4 角平分线 省优 【一等奖教案】
角的平分线市公开课获奖教案省名师优质课赛课一等奖教案
角的平分线教案一、教学目标:1. 理解什么是角的平分线以及其性质;2. 掌握如何构造角的平分线;3. 能够运用角的平分线性质解决相关几何问题。
二、教学重难点:1. 角的平分线的性质和构造方法;2. 运用角的平分线解决问题的能力。
三、教学准备:1. 教师准备黑板、白板、彩色粉笔或白板笔;2. 学生准备直尺、铅笔和橡皮擦。
四、教学步骤:Step 1:引入教师通过问学生关于角的基本知识,如定义、表示方法和度量等,引导学生进入本节课的学习主题。
然后,教师提出问题:“如何找到一个角的平分线?”激发学生思考。
Step 2:角的平分线的性质1. 教师在黑板上绘制一个角ABC,并标出其顶点为A;2. 教师向学生提问:“如果有一条线段AD,使得∠BAD = ∠CAD,我们称线段AD是角ABC的平分线,你能猜测一下角的平分线有哪些性质吗?”引导学生探索角的平分线的性质;3. 学生讨论后,教师总结角的平分线的性质:a. 角的平分线将角分成两个相等的部分;b. 角的平分线和角的边构成一个等腰三角形。
Step 3:角的平分线的构造1. 教师向学生展示角的平分线的构造方法:a. 以顶点A为中心,任取一点B和C;b. 以B和C为圆心,以相同的半径在各自的弧上分别画弧交于点D;c. 连接点A和D,则AD为所需的角的平分线。
2. 教师引导学生使用直尺和铅笔按照上述步骤,自己绘制角的平分线,并检查结果的准确性。
Step 4:练习和应用1. 教师设计一些练习题,让学生运用所学知识解决问题,巩固角的平分线的性质和构造方法;2. 学生在课堂上完成练习并相互交流答案,教师进行讲评;3. 教师提出一些实际问题,让学生运用所学知识解决,培养学生的应用能力和创新思维。
Step 5:总结1. 通过本节课的学习,学生应该理解和掌握角的平分线的性质和构造方法;2. 学生对角的平分线的性质和构造方法有一定的应用能力。
五、教学反思:通过本节课的设计和教学实施,学生可以通过自己的思考和实践,掌握角的平分线的性质和构造方法。
人教初中数学八上《角平分线的性质》教案 (公开课获奖)4《
角平分线的性质一、教学目标知识技能..数学思考:在探究作角平分线的方法和角平分线的性质的过程中,开展几何直觉.解决问题.步了解角平分线的性质在生活、生产中的应用.情感态度:培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验.二、教学设想本节案例主要采用的是课堂观察的评价方式。
对学生在学习过程中表现出来的情感与态度,对知识、技能的掌握情况,所使用的方法等各个方面进行了观察,本课利用四个活动探究充分表达了学生学习的主体地位。
他们通过动手操作对角平分线有了感性认识,又在小组讨论中用语言将发现的结论进行概括使感性认识上升到了理性认识,特别是在第三个探究问题给学生创造利用数学知识解决生活中的问题使学生懂得数学来源于生活并用于生活。
在角平分线性质的探索中。
教师请小组派代表汇报发现的结论,还让代表说说本组讨论交流的情况及哪位组员表现的最好。
表达出教师不仅关注学生知识的掌握情况,还关注到了学生在学习过程中情感和态度。
三、教材分析线段垂直平分线和角平分线是初中数中的两个重要的概念它们都有着十分重要的性质。
两者在知识学习及内容上都有非常类同之处是学生学习初中几何的很重要根底。
四、重点、难点角平分线的性质的证明和应用.角平分线的性质的探究.五、教学方法探索发现六、教具准备Flash课件七、教学过程问题与情境师生行为设计意图活动一通过实践探究角平分线的做法问题:1.在纸上任意画一个角,并剪下来,用折纸的方法能作出该角的角平分线吗?2.有一个简易平分角的仪器,其中AB=AD,BC=DC,将A点放角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是∠BAD 的平分线,为什么呢?EC AB D3.从上面的探究中,你能得到角平分线的作法吗?和求作分别是什么呢?〔1〕把平分角的仪器放角的两边,且仪器的两边相等,从几何角度怎么画呢?〔2〕仪器的BC=DC,从几何角度怎么画呢?〔3〕OC与仪器中的AE是一条射线吗?〔4〕OC是∠AOB的平分线么,为什么?〔5〕归纳角平分线的做法.活动二探究角平分线的性质一问题:学生动手实践通过折纸的方法作角的平分线.教师演示教具学生分析原因后答复教师提问学生答复(1)到〔3〕学生分组探讨交流找方法.ABCMNO学生独立作图、思考.学生总结交流方法说明用其它方法可将角平分培养学生分析解决问题的能力及尺规作图的能力.〔1〕用折纸的方法作角平分线时,将∠AOB 对折,再折成直角三角形,后再展开,观察两个直角三角形全等吗?两条直角边与该角的两边有什么关系?〔2〕能归纳角平分线的性质吗? 角平分线上的性质一:角平分线上的点到角两边的距离相等. 〔3〕能证明这个性质吗? 〔4〕用数学符号描述此性质.应用: 如图:△ABC 中,∠C =90°, AD 是∠BAC 的平分线,DE ⊥AB 于E , F 在AC 上,BD =DF , 求证:CF =EB ACB DEF证明: ∵∠C =90° ∴DC ⊥AC ∵AD 平分∠BAC ,DE ⊥AB ∴DC =DE 在Rt △CFD 和Rt △EBD 中 DF =DB DC =DE ∴△CFD ≌△EBD (HL ) ∴CF =E 活动三探究角平分线的性质二 问题: 1.我们知道角平分线上的点到角两边的距离相等.到角两边距离相等的点是否在角的平分线上呢? 2.得出性质 角平分线上的点到角两 边的距离相等.学生分析讨论教师引导得出结论.学生分析条件并证明.学生独立练习,同组同学交流,找生到黑板上板演. 教师纠正答案.教师引导 学生探讨交流得出结论从实践中发现角平分线的性质.培养学生的概括能力.培养学生的应用能力.应用:1.如图:S 区要建一个市场,使它到公路和铁路的距离相等,这个市场应建在何处?S公路 铁路应建在两条路所组成的夹角的平分线上. 2.如图::△ABC 的角平分线BM 、CN 相交于点P ,求证:点P 到三边的距离相等.PMNF ED C BA证明:过点P 作PD ,PE ,PF 分别垂直于AB ,BC ,CA ,垂足为D ,E ,F . ∵BM 是△ABC 的角平分线,点P 在BM 上,∴PD =PE ,同理PE =PF ∴PD =PE =PF即点P 到三边AB ,BC ,CA 的距离相等.活动四总结1. 学生谈体会,同学之间相互补充.师加以概括.学生独立思考,得出答案学生独立练习,后相互交流.教师指导.加强数学与生活的联系培养学生归纳总结的能力教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕ba ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 1 2.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. 〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. 〔三〕情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形? [生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕.[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕.〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD . 所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°. [师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,• 再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.D CA BD CABDC A B在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识. Ⅲ.随堂练习〔一〕课本练习 1、2、3. 练习1. 如图,在以下等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:〔1〕72° 〔2〕30°2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?DCAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.〔二〕阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题. 〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .D CABEDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC . ∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,那么它的对称轴一定是〔 〕 A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是〔 〕 A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,那么其腰长为〔x+2〕cm ,根据题意,得 2〔x+2〕+x=16.解得x=4.EDCABP所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解 〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习1.计算:(1))1)(1(y x x y x y +--+ (2)22242)44122(aa a a a a a a a a -÷-⋅+----+ (3)zxyz xy xy z y x ++⋅++)111( 2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、〔1〕2x 〔2〕ba ab - 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 1 2.原式=422--a a ,当=a -1时,原式=-31.。
初中八年级数学教案-角平分线的性质(省一等奖)
BD 21 CADBMN 角的平分线的性质 第1课时 角平分线的性质一、教学目标 (一)知识与技能1会作已知角的平分线;2了解角的平分线的性质,能利用三角形全等证明角的平分线的性质; 3会利用角的平分线的性质进行证明与计算 (二)过程与方法在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学生的推理证明意识和能力(三)情感、态度与价值观在探究作角的平分线的方法及角的平分线的性质的过程中,培养学生探究问题的兴趣、合作交流的意识、动手操作的能力与探索精神,增强解决问题的信心,获得解决问题的成功体验 二、教学重点、难点重点:角的平分线的性质的证明及应用; 难点:角的平分线的性质的探究 三、教法学法三步导学的教学模式;自主探索,合作交流的学习方式 四、教与学互动设计 (一)激情导课如图是小明制作的风筝,他根据AB=AD ,BC=DC 不用度量,就知道AC 是∠DAB 的角平分线,你知道其中的道理吗 (二)导学1、探究一:角的平分线的作法 Ⅰ、议一议 问题1请你拿出准备好的角,用你自己的方法画出它的角平分线 问题2如图是一个平分角的仪器,其中AB=AD ,BC=放在角的顶点,AB 和AD 沿着角的两边放下,画一条射线AE ,AE 就是∠DAB 的平分线 你能说明它的道理吗问题3通过上面的探究,你有什么启发你能用尺规作图作已知角的平分线吗请你试着做一做,并与同伴交流已知:∠MAN求作:∠MAN 的角平分线作法:(1)以A 为圆心,适当长为半径画弧,交AM 于B ,交AN 于D (2)分别以B 、D 为圆心,大于的长为半径画弧,两弧在∠MAN 的内部交于点C(3)画射线ACABCECA BOAB OCDABC D BA EFEBA D C BACDEP A OBC∴射线AC 即为所求 Ⅱ、练一练平分平角∠以后,是什么关系思考:你能总结出“过直线上一点作这条直线的垂线”的方法吗请说明你的方法。
2、探究二:角的平分线的性质 Ⅰ、做一做如图,将∠AOB 对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开观察两次折叠形成的三条折痕,你能得出什么结论试着证明你的结论(1)角的平分线的性质:角的平分线上的点到角的两边的距离相等(2)角的平分线性质的证明步骤: ① 明确命题中的已知和求证;已知:一个点在一个角的平分线上 结论:这个点到这个角两边的距离相等②M 根据题意,画出图形,并用数学符号表示已知和求证; 已知:如图,∠AOC=∠BOC ,点,则点D到AB 的距离为 cm .(第1题图) (第2题①图) (第2题②图)(2)变式训练,深化新知 变式①,如图,△ABC 中,∠C =90°,BD 平分∠ABC ,DE ⊥AB ,垂足为点E ,AC=8cm , 则ADDE= cm 变式②,如图,△ABC 中,∠C =90°,BD 平分∠ABC ,DE ⊥AB 于E ,F 在BC 上,AD=DF求证:CF=EA (三)检测导结1、目标检测 本测试题共三道题,相信大家一定会做得非常棒! 1如图,OC 是∠AOB 的平分线,点,则POAB CEDP OABCEDB POABCEDCDB P OAC E DDBPO AC E DBP O ACEDS公路铁路PCADB NM第1题图 第2题图 第3题图2如图,点C 为直线AB 上一点,过点C 作直线MN ,使MN ⊥AB (不写作法,保留作图痕迹,写出结论)3已知:如图,在△ABC 中,AD 是它的角平分线,且BD=CD ,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F求证:EB=FC(四)布置作业1必做题:习题 2思考题如图,要在S区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交叉处500米,这个集贸市场应建在何处(在图上标出它的位置,比例尺1:20000) (五)结束寄语严格性之于数学家,犹如道德之于人条理清晰,因果相应,言必有据,是学习者谨记和遵循的原则 希望每一个同学都能用聪明和智慧编织出更加精彩的人生!五、板书设计第1课时 角的平分线的性质1. 角的平分线的作法2 角的平分线的性质:角的平分线上的点到角的两边的距离相等 3应用 已知:∠MAN 已知:如图,∠AOC=∠BOC ,点AN 的角平分线垂足分别为点D 、E求证: PD=PE∴ 射线AC 即为所求 符号语言:∵∠AOC=∠BOC, PD ⊥OA ,PE ⊥OB ,垂足分别为点D 、E ∴ PD=PEBPOACED六、教学反思。
角平分线的市公开课获奖教案省名师优质课赛课一等奖教案
角平分线的教案一、教学目标:1. 理解什么是角平分线,能够准确地描述角平分线的概念。
2. 能够使用直尺和量角器作图画出角平分线。
3. 了解角平分线的性质和应用。
二、教学内容:1. 角平分线的定义和性质。
2. 如何使用直尺和量角器作图画出角平分线。
3. 角平分线的应用。
三、教学过程:导入:教师出示一个角ABC,引导学生思考角的特点和角的平分线的概念。
引入:教师通过示意图和具体例子,向学生介绍角平分线的定义和性质。
角平分线是指从一个角的顶点出发,将角平分为两等分的线段。
性质包括:角平分线上的点到角的两边的距离相等,角平分线的两边上的线段互相垂直,角平分线将角分为两个相等的角。
示范:教师使用直尺和量角器,示范如何作图来画出一个角的角平分线。
首先用直尺连接角的两边,在角的外部取一点并以这个点为中心画一个圆。
然后再使用量角器来测量这个角的一半,将测量结果与圆交点相连,即得到角的平分线。
实践:让学生进行实践操作,在纸上画出若干个角,然后利用直尺和量角器画出这些角的平分线。
鼓励学生在操作中互相交流,共同解决问题。
总结:教师带领学生一起总结角平分线的概念、性质和作图方法,并强调掌握这些内容的重要性。
拓展:教师给出一些具体问题,让学生思考使用角平分线解决问题的方法。
例如,如何证明两个角相等,如何证明一个点在角的平分线上等等。
四、教学评价:教师布置练习题,让学生运用所学知识解答。
评价学生的理解和掌握程度,同时也可以发现学生的问题,及时进行针对性的辅导。
五、教学反思:通过本次教学,学生能够了解什么是角平分线,掌握画角平分线的方法,并熟悉角平分线的性质和应用。
在教学过程中,教师可以引导学生进行思考和讨论,激发他们的学习兴趣,提高他们的学习主动性。
同时,教师也要注意评价和反馈,及时纠正学生的错误,帮助他们进行巩固和提高。
角平分线的性质的市公开课获奖教案省名师优质课赛课一等奖教案
角平分线的性质的教案一、教学目标:1. 知识与技能:了解角平分线的定义和性质,学会运用角平分线的性质解题。
2. 过程与方法:通过教师讲解和实例演示相结合的方式,提高学生的理解和运用能力。
3. 情感态度价值观:培养学生严谨的数学思维,注重观察与推理,提高学生的自学、合作学习和解决问题的能力。
二、教学重点与难点:1. 重点:掌握角平分线的定义和性质。
2. 难点:运用角平分线的性质解决实际问题。
三、教学过程:Step 1 引入新知(1)教师通过提问,引导学生回顾角的定义和性质,复习相关知识。
(2)教师出示一张图纸,上面有两条射线,从一个点出发,交于一点,并各自形成两个角。
教师问学生:如何判断这两个角是否相等?请从几何性质的角度进行推理。
Step 2 角平分线的定义(1)教师解释角平分线的含义:角平分线是指从角的顶点出发,把角分成两个相等的角的射线或线段。
(2)教师出示角平分线的实例图,并要求学生观察并总结出角平分线的特点。
Step 3 角平分线的性质(1)教师提供一些角平分线的性质,如:a. 角平分线把一个角分成两个相等的角。
b. 一个角的两个相等角的角平分线相交于同一点,且这个点在角的内部。
(2)教师通过具体例子进行演示,让学生观察并找出角平分线的性质,引导学生进行类比和推理。
Step 4 角平分线的运用(1)教师提供一些具体问题,要求学生利用角平分线的性质解决问题。
a. 已知一个角的两个角平分线相交于点O,求证这两个角相等。
b. 在△ABC中,AD是∠BAC的角平分线,且∠ADB = 30°,求证∠ACB = 60°。
(2)学生独立思考并进行解答,然后进行讨论,通过合作学习的方式互相交流和纠正错误。
Step 5 拓展练习(1)教师布置一些拓展练习题,要求学生独立完成。
(2)教师进行答疑解惑,引导学生进行错误分析和订正,提高学生的解题能力和思维能力。
四、教学反思:本节课通过引导学生观察、思考和推理,使学生在实际操作中领会到角平分线的定义和性质,并能灵活运用角平分线的性质解决实际问题。
角平分线的性质 公开课大赛(省)优教案 教学设计
12.3 角的平分线的性质第1课时 角平分线的性质1.经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理.(重点) 2.能运用角的平分线性质定理解决简单的几何问题.(难点)一、情境导入问题:在S 区有一个集贸市场P ,它建在公路与铁路所成角的平分线上,要从P 点建两条路,一条到公路,一条到铁路.问题1:怎样修建道路最短? 问题2:往哪条路走更近呢?二、合作探究探究点一:角平分线的作法如图,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F两点,再分别以E 、F 为圆心,大于12EF 的长为半径画弧,两弧交于点P ,作射线AP ,交CD于点M .若∠ACD =120°,求∠MAB 的度数.解析:根据AB ∥CD ,∠ACD =120°,得出∠CAB =60°,再根据AM 是∠CAB 的平分线,即可得出∠MAB 的度数.解:∵AB ∥CD ,∴∠ACD +∠CAB =180°,又∵∠ACD =120°,∴∠CAB =60°,由作法知,AM 是∠CAB 的平分线,∴∠MAB =12∠CAB =30°.方法总结:通过本题要掌握角平分线的作图步骤,根据作图明确AM 是∠BAC 的角平分线是解题的关键.探究点二:角平分线的性质【类型一】 利用角平分线的性质证明线段相等如图:在△ABC 中,∠C =90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,BD =DF .求证:(1)CF =EB ;(2)AB =AF +2EB .解析:(1)根据角平分线的性质,可得点D 到AB 的距离等于点D 到AC 的距离,即CD =DE .再根据Rt △CDF ≌Rt △EDB ,得CF =EB ;(2)利用角平分线的性质证明△ADC 和△ADE 全等得到AC =AE ,然后通过线段之间的相互转化进行证明.证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴DE =DC .∵在Rt △DCF 和Rt △DEB 中,∵⎩⎪⎨⎪⎧DF =BD ,DC =DE ,∴Rt △CDF ≌Rt △EDB (HL).∴CF =EB ;(2)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴CD =DE .在△ADC 与△ADE 中,∵⎩⎪⎨⎪⎧CD =DE ,AD =AD ,∴△ADC ≌△ADE (HL),∴AC =AE ,∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB . 方法总结:角平分线的性质是判定线段相等的一个重要依据,在运用时一定要注意是两条“垂线段”相等.【类型二】 角平分线的性质与三角形面积的综合运用如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,S△ABC =7,DE =2,AB =4,则AC 的长是( )A .6B .5C .4D .3解析:过点D 作DF ⊥AC 于F ,∵AD 是△ABC 的角平分线,DE ⊥AB ,∴DF =DE =2,∴S △ABC=12×4×2+12AC ×2=7,解得AC =3.故选D. 方法总结:利用角平分线的性质作辅助线构造三角形的高,再利用三角形面积公式求出线段的长度是常用的方法.【类型三】 角平分线的性质与全等三角形综合如图所示,D 是△ABC 外角∠ACG 的平分线上的一点.DE ⊥AC ,DF ⊥CG ,垂足分别为E ,F .求证:CE =CF .解析:由角平分线的性质可得DE =DF ,再利用“HL ”证明Rt △CDE 和Rt △CDF 全等,根据全等三角形对应边相等证明即可.证明:∵CD 是∠ACG 的平分线,DE ⊥AC ,DF ⊥CG ,∴DE =DF .在Rt △CDE 和Rt △CDF 中,∵⎩⎪⎨⎪⎧CD =CD ,DE =DF ,∴Rt △CDE ≌Rt △CDF (HL),∴CE =CF .方法总结:全等三角形的判定离不开边,而角平分线的性质是判定线段相等的主要依据,可作为判定三角形全等的条件.三、板书设计角平分线的性质1.角平分线的作法; 2.角平分线的性质; 3.角平分线性质的应用.本节课由于采用了动手操作以及讨论交流等教学方法,从而有效地增强了学生对角以及角平分线的性质的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生在性质的运用上还存在问题,需要在今后的教学与作业中进一步的加强巩固和训练.第2课时 含30°角的直角三角形的性质1.理解并掌握含30°角的直角三角形的性质定理.(重点)2.能灵活运用含30°角的直角三角形的性质定理解决有关问题.(难点)一、情境导入 问题:1.我们学习过直角三角形,直角三角形的角之间都有什么数量关系? 2.用你的30°角的直角三角尺,把斜边和30°角所对的直角边量一量,你有什么发现? 今天,我们先来看一个特殊的直角三角形,看它的边角具有什么性质.二、合作探究探究点:含30°角的直角三角形的性质【类型一】 利用含30°角的直角三角形的性质求线段长如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,CD 是斜边AB 上的高,AD =3cm ,则AB 的长度是( )A .3cmB .6cmC .9cmD .12cm解析:在Rt △ABC 中,∵CD 是斜边AB 上的高,∴∠ADC =90°,∴∠ACD =∠B =30°.在Rt △ACD 中,AC =2AD =6cm ,在Rt △ABC 中,AB =2AC =12cm.∴AB 的长度是12cm.故选D.方法总结:运用含30°角的直角三角形的性质求线段长时,要分清线段所在的直角三角形.【类型二】 与角平分线或垂直平分线性质的综合运用如图,∠AOP =∠BOP =15°,PC ∥OA 交OB 于C ,PD ⊥OA 于D ,若PC =3,则PD等于( )A .3B .2C .1.5D .1解析:如图,过点P 作PE ⊥OB 于E ,∵PC ∥OA ,∴∠AOP =∠CPO ,∴∠PCE =∠BOP +∠CPO =∠BOP +∠AOP =∠AOB =30°.又∵PC =3,∴PE =12PC =12×3=1.5.∵∠AOP =∠BOP ,PD ⊥OA ,∴PD =PE =1.5.故选C.方法总结:含30°角的直角三角形与角平分线、垂直平分线的综合运用时,关键是寻找或作辅助线构造含30°角的直角三角形.【类型三】 利用含30°角的直角三角形的性质探究线段之间的倍、分关系如图,在△ABC 中,∠C =90°,AD 是∠BAC 的平分线,过点D 作DE ⊥AB .DE 恰好是∠ADB 的平分线.CD 与DB 有怎样的数量关系?请说明理由.解析:由条件先证△AED ≌△BED ,得出∠BAD =∠CAD =∠B ,求得∠B =30°,即可得到CD =12DB .解:CD =12DB .理由如下:∵DE ⊥AB ,∴∠AED =∠BED =90°.∵DE 是∠ADB 的平分线,∴∠ADE =∠BDE .又∵DE =DE ,∴△AED ≌△BED (ASA),∴AD =BD ,∠DAE =∠B .∵∠BAD =∠CAD =12∠BAC ,∴∠BAD =∠CAD =∠B .∵∠BAD +∠CAD +∠B =90°,∴∠B =∠BAD =∠CAD=30°.在Rt △ACD 中,∵∠CAD =30°,∴CD =12AD =12BD ,即CD =12DB .方法总结:含30°角的直角三角形的性质是表示线段倍分关系的一个重要的依据,如果问题中出现探究线段倍分关系的结论时,要联想此性质.【类型四】 利用含30°角的直角三角形解决实际问题某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知AC =50m ,AB =40m ,∠BAC =150°,这种草皮每平方米的售价是a 元,求购买这种草皮至少需要多少元?解析:作BD ⊥CA 交CA 的延长线于点D .在Rt △ABD 中,利用30°角所对的直角边是斜边的一半求BD ,即△ABC 的高.运用三角形面积公式计算面积求解.解:如图所示,作BD ⊥CA 于D 点.∵∠BAC =150°,∴∠DAB =30°.∵AB =40m ,∴BD =12AB =20m ,∴S △ABC =12×50×20=500(m 2).已知这种草皮每平方米a 元,所以一共需要500a 元.方法总结:解此题的关键在于作出CA 边上的高,根据相关的性质推出高BD 的长度,正确的计算出△ABC 的面积.三、板书设计含30°角的直角三角形的性质性质:在直角三角形中,如果一个锐角是30°,那么它所对的直角边等于斜边的一半.本节课借助于教学活动的开展,有效地激发了学生的探究热情和学习兴趣,从而引导学生通过自主探究以及合作交流等活动探究并归纳出本节课所学的新知识,促进了学生思维能力的提高.不足之处是部分学生的综合运用知识解决问题的能力还有待于在今后的教学和作业中进行进一步的训练和提高.。
1.4角平分线(教案)
同学们,今天我们将要学习的是《角平分线》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将角平均分成两个相等角的情况?”比如,在剪纸或拼图时,我们可能需要这样的技巧。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索角平分线的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解角平分线的基本概念。角平分线是通过角的顶点,将角分成两个相等角的射线。它在几何图形的分割和证明中有着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何利用角平分线来解决实际问题,以及它如何帮助我们解决几何问题。
3.重点难点解析:在讲授过程中,我会特别强调角平分线的定义和性质这两个重点。对于难点部分,比如性质的应用,我会通过具体例题和图示来帮助大家理解。
此外,课后我对学生的作业进行了批改,发现他们在解题过程中对角平分线的应用还不够熟练。为了帮助他们巩固知识点,我计划在下一节课开始时,对一些典型的错误进行讲解,让学生明白自己错在哪里,如何改正。
另外,小组讨论环节,我发现有些学生参与度不高,可能是因为他们对讨论主题不够感兴趣或者不知道如何表达自己的观点。针对这个问题,我打算在下次课中尝试引入一些生活化的例子,激发学生的兴趣,并引导他们如何进行有效讨论。同时,我也会鼓励学生多与同伴交流,培养他们的团队协作能力。
在学生小组讨论的引导过程中,我意识到提问技巧的重要性。提出的问题既要能够启发学生思考,又要具有一定的开放性,让学生有足够的空间发挥。在今后的教学中,我会更加注意问题的设计,努力提高学生的逻辑思维能力和解决问题的能力。
首先,我意识到在讲解角平分线性质时,需要更多地结合实际例子来帮助学生理解。例如,在证明角平分线上的点到角的两边距离相等时,我可以准备一些具体的图形,让学生观察、测量并自己推导出这个性质。这样既能提高他们的几何直观能力,也能加深对性质的理解。
角的平分线 优质课教案
角的平分线【教学目标】1.知识技能:了解角平分线的画法,了解和掌握角平分线的性质,理解角平分线的判定。
2.数学思考:经历角平分线的作法的实践活动,理解角平分线的性质和角平分线的判定。
3.问题解决:作角平分线,运用角平分线的性质与判定解决实际应用中的全等证明。
4.情感态度:在合作探究中体验数学知识来源于生活,在学习过中体验成功的乐趣,锻炼克服困难的意志,培养严谨的科学态度。
【教学重难点】1.理解如何作角的平分线(尺规作图),角平分线的性质及运用。
2.作角平分线中注意为什么要大于线段长的一半,由角平分线的性质得出角平分线的判定。
【教学过程】一、交流预习二、互助探究(一)探究角平分线的画法。
(二)探究角平分线上的点到角两边的距离的关系。
已知:点C 在AOB ∠的角平分线上,求证:CD=CE 。
证明:OC 平分AOB ∠,∴EOC DOC ∠=∠, OB CE OA CD ⊥⊥,,∴︒=∠=∠90CEO CDO , 在DOC ∆与EOC ∆中,EOC DOC ∠=∠(已求),CEO CDO ∠=∠(已求),OC OC =(公共边),∴DOC ∆≅EOC ∆(AAS ),∴CE CD =。
师友共同总结这一结论:角平分线上的点到角的两边的距离相等。
此时让师友总结证明几何命题的步骤:1.明确命题中的已知和求证;2.根据题意画出图形,并用数学符号表示已知和求证;3.经过分析,找出由已知推出要证的结论的途径,写出证明过程。
(三)探究角平分线的判定。
角的内部到角的两边的距离相等的点在角的平分线上。
教师引导学生找出已知条件和求证,并让师友合作探讨,给出证明。
选取一组师友的结果并展示:1.已知:如图,OA QD ⊥,OB QE ⊥,点D 、E 为垂足,QE QD =,求证:点Q 在AOB ∠的平分线上。
证明:OA QD ⊥,OB QE ⊥(已知),∴︒=∠=∠90QEO QDO (垂直的定义),在QDO Rt ∆与QEO Rt ∆中,QO QO =(公共边),QE QD =(已知),∴QDO Rt ∆≅QEO Rt ∆(HL ),∴QOE QOD ∠=∠,∴点Q 在AOB ∠的平分线上。
人教版初中公开课一等奖教案《角平分线的性质》
人教版初中公开课一等奖教案《角平分线的性质》(一)创设情境导入新课不利用工具,请你将一张用纸片做的角分成两个相等的角。
你有什么办法?如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。
(二)合作交流探究新知(活动一)探究角平分仪的原理。
具体过程如下:播放奥巴马访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的依据,说明这个仪器的制作原理。
设计目的:用生活中的实例感知。
以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。
其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。
使学生很轻松的完成活动二。
(活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。
讨论结果展示:教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:已知:∠AO B.求作:∠AOB的平分线.作法:(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.(2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交叉点C.(3)作射线OC,射线OC即为所求.设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。
议一议:1.在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?2.第二步中所作的两弧交点一定在∠AOB的内部吗?设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。
学生讨论结果总结:1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB•的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.(活动三)探究角平分线的性质思考:已知一角及其角平分线添加辅助线构成全等三角形;构成全等的直角三角形。
角平分线性质市公开课获奖教案省名师优质课赛课一等奖教案
角平分线性质教案一、教学目标1. 知识与技能:- 理解什么是角平分线及其性质;- 掌握角平分线的性质及其应用。
2. 过程与方法:- 通过示例,引导学生发现并理解角平分线的性质;- 教师讲解和学生独立思考相结合,培养学生分析问题的能力;- 通过练习题,巩固对角平分线性质的理解和应用。
3. 情感态度与价值观:- 培养学生善于观察和思考的习惯;- 培养学生对几何问题的兴趣,提高学生的几何思维能力;- 培养学生合作学习的能力。
二、教学重点与难点1. 教学重点:- 角平分线的定义及其性质;- 使用角平分线解决实际问题。
2. 教学难点:- 掌握角平分线的性质及其推理过程;- 理解并灵活运用角平分线的性质解决实际问题。
三、教学过程1. 导入(5分钟)- 教师出示一张图纸,图纸中画有一个三角形ABC,并标出角A、角B和角C。
- 请学生观察图纸,思考如何将角A平分。
2. 观察与总结(10分钟)- 学生应用直尺或者量角器研究平分角A的方法,并就此和同学们讨论交流。
- 教师引导学生将总结写在黑板上。
3. 角平分线的定义与性质(15分钟)- 教师向学生介绍角平分线定义:在一个角的内部,从顶点引一条射线,使得这条射线把该角分成两个相等的角,这条射线就是角的平分线。
- 教师讲解角平分线的性质,并与学生一起探讨证明过程。
4. 角平分线练习(15分钟)- 教师将一些角的平分线问题写在黑板上,要求学生独立思考并解答。
- 学生完成后,教师与学生分享思路和解答过程。
5. 角平分线的应用(10分钟)- 教师给出一些实际问题,并引导学生运用角平分线的性质进行解答。
- 学生独立思考和解答,然后与同学讨论答案。
6. 总结与拓展(10分钟)- 教师对本节课的内容进行小结,并强调角平分线的定义和性质。
- 学生可以自由提问有关角平分线的问题,并与同学一起探讨。
7. 作业布置(5分钟)- 布置相关练习题,要求学生独立完成,并明天交作业。
四、教学反思本节课采用了多种教学方法,如观察与总结、讨论解题等。
角的平分线的市公开课获奖教案省名师优质课赛课一等奖教案
角的平分线的教案一、教学目标:1. 理解角的概念,能够准确地描述角的特征;2. 掌握角的平分线的定义和性质;3. 能够运用角的平分线的性质解决相关问题。
二、教学内容:1. 角的概念和特征;2. 角的平分线的定义和性质;3. 相关问题的解决方法。
三、教学重点:1. 角的平分线的定义;2. 角的平分线的性质。
四、教学难点:1. 运用角的平分线性质解决相关问题。
五、教学准备:教学课件、黑板、粉笔、直尺、量角器。
六、教学过程:Step 1 导入通过展示一些日常生活中的角的例子,引出角的概念,并询问学生对角的理解。
Step 2 角的概念和特征1. 讲解角的定义:由两条射线共同起源于同一点称为角。
2. 介绍角的名称和符号:角的名称通常是由其中一条射线的端点和两条射线上的一点构成,角的符号常用大写字母表示。
3. 引导学生观察并总结角的特征:角的大小由两条射线之间的夹角决定,可用度数或弧度来度量。
Step 3 角的平分线的定义和性质1. 讲解角的平分线的定义:角的平分线是指将一个角分为两个相等的角的射线或线段。
2. 引导学生发现角的平分线的性质:角的平分线相互垂直且相交于角的顶点。
Step 4 角的平分线的性质的证明通过具体的几何图形,引导学生进行观察和讨论,从而理解角的平分线的性质,并帮助学生进行简单的证明。
Step 5 角的平分线的应用举例通过一些实际问题的讨论,引导学生运用角的平分线的性质解决相关问题,包括角度的求解和角度关系的推导。
Step 6 练习与巩固在黑板上出示一些练习题,让学生进行思考和解答,并给予相应的指导和讲解。
七、课堂总结:通过本堂课的学习,我们了解了角的概念和特征,学会了角的平分线的定义和性质,并能运用这些知识解决相关问题。
八、布置作业:1. 完成课堂上未能解答的练习题;2. 总结角的平分线的性质,并在作业本上写出。
九、教学反思:本堂课通过引导学生观察和探索,帮助学生深入理解了角的平分线的性质。
【全国大赛一等奖】教学设计《角平分线的性质》
设计意图:学生通过辨析命题的条件和结论,先独立完成命题的改写,再与老师共同辨析,得到最为恰当的表述,在这一过程中,一方面增强对角的平分线的性质命题条件、结论的理解,同时归纳证明一个几何命题的一般步骤,感受数学的严谨性.
借助情境学生经历将实际问题抽象为数学问题的过程从更易于理解的平行线间中间的线开始探究起逐步分析出两个猜想既要研究直线上所有的点都满足一定条件还要研究满足特定条件的所有的点都在直线上既为下一个环节探究角的平分线的性质做了铺垫又让学生获得一定的研究经验
教学基本信息
课题
12.3角的平分线的性质
是否属于
地方课程或校本课程
教学难点:发现并证明角的平分线的性质
教学流程示意(可选项)
教学过程(文字描述)
一.借助情境,发现问题
情境1:端午节是我们国家的传统节日,人们吃粽子,划龙舟来庆祝.在龙舟比赛中,为了明确船航行的方向,通常在河面上放置一些浮标.若河的两岸互相平行,最中间一排浮标的位置是如何确定的?
师生活动:学生观看视频后,从实际情境中抽象出数学问题,画出图形,并确定浮标的位置.教师适当追问,引导学生分析“中间的线”“到两平行线距离相等的点”之间的关系,明确应从两个角度去探究问题.
预设2:如图,第一步:在射线OB上任取一点M,过点M作射线OB的垂线,这条垂线上且在角的内部任取一点H,过点H作射线OB的平行线l1;
第二步:在射线OA上任取一点N,过点N作射线OA的垂线,在这条垂线上截取NG=HM且点G在角的内部,过点G作射线OA的平行线l2,交直线l1于点P.
第三步:点P即为所求.
否
省优获奖教案《角的平分线》word(省优)
按照新课程标准要求,学科核心素养作为现代教育体系的核心理论,提高学生的兴趣、学习的主动性,是当前教育教学研究所注重的重要环节之一。
2021年4月,教育部发布文件,对教育机构改革进行了深入和细致的解读。
从中我们不难看出,作为一线教师,教育教学手段和理论知识水平是下一步需要进一步提高的重要能力。
本课作为课本中比较重要的一环,对核心素养进行了贯彻,将课堂环节设计进行了细致剖析,力求达到学生乐学,教师乐教的理想状态。
[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
在今后的教学中,我会不断的钻研探索,使我的课堂真正成为学生学习的乐园。
在本节课的教学中,我始终坚持以引导为起点,以问题为主线,以能力培养为核心,遵照教师为主导,学生为主体,训练为主线的教学原则;通过师生双边活动,通过对单元的复习,使学生对本单元的知识系统化,重点知识突出化,能力培养阶梯化;在选择题目时注意了以基本题为主,少量思考性较强的题目为辅,兼顾了不同层次学生的不同要求。
本节课的教学活动,主要是让学生通过观察、动手操作,熟悉长方体、正方体的展开图以及图形折叠后的形状。
教学时,我让每个学生带长方体或正方体的纸盒,每个学生都剪一剪,并展示所剪图形的形状。
由于剪的方法不同,展开图的形状也可能是不同的。
学生在剪、拆盒子过程中,很容易把盒子拆散了,无法形成完整的展开图,就要求适当进行指导。
通过动手操作,动脑思考,集体交流,不仅提高了学生的空间思维能力,而且在情感上每位学生都获得了成功的体验,建立自信心。
接着,我利用可操作材料,体会展开图与长方体、正方体的联系;通过立体与平面的有机结合,发展学生的空间观念。
这样由浅入深、由表及里地使学生逐步达教学目标的要求:闭上眼睛想象展开或折叠的过程,促进学生建立表象,帮助学生理解概念,发展空间观念。
[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
省优获奖教案《角的平分线》word (市优)
按照新课程标准要求,学科核心素养作为现代教育体系的核心理论,提高学生的兴趣、学习的主动性,是当前教育教学研究所注重的重要环节之一。
2021年4月,教育部发布文件,对教育机构改革进行了深入和细致的解读。
从中我们不难看出,作为一线教师,教育教学手段和理论知识水平是下一步需要进一步提高的重要能力。
本课作为课本中比较重要的一环,对核心素养进行了贯彻,将课堂环节设计进行了细致剖析,力求达到学生乐学,教师乐教的理想状态。
15.4 角的平分线教学目标【知识与技能】1.会阐述角平分线的性质定理及其逆定理.2.会应用角平分线定理及其逆定理证明两条线段相等或两个角相等.【过程与方法】1.经历探索角平分线作法的过程,进一步体验轴对称的特点,发展空间观察能力.2.探索角平分线定理,培养学生认真探究、积极思考的能力.【情感、态度与价值观】1.体验数学与生活的联系,发展学生的空间观念和审美观.2.活动与探究的过程可以更大程度地激发学生学习的主动性和积极性,使学生具有一些初步研究问题的能力.重点难点【重点】角平分线的性质定理及其逆定理.【难点】理解并证明角平分线的性质定理及其逆定理.教学过程一、创设情境,导入新知师:同学们知道怎样作出角的平分线吗?生1:可以通过折纸得到一个角的平分线.生2:也可以用量角器来画一个角的平分线.师:下面我们来学习用尺规作图的方法作出∠AOB的平分线.作法:1.以O为圆心、任意长为半径圆弧分别交OA、OB于点M、N,如图(1).2.分别以点M、N为圆心,以大于MN长为半径在角的内部画弧交于点P,如图(2).3.作射线OP,则OP为所要求作的∠AOB的平分线,如图(3).师:通过上面的作图,启发我们可以用尺规完成:“经过一点作已知直线的垂线.”由于这一点可能在直线上或直线外,这个作图要分两种情况:1.经过已知直线上的一点作这条直线的垂线.已知:直线AB和AB上一点C,如图(1).求作:AB的垂线,使它经过点C.作法:作平角ACB的平分线CF.直线CF就是所求的垂线.2.经过已知直线外一点作这条直线的垂线.已知:直线AB和AB外一点C,如图(2).求作:AB的垂线,使它经过点C.作示:(1)任意取一点K,使K和C在AB的两旁;(2)以点C为圆心、CK长为半径作弧,交AB于点D和E;(3)分别以点D和点E为圆心、大于DE的长为半径作弧,两弧交于点F;(4)作直线CF.直线CF就是所求的垂线.教师边操作边讲解:用纸剪一个角,把纸片对折,使角的两边叠合在一起,再把纸片展开,你看到了什么?把对折的纸片继续任意折一次,然后把纸片展开,又看到了什么?学生操作.师:从上面折纸中我们发现,纸片第一次对折后的折痕是什么?生:是这个角的平分线.师:你第二次折时出现的两条折痕的长度之间有什么关系?生:一样长.师:因为第二次我们是任意折的,所以这种等长的折痕能折出无数对.二、共同探究,获取新知教师多媒体出示:操作:(1)折出如上图中的折痕PD、PE;(2)你和同桌用三角板测量一下,检测你们所折的折痕是否符合图示的要求.问题1:你能用文字语言阐述所画图形的性质吗?学生思考后回答.问题2:根据命题“在角平分线上的点到这个角的两边的距离相等”用符号语言填写下表:图形已知事项由已知事项推出的事项OP平分∠AOB,PD⊥OB,PE⊥OA,垂足分别为D、EPD=PE(推证定理1)问题3:根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用符号语言填写下图形已知事项由已知事项推出的事项DE⊥AB,BC⊥AC,垂足分别为E、C,DE=DC.∠DAE=∠DAC问题4:用文字语言表述上表中的已知事项和由已知事项推出的事项.(推证定理2)三、练习新知,加深理解师:下面我们接着来探讨上面的问题3.教师多媒体出示:(1)∵AD平分∠BAC,DC⊥AC,DE⊥AB,(已知)∴DC=DE.( )(2)∵DC⊥AC,DE⊥AB,DC=DE,(已知)∴点D在∠BAC的平分线上.( )学生思考后抢答,教师板书.第1个括号中填“角平分线上任意一点到角的两边的距离相等”,第2个括号中填“到角的两边距离相等的点在这个角的平分线上”.教师多媒体出示:【例1】已知:如图所示,∠C=∠C'=90°,AC=AC'.求证:(1)∠ABC=∠ABC';(2)BC=BC'.(要求不用三角形全等判定)学生思考后交流讨论.教师找一名学生板演,其余同学在下面做,然后集体订正.证明:(1)∵∠C=∠C'=90°,(已知)∴AC⊥BC,AC'⊥BC'.(垂直的定义)又∵AC=AC',(已知)∴点A在∠CBC'的角平分线上.(到一个角的两边的距离相等的点,在这个角的平分线上) ∴∠ABC=∠ABC'.(2)∵∠C=∠C',∠ABC=∠ABC',∴180°-(∠C+∠ABC)=180°-(∠C'+∠ABC').(三角形内角和定理)即∠BAC=∠ABC'.∵BC⊥AC,BC'⊥AC',∴BC=BC'.(角平分线上的点到这个角的两边的距离相等)【例2】已知:如图,△ABC中,∠B、∠C的平分线BE、CF相交于点P.求证:AP平分∠BAC.证明:过点P分别作PM⊥BC、PN⊥AC、PQ⊥AB,垂足分别为M、N、Q.∵BE是∠B的平分线,点P在BE上,(已知)∴PQ=PM.(角平分线上任意一点到角的两边的距离相等)同理PN=PM.∴PN=PQ.(等量代换)∴AP平分∠BAC.(到角的两边距离相等的点在这个角的平分线上)四、课堂小结师:你今天学习了什么知识?有什么新的收获?学生回答,教师点评.教学反思本节课开头设计的折纸和画一画的活动,旨在丰富学生对角平分线性质的感知,有利于学生借助直观图从而准确地用文字语言揭示角平分线的性质.由于部分学生常常把“过角平分线上一点向角两边画垂线段”与“过角平分线上一点画角平分线的垂线”混为一谈,因此设计操作(1)、(2),为学生能正确画出符合要求的图形,从直观上以及三角板的正确使用上都作了恰当的铺垫,同时也为定理1的推理论证作准备.通过学生自己动后操作、自己推导、自己发现,从而得到角平分线的性质定理及其逆定理,充分发挥学生的探究意识,使学生在学习中体验并掌握合作交流的学习方法,同时进一步锻炼学生的数学语言表达能力,能写出规范的证明过程.[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
“同课异构”优质优质课获奖教案《角的平分线》word教案(省优)
本课的设计初衷,是为全体学生的共同提高。
作为教师要充分保护好孩子的自信心,只有孩子们有了自信,才有可能持续保持对某些事物的兴趣和热情。
“失败是成功之母”应该改为“成功是成功之母”,特别是在孩子刚开始对某些事物倾注热情和精力的时候,对他们自信心的保护至关重要。
所以强烈建议平时的测验应在学目标范围内尽可能的简单,最大限度的保持孩子的自尊心和自信心。
正所谓“大道至简”,在保证教学目标实现的情况下,教师的课堂要设计的简便扼要,要把较难的、复杂的问题、深刻的问题讲的轻松自然,诙谐幽默,像涓涓细流,于无声中浸润学生的思维。
本课在单元中,属于承上而启下的教学内容。
角平分线的性质教学设计思想通过前面的学习已经探究出角平分线上的点所具有的性质,本节学习对这个性质进行证明。
让学生完成对三角形全等的判定公理的推论的证明,进而应用这个公理完成对角平分线性质定理的证明,对于平分线的性质定理的逆定理仿照上节课处理线段垂直平分线逆命题的思路,引导学生解决与定理和逆定理的有关问题。
对于尺规作角平分线,要让学生明白每步做法的依据。
最后通过例题的学习来巩固这些知识点。
教学目标知识与技能总结角平分线的性质定理及其逆定理的证明并能灵活应用它们进行有关的计算和证明;说出用尺规作角平分线的依据;能够熟练地按照证明的格式和步骤对一些命题进行证明。
过程与方法经历用尺规作角平分线的过程;经历寻找证明、作图思路的过程,进一步发展推理证明意识和能力;情感态度价值观通过观察、类比、对比、归纳等方法尝试从不同角度分析问题,形成不同的策略;愿意动手操作,并和同伴交流,形成不同意见。
教学重点和难点重点是角平分线的性质定理和逆定理的证明及其应用;难点是角平分线的性质定理和逆定理的应用。
解决办法:通过例题的学习,分析出解题的思路,总结出做题的方法。
教学方法启发引导、小组讨论课时安排1课时教具学具准备投影仪或电脑、三角板 教学过程设计(一)角平分线的性质定理我们已经探究出角平分线上的点所具有的性质,怎样对这个性质进行证明呢? 角平分线的性质定理 角平分线上的点到这个角的两边的距离相等。
《角平分线》word版 公开课一等奖教案 (4)
当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料.这些资料因为用的比拟少,所以在全网范围内,都不易被找到.您看到的资料,制作于2021年,是根据最|新版课本编辑而成.我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品.本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最|终形成了本作品.本作品为珍贵资源,如果您现在不用,请您收藏一下吧.因为下次再搜索到我的时机不多哦!§11.3.2 角的平分线的性质 (二 )(三 )情感与价值观要求通过折纸、画图、文字一符号的翻译活动 ,培养学生的联想、探索、概括归纳的能力 ,激发学生学习数学的兴趣.教学重点:角平分线的性质及其应用.教学难点:灵活应用两个性质解决问题.教学方法:探索、归纳的方法.教学过程一.创设情境 ,引入新课[师]请同学们拿出准备好的折纸与剪刀 ,自己动手 ,剪一个角 ,把剪好的角对折 ,使角的两边叠合在一起 ,再把纸片展开 ,你看到了什么 ?把对折的纸片再任意折一次 ,然后把纸片展开 ,又看到了什么 ?二.导入新课角平分线的性质即角的平分线 ,能推出什么样的结论.操作:1.折出如下图的折痕PD、PE.2.你与同伴用三角板检测你们所折的折痕是否符合图示要求.画一画:按照折纸的顺序画出一个角的三条折痕 ,并度量所画PD、PE是否等长 ?拿出两名同学的画图 ,放在投影下 ,请大家评一评 ,以达明确概念的目的.问题1:你能用文字语言表达所画图形的性质吗 ?问题2: (出示投影片 )能否用符号语言来翻译 "角平分线上的点到角的两边的距离相等〞这句话.请填下表:学生通过讨论作出以下概括:事项:OC平分∠AOB ,PD⊥OA ,PE⊥OB ,D、E为垂足.由事项推出的事项:PD =PE.于是我们得角的平分线的性质:在角的平分线上的点到角的两边的距离相等.[师]那么到角的两边距离相等的点是否在角的平分线上呢 ? (出示投影 ) 问题3:根据下表中的图形和事项 ,猜测由事项可推出的事项 ,并用符号语言填写下表:下面请同学们思考一个问题.思考:如下图 ,要在S区建一个集贸市场 ,使它到公路、铁路距离相等 ,•离公路与铁路交叉处500m ,这个集贸市场应建于何处 (在图上标出它的位置 ,比例尺为1:20000 ) ?1.集贸市场建于何处 ,和本节学的角平分线性质有关吗 ?用哪一个性质可以解决这个问题 ?2.比例尺为1:20000是什么意思 ?讨论结果展示:1.应该是用第二个性质.•这个集贸市场应该建在公路与铁路形成的角的平分线上 ,并且要求离角的顶点500米处.2.在纸上画图时 ,我们经常在厘米为单位 ,而题中距离又是以米为单位 ,•这就涉及一个单位换算问题了.1m =100cm ,所以比例尺为1:20000 ,其实就是图中1cm•表示实际距离200m的意思.作图如下:第|一步:尺规作图法作出∠AOB的平分线OP.第二步:在射线OP上截取OC = ,确定C点 ,C点就是集贸市场所建地了.总结:应用角平分线的性质 ,就可以省去证明三角形全等的步骤 ,•使问题简单化.所以假设遇到有关角平分线 ,又要证线段相等的问题 ,•我们可以直接利用性质解决问题. [例]如图 ,△ABC的角平分线BM、CN相交于点P.求证:点P到三边AB、BC、CA的距离相等.[师生共析]点P到AB、BC、CA的垂线段PD、PE、PF的长就是P点到三边的距离 ,•也就是说要证:PD =PE =PF.而BM、CN分别是∠B、∠C的平分线 ,•根据角平分线性质和等式的传递性可以解决这个问题.证明:过点P作PD⊥AB ,PE⊥BC ,PF⊥AC ,垂足为D、E、F.因为BM是△ABC的角平分线 ,点P在BM上.所以PD =PE.同理PE =PF.所以PD =PE =PF.即点P到三边AB、BC、CA的距离相等.三.随堂练习1.课本P22练习.2.课本P22习题11.3第3题.在这里要提醒学生直接利用角平分线的性质 ,无须再证三角形全等.四.课时小结今天 ,我们学习了关于角平分线的两个性质:①角平分线上的点到角的两边的距离相等;②到角的两边距离相等的点在角的平分线上.它们具有互逆性 ,可以看出 ,随着研究的深入 ,解决问题越来越简便了.像与角平分线有关的求证线段相等、角相等问题 ,我们可以直接利用角平分线的性质 ,而不必再去证明三角形全等而得出线段相等.五.课后作业:课本P22页习题11.3第4、5、6题.本课教学反思本节课主要采用过程教案法训练学生的听说读写.过程教案法的理论根底是交际理论,认为写作的过程实质上是一种群体间的交际活动,而不是写作者的个人行为.它包括写前阶段,写作阶段和写后修改编辑阶段.在此过程中,教师是教练,及时给予学生指导,更正其错误,帮助学生完成写作各阶段任务.课堂是写作车间, 学生与教师, 学生与学生彼此交流, 提出反应或修改意见, 学生不断进行写作, 修改和再写作.在应用过程教案法对学生进行写作训练时, 学生从没有想法到有想法, 从不会构思到会构思, 从不会修改到会修改, 这一过程有利于培养学生的写作能力和自主学习能力.学生由于能得到教师的及时帮助和指导,所以,即使是英语根底薄弱的同学,也能在这样的环境下,写出较好的作文来,从而提高了学生写作兴趣,增强了写作的自信心.这个话题很容易引起学生的共鸣,比拟贴近生活,能激发学生的兴趣, 在教授知识的同时,应注意将本单元情感目标融入其中,即保持乐观积极的生活态度,同时要珍惜生活的点点滴滴.在教授语法时,应注重通过例句的讲解让语法概念深入人心,因直接引语和间接引语的概念相当于一个简单的定语从句,一个清晰的脉络能为后续学习打下根底.此教案设计为一个课时,主要将安妮的处境以及她的精神做一个简要概括,下一个课时那么对语法知识进行讲解.在此教案过程中,应注重培养学生的自学能力,通过辅导学生掌握一套科学的学习方法,才能使学生的学习积极性进一步提高.再者,培养学生的学习兴趣,增强教案效果,才能防止在以后的学习中产生两极分化.在教案中任然存在的问题是,学生在"说〞英语这个环节还有待提高,大局部学生都不愿意开口朗读课文,所以复述课文便尚有难度,对于这一局部学生的学习成绩的提高还有待研究.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4 角平分线 第1课时 角平分线1.复习角平分线的相关知识,探究归纳角平分线的性质和判定定理;(重点) 2.能够运用角平分线的性质和判定定理解决问题.(难点)一、情境导入问题:在S 区有一个集贸市场P ,它建在公路与铁路所成角的平分线上,要从P 点建两条路,一条到公路,一条到铁路.问题1:怎样修建道路最短? 问题2:往哪条路走更近呢?二、合作探究探究点一:角平分线的性质定理【类型一】 应用角平分线的性质定理证明线段相等如图,在△ABC 中,∠C =90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC上,BD =DF .求证:(1)CF =EB ;(2)AB =AF +2EB .解析:(1)根据角平分线的性质,可得点D 到AB 的距离等于点D 到AC 的距离,即CD =DE .再根据Rt △CDF ≌Rt △EBD ,得CF =EB ;(2)利用角平分线的性质证明△ADC 和△ADE 全等得到AC =AE ,然后通过线段之间的相互转化进行证明.证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴DE =DC .在Rt △DCF 和Rt△DEB 中,∵⎩⎪⎨⎪⎧BD =DF ,DC =DE ,∴Rt △CDF ≌Rt △EBD (HL).∴CF =EB ;(2)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴CD =DE .在△ADC 与△ADE 中,∵⎩⎪⎨⎪⎧CD =DE ,AD =AD , ∴△ADC ≌△ADE (HL),∴AC =AE ,∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB .方法总结:角平分线的性质是判定线段相等的一个重要依据,在应用时一定要注意是两条“垂线段”相等.【类型二】 角平分线的性质定理与三角形面积的综合运用如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,S △ABC =7,DE =2,AB =4,则AC 的长是( )A .6B .5C .4D .3解析:过点D 作DF ⊥AC 于F ,∵AD 是△ABC 的角平分线,DE ⊥AB ,∴DF =DE =2,∴S △ABC =12×4×2+12×AC ×2=7,解得AC =3.故选D.方法总结:利用角平分线的性质作辅助线构造三角形的高,再利用三角形面积公式求出线段的长度是常用的方法.【类型三】 角平分线的性质定理与全等三角形的综合运用如图所示,D 是△ABC 外角∠ACG 的平分线上的一点.DE ⊥AC ,DF ⊥CG ,垂足分别为E ,F .求证:CE =CF .解析:由角平分线上的性质可得DE =DF ,再利用“HL ”证明Rt △CDE 和Rt △CDF 全等,根据全等三角形对应边相等证明即可.证明:∵CD 是∠ACG 的平分线,DE ⊥AC ,DF ⊥CG ,∴DE =DF .在Rt △CDE 和Rt△CDF 中,∵⎩⎪⎨⎪⎧CD =CD ,DE =DF ,∴Rt △CDE ≌Rt △CDF (HL),∴CE =CF .方法总结:全等三角形的判定离不开边,而角平分线的性质是判定线段相等的主要依据,可作为判定三角形全等的条件.探究点二:角平分线的判定定理 【类型一】 角平分线的判定如图,BE =CF ,DE ⊥AB 的延长线于点E ,DF ⊥AC 于点F ,且DB =DC ,求证:AD 是∠BAC 的平分线.解析:先判定Rt △BDE 和Rt △CDF 全等,得出DE =DF ,再由角平分线的判定可知AD 是∠BAC 的平分线.证明:∵DE ⊥AB 的延长线于点E ,DF ⊥AC 于点F ,∴∠BED =∠CFD ,∴△BDE 与△CDF 是直角三角形.在Rt △BDE 和Rt △CDF 中,∵⎩⎪⎨⎪⎧BE =CF ,BD =CD ,∴Rt △BDE ≌Rt △CDF (HL),∴DE =DF .∵DE ⊥AB ,DF ⊥AC ,∴AD 是∠BAC 的平分线.方法总结:证明一条射线是角平分线的方法有两种:一是利用三角形全等证明两角相等;二是角的内部到角两边距离相等的点在角平分线上.【类型二】 角平分线的性质和判定的综合如图所示,△ABC 中,AB =AC ,AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F .下面给出四个结论,①AD 平分∠EDF ;②AE =AF ;③AD 上的点到B 、C 两点的距离相等;④到AE 、AF 距离相等的点,到DE 、DF 的距离也相等.其中正确的结论有( )A .1个B .2个C .3个D .4个 解析:由AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC 可得DE =DF ,由此易得△ADE ≌△ADF ,故∠ADE =∠ADF ,即①AD 平分∠EDF 正确;②AE =AF 正确;中垂线上的点到两端点的距离相等,故③正确;∵④到AE 、AF 距离相等的点,在∠BAC 的角平分线AD 上,到DE 、DF 的距离相等的点在∠EDF 的平分线DA 上,两者同一条直线上,所以到DE 、DF 的距离也相等正确,故④正确;①②③④都正确.故选D.方法总结:运用角平分线的性质或判定时,可以省去证明三角形全等的过程,可以直接得到线段或角相等.【类型三】 添加辅助线解决角平分线的问题如图,△ABC 的∠ABC 和∠ACB 的外角平分线交于点D .求证:AD 是∠BAC 的平分线.解析:分别过点D 作DE 、DF 、DG 垂直于AB 、BC 、AC ,垂足分别为E 、F 、G ,然后利用角平分线上的点到角两边的距离相等可知DE =DG ,再利用到角两边距离相等的点在角平分线上来证明.证明:分别过D 作DE 、DF 、DG 垂直于AB 、BC 、AC ,垂足分别为E 、F 、G .∵BD 平分∠CBE ,DE ⊥BE ,DF ⊥BC ,∴DE =DF .同理DG =DF ,∴DE =DG ,∴点D 在∠BAC 的平分线上,∴AD 是∠BAC 的平分线.方法总结:在遇到角平分线的问题时,往往过角平分线上的一点作角两边的垂线段,利用角平分线的判定或性质解决问题.【类型四】 线段垂直平分线与角平分线的综合运用如图,在四边形ADBC 中,AB 与CD 互相垂直平分,垂足为点O .(1)找出图中相等的线段;(2)OE ,OF 分别是点O 到∠CAD 两边的垂线段,试说明它们的大小有什么关系. 解析:(1)由垂直平分线的性质可得出相等的线段;(2)由条件可证明△AOC ≌△AOD ,可得AO 平分∠DAC ,根据角平分线的性质可得OE =OF .解:(1)∵AB 、CD 互相垂直平分,∴OC =OD ,AO =OB ,且AC =BC =AD =BD ;(2)OE =OF ,理由如下:在△AOC 和△AOD 中,∵⎩⎪⎨⎪⎧AC =AD ,OC =OD ,AO =AO ,∴△AOC ≌△AOD (SSS),∴∠CAO =∠DAO .又∵OE ⊥AC ,OF ⊥AD ,∴OE =OF .方法总结:本题是线段垂直平分线的性质和角平分线的性质的综合,掌握它们的适用条件和表示方法是解题的关键.三、板书设计1.角平分线的性质定理角平分线上的点到这个角的两边的距离相等. 2.角平分线的判定定理在一个角的内部,到角的两边距离相等的点在这个角的平分线上.本节课由于采用了动手操作以及讨论交流等教学方法,从而有效地增强了学生对角以及角平分线的性质的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生在性质的运用上还存在问题,需要在今后的教学与作业中进一步的加强巩固和训练.3.1 图形的平移 第1课时 平移的认识1.理解并掌握平移的定义及性质;(重点)2.能够根据平移的性质进行简单的平移作图.一、情境导入观察下列图片,你能发现图中描绘的运动的共同点吗?二、合作探究 探究点一:平移的定义 下列各组图形可以通过平移互相得到的是( ) A. B. C. D. 解析:根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是C ,故选C.方法总结:本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小.探究点二:平移的性质【类型一】 利用平移的性质进行计算如图,将等腰直角△ABC 沿BC 方向平移得到△A 1B 1C 1,若BC =32,△ABC 与△A 1B 1C 1重叠部分面积为2,则BB 1等于( )A .1 B. 2 C. 3 D .2解析:设B 1C =2x ,根据等腰直角三角形和平移的性质可知,重叠部分为等腰直角三角形,则B 1C 边上的高为x ,∴12×x ×2x=2,解得x =2(舍去负值),∴B 1C =22,∴BB 1=BC -B 1C = 2.故选B.方法总结:本题考查了等腰直角三角形的性质和平移的性质.关键是判断重叠部分图形为等腰直角三角形,利用等腰直角三角形的性质和重叠部分面积列出方程,求重叠部分的长.【类型二】 平移性质的综合应用如图,原来是重叠的两个直角三角形,将其中一个三角形沿着BC 方向平移线段BE 的距离,就得到此图形,下列结论正确的有( )①AC ∥DF ;②HE =5;③CF =5;④阴影部分面积为552.A .1个B .2个C .3个D .4个 解析:根据平移的性质得出对应点所连的线段平行且相等,对应角相等,对应线段平行且相等,阴影部分和三角形面积之间的关系,结合图形与所给的结论即可得出答案.①对应线段平行可得AC ∥DF ,正确;②对应线段相等可得AB =DE =8,则HE =DE -DH =8-3=5,正确;③平移的距离CF =BE =5,正确;④S 四边形HDFC =S 梯形ABEH =12(AB +EH )·BE =12×(8+5)×5=652,错误.故选C.方法总结:本题考查平移的基本性质:①平移不改变图形的形状和大小;②对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.本题关键要找到平移的对应点.探究点三:简单的平移作图将如图方格中的图形向右平移4格,再向上平移2格,在方格中画出平移后的图形.解析:按照题目要求:向右平移4格,再向上平移2格,先作各个关键点的对应点,再连接即可.解:方法总结:作平移图形时,找关键点的对应点是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.三、板书设计1.平移的定义在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2.平移的性质一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等.3.简单的平移作图教学过程中,强调学生自主探索和合作交流,学生经历将实际问题抽象成图形问题,培养学生的逻辑思维能力和空间想象能力,使得学生能将所学知识灵活运用到生活中.第2课时一元一次不等式的应用1.会在实际问题中寻找数量关系列一元一次不等式并求解;2.能够列一元一次不等式解决实际问题.(重点,难点)一、情境导入如果你要分别购买40元、80元、140元、160元的商品,应该去哪家商店更优惠?二、合作探究探究点:一元一次不等式的应用【类型一】商品销售问题某商品的进价是120元,标价为180元,但销量较小.为了促销,商场决定打折销售,为了保证利润率不低于20%,那么最多可以打几折出售此商品?解析:由题意可知,利润率为20%时,获得的利润为120×20%=24元;若打x折该商品获得的利润=该商品的标价×x 10-进价,即该商品获得的利润=180×x10-120,列出不等式,解得x 的值即可.解:设可以打x 折出售此商品,由题意得:180×x10-120≥120×20%,解得x ≥8.答:最多可以打8折出售此商品.方法总结:商品销售问题的基本关系是:售价-进价=利润.读懂题意列出不等式求解是解题关键.【类型二】 竞赛积分问题某次知识竞赛共有25道题,答对一道得4分,答错或不答都扣2分.小明得分要超过80分,他至少要答对多少道题?解析:设小明答对x 道题,则答错或不答的题目为(25-x )道,根据得分要超过80分,列出不等关系求解即可.解:设小明答对x 道题,则他答错或不答的题目为(25-x )道.根据他的得分要超过80分,得:4x -2(25-x )>80,解得x >2123.因为x 应是整数而且不能超过25,所以小明至少要答对22道题. 答:小明至少要答对22道题.方法总结:竞赛积分问题的基本关系是:得分-扣分=最后得分.本题涉及到不等式的整数解,取整数解时要注意关键词如“至多”“至少”等.【类型三】 安全问题采石场爆破时,点燃导火线后工人要在爆破前转移到400米外的安全区域.导火线燃烧速度是每秒1厘米,工人转移的速度是每秒5米,导火线至少要多少米?解析:根据时间列不等式,导火线燃烧时间>工人要在爆破前转移到400米外的安全区域时间.解:设导火线的长度需要x 米,1厘米/秒=0.01米/秒,由题意得x 0.01>4005,解得x >0.8.答:导火线至少要0.8米.【类型四】 分段计费问题小明家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1.8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小明家每月用水量至少是多少?解析:当每月用水5立方米时,花费5×1.8=9元,则可知小明家每月用水超过5立方米.设每月用水x 立方米,则超出(x -5)立方米,根据题意超出部分每立方米收费2元,列一元一次不等式求解即可.解:设小明家每月用水x 立方米. ∵5×1.8=9<15,∴小明家每月用水超过5立方米.则超出(x -5)立方米,按每立方米2元收费,列出不等式为5×1.8+(x-5)×2≥15,解不等式得x≥8.答:小明家每月用水量至少是8立方米.方法总结:分段计费问题中的费用一般包括两个部分:基本部分的费用和超出部分的费用.根据费用之间的关系建立不等式求解即可.【类型五】调配问题有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排多少人种甲种蔬菜?解析:设安排x人种甲种蔬菜,则种乙种蔬菜为(10-x)人.甲种蔬菜有3x亩,乙种蔬菜有2(10-x)亩.再列出不等式求解即可.解:设安排x人种甲种蔬菜,则种乙种蔬菜为(10-x)人.根据题意得0.5×3x+0.8×2(10-x)≥15.6,解得x≤4.答:最多只能安排4人种甲种蔬菜.方法总结:调配问题中,各项工作的人数之和等于总人数.【类型六】方案决策问题为了保护环境,某企业决定购买10台污水处理设备.现有A、B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表.经预算,该企业购买设备的资金不高于105万元.A型B型价格(万元/台)1210处理污水量(吨/月)240200年消耗费(万元/台)1 1(1)请你设计该企业有几种购买方案;(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案.解析:(1)设购买污水处理设备A型x台,则B型为(10-x)台,列出不等式求解即可,x 的值取整数;(2)如图表列出不等式求解,再根据x的值选出最佳方案.解:(1)设购买污水处理设备A型x台,则B型为(10-x)台.12x+10(10-x)≤105,解得x≤2.5,∵x取非负整数,∴x可取0,1,2,有三种购买方案:购A型0台,B型10台;A型1台,B型9台;A型2台,B型8台;(2)240x+200(10-x)≥2040,解得x≥1,∴x为1或2.当x=1时,购买资金为12×1+10×9=102(万元);当x=2时,购买资金为12×2+10×8=104(万元).答:为了节约资金,应选购A型1台,B型9台.方法总结:此题将现实生活中的事件与数学思想联系起来,属于最优化问题,在确定最优方案时,应把几种情况进行比较.三、板书设计应用一元一次不等式解决实际问题的步骤:实际问题――→找出不等关系设未知数列不等式―→解不等式―→结合实际问题确定答案本节课通过实例引入,激发学生的学习兴趣,让学生积极参与,讲练结合,引导学生找不等关系列不等式.在教学过程中,可通过类比列一元一次方程解决实际问题的方法来学习,让学生认识到列方程与列不等式的区别与联系.3.1 图形的平移 第1课时 平移的认识1.理解并掌握平移的定义及性质;(重点)2.能够根据平移的性质进行简单的平移作图.一、情境导入观察下列图片,你能发现图中描绘的运动的共同点吗?二、合作探究探究点一:平移的定义下列各组图形可以通过平移互相得到的是( )A.B.C. D. 解析:根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是C ,故选C.方法总结:本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小.探究点二:平移的性质【类型一】 利用平移的性质进行计算如图,将等腰直角△ABC 沿BC 方向平移得到△A 1B 1C 1,若BC =32,△ABC 与△A 1B 1C 1重叠部分面积为2,则BB 1等于( )A .1 B. 2 C. 3 D .2解析:设B 1C =2x ,根据等腰直角三角形和平移的性质可知,重叠部分为等腰直角三角形,则B 1C 边上的高为x ,∴12×x ×2x=2,解得x =2(舍去负值),∴B 1C =22,∴BB 1=BC -B 1C = 2.故选B.方法总结:本题考查了等腰直角三角形的性质和平移的性质.关键是判断重叠部分图形为等腰直角三角形,利用等腰直角三角形的性质和重叠部分面积列出方程,求重叠部分的长.【类型二】 平移性质的综合应用如图,原来是重叠的两个直角三角形,将其中一个三角形沿着BC 方向平移线段BE 的距离,就得到此图形,下列结论正确的有( )①AC ∥DF ;②HE =5;③CF =5;④阴影部分面积为552.A .1个B .2个C .3个D .4个 解析:根据平移的性质得出对应点所连的线段平行且相等,对应角相等,对应线段平行且相等,阴影部分和三角形面积之间的关系,结合图形与所给的结论即可得出答案.①对应线段平行可得AC ∥DF ,正确;②对应线段相等可得AB =DE =8,则HE =DE -DH =8-3=5,正确;③平移的距离CF =BE =5,正确;④S 四边形HDFC =S 梯形ABEH =12(AB +EH )·BE =12×(8+5)×5=652,错误.故选C.方法总结:本题考查平移的基本性质:①平移不改变图形的形状和大小;②对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.本题关键要找到平移的对应点.探究点三:简单的平移作图将如图方格中的图形向右平移4格,再向上平移2格,在方格中画出平移后的图形.解析:按照题目要求:向右平移4格,再向上平移2格,先作各个关键点的对应点,再连接即可.解:方法总结:作平移图形时,找关键点的对应点是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.三、板书设计 1.平移的定义 在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2.平移的性质一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等.3.简单的平移作图教学过程中,强调学生自主探索和合作交流,学生经历将实际问题抽象成图形问题,培养学生的逻辑思维能力和空间想象能力,使得学生能将所学知识灵活运用到生活中.六、词语点将(据意写词)。