M 3和M 5两点间的距离为多少?(3)怎样将点M 3移动,使它先达到M 2,再达到M 5,请用文字说明;(4)若原点是一休息游乐所,那5个卡通人到游乐所休息的总路程为多少?【答案】 (1)M 4表示2,M 2表示3;(2)相距7个单位长度;(3)先向左移动1个单位,再向右移动8个单位长度;(4)17个单5M 4M 3M 2M 1位长度.(五)课堂跟踪反馈夯实基础1.规定了原点、正方向、单位长度的直线叫数轴,所有的有理数都可从用数轴上的点来表示.2.P从数轴上原点开始,向右移动2个单位,再向左移5个单位长度,此时P点所表示的数是 -3 .3.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是(C)A.7 B.-3 C.7或-3 D.不能确定4.在数轴上,原点及原点左边的点所表示的数是(D)A.正数 B.负数 C.不是负数 D.不是正数 5.数轴上表示5和-5的点离开原点的距离是 5 ,但它们分别在原点的两边.提升能力6. 1 是最小的正整数,0 是最小的非负数,0 是最大的非正数.7.与原点距离为 3.5个单位长度的点有 2 个,它们分别是3.5 和-3.5 .8.画一条数轴,并把下列数表示在数轴上:+2,-3,0.5,0,-4.5,4,313【答案】略开放探究9.在数轴上与-1相距3个单位长度的点有 2 个,为-4或2 ;长为3个单位长度的木条放在数轴上,最多能覆盖 4 个整数点.10.新中考题(2004·南京)下列四个数中,在-2到0之间的数是(A)A.-1 B.1 C.-3 D.3教学反思:这节课的学习,我主要采用了体验探究的教学方式,为学生提供了亲自操作的机会,引导学生运用已有经验、知识、方法去探索与发现等式的性质,使学生直接参与教学活动,学生在动手操作中对抽象的数学定理获取感性的认识,进而通过教师的引导加工上升为理性认识,从而获得新知,使学生的学习变为一个再创造的过程,同时让学生学到获取知识的思想和方法,体会在解决问题的过程中与他人合作的重要性,为学生今后获取知识以及探索和发现打下基础。

2024年数学初一教案人教版初一数学教学教案

2024年数学初一教案人教版初一数学教学教案

2024年数学初一教案人教版初一数学教学教案教案主题:第一章《有理数》第一节《有理数的概念》教学目标:1.让学生理解有理数的定义和分类。

2.培养学生运用有理数进行简单运算的能力。

3.培养学生的数感和逻辑思维能力。

教学重点:1.有理数的定义和分类。

2.有理数的运算规则。

教学难点:1.正负数的理解。

2.有理数的运算。

教学准备:1.教学课件。

2.练习题。

教学过程:一、导入1.利用课件展示生活中的实例,如温度计、水位、身高、体重等,让学生观察这些实例中出现的数。

2.引导学生思考:这些数有什么共同特点?它们与自然数、整数有什么不同?二、新课讲解1.有理数的定义:整数和分数统称为有理数。

2.有理数的分类:正有理数、0、负有理数。

3.正负数的理解:以温度为例,零上温度为正数,零下温度为负数;以水位为例,水位高于标准水位为正数,低于标准水位为负数。

4.有理数的运算规则:a)同号相加,异号相减。

b)正负号相乘,同号为正,异号为负。

c)0乘任何数都等于0。

三、案例分析1.出示几个实例,让学生判断这些数是有理数还是无理数,并说明原因。

a)3.14b)√2c)5/2d)-√32.让学生举例说明有理数的分类。

四、课堂练习b)将下列有理数按照正负分类:5,-2,0,1/2,-3/4。

c)计算:3+(-2),-5+1,-12,0×(-3)。

2.老师针对学生的答案进行讲解和指导。

五、课堂小结1.回顾本节课学习的有理数的概念、分类和运算规则。

2.强调有理数在生活中的应用,培养学生的数感和实际应用能力。

六、课后作业(课后自主完成)b)将下列有理数按照正负分类:4,-1/2,0,3/4,-5。

c)计算:-3+2,2(-1),-1×(-2),0×5。

2.家长签字确认。

教学反思:1.在讲解有理数的分类时,可能过于简化,未能充分挖掘学生的思维能力。

2.课堂练习环节,部分学生可能因为紧张或理解不深,未能完成练习题。

人教版七年级上册第一章有理数教学设计

人教版七年级上册第一章有理数教学设计

人教版七年级上册第一章有理数教学设计一、教学目标1.了解有理数的概念和分类。

2.掌握有理数的加减法运算规律及其计算方法。

3.能够熟练地运用有理数进行实际问题的求解。

二、教学内容1.有理数的概念和分类。

2.有理数的加减法运算规律及其计算方法。

3.有理数的实际应用。

三、教学过程1. 导入(5分钟)•引导学生回忆第一章《有理数》相关的课程内容。

•引出本节课的主要内容和重要性。

2. 阐述有理数的概念和分类(20分钟)•通过图示的方式,引导学生理解有理数的含义。

•分类:正数、负数、零。

•运用现实生活中的例子进行解释。

3. 掌握有理数的加减法运算规律及其计算方法(50分钟)•引导学生发现和总结有理数加减法的运算规律。

•通过几何图形的形式进行有理数的加减法计算。

•利用实际问题引导学生进行实际应用。

•给学生提供大量的练习题进行巩固。

4. 有理数的实际应用(15分钟)•引导学生了解有理数在实际问题中的应用。

•通过实际问题的解答,让学生掌握运用有理数进行实际问题求解的方法。

5. 课堂小结与作业布置(10分钟)•小结讲解本节课的重点、难点以及应掌握的知识点。

•布置有关本节课内容的家庭作业。

四、教学方法本节课采用“讲授、练习、讨论、探究、实践”等多种教学方法进行授课。

五、教学重点、难点1. 教学重点•有理数的概念及分类。

•有理数的加减法运算规律及其计算方法。

•有理数的实际应用。

2. 教学难点•有理数概念的理解和分类。

•有理数加减法的规律及其计算方法。

六、教学评价教师在本节课中应当注重学生的自主学习,重视探究式学习的过程与结果。

在课堂上应当给予充分的思考和实践的机会,引导学生多角度、多维度地理解有理数。

在家庭作业的设计上,应当注重拓展学生对有理数实际应用的认识,加强对知识点的巩固。

人教版七年级数学上册第一章《有理数》教学设计

人教版七年级数学上册第一章《有理数》教学设计

人教版七年级数学上册第一章《有理数》教学设计一. 教材分析人教版七年级数学上册第一章《有理数》是整个初中数学的基础,主要介绍了有理数的定义、分类、运算和性质。

本章内容对于学生来说是比较抽象的,需要通过实例和练习来理解和掌握。

教材通过丰富的例题和练习题,帮助学生逐步掌握有理数的概念和运算方法,为后续的学习打下基础。

二. 学情分析七年级的学生已经具备了一定的数学基础,但对于有理数的抽象概念和运算规则可能还比较陌生。

学生在学习过程中需要通过实际的例子和操作来理解和掌握有理数的概念和运算方法。

此外,学生可能对于负数和分数的概念有一定的困惑,需要通过具体的情境和练习来加深理解。

三. 教学目标1.了解有理数的定义和分类,掌握有理数的运算方法。

2.能够运用有理数的概念和运算方法解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.有理数的定义和分类。

2.有理数的运算方法,特别是负数和分数的运算。

3.有理数在实际问题中的应用。

五. 教学方法1.实例教学:通过具体的例子来引导学生理解和掌握有理数的概念和运算方法。

2.练习法:通过大量的练习题来巩固学生的理解和掌握程度。

3.问题解决法:通过解决实际问题来培养学生的应用能力和解决问题的能力。

六. 教学准备1.教材和教辅资料。

2.投影仪和教学课件。

3.练习题和测试题。

七. 教学过程1.导入(5分钟)通过引入日常生活中的实例,如温度、海拔等,引出有理数的概念和作用。

2.呈现(10分钟)讲解有理数的定义、分类和性质,通过具体的例子来说明。

3.操练(10分钟)让学生进行有理数的加减乘除运算,引导学生理解和掌握运算方法。

4.巩固(5分钟)通过一些练习题来巩固学生对有理数的理解和掌握程度。

5.拓展(5分钟)讲解有理数在实际问题中的应用,让学生尝试解决一些实际问题。

6.小结(5分钟)对本节课的内容进行总结,强调重难点和需要注意的问题。

7.家庭作业(5分钟)布置一些练习题,让学生在家里进行巩固和复习。

人教版初中数学七年级上册第一章有理数单元备课教案

人教版初中数学七年级上册第一章有理数单元备课教案

人教版初中数学七年级上册第一章有理数单元备课教案第一章有理数一、课标要求1.知识与技能(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.(2)掌握数轴的画法,能将已知数在数轴上表示出来,?能说出数轴上已知点所表示的解.(3)理解相反数、绝对值的几何意义和代数意义,?会求一个数的相反数和绝对值.(4)会利用数轴和绝对值比较有理数的大小.2.过程与方法经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.3.情感、态度与价值观使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言.二、本章教材分析1.主要内容:1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,?从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念.2.通过怎样用数简明地表示一条东西走向的马路旁的树、?电线杆与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系;(2)数轴能反映数的性质;(3)数轴能解释数的某些概念,如相反数、绝对值、近似数;(4)数轴可使有理数大小的比较形象化.3.对于相反数的概念,?从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.4.正确理解绝对值的概念是难点.理解绝对值的两种意义,?一种是几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离;另一种是代数意义:绝对值的几何意义是以线段长度来表示一个数的绝对值的;而绝对值的代数意义则是给出了求绝对值的法则,由绝对值的两种意义可知,有理数a?的绝对值可表示为:│a│=(0) 0(0)(0)a aaa a>?=?-<?根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值.(2)有理数的绝对值是一个非负数,即最小的绝对值是零.(3)两个互为相反数的绝对值相等,即│a│=│-a│.(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)若│a│=│b│,则a=b,或a=-b或a=b=0.2.本单元在教材中的地位与作用:本章是数从自然数扩展到有理数,初步形成有理数的概念后,进一步学习有理数的运算,是小学算术的延续和发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“ “第一章 理数1.1 正数和负数1.相反意义的量:在日常生活中,常会遇到这样一些量(事情): 例 1:汽车向东行驶 3 千米和向西行驶 2 千米。

例 2:温度是零上 10℃和零下 5℃。

例 3:收入 500 元和支出 237 元。

例 4:水位升高 1.2 米和下降 0.7 米。

2.正负数的涵义:正数——大于 0 的数负数——正数前面加“-”号的数(小于 0 的数) 0——既不是正数,也不是负数说明:①负数前面的“-”号的读法,“-5”应读作“负 5”;②正数前面有时也可加上“+”(正)号,如将“5”写成“+5”; ③“0”是第一个自然数,可看作正数与负数的分界点, 0”的内涵很丰富,它不仅仅表示没有,在实际意义中,“0”是用来表示基准的数。

3.巩固练习:①―10 表示支出 10 元,那么+50 表示 ;如果零上 5 度记作 5°C ,那么零下2 度记作 ;如果上升 10m 记作 10m ,那么―3m 表示 ;太平洋中的马里亚 纳海沟深达 11034 米,可记作海拔 米(即低于海平面 11034 米)。

比海平面高 50m 的地方,它的高度记作海拨 ;比海平面低 30m 的地方,它的高度记作海拨 ;②下面说法正确的是( ) A .正数都带有“+”号 B .不带“+”号的数都是 负数C .小学数学中学过的数都可以看作是正数D .0 既不是正数也不是负 数③数学测验班平均分 80 分,小华 85 分,高出平均分 5 分记作+5,小松 78 分,记作 。

④某物体向右运动为正,那么―2m 表示 ,0 表示 。

⑤一种零件的内径尺寸在图纸上是 10±0.05(单位 mm ),表示这种零件的标准尺寸是 10mm ,加工要求最大不超过标准尺寸 ,最小不超过标准尺寸 。

4.课后思考练习1.-a 一定是负数吗?2.在月球表面, 白天”的温度可达 127°C , 太阳落下后的“月夜”气温竟下降到-183° C ,请问在月球上温差是多少度?1.2 数轴(1)2,-1,0,32,+3.5数轴的画法:第一步:画一条直线(通常是水平的直线),在这条直线上任取一点O,叫做原点,用这点表示数0;(相当于温度计上的0℃。

)第二步:规定这条直线的一个方向为正方向(一般取从左到右的方向,用箭头表示出来)。

相反的方向就是负方向;(相当于温度计0℃以上为正,0℃以下为负。

)第三步:适当地选取一条线段的长度作为单位长度,也就是在0的右面取一点表示1,0与1之间的长就是单位长度。

(相当于温度计上1℃占1小格的长度。

)在数轴上从原点向右,每隔一个单位长度取一点,这些点依次表示1,2,3,…,从原点向左,每隔一个单位长度取一点,它们依次表示–1,–2,–3,…。

例题;例1:判断下图中所画的数轴是否正确?如不正确,指出错在哪里?例2:把下面各小题的数分别表示在三条数轴上:3(2)―5,0,+5,15,20;(3)―1500,―500,0,500,1000。

课后思考:借助数轴回答下列问题(1)有没有最小的正整数?有没有最大的正整数?如果有,把它指出来;(2)有没有最小的负整数?有没有最大的负整数?如果有,把它标出来。

课堂小结:1.数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数与形之间的内在联系;所有的有理数都可以用数轴上的点表示,但反过来并不是数轴上的所有点都表示有理数;2.画数轴时,原点的位置以及单位长度的大小可根据实际情况适当选取,注意不要漏画正方向、不要漏画原点,单位长度一定要统一,数轴上数的排列顺序(尤其是负数)要正确。

1.3相反数一、复习引入:1.在数轴上分别找出表示各数的点。

6与―6,―31与31,―1.5与1.5222例2:化简:(1)-⎛+1⎫⎪⎪;(2)--11例3:计算:(1)|0.32|+|0.3|;(2)|–4.2|–|4.2|;(3)|–2|–(–2)。

想一想:在数轴上,表示每对数的点有什么相同?有什么不同?2.观察数6与―6,―31与31,―1.5与1.5有何特点?,观察每组数所对应的两个22点的位置关系有什么规律?二.相反数的两种定义代数定义:只有符号不同的两个数互为相反数。

0的相反数是0。

几何定义:在数轴上原点两旁,离开原点距离相等的两个点所表示的两个数互为相反数。

0的相反数是0。

三.例题;例1:判断下列说法是否正确:①―5是5的相反数;()②5是―5的相反数;()③5与―5互为相反数;()④―5是相反数;()⑤正数的相反数是负数,负数的相反数是正数。

()例2:(1)分别写出5、―7、―31、+11.2的相反数;2例3:化简下列各数:(1)―(+10);(2)+(―0.15);(3)+(+3);(4)―(―20)。

四、课堂小结:1.只有符号不同的两个数互为相反数,其中一个是另一个的相反数,0的相反数是0,从数轴上看,求一个数的相反数就是找一个点关于原点的对称点;2.相反数是表示具有特定关系(只有符号不同)的两个数,单独一个数不能被称为相反数,相反数是成对出现的;3.正号“+”的功能是对一个数的符号予以确认;而负号“―”的功能是对一个数的符号予以改变。

1.4绝对值一、复习引入:1.在数轴上分别标出–5,3.5,0及它们的相反数所对应的点。

2.在数轴上找出与原点距离等于6的点。

3.相反数是怎样定义的?二.定义我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。

记作|a|。

绝对值的一般规律:1.一个正数的绝对值是它本身;.0的绝对值是0;3.一个负数的绝对值是它的相反数。

三.例题例1:求下列各数的绝对值:-71,21,―4.75,10.5。

10⎝2⎭333①-1 与-0.01;② - - 2 与 0;③-0.3 与 - 1 ;④ - ⎛ - 1 ⎫⎪⎪ 与 - - 2.6,―4.5, 1 ,0,―2 2三、课堂小结:1.对绝对值概念的理解可以从其几何意义和代数意义两方面考虑,从几何方面看,一 个数 a 的绝对值就是数轴上表示数 a 的点与原点的距离,它具有非负性;从代数方面看,一 个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0 的绝对值是 0。

2.求一个数的绝对值注意先判断这个数是正数还是负数。

1.5 有理数大小的比较一.有理数大小比较方法:在数轴上,右边的数总比左边的数大;正数大于一切负数和 0,负数小于一切正数和 0, 0 大于一切负数而小于一切正数。

二.例题例 1:比较下列各对数的大小:3⎝ 9 ⎭1 10。

例 2:用“>”连接下列个数:10 31.6 有理数的加法一.引入问题:一位同学沿着一条东西向的跑道,先走了 20 米,又走了 30 米,能否确定他现在位于原来位置的哪个方向,相距多少米? 分情况列出数轴图:二.有理数的加法法则:1. 同号两数相加,取相同的符号,并把绝对值相加;2. 绝对值不等的异号两数相加,取绝对值较大加数的符号,并用较 大的绝对值减去较小的绝对值;3. 互为相反数的两个数相加得 0;4. 一个数同 0 相加,仍得这个数.三.加法规律加法交换律:两个数相加,交换加数的位置,和不变。

即 a + b = b + a加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

即 ( a + b )+ c = a + ( b + c )四.例题①(+2)+(―11);②(+20)+(+12);③ ⎛ - 1 1 ⎫⎪⎪ + ⎛  - 2 ⎫⎪⎪ ; ④(―3.4)+4.3。

例二:(1) (+26)+(―18)+5+(―16);(2) - 1 ⎪ + 1 + + 7 ⎪ + - 2 ⎪ + - 8 ⎪⎪⎪ +  - ⎪⎪ -  + ⎪⎪ -  - ⎪⎪ - (+ 1)写成省略加号的和的形式,并把它读出来例 1:计算:⎝2 ⎭ ⎝3 ⎭⎛ 2 ⎫ 1 ⎛ 1 ⎫ ⎛ 1 ⎫ ⎛ 1 ⎫⎝ 3 ⎭ 2 ⎝ 4 ⎭ ⎝ 3 ⎭ ⎝ 2 ⎭例 3:10 筐苹果,以每筐 30 千克为准,超过的千克数记作正数,不足的千克数记作负 数,记录如下:2,―4,2.5,3,―0.5,1.5,3,―1,0,―2.5。

求这 10 筐苹果的总重 量:1.7 有理数的减法一.有理数减法法则:减去一个数,等于加上这个数的相反数二.例题:例 1:计算:(1)(―32)―(+5); (2)7.3―(―6.8); (3)(―2)―(―25); (4)12―21 .1.8 有理数的加减混合例 1:把 ⎛ + ⎝ 2 ⎫ ⎛ 4 ⎫ ⎛ 1 ⎫ ⎛ 1 ⎫ 3 ⎭ ⎝ 5 ⎭ ⎝ 5 ⎭ ⎝ 3 ⎭例 2:计算:―20+3―5+7。

例 3:计算:(1) 1 ― 1 ― 3 + 2 ;(2)(+9)―(+10)+(―2)―(―8)+3。

32 4 3例 4:―3、+5、―7 的代数和比它们的绝对值的和小多少?1.8 有理数的乘法一.引入问题 1:一只小虫沿一条东西向的跑道,以每分钟3 米的速度向东爬行 2 分钟,那么它 现在位于原来的位置的那个方向,相距多少米?(向东为正方向)问题 2:小虫向西以每分钟 3 米的速度爬行 2 分钟,那么结果有何变化?二.有理数乘法的法则:两数相乘,同号得正,异号得负,并把绝对值相乘;希望由学生观 察、总结得出!任何数同 0 相乘,都得 0三个以上有理数相乘,可以任意交换乘数的位置,也可以先把其中的几个数相乘.乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这例 1:计算:①(-5)×(-6) ② ⎛ - 1 ⎫⎪⎪ ⨯ 1例 4:计算:(1) 30 ⨯ ⎛ 1 - + 0.4 ⎪ ;(2) 4.98 ⨯ (- 5)。

8 - 1 ⎪ 5 ⎭ ⎝ 5 ⎪⎭(3)⎛ 1 ⎫ ⎛ 2 ⎫ ;3(2)两个数相乘,再把积相加。

即 a(b +c)=ab +ac.例如:再如:(-5)×(-3)···········同号两数相乘 (-6)×4··············异号两数相乘 (-5)×(-3)=+( )············得正 (-6)×4=-( )················得负 5×3=15·············把绝对值相乘 6×4=24··············把绝对值相乘 所以 (-5)×(-3)=15。

相关文档
最新文档