《正多边形和圆》教学反思

合集下载

《正多边形和圆》教学反思

《正多边形和圆》教学反思

《正多边形和圆》教学反思
《正多边形和圆》是九年制义务教育新课程标准九年级第二十四章第三节第一课时的内容。

首先出示圆形、等边三角形、正方形、正多边形及其镶嵌图形,学生观察其特点并感受生活中的数学美。

有了前边学习内接三角形、四边形的经验,研究内接正多边形显得更加容易一些,在弧相等的前提下,其所对弦、圆周角也都相等。

师生合作探究过程中,教师引出中心角、边心距等概念。

本节课使用讲练结合的方式开展教学,教师出示几道关于内接多边形、求边心距、求中心角的题目,及时巩固所学知识。

一道关于凉亭的实际问题,引导学生建立数学模型,强化抽象能力,将本节课知识推向升华。

课堂小结部分,教师为让学生更直观地看出多边形与圆的相关知识,用列表法将边数、内角、中心角、半径、边长、边心距、周长、面积绘制成一张图形,便于学生吸收知识。

遗憾的是,学生在求解边心距和中心角时没有固定的思路,根本不清楚使用的基本知识就是弦心距三角形的知识。

正多边形和圆教学反思[精选.]

正多边形和圆教学反思[精选.]

正多边形和圆教学反思儋州市西联中学邓高春正多边形和圆,下面对这节课教学进行如下反思:一、成功之处:1、本节课的教学从生活实际出发(观看美丽图案),引导学生得出定义。

这一做法渗透了数学来源于实践,反过来又作用于实践的辨证唯物主义思想。

对定义的教学,不是简单地由教师告诉学生,而是由学生自己观察、猜想、探究得出结论,让学生体验知识的产生过程。

2、学生走上讲台,拉近了师生之间的距离。

教师不是高高在上,而是与学生处在同等位置上,培养了学生能力。

3、备课仔细,对课堂上可能出现的问题作了充分地考虑。

如在探究正多边形的定义的时候,对学生可能得出的结论作了充分的准备。

反映了教师的基本功扎实。

4、整堂课都体现了对学生动手能力的培养。

在探究正多边形和圆的关系时,让学生自己动手操作,画圆,实验并进行猜想,这正是新大纲教改思路的体现。

5、注重学生间的合作交流。

表现形式有同位或小组讨论。

实验表明学生之间的知识交流比师生间交流更利于学生的知识掌握。

同时,这种形式也培养了学生将来走向社会后能够充分地表达自己的见解,听取别人的意见。

6、注重学法指导。

在进行正多边形和圆关系的第二个结论时,指导学生自学,教给学生学习的方法,“授学生以渔”,为学生将来的终身教育打下基础。

7、小结的形式。

8、本节课一个突破性的地方就是在课堂上让学生质疑,让学生对本节课不明白的地方或是与老师意见不一致的地方敢于提出自己的见解。

尽管在这方面做得不是很到位,但是已跨出大胆的一步。

二、不足之处:1、在讨论时应该放得更开一些,可以采用多种形式,如:下位找自己熟悉的同学讨论,或是不局限有于一个小组,而进行多组合作,或是与老师(甚至是听课老师)讨论。

2、应注意多媒体板演的示范作用,投影应适时。

最新文件仅供参考已改成word文本。

方便更改。

2024年人教版九年级数学上册教案及教学反思第24章24.3 正多边形和圆(第1课时)

2024年人教版九年级数学上册教案及教学反思第24章24.3 正多边形和圆(第1课时)

24.3 正多边形和圆第1课时一、教学目标【知识与技能】了解正多边形和圆的关系,了解正多边形半径和边长,边心距,中心,中心角等概念.会应用正多边形的有关知识解决圆中的计算问题.【过程与方法】结合生活中的正多边形形状的图案,发现正多边形和圆的关系.【情感态度与价值观】学生经历观察、发现、探究等数学活动,感受到数学来源于生活、又服务于生活.二、课型新授课三、课时第1课时,共2课时。

四、教学重难点【教学重点】正多边形与圆的相关概念及其之间的运算.【教学难点】探索正多边形和圆的关系,正多边形半径,中心角、边心距,边长之间的关系.五、课前准备课件、图片、直尺等.六、教学过程(一)导入新课出示课件2,3:观察上边的美丽图案,思考下面的问题:(1)这些都是生活中经常见到的利用正多边形得到的物体,你能找出正多边形吗?(2)你知道正多边形和圆有什么关系吗?怎样做一个正多边形呢?学生通过观察美丽的图案,欣赏生活中正多边形形状的物体.让学生感受到数学来源于生活,并从中感受到数学美.(板书课题)(二)探索新知探究一正多边形的对称性教师问:什么叫做正多边形?(出示课件5)学生答:各边相等,各角也相等的多边形叫做正多边形.教师问:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?学生答:矩形不是正多边形,因为矩形不符合各边相等;菱形不是正多边形,因为菱形不符合各角相等;教师强调:正多边形:①各边相等;②各角相等,两个条件,缺一不可.教师问:正三角形、正四边形、正五边形、正六边形都是轴对称图形吗?都是中心对称图形吗?(出示课件6,7)学生动手操作,交流,感受正多边形的对称性.教师归纳:正n边形都是轴对称图形,都有n条对称轴,只有边数为偶数的正多边形既是轴对称图形又是中心对称图形.探究二正多边形的有关概念教师问:以正四边形为例,根据对称轴的性质,你能得出什么结论?(出示课件8,9)师生结合图形共同探究:EF是边AB、CD的垂直平分线,∴OA=OB,OD=OC.GH是边AD、BC的垂直平分线,∴OA=OD,OB=OC.∴OA=OB=OC=OD.∴正方形ABCD有一个以点O为圆心的外接圆.AC是∠DAB及∠DCB的角平分线,BD是∠ABC及∠ADC的角平分线,∴OE=OH=OF=OG.∴正方形ABCD还有一个以点O为圆心的内切圆.出示课件10:教师问:所有的正多边形是不是也都有一个外接圆和一个内切圆?学生答:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.教师问:一个正多边形的各个顶点在同一个圆上?学生答:一个正多边形的各个顶点在同一个圆上,则这个正多边形就是这个圆的一个内接正多边形,圆叫做这个正多边形的外接圆.教师问:所有的多边形是不是都有一个外接圆和内切圆?学生答:多边形不一定有外接圆和内切圆,只有是正多边形时才有,任意三角形都有外接圆和内切圆.教师出示概念:(出示课件11)1.正多边形的外接圆和内切圆的公共圆心,叫做正多边形的中心.2.外接圆的半径叫做正多边形的半径.3.内切圆的半径叫做正多边形的边心距.4.正多边形每一条边所对的圆心角,叫做正多边形的中心角.正多边形的每个中心角都等于360.n练一练:(出示课件12)完成下面的表格:学生计算交流并填表.探究三 正多边形的有关计算出示课件13:如图,已知半径为4的圆内接正六边形ABCDEF :①它的中心角等于 度; ②OC BC(填>、<或=); ③△OBC 是 三角形;④圆内接正六边形的面积是△OBC 面积的 倍. ⑤圆内接正n 边形面积公式:_______________________. 学生计算交流后,教师抽学生口答.①60;②=;③等边;④6;⑤1=2S ⨯⨯正多边形周长边心距出示课件14:例 有一个亭子,它的地基是半径为4m 的正六边形,求地基的周长和面积(精确到0.1m 2).教师分析:根据题意作图,将实际问题转化为数学问题.师生共同解答:(出示课件15)解:过点O 作OM ⊥BC 于M.在Rt △OMB 中,OB =4,MB =4222BC ==,利用勾股定理,可得边心距r ==亭子地基的面积:2112441.6(m ).22S l r =⋅=⨯⨯≈ 巩固练习:(出示课件16)如图所示,正五边形ABCDE 内接于⊙O ,则∠ADE 的度数是( )A .60°B .45°C .36°D .30° 学生独立思考后自主解答:C.教师归纳:圆内接正多边形的辅助线(出示课件17)1.连半径,得中心角;2.作边心距,构造直角三角形. 巩固练习:(出示课件18)已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少?学生独立思考后解答,一生板演.解:∵直角三角形两直角边之和为8,设一边长为x. ∴ 另一边长为8-x.则该直角三角形面积:S=(8-x )x ÷2,即214.2s x x =-+ 当x=2b a -=4,另一边为4时,S 有最大值244ac b a -=8.∴当两直角边都是4时,直角面积最大,最大值为8. (三)课堂练习(出示课件19-24)1.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=______度.2.填表:3.若正多边形的边心距与半径的比为1:2,则这个多边形的边数是_____.4.如图是一枚奥运会纪念币的图案,其形状近似看作为正七边形,则一个内角为_____度.(不取近似值)5.要用圆形铁片截出边长为4cm的正方形铁片,则选用的圆形铁片的直径最小要____cm.6.如图,四边形ABCD是⊙O的内接正方形,若正方形的面积等于4,求⊙O的面积.7.如图,正六边形ABCDEF的边长为,点P为六边形内任一点.则点P 到各边距离之和是多少?8.如图,M,N分别是☉O内接正多边形AB,BC上的点,且BM=CN.(1)求图①中∠MON=_______;图②中∠MON=_______;图③中∠MON=_______;(2)试探究∠MON的度数与正n边形的边数n的关系.参考答案:1.360°解析:由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°.2.3.34.412875.6.解:∵正方形的面积等于4, ∴正方形的边长AB=2. 则圆的直径AC=2, ∴⊙O 的半径=.∴⊙O 的面积为22.ππ=7.解:过P 作AB 的垂线,分别交AB 、DE 于H 、K ,连接BD ,作CG ⊥BD 于G.22∵六边形ABCDEF 是正六边形, ∴AB ∥DE ,AF ∥CD ,BC ∥EF ,∴P 到AF 与CD 的距离之和,及P 到EF 、BC 的距离之和均为HK 的长. ∵BC=CD ,∠BCD=∠ABC=∠CDE=120°, ∴∠CBD=∠BDC=30°,BD ∥HK ,且BD=HK.∴CG=12BC=.∵CG ⊥BD ,∴BD=2BG=2×=2×3=6.∴点P 到各边距离之和=3BD=3×6=18. 8.解:⑴①120°;②90°;③72°;⑵360MON n ︒∠=.(四)课堂小结通过这节课的学习,你知道正多边形和圆有怎样的关系吗?你知道正多边形的半径、边心距、内角、中心角等概念吗?(五)课前预习22BG BC-预习下节课(24.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本节课通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些基本概念,引导学生将实际问题转化为数学问题,体现了化归的思想.。

华东师大版九年级数学下册教案:274 正多边形和圆

华东师大版九年级数学下册教案:274 正多边形和圆

课题27.4 正多边形和圆授课人教 学 目 标知识技能使学生经历正多边形的形成过程,了解正多边形的有关概念,掌握用等分圆周画圆的内接正多边形的方法;能应用正多边形的边角关系进行有关计算. 数学思考 使学生丰富对正多边形的认识,通过设计图案,发展学生的形象思维. 问题解决 使学生会等分圆周,利用等分圆周的方法构造正多边形,并会设计图案,发展学生的实践能力和创新精神. 情感态度通过等分圆周、构造正多边形等实践活动,使学生在数学学习活动中获得成功的体验,建立自信心.教学 重点 理解掌握正多边形的半径、中心角、边心距、边等名称及其求法.教学 难点 探索正多边形和圆的关系.授课 类型 新授课课时教具 多媒体 教学活动 教学 步骤师生活动设计意图 回顾(多媒体演示)问题: 1.切线长定理的内容是什么?请画出一个三角形的内切圆. 2.请画出垂径定理的基本图形,并说明其中的数量关系. 3.什么是正多边形?你对正多边形有多少了解?师生活动:教师引导学生进行解答,并适时做出补充和讲解. 回顾以前学习过的且对本节课的学习有基础作用的知识,为学习新知打下基础.活动一: 创设 情境 导入 新课【课堂引入】(课件展示)观看下列美丽的图案,提出问题:图27-4-4(1)你能从这些美丽的图案中找出正多边形吗?(2)你知道正多边形和圆有什么关系吗?怎样作出一个正多边形呢?师生活动:教师引导学生观察、思考,学生讨论、交流,发表各自见解.教师关注:①学生能否从图案中找出正多边形;②学生能否从图案中发现正多边形和圆的关系.创设情境,使学生主动将圆的知识与正多边形联系起来,激发学生探索的热情,调动学生学习的积极性. 活动 【探究新知】二:实践探究交流新知问题1:将一个圆分为五等份,依次连结各分点得到一个五边形,这个五边形一定是正多边形吗?如果是,请你证明这个结论.师生活动:教师演示作图并提示学生从正多边形的定义入手证明,引导学生观察、分析,教师指导学生完成证明过程.教师在学生思考、交流的基础上板书证明过程:图27-4-5如图27-4-5,∵AB︵=BC︵=CD︵=DE︵=EA︵,∴AB=BC=CD =DE=EA.∵BAD︵=CAE︵=3AB︵,∴∠C=∠D.同理可证:∠A=∠B=∠C=∠D=∠E,∴五边形ABCDE是正五边形.∵A,B,C,D,E在⊙O上,∴五边形ABCDE是圆内接正五边形.活动二:实践探究交流新知教师小结:圆心O到各边的距离都相等,记为r,那么以点O为圆心、r为半径的圆就与正五边形的各条边都相切,它就是正五边形的内切圆.归纳:任何一个正多边形都有一个外接圆和一个内切圆.这两个圆有公共的圆心,称其为正多边形的中心.外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距.正多边形每一条边所对的外接圆的圆心角都相等,叫做正多边形的中心角.问题2:如果将圆n等分,依次连结各分点得到一个n边形,这个n边形一定是正n边形.师生活动:学生思考,然后小组内交流、讨论,教师根据学生的回答进行总结.教师重点关注:学生能否按照证明圆内接正五边形的方法证明圆内接正n边形.问题3:各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形呢?请说明理由.师生活动:学生讨论,思考回答,教师进行总结讲解.教师重点关注:学生能否利用正多边形的定义进行判断;学生能否由圆内接正多边形的各边相等得到弦相等及弦所对的弧相等;学生能否举反例说明各角相等的圆内接多边形不一定是正多边形.1.将结论由特殊推广到一般,符合学生的认知规律,并交给学生一种研究问题的方法.2.教学中,使学生明确圆内接正多边形必须满足各边相等,各角相等,培养学生严谨的态度和思维批判性.3.通过学生探索、归纳,教给学生等分圆周的方法,尤其是尺规作正方形、【应用新知】活动一:教师演示课件,根据正多边形的中心、半径、中心角、边心距等概念进行相关计算.教师提出问题:(1)正多边形的中心角怎么计算?(2)边长a,半径R,边心距r有什么关系?(3)正多边形的面积如何计算?图27-4-6师生活动:学生在教师的引导下,结合图形,得到结论:正n边形的中心角等于360°÷n,(a2)2+r2=R2.活动二:提出问题:如何把一个圆进行n等分呢?师生活动:学生小组内讨论,得到:把中心角n等分,则弧被n等分,即可得到正多边形.教师引导分析:①正方形的中心角为90°,说明两条半径互相垂直;②正六边形的中心角为60°,说明两条半径和一边构成等边三角形.正六边形.活动三:开放训练体现应用【应用举例】例1如图27-4-7,有一个亭子,它的地基是边心距为2 3的正六边形,求地基的周长和面积(结果保留根号).图27-4-7解:∵六边形ABCDEF是正六边形,∴∠BOC=16×360°=60°,而OB=OC,OP⊥BC,∴△OBC是等边三角形,∠BOP=∠COP学生在教师的引导下,将正多边形的中心、半径、中心角、边心距等集中在一个三角形中研究,可以利用勾股定理进行计=30°,∴BC =OB ,cos 30°=OPOB,而OP =2 3,∴BC =OB =4,∴该地基的周长=4×6=24,面积=6×12×4×2 3=24 3.师生活动:教师引导学生画出图形,进行分析,完成例题的解答.教师总结:正六边形中由两条半径和边组成的三角形为等边三角形,所以半径与边相等,所以正六边形的周长为半径的6倍;正六边形的面积分割为六个全等的等边三角形,先求每个等边三角形的面积再乘6即可. 变式训练如图27-4-8,正六边形螺帽的边长是2 cm ,这个扳手的开口a 的值应是(A )A .2 3 cmB . 3 cm 图27-4-8C .2 33cm D .1 cm算,进而能够求得正多边形的所有量.教师引导学生将实际问题转化为数学问题,将多边形问题转化为三角形问题.【拓展提升】例2 已知半径为R 的⊙O ,用多种工具、多种方法作出圆内接正三角形.师生活动:学生先独立解决问题,然后小组中讨论,鼓励学生勇于探索实践,然后与同桌交流,上讲台演示,教师要重点关注学生的解题过程.图27-4-9(续表)活动三:开放训练体现应用方法一:①用量角器画圆心角∠AOB=120°,∠BOC=120°;②连结AB,BC,CA,则△ABC为圆内接正三角形.方法二:①用量角器画圆心角∠BOC=120°;②在⊙O上用圆规截取弧AB=弧BC;③连结AC,BC,AB,则△ABC为圆内接正三角形.方法三:①作直径AD;②以点D为圆心,OD长为半径画弧,交⊙O于点B,C;③连结AB,BC,CA,则△ABC为圆内接正三角形.例3如图27-4-10,AB,CD是⊙O中互相垂直的两条直径,以点A为圆心,OA为半径画弧,与⊙O交于E、F两点.(1)求证:AE是正六边形的一边;(2)请在图上继续画出这个正六边形.解:(1)证明:连结OE,OF,AF,∵AE=OA=OE,∴△AOE是等边三角形,故∠OAE=60°,同理可证:△OAF是等边三角形.∴∠OAF=60°,∴AE=AF,且∠EAF=∠OAE+∠OAF=120°,∴AE是正六边形的一边.图27-4-10(2)以B为圆心,AE长为半径画弧,与⊙O交于点G,H,然后顺次将A,E,G,B,H和F连结起来就得到正六边形.及时获知学生对所学知识的掌握情况,落实本课的学习目标.分层设计可让不同程度的同学最大限度地发挥他们的潜力,树立学好数学的信心.活动四:课堂总结反思【达标测评】1.若正六边形的边长为6,则其外接圆半径与内切圆半径的大小分别为(B)A.6,3 2B.6,3 3C.3 3,6D.6,3 2.如图27-4-11,在⊙O中,OA=AB,OC⊥AB,交⊙O于点C,那么下列结论错误的是(A)A.∠BAC=30°B.AC︵=BC︵C.线段OB的长等于圆内接正六边形的半径D.弦AC的长等于圆内接正十二边形的边长图27-4-11 图27-4-123.如图27-4-12,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上,点B在反比例函数y=kx位于第一象限的图象上,则k的值为__9_3__.(续表)活动四:课堂总结反思4.如图27-4-13,已知正五边形ABCDE,AF∥CD交DB的延长线于点F,交DE的延长线于点G.(1)写出图中所有的等腰三角形;(2)求证:∠G=2∠F.图27-4-13解:(1)∵五边形ABCD是正五边形,∴AB=BC=CD=DE=EA,∠ABC=∠BCD=∠CDE=∠DEA=∠EAB=108°,∵DC=BC,∴△CDB是等腰三角形.∵∠C=108°,∴∠1=∠CBD=36°.∵AF∥CD,∴∠F=∠1=36°.∵∠ABD=∠ABC-∠CBD=108°-36°=72°,∴∠F=∠BAF=36°,∴△BAF是等腰三角形,进而可得∠GEA=∠G=∠2=72°,∴△FDG,△AEG是等腰三角形,故等腰三角形有△BCD,△ABF,△FDG,△AEG.(2)证明:∵五边形ABCDE是正五边形,∴∠C=∠CDE=108°,CD=CB,得∠1=36°,∴∠2=108°-36°=72°.又∵AF∥CD,∴∠F=∠1=36°,故∠G=180°-∠2-∠F=180°-72°-36°=72°=2∠F.师生活动:学生完成达标测评后,教师进行个别提问,并指导学生解释做题理由和做题方法,使学生在个别思考解答的基础上,共同交流、形成共识、确定答案.设置达标测评的目的是使学生加深对所学知识的理解和运用,在问题的选择上以基础为主、疑难点突出,增加开放型、探究型问题,使学生思维得到拓展、能力得以提升.【课堂小结】(1)谈一谈你在本节课中有哪些收获?哪些进步?(2)学习本节课后,还存在哪些困惑?布置作业:教材P67习题27.4第1,2,3题.巩固、梳理所学知识.对学生进行鼓励、进行思想教育.【知识网络】提纲挈领,重点突出.(续表)活动四:课堂总结反思【教学反思】①[授课流程反思]在探究新知的过程中,使学生认识到事物之间是普遍联系的,是可以相互转化的,并培养和训练学生综合运用知识和解决实际问题的意识,渗透数形结合的思想和方法.②[讲授效果反思]引导学生注意以下几点:(1)正多边形的相关概念;(2)正多边形中的相关计算;(3)正多边形的画法.③[师生互动反思]从学生课堂发言和表现来看,学生能够主动参与,亲身体验知识的发生和发展过程,学有所获.④[习题反思]好题题号__________________________________________错题题号__________________________________________反思教学过程和教师表现,进一步提升操作流程和自身素质.典案二导学设计编写人时间月日学生姓名班级年级班组学习目标1、了解正多边形的概念、正多边形和圆的关系;2、会通过等分圆心角的方法等分圆周,画出所需的正多边形;3、能够用直尺和圆规作图,作出一些特殊的正多边形;4、理解正多边形的中心、半径、边心距、中心角等概念。

人教版数学九年级上册24.3.1《正多边形和圆》说课稿

人教版数学九年级上册24.3.1《正多边形和圆》说课稿

人教版数学九年级上册24.3.1《正多边形和圆》说课稿一. 教材分析《正多边形和圆》是人教版数学九年级上册第24章第3节的内容。

本节课主要介绍正多边形的定义、性质以及与圆的关系。

通过学习,使学生能够理解正多边形的概念,掌握正多边形的性质,并能够运用这些性质解决实际问题。

教材通过丰富的图片和实例,引发学生的兴趣,引导学生探究正多边形与圆的内在联系,培养学生的空间想象能力和逻辑思维能力。

二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的认识和理解有一定的基础。

但是,对于正多边形的定义和性质,以及与圆的关系,可能还比较陌生。

因此,在教学过程中,需要注重引导学生从已有的知识出发,探究新知识,激发学生的学习兴趣,帮助学生建立知识体系。

三. 说教学目标1.知识与技能:理解正多边形的定义,掌握正多边形的性质,了解正多边形与圆的关系。

2.过程与方法:通过观察、分析、归纳等方法,探究正多边形的性质,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神,使学生感受到数学的美。

四. 说教学重难点1.教学重点:正多边形的定义,正多边形的性质。

2.教学难点:正多边形与圆的关系,正多边形的性质在实际问题中的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、启发式教学法、合作学习法等,引导学生主动探究,积极参与课堂活动。

2.教学手段:利用多媒体课件、实物模型、几何画板等,直观展示正多边形的性质和与圆的关系,提高学生的学习兴趣。

六. 说教学过程1.导入:通过展示一些生活中的正多边形图片,如足球、骰子等,引导学生关注正多边形,激发学生的学习兴趣。

2.探究正多边形的定义和性质:学生分组讨论,每组找出正多边形的定义和性质,最后进行汇报和交流。

3.揭示正多边形与圆的关系:引导学生观察正多边形的特点,引导学生发现正多边形可以看作圆的内接多边形,从而得出正多边形与圆的关系。

正多边形和圆(教案、教学反思、导学案)

正多边形和圆(教案、教学反思、导学案)

24.3正多边形和圆【知识与技能】了解正多边形和圆的关系,了解正多边形半径和边长,边心距,中心,中心角等概念.会应用正多边形的有关知识解决圆中的计算问题.会用圆规、量角器和直尺来作圆内接正多边形.【过程与方法】结合生活中的正多边形形状的图案,发现正多边形和圆的关系,然后学会用圆的有关知识,解决正多边形的问题.【情感态度】学生经历观察、发现、探究等数学活动,感受到数学来源于生活、又服务于生活,体现事物之间是相互联系,相互作用的.【教学重点】正多边形与圆的相关概念及其之间的运算.【教学难点】探索正多边形和圆的关系,正多边形半径,中心角、弦心距,边长之间的关系.一、情境导入,初步认识观察这些美丽的图案,都是在日常生活中,我们经常能看到的利用正多边形得到的物体.(1)你能从图案中找出多边形吗?(2)你知道正多边形和圆有什么关系吗?怎样就能作出一个正多边形来?【教学说明】学生通过观察美丽的图案,欣赏生活中正多边形形状的物体.让学生感受到数学来源于生活,并从中感受到数学美.问题(2)的提出是为了创设一个问题情境,激起学生主动将所学圆的知识与正多边形联系起来,激发学生积极探索、研究的热情,并有意将注意力集中在正多边形和圆的关系上.二、思考探究,获取新知1.正多边形和圆的关系问题1将一个圆分成5等份,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是,请你证明这个结论.教师引导学生根据题意画图,并写出已知和求证.已知:如图,在⊙O中,A、B、C、D、E是⊙O的五等分点.依次连接ABCDE 形成五边形.问:五边形ABCDE是正五边形吗?如果是,请证明你的结论.答案:五边形ABCDE是正五边形.====,∴AB=BC=CD=DE=EA,证明:在⊙O中,∵AB BC CD DE EA==,∴∠A=∠B;同理∠B=∠C=∠D=∠E,∴五边形ABCDE 3BCE CDA AB是正五边形.【教学说明】教师引导学生从正多边形的定义入手证明,即证明多边形各边都相等,各角都相等;引导学生观察、分析,教师带领学生完成证明过程.问题2如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?答案:这个n边形一定是正n边形.【教学说明】在这个问题中,教师重点关注学生是否会仿照证明圆内接正五边形的方法证明圆内接正n边形.从问题1到问题2是将结论由特殊推广到一般,这符合学生的认知规律,并教导学生一种研究问题的方法,由特殊到一般.问题3各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形是正多边形吗?如果是,说明理由;如果不是,举出反例.答案:各边相等的圆内接多边形是正多边形.因为:各边相等的圆内接多边形的各角也相等.各角相等的圆内接多边形不是正多边形.如:矩形.【教学说明】问题3的提出是为了巩固所学知识,使学生明确判定圆内接多边形是正多边形,必须满足各边都相等,各内角也都相等,这两个条件缺一不可.同时教会学生学会举反例.培养学生思维的批判性.2.正多边形的有关概念综合图形,给出正多边形的中心,半径,中心角,边心距等概念.正n边形:中心角为:360°n;内角的度数为:180°(n-2)n3.正多边形和圆有关的计算问题例1(课本106页例题)有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积(结果保留小数点后一位).分析:根据题意作图,将实际问题转化为数学问题.解:如图.∵六边形ABCDEF是正六边形,∴∠BOC=360°/6=60°.∴△BOC是等边三角形.∴R=BC=4m,∴这个亭子地基的周长为:4×6=24(m).过O点作OP⊥BC,垂足为P.在Rt△OCP中,OC=R=4,CP=1/2BC=2..例2填空.【教学说明】例1是让学生了解有关正多边形的概念后,掌握正多边形的计算.同时,通过例1引导学生将实际问题转化为数学问题,将多边形化归为三角形来解决.例2通过网格来呈现问题,在解决例2时,教师指导学生用数形结合的方法来解决问题,加深对有关概念的理解.4.画正多边形画正多边形,通常是通过等分圆周的方法来画的.等分圆周有两种方式:(1)用量角器等分圆周.方法一:由于在同圆或等圆中相等的圆心角所对弧相等,因此作相等的圆心角可以等分圆.方法二:先用量角器画一个等于360°/n的圆心角,这个圆心角所对的弧就是圆的1/n,然后在圆上依次截取这条弧的等弧,就得到圆的几等分点.【教学说明】这两种方法可以任意等分圆,但不可避免地存在误差.(2)用尺规等分圆正方形的作法:如图(1)在⊙O中,尺规作两条垂直的直径,把⊙O四等分,从而作出正方形ABCD.再逐次平分各边所对弧,则可作正八边形、正十六边形等边数逐次倍增的正多边形.正六边形的作法:方法一:如图(2)任意作一条直径AB,再分别以A、B 为圆心,以⊙O的半径为半径作弧,与⊙O交于C、D和E、F,则A、C、E、B、F、D为⊙O的六等分点,顺次连接各等分点,得到正六边形ACEBFD.方法二:如图(3)由于正六边形的半径等于边长.所以在圆上依次截取等于半径的弦,就将圆六等分,顺次连接各等分点即可得到正六边形.【教学说明】尺规作图法是一种比较准确的等分圆的方法,但有较大的局限性,它不能将圆任意等分.三、运用新知,深化理解1.如图,圆内接正五边形ABCDE,对角线AC与BD相交于点P,则∠APB 的度数为_______.2.边长为2/π的正方形的内切圆与外接圆所组成的圆环的面积为_____.3.如果一个正六边形的面积与一个正三角形的面积相等,求正六边形与正三角形的内切圆的半径之比.4.如图,点M、N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,……正n边形的边AB、BC上的点,且BM=CN,连接OM、ON.(1)求图1中的∠MON的度数;(2)在图2中,∠MON的度数为_____,在图3中,∠MON的度数为_____;(3)试探索∠MON的度数与正n边形边数n之间的关系.(直接写出答案)【教学说明】题1、2可由学生自主探索完成,题3、4可先让学生思考,然后教师加以提示,最后共同解答.完成教材第106页、108页的练习.【答案】1.72°4.解:(1)连接OB、OC.∵正三角形ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△BOM≌△CON,∠BOM=∠CON,∴∠MON=∠BOC=120°.(2)90°72°(解法与(1)相同)(3)∠MON=360°/n.四、师生互动,课堂小结通过这节课的学习,你知道正多边形和圆有怎样的关系吗?你知道正多边形的半径、边心距、内角、中心角等概念吗?你能画出正多边形吗?【教学说明】教师先提出问题,然后让学生自主思考并回顾,教师再予以补充和点评.1.布置作业:从教材“习题24.3”中选取.2.完成练习册中本课时练习的“课后作业”部分.1.本节课首先从复习正多边形的定义入手,通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些基本概念,引导学生将实际问题转化为数学问题,体现了化归的思想.其次,在这一基础上,又教给学生用等分圆周的方法作正多边形,这可以发展学生的作图能力.2.等分圆周法是一种作正多边形的常见方法,通过作简单的正三角形、正方形、正六边形,一直推广到作正八边形的情况,可以向学生灌输极限的思想,极限是微积分中最主要、最基本的概念,它从数量上描述变量在变化过程中的变化趋势,在高中数学中,极限思想渗透到函数、数列等章节,又衔接高等数学,起着承上启下的作用.24.3正多边形和圆一、新课导入1.导入课题:情景:欣赏下面图片.问题:什么叫正多边形?图中有哪些正多边形?正多边形与圆有哪些关系?2.学习目标:(1)理解正多边形及其半径、边长、边心距、中心角等概念.(2)会进行特殊的与正多边形有关的计算,会画某些正多边形.3.学习重、难点:重点:正多边形的有关概念与计算.难点:正多边形的有关计算.二、分层学习1.自学指导:(1)自学内容:教材第105页至第106页的内容.(2)自学时间:6分钟.(3)自学方法:完成自学参考提纲.(4)自学参考提纲:①什么叫正多边形?矩形是正多边形吗?菱形呢?正方形呢?各边相等、各角也相等的多边形叫做正多边形.矩形和菱形不是正多边形,正方形是正多边形.②正多边形是轴对称图形吗?是中心对称图形吗?是轴对称图形,不一定是中心对称图形.③以正六边形为例,指出右图中正多边形的中心、半径、中心角和边心距.中心:点O.半径:OC、OE、OF.中心角:∠EOF.边心距:OM.④正n 边形的每个内角都为()n ?n -︒2180,每个外角都为n ︒360,中心角为n︒360. ⑤有一个亭子,它的地基是半径为4m 的正六边形,求地基的周长和面积(保留小数点后一位).解:作OM ⊥BC 于M.连接OB 、OC,∵ABCDEF 是正六边形,∴△OBC 为正三角形,∴∠MOC=12∠BOC=30°,OB=BC=OC. ∴l =6BC =6OB =6×4=24(m ).在Rt △OMC 中,∵∠MOC=30°,∴MC=12OC=2m. ∴OM=OC 2-MC 2=23m.∴()OBC S BC OM m ==⨯⨯=2114234322. ∴()正六边形OBC S S .m ==≈26243416.即地基的周长为24m,面积约为41.6m2.2.自学:学生结合自学指导进行自学.3.助学:(1)师助生:①明了学情:明了学生完成自学参考提纲的情况.②差异指导:根据学情进行个别指导或分类指导.(2)生助生:小组内相互交流、研讨.4.强化:(1)正多边形的相关概念.(2)正n 多边形的对称性.(3)填表:1.自学指导:(1)自学内容:教材第107页的内容.(2)自学时间:4分钟.(3)自学要求:阅读并画图,推理以强化理解.(4)自学参考提纲:①两种六等分圆周的方法中,第一种方法的依据是作相等的圆心角;第二种方法的依据是在圆上作相等的弧.②分别在所给的圆中画出正三角形、正方形和正六边形.2.自学:学生结合自学指导进行自学.3.助学:(1)师助生:①明了学情:明了学生是否明白画图的依据.②差异指导:根据学情进行指导.(2)生助生:生生互动,交流、研讨.4.强化:正多边形的画法.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?还有哪些疑惑?2.教师对学生的评价:(1)表现性评价:点评学生学习的态度、积极性、动手情况及学习效果和存在问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)本节课首先从复习正多边形的定义入手,通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些基本概念,引导学生将实际问题转化为数学问题,体现了化归的思想.其次,在这一基础上,又教给学生用等分圆周的方法作正多边形,这可以发展学生的作图能力.(2)等分圆周法是一种作正多边形的常见方法,通过作简单的正三角形、正方形、正六边形,一直推广到作正八边形的情况,可以向学生灌输极限的思想,极限是微积分中最主要、最基本的概念,它从数量上描述变量在变化过程中的变化趋势,在高中数学中,极限思想渗透到函数、数列等章节,又衔接高等数学,起着承上启下的作用.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)下列说法中正确的是( C )A.各边都相等的多边形是正多边形B.正多边形既是轴对称图形,又是中心对称图形C.各边都相等的圆内接多边形是正多边形D.各角都相等的圆内接多边形是正多边形2.(10分)如果一个正多边形的每个外角都等于36°,则这个多边形的中心角等于(A )A.36°B.18°C.72°D.54°3.(10分) 如图,点O 是正六边形的对称中心,如果用一副三角板的角,借助点O (使直角的顶点落在点O 处),把这个正六边形的面积n 等分,那么n 的所有可能取值的个数是(A )A.4B.5C.6D.74.(20分) 如图,要拧开一个边长为a=6mm 的正六边形螺帽,扳手张开的开口b 至少为多少?解:如图,∠ABC=120°.AB =a,AC =b.过B 作BD ⊥AC 于点D,则AD=DC=12b. 在Rt △ABD 中,∠BAC=30°,∴BD=12AB=3mm. ∴AD AB BD =-=-=22226333(mm ).∴b=2AD=63mm.即扳手张开的开口b 至少要63mm.5.(20分) 如图,正方形的边长为4cm ,剪去四个角后成为一个正八边形,求这个正八边形的边长和面积.解:设正八边形的边长为x cm,则xx -⎛⎫⨯= ⎪⎝⎭22422.即x2+8x-16=0.解得x=-1424,x=--2424(舍去).∴剪去的四个小三角形的面积为()()⎡⎤--⎢⎥⨯⨯=-⎢⎥⎣⎦24424144832222cm2.∴正八边形的边长为()-424cm,面积为()()cm⨯--=-2444832232232.二、综合应用(20分)6.(20分) 如图,已知正五边形ABCDE中,BF与CM相交于点P,CF=DM.(1)求证:△BCF≌△CDM;(2)求∠BPM的度数.(1)证明:∵ABCDE是正五边形,∴BC=CD,∠BCD=∠CDM,又CF=DM,∴△BCF≌△CDM.(2)解:由(1)知∠FBC=∠MCD,∴∠BPM=∠FBC+∠BCM=∠MCD+∠BCM=∠BCF=35×180°=108°.三、拓展延伸(10分)7.(10分) 一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1,a2,a3,a4,则下列关系中正确的是(B)A.a4>a2>a1B.a4>a3>a2C.a1>a2>a3D.a2>a3>a4。

九年级数学: 24.3 正多边形和圆教案

九年级数学: 24.3 正多边形和圆教案

24.3正多边形和圆教案一、【教材分析】1.通过正多边形性质的教学培养学生的探索、推理、归纳、迁移等能力;2.通过正多边形有关概念的教学培养学生的阅读理解能力.二、【教学流程】边形是中心对称图形,其对称中心是正多边形对应顶点的连线交点.自主探究问题一、如果我们以正多边形对应顶点的交点作为圆心,过点到顶点的连线为半径,能够作一个圆,很明显,这个正多边形的各个顶点都在这个圆上,如图,正六边形ABCDEF,连结AD、CF交于一点,以O为圆心,OA为半径作圆,那么肯定B、C、D、E、F都在这个圆上.问题二、我们以圆内接正六边形为例证明.如图所示的圆,把⊙O分成相等的6段弧,依次连接各分点得到六边ABCDEF,下面证明,它是正六边形.问题三总结和归纳问题1.一个正多边形的外接圆的圆心叫做这个多边形的中心.2. 外接圆的半径叫做正多边形的半径.3. 正多边形每一边所对的圆心角叫做正多边形的中心角.4. 中心到正多边形的一边的距离叫做正多边形的边心距.教师提出问题学生相互讨论思考1.如何画这个图形的外接圆?2.圆与正多边形顶点以及位置关系是怎么样的?3.如何利用圆画正多形:作相等的弧外接圆与内接圆的区别和联系?在教师和和学生的探讨中解决问题:在动手操作与实践中认识问题对问题的一种升华认识对问题的梳理认识尝试应用1.已知正六边形ABCDEF,如图所示,其外接圆的半径是a,求正六边形的周长和面积.2.利用正多边形的概念和性质来画正多边形,利用手中的工具画一个边长为3cm的正五边形(1)画法(2)步骤3. 巩固训练教材P106 练习1、2、3 P108 探究题、练习.教师提出问题学生独立思考解答并板书师生探讨分析:要画正五边形,首先要画一个圆,然后对圆五等分,因此,应该先求边长为3的正五边形的半径可选做,学生独立完成一种成果的展示探讨正多边形的画法补偿提高1.在直径为AB的半圆内,划出一块三角形区域,如图所示,使三角形的一边为AB,顶点C在半圆圆周上,其它两边分别为6和8,现要建造一个内接于△ABC的矩形水池DEFN,其中D、E在AB上,如图24-94的设计方案是使AC=8,BC=6.(1)求△ABC的边AB上的高h.(2)设DN=x,且h DN NFh AB-=,当x取何值时,水池DEFN的面积最大?(3)实际施工时,发现在AB上距B点1.85的M处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为了保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树.让学生课堂讨论分析:要求矩形的面积最大,先要列出面积表达式,再考虑最值的求法,初中阶段,尤其现学的知识,应用配方法求最值.(3)的设计要有新意,应用圆的对称性就能圆满解决此题对不同能力学生的升华认识_h_F_D_E_C_B_A_N_GFDECBAOM解:(1)由AB ·CG =AC ·BC 得h=8610AC BC AB ⨯=g =4.8(2)当x =2.4时,S DEFN 最大(3)当S DEFN 最大时,x =2.4,此时,F 为BC 中点,在Rt △FEB 中,EF =2.4,BF =3. ∴BE =22223 2.4DE EF -=-=1.8 ∵BM =1.85,∴BM >EB ,即大树必位于欲修建的水池边上,应重新设计方案. ∵当x =2.4时,DE =5∴AD =3.2,由圆的对称性知满足条件的另一设计方案,如图所示:小结:三、【板书设计】24.3 正多边形和圆1.一个正多边形的外接圆的圆心叫做这个多边形的中心.2. 外接圆的半径叫做正多边形的半径.3. 正多边形每一边所对的圆心角叫做正多边形的中心角.4. 中心到正多边形的一边的距离叫做正多边形的边心距.四、【教后反思】《正多边形与圆》这一节的教学目标是:让学生能将正多边形的有关计算问题转化为解直角三角形的问题来解决;会用量角器或尺规等分圆、画出正多边形.通过学习使学生能认识到事物之间是普遍联系的,事物之间是可以相互转化的,并培养和训练学生的综合运用知识能力和解决实际问题的能力,渗透数形结合的思想和方法.。

初中数学《正多边形和圆》教学设计

初中数学《正多边形和圆》教学设计

初中数学《正多边形和圆》教学设计教材分析:《正多边形和圆》立足于对三角形、四边和多边两种图形以及圆的有关知识进行了学习之后,继续往下学习的方面,对这些知识进行了综合性的归纳。

正多边形为一大特别属性的多边形,于实际生产生活之中普遍存在,同圆的属性相接近。

对正多边形同圆二者间的联系进行分析,对其计量方式加以把握,为对数学科目进行深度学习以及对其他科目进行学习的关键性前提所在。

第一,教材对学生已然认识的正多边形定义加以回顾的前提之下,举出正五边形作为案例,论证了对等分圆周加以运用而获得正五边形的方式,之后,对正多边形的中心和半径等等有关定义进行简介,并采取案例题目,对怎么样计量特殊的正多边形加以展示,最后,对利用圆规和直尺,将特殊的正多边形描画出来的方式进行了阐述。

本节教学内容将正多边形和圆的位置关系运用起来,对正多边形和圆进行计量的同时,将形方面的难题转变成了数这方面的难题,从而使得数形能够结合起来。

教学目标:1、知识与能力目标(1)对有关定义进行解释,包括正多边形的中心和半径以及中心角等等;(2)可以将正多边形和圆的有关知识运用其中,对相应的计算问题进行处理;(3)利用正多边形和圆的相关知识,对正多边形进行描画。

2、过程与方法目标对正多边形和圆的关系进行教学阐述,使得学生能够构建起这样的认识事物规律的水平:从具象认识达到抽象认知水平,由特殊转换到一般规律之上,由部分到整体,并且将数形结合方式运用在实际问题的解决当中。

3、情感态度价值观目标采取等分圆周这一方式,对正多边形进行描画,使得学生对图形当中存在的和谐美有所体会,继而对数学有着更为高的热爱度。

教学重难点:对正多边形的相关定义加以认识和计量;能够对正多边形和圆进行相应的计算。

课前准备:多媒体课件和教具等等。

教学过程1、创设情境,引入新课问题1:(1)等边三角形的边、角各自具有何种属性?(2)正方形的边、角各自具有何种属性?(3)等边三角形和正方形的边、角的属性,包含何样的相同点?各边和各角均相等。

24.3正多边形和圆(教案)-2023-2024学年人教版数学九年级上册

24.3正多边形和圆(教案)-2023-2024学年人教版数学九年级上册
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解正多边形和圆的基本概念。正多边形是各边相等、各角相等的多边形,圆是平面上所有与某一点距离相等的点的集合。它们在几何学中具有重要地位,广泛应用于日常生活和各类工程设计。
2.案例分析:接下来,我们来看一个具体的案例。以正六边形为例,分析其与内切圆、外接圆的关系,以及如何计算其边长、面积等。
举例解释:
-正多边形的性质:通过具体的正三角形、正四边形等图形,让学生理解正多边形各部分之间的关系,如正四边形的对角线互相垂直且平分,四条边相等。
-正多边形与圆的关系:以正边长、中心角之间的关系,以及内切圆半径与边心距的关系。
-实际应用:给出一个正六边形,让学生计算其周长、面积以及内切圆和外接圆的半径,培养学生运用知识解决实际问题的能力。
举例解释:
-对称性:以正三角形为例,解释正多边形如何通过旋转和轴对称来保持不变,使学生理解对称性的概念。
-计算半径:对于正五边形,教师可以引导学生利用中心角和边长计算外接圆半径,通过勾股定理和三角函数计算内切圆半径。
-实际应用:在解决正六边形的问题时,教师可以指导学生先确定正多边形与圆的关系,然后选择合适的公式进行计算,培养学生解题的思路和方法。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《正多边形和圆》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过正多边形和圆的组合形状?”(如硬币、花朵等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索正多边形和圆的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调正多边形的性质、正多边形与圆的关系这两个重点。对于难点部分,如计算内切圆、外接圆的半径,我会通过举例和步骤讲解来帮助大家理解。

人教版九年级数学上册24.3.1《正多边形和圆(1)》教学设计

人教版九年级数学上册24.3.1《正多边形和圆(1)》教学设计

人教版九年级数学上册24.3.1《正多边形和圆(1)》教学设计一. 教材分析《正多边形和圆》是人教版九年级数学上册第24章第三节的第一课时内容,主要介绍了正多边形的定义、性质以及与圆的关系。

本节课的内容是学生对几何图形学习的进一步深化,对于培养学生的空间想象能力和抽象思维能力具有重要意义。

教材通过生活中的实例引入正多边形和圆的概念,让学生感受数学与生活的紧密联系,激发学生的学习兴趣。

二. 学情分析九年级的学生已经具备了一定的几何基础知识,对图形的认识有一定的深度。

但是,对于正多边形和圆的性质和关系,可能还比较陌生。

因此,在教学过程中,需要教师通过生动形象的实例和直观的图形,帮助学生理解和掌握正多边形和圆的概念和性质。

三. 教学目标1.了解正多边形的定义和性质,能够识别和判断正多边形。

2.理解圆的概念,掌握圆的性质。

3.掌握正多边形与圆的关系,能够运用正多边形和圆的知识解决实际问题。

四. 教学重难点1.重难点:正多边形的定义和性质,圆的概念和性质。

2.难点:正多边形与圆的关系的理解和运用。

五. 教学方法1.采用问题驱动的教学方法,通过提问引导学生思考和探索,激发学生的学习兴趣和积极性。

2.采用直观演示法,通过实物和图形的展示,帮助学生直观地理解和掌握正多边形和圆的概念和性质。

3.采用归纳总结法,通过总结和归纳,使学生对正多边形和圆的知识有一个系统的认识。

六. 教学准备1.准备相关的图形和图片,如正多边形和圆的实物图片,正多边形和圆的模型等。

2.准备相关的教学PPT,内容包括正多边形和圆的定义、性质和关系等。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾已学过的几何图形,如三角形、四边形等,激发学生的学习兴趣。

然后,展示一些生活中的实例,如五角星、车轮等,引导学生思考这些图形的共同特征。

2.呈现(10分钟)教师展示正多边形和圆的实物图片和模型,引导学生观察和描述正多边形和圆的特征。

然后,教师通过PPT呈现正多边形和圆的定义和性质,让学生初步了解和掌握。

《正多边形和圆(第2课时)》教案 人教数学九年级上册

《正多边形和圆(第2课时)》教案 人教数学九年级上册

24.3 正多边形和圆第2课时一、教学目标【知识与技能】会用圆规、量角器和直尺来作圆内接正多边形.【过程与方法】用圆的有关知识,解决正多边形的问题.【情感态度与价值观】学生经历观察、发现、探究等数学活动,感受到事物之间是相互联系,相互作用的.二、课型新授课三、课时第2课时,共2课时。

四、教学重难点【教学重点】作圆内接正多边形.【教学难点】作圆内接正多边形.五、课前准备课件、图片、圆规、量角器、直尺等.六、教学过程(一)导入新课正多边形和圆有什么关系?你能借助圆画一个正多边形吗?(出示课件2)(二)探索新知探究正多边形的画法学生活动:观察生活中的正多边形图案.(出示课件4)观察几种常见的正多边形.(出示课件5)学生活动:已知⊙O的半径为2cm,求作圆的内接正三角形.(出示课件6)学生操作后口述过程.①用量角器度量,使∠AOB=∠BOC=∠COA=120°.②用量角器或30°角的三角板度量,使∠BAO=∠CAO=30°.教师问:你能用以上方法画出正四边形、正五边形、正六边形吗?(出示课件7)学生活动:教师问:你能尺规作出正四边形、正八边形吗?(出示课件8)学生活动:教师强调:只要作出已知⊙O的互相垂直的直径即得圆内接正方形,再过圆心作各边的垂线与⊙O相交,或作各中心角的角平分线与⊙O相交,即得圆接正八边形,照此方法依次可作正十六边形、正三十二边形、正六十四边形……教师问:你能尺规作出正六边形、正三角形、正十二边形吗?(出示课件9)学生活动:教师强调:以半径长在圆周上截取六段相等的弧,依次连结各等分点,则作出正六边形.先作出正六边形,则可作正三角形,正十二边形,正二十四边形………教师问:说说作正多边形的方法有哪些?(出示课件10)学生答:(1)用量角器等分圆周作正n边形;(2)用尺规作正方形及由此扩展作正八边形,用尺规作正六边形及由此扩展作正12边形、正三角形.出示课件11:例已知☉O和☉O上的一点A(如图).求作☉O的内接正方形ABCD和内接正六边形AEFCGH;学生观察,独立思考后,师生共同解答.作法:①作直径AC;②作直径BD⊥AC;③依次连接A、B、C、D四点,∴四边形ABCD即为☉O的内接正方形;④分别以A、C为圆心,OA的长为半径作弧,交☉O于E、H、F、G;⑤顺次连接A、E、F、C、G、H各点;∴六边形AEFCGH为☉O的内接正六边形,如图所示.巩固练习:(出示课件12)画一个半径为2cm的正五边形,再作出这个正五边形的各条对角线,画出一个五角星.学生自主操作.(三)课堂练习(出示课件13-18)1.尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A、B、C、D、E、F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是()A B.()r C.()r D.r2.在图中,用尺规作图画出圆O的内接正三角形.3.利用量角器画一个边长为2cm的正六边形.4.一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1,a2,a3,a4,则下列关系中正确的是( )A.a4>a2>a1B.a4>a3>a2C.a1>a2>a3D.a2>a3>a45.画一个正十二边形.6.如图,四边形ABCD是⊙O的内接正方形,若正方形的面积等于4,求⊙O的面积.7.如图,正六边形ABCDEF的边长为,点P为六边形内任一点.则点P 到各边距离之和是多少?8.如图,M,N分别是☉O内接正多边形AB,BC上的点,且BM=CN.(1)求图①中∠MON=_______;图②中∠MON=_______;图③中∠MON=_______;(2)试探究∠MON 的度数与正n 边形的边数n 的关系.参考答案:1.D2.作法:⑴作出圆的任意一条半径,⑵作半径的垂直平分线,交圆于点A 、B ,⑶分别以A 、B 为圆心,线段AB 的长为半径作弧,两户交于点C ,连接AC 、BC.则△ABC 即为所求.3.作法:如图,以2cm 为半径作一个⊙O ,用量角器画一个等于 360606的圆心角,它对着一段弧,然后在圆上依次截取与这条弧相等的弧,就得到圆的6个等分点,顺次连接各分点,即可得出正六边形.4.B5.作法:如图,分别以⊙O的四等分点A,B,E,F为圆心,以⊙O的半径长为半径,画8条弧与⊙O相交,就可以把⊙O分成12等份,依次连接各等分点,即得到正十二边形.(四)课堂小结通过这节课的学习,你知道正多边形和圆有怎样的关系吗?(五)课前预习预习下节课(24.4第1课时)的相关内容.七、课后作业配套练习册内容八、板书设计:1.画正多边形的方法:由于同圆中相等的圆心角所对的弧相等,因此作相等的圆心角就可以等分圆周,从而得到相应的正多边形.2.画正多边形的方法:⑴用量角器等分圆;⑵尺规作图等分圆.九、教学反思:等分圆周法是一种作正多边形的常见方法,通过作简单的正三角形、正方形、正六边形,一直推广到作正八边形的情况,可以向学生灌输极限的思想,极限是微积分中最主要、最基本的概念,它从数量上描述变量在变化过程中的变化趋势,在高中数学中,极限思想渗透到函数、数列等章节,又衔接高等数学,起着承上启下的作用.。

人教版数学九年级上册教学设计24.3《正多边形和圆》

人教版数学九年级上册教学设计24.3《正多边形和圆》

人教版数学九年级上册教学设计24.3《正多边形和圆》一. 教材分析《正多边形和圆》是人教版数学九年级上册第24章第三节的内容。

本节课主要介绍了正多边形的定义、性质以及与圆的关系。

通过本节课的学习,学生能够理解正多边形的概念,掌握正多边形的性质,并能运用这些性质解决一些实际问题。

教材中提供了丰富的实例和图示,有助于学生直观地理解和掌握知识。

二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的认识和理解有一定的基础。

但是,对于正多边形的定义和性质,以及与圆的关系,可能还比较陌生。

因此,在教学过程中,需要引导学生通过观察、思考、探究,逐步理解和掌握知识。

三. 教学目标1.了解正多边形的定义和性质。

2.掌握正多边形与圆的关系。

3.能够运用正多边形的性质解决一些实际问题。

4.培养学生的观察能力、思考能力和动手能力。

四. 教学重难点1.正多边形的定义和性质。

2.正多边形与圆的关系。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、探究,自主地学习和掌握知识。

2.利用多媒体辅助教学,展示正多边形的实例和图示,增强学生的直观感受。

3.采用小组合作学习的方式,鼓励学生互相交流、讨论,共同解决问题。

六. 教学准备1.多媒体教学设备。

2.正多边形的实例和图示。

3.练习题。

七. 教学过程1.导入(5分钟)利用多媒体展示一些正多边形的实例,如正方形、正三角形等,引导学生观察并思考:这些图形有什么特点?它们之间有什么联系?2.呈现(10分钟)介绍正多边形的定义和性质,以及正多边形与圆的关系。

通过图示和实例,让学生直观地理解和掌握知识。

3.操练(10分钟)让学生分组讨论,每组选择一个正多边形,分析其性质,并尝试用语言和图形表达出来。

然后,各组汇报自己的成果,其他组进行评价和补充。

4.巩固(10分钟)出示一些练习题,让学生独立完成。

题目包括判断题、填空题和解答题,内容涉及正多边形的性质和与圆的关系。

5.拓展(10分钟)让学生思考:如何判断一个多边形是否为正多边形?引导学生运用已学的知识,探索和解决问题。

正多边形和圆的教学反思

正多边形和圆的教学反思

《正多边形和圆》教学反思
《正多边形与圆》一节,通过观察图片,让学生直观认识正多边形和圆。

通过小组学习合作探究,证明,感受由特殊到一般的学习方法 ,并结合图形,加深对中心、半径、边心距、中心角的理解, 然后通过自主学习例题求正六边形的边长、周长、边心距和面积,再通过练习加以巩固。

整节课设计、教学思路还是比较清晰的,注重数形结合,让学生体会构造思想和转化思想,感受由特殊到一般的学习方法,坚持让每个学生都得到发展,以“课前预习——情景引入——合作探究——自主学习——课堂小结——达标检测”为主线,充分运用现代信息技术,借助多媒体课件进行直观演示,引导学生观察、猜想、验证、交流等活动。

在学法指导上,注重调动学生积极思考,主动探究,尽可能地增加学生参与学习的时间与空间。

在教学中,学生表现很积极,但是老师不敢大胆放手给学生探究,讲得多,没有练习以及反馈的时间。

还有鼓励性的语言比较单调没有很好的激发学生的学习热情。

总之,本节课的教学过程真正体现了“教与学”的和谐统一,达到了预期的教学目标。

九年级数学人教版上册24.3正多边形和圆说课稿

九年级数学人教版上册24.3正多边形和圆说课稿
3.学生空间想象能力的培养。
二、学情分析导
(一)学生特点
本节课面向的是九年级学生,这个年龄段的学生正处于青春期,他们的好奇心强,求知欲旺盛,具备一定的独立思考能力。在认知水平上,他们已经掌握了基本的几何知识,具备了一定的逻辑推理和空间想象能力。此外,学生对新鲜有趣的事物充满兴趣,喜欢通过探究和合作来学习新知识。
然而,学生的学习习惯尚需引导,部分学生可能存在注意力不集中、学习自觉性不强等问题。因此,在教学过程中,需要关注学生的学习习惯培养,提高他们的学习效率。
(二)学习障碍
学生在学习本节课之前,已经掌握了多边形的性质、三角形和四边形的特殊性质等前置知识。但在学习正多边形和圆时,可能存在以下学习障碍:
1.对正多边形和圆的性质理解不深入,难以将其应用到实际问题中;
(三)巩固练习
我计划设计以下巩固练习或实践活动,帮助学生巩固所学知识并提升应用能力:
1.课堂练习:设计具有代表性的练习题,让学生独立完成,巩固正多边形和圆的性质际问题,如计算正多边形的周长、面积等。
3.实践活动:让学生动手制作正多边形和圆的模型,加深对几何图形的理解,提高空间想象能力。
2.空间想象能力不足,难以理解正多边形和圆之间的关系;
3.计算能力不足,导致在解决周长、面积等问题时出现错误。
(三)学习动机
为了激发学生的学习兴趣和动机,我打算采取以下策略或活动:
1.创设生活情境:通过展示生活中常见的正多边形和圆的实例,让学生感受到几何图形的美和实用性,从而激发他们的学习兴趣;
2.设疑导入:以问题为导向,引导学生主动探究正多边形和圆的性质,激发他们的求知欲;
本节课的主要知识点包括:
1.正多边形的定义及性质,如内角、外角、对角线的特点等;

华师大版数学九年级下册27.4《正多边形和圆》说课稿

华师大版数学九年级下册27.4《正多边形和圆》说课稿

华师大版数学九年级下册27.4《正多边形和圆》说课稿一. 教材分析《正多边形和圆》这一节内容是华师大版数学九年级下册第27.4节。

本节课的主要内容是让学生了解并掌握正多边形的定义、性质以及与圆的关系,能够运用这些知识解决实际问题。

在教材中,这一节内容是继学习了圆的相关知识后展开的,为学生提供了进一步研究圆的性质和应用的机会。

教材通过引入正多边形的概念,引导学生探索正多边形与圆的关系,从而加深对圆的理解。

二. 学情分析在九年级的学生已经具备了一定的几何知识基础,对圆的概念和性质有一定的了解。

但是,对于正多边形与圆的关系,他们可能还没有明确的认知。

因此,在教学过程中,我需要从学生的实际出发,通过引导他们观察、思考、交流和探索,帮助他们建立起正多边形与圆之间的联系,提高他们的空间想象力。

三. 说教学目标1.知识与技能:理解正多边形的定义和性质,能够运用正多边形的知识解决实际问题;掌握正多边形与圆的关系,能够运用这一关系解决相关问题。

2.过程与方法:通过观察、思考、交流和探索,培养学生的空间想象力,提高他们分析问题和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的科学精神。

四. 说教学重难点1.教学重点:正多边形的定义和性质,正多边形与圆的关系。

2.教学难点:正多边形与圆的关系的运用。

五. 说教学方法与手段在教学过程中,我将采用讲授法、引导发现法、交流讨论法等多种教学方法,引导学生主动探究、积极思考。

同时,利用多媒体课件、实物模型等教学手段,帮助学生直观地理解正多边形与圆的关系,提高教学效果。

六. 说教学过程1.导入:通过复习圆的相关知识,引导学生回顾圆的性质和应用,为新课的学习做好铺垫。

2.探究正多边形的定义和性质:让学生观察实物模型,引导学生发现正多边形的特点,进而总结出正多边形的定义和性质。

3.探索正多边形与圆的关系:让学生通过观察、思考、交流,发现正多边形与圆之间的联系,引导学生总结出正多边形与圆的关系。

人教版数学九年级上册24 正多边形和圆教案与反思牛老师

人教版数学九年级上册24 正多边形和圆教案与反思牛老师

24.3 正多边形和圆知己知彼,百战不殆。

《孙子兵法·谋攻》樱落学校曾泽平一、基本目标【知识与技能】1.经历正多边形的形成过程,了解正多边形的有关概念,掌握用等分圆周画圆的内接正多边形的方法.2.理解依次连结圆的n等分点所得的多边形是正n边形.3.理解并掌握正多边形的半径和边长、边心距、中心角之间的关系,并解决正多边形与圆有关的计算问题.【过程与方法】1.结合生活中正多边形的图案,发现正多边形和圆的关系,学会用圆的有关知识解决相应的计算问题,从而丰富对正多边形的认识.2.学会等分圆周,利用等分圆周的方法构造正多边形,并会设计图案,发展实践能力和创新精神.【情感态度与价值观】1.通过正多边形与圆的关系定理的教学,培养学生观察、猜想、推理、迁移能力.2.通过等分圆周构造正多边形的实践活动,使学生在数学学习活动中获得成功的体验,建立自信心.二、重难点目标【教学重点】正多边形的半径、中心角、边心距、边长的概念,用量角器等分圆.【教学难点】正多边形与圆的有关计算,用尺规作图作圆内接正方形和正六边形.环节1 自学提纲,生成问题【5 min阅读】阅读教材P105~P107的内容,完成下面练习.【3 min反馈】1.__各边__相等,__各角__也相等的多边形叫做正多边形.2.一个正多边形的外接圆的__圆心__叫做这个正多边形的中心;外接圆的__半径__叫做正多边形的半径;正多边形每一边所对的__圆心角__叫做正多边形的中心角;中心到正多边形的一边的__距离__叫做正多边形的边心距.3. 画正n边形只需先画一个圆,然后把圆__n等分__,依次连接各分点,即可得圆的__内接__正n边形,这个圆就是这个正多边形的__外接__圆.4.把一个圆分成n等份,连接各点所得到的多边形是__正多边形__,它的中心角等于__360°__.5.如果正多边形的一个外角等于60°,那么它的边数为__6__.6.若正多边形的边心距与边长的比为1∶2,则这个正多边形的边数为__4__.7.已知正六边形的外接圆半径为3 cm,那么它的周长为__18__cm.8.你能尺规作出正六边形吗?解:以半径长在圆周上截取六段相等的弧,依次连结各等分点,则可作出正六边形.环节2 合作探究,解决问题【活动1】小组讨论(师生互学)【例1】如图,已知正六边形ABCDEF,其外接圆的半径是a,求正六边形的周长和面积.【互动探索】(引发学生思考)(1)要求正六边形的周长,需要知道正六边形的边长.(2)要求正六边形的面积,不能直接求解,则需要通过做辅助线,将其转化为求几个三角形的面积和,那么应该怎么做辅助线呢【解答】连结OA、OB,过点O作OM⊥AB于点M. ∵ABCDEF是正六边形,∴∠AOB=360°6=60°,∴△OAB是等边三角形,∴正六边形ABCDEF的周长为6a.在Rt△OAM中,OA=a,AM=12AB=12a,利用勾股定理,可得边心距OM=错误!=错误!,∴正六边形ABCDEF的面积=6×错误!AB×OM=6×错误!a×错误!a=错误!.【互动总结】(学生总结,老师点评)解决与正多边形有关的问题,通常转化为由正多边形的半径、边心距及边长的一半组成的直角三角形的计算问.【例2】已知⊙O的半径为 2 cm,画圆的内接正三角形.【互动探索】(引发学生思考)画正多边形有两类工具:量角器和尺规.(1)正三角形需要把圆三等分,所以它的中心角为120度,可以用量角器直接量出.(2)用尺规可以作出正六边形,那么用尺规可以作出正三角形吗?【解答】(方法一)任取一点A,连接OA,用量角器或30°角的三角板度量,使∠BAO=∠CAO=30°,点B、C圆周上,连接A、B、C三点,可得△ABC.(方法二)用量角器度量,使∠AOB=∠AOC=120°,连接A、B、C三点,可得△ABC.(方法三)用圆规在⊙O上顺次截取6条长度等于半径(2 cm)的弦,任意顺次连接不相邻的三个点,如点A、C、E,则△ACE即为所求的三角形.(方法四)在圆上任取一条直径AD,以D为圆心,2 cm为半径画弧,交⊙O 于B、C两点,连接A、B、C三点,可得△ABC.【互动总结】(学生总结,老师点评)作圆内接正三角形的方法有很多种,还可以用量角器和尺规作图两者相结合的方法,如用量角器画圆心角∠BOC=120°,OB、OC分别交⊙O于B、C两点,再在⊙O上用圆规截取AC=BC,连接A、B、C三点,可得△ABC.【活动2】巩固练习(学生独学)1.如图所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是( C )A.60°B.45°C.30°D.22.5°2.圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB的度数是( C )A.36°B.60°C.72°D.108°3.下列用尺规等分圆周说法正确的个数有( A )①在圆上依次截取等于半径的弦,就可以六等分圆;②作相互垂直的两条直径,就可以四等分圆;③按①的方法将圆六等分,六个等分点中三个不相邻的点三等分圆;④按②的方法将圆四等分,再平分四条弧,就可以八等分圆.A.4个B.3个C.2个D.1个4.正八边形共有__8__条对称轴.5.正n边形的一个外角的度数与它的中心角的度数__相等__.6.观察下面的图形,说一说是怎么画出来的?解:先画一个O为圆心,OA长为半径的圆,取圆的三等分点,分别以三等分点为圆心,OA长为半径画弧,交⊙O于A、B、C三点,即得该图形.【活动3】拓展延伸(学生对学)【例3】如图,点G、H分别是正六边形ABCDEF的边BC、CD上的点,且BG =CH,AG交BH于点P.求∠APH的度数.【互动探索】(引发学生思考)要求∠APH的度数,结合图形特点,需要将其转化为求其他角的度数.根据正六边形的性质能得到AB=BC,∠ABC=∠C=120°,由得出的等边、等角及BG=CH所在的三角形,那么可以转化成求哪个角的度数,即可求得∠APH的度数?【解答】∵在正六边形ABCDEF中,AB=BC,∠ABC=∠C=120°,又BG=CH,∴△ABG≌△BCH,∴∠BAG=∠HBC.∵∠BAG+∠ABP=∠HBC+∠ABP,∴∠APH=∠ABC=120°.【互动总结】(学生总结,老师点评)本题从问题本身出发,不容易得到解决问题的方法,则需要将所求问题结合已知条件进行等价转化.结合已知条件和正六边形的性质,很容易得到两个三角形全等,利用三角形的外角可求得∠APH的度数.环节3 课堂小结,当堂达标(学生总结,老师点评)正多边形的相关概念:(1)中心:一个正多边形的外接圆的圆心叫做这个正多边形的中心.(2)半径:正多边形外接圆的半径叫做正多边形的半径.(3)中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.(4)边心距:中心到正多边形的一边的距离叫做正多边形的边心距.请完成本课时对应练习!【素材积累】每个人对未来都有所希望和计划,立志是成功的起点,有了壮志和不懈的努力,旧能向成功迈进。

人教版数学九年级上册24.3.2《正多边形和圆》教学设计

人教版数学九年级上册24.3.2《正多边形和圆》教学设计

人教版数学九年级上册24.3.2《正多边形和圆》教学设计一. 教材分析《正多边形和圆》是人教版数学九年级上册第24章第三节的内容。

本节内容是在学生掌握了圆的概念、圆的性质、弧、弦、圆心角的基础上进行的。

本节主要介绍正多边形的定义、性质及正多边形与圆的关系。

教材通过生活中的实例引入正多边形和圆的概念,引导学生探究正多边形的性质,从而发现正多边形与圆的内在联系。

二. 学情分析初三学生已经具备了一定的几何基础知识,对圆的概念、性质有所了解。

但是,对于正多边形的定义、性质以及与圆的关系可能还比较模糊。

因此,在教学过程中,需要引导学生通过观察、操作、思考、探究等活动,自主发现正多边形的性质,理解正多边形与圆的关系。

三. 教学目标1.了解正多边形的定义、性质及正多边形与圆的关系。

2.能运用正多边形的性质解决实际问题。

3.培养学生的观察能力、操作能力、思考能力和探究能力。

四. 教学重难点1.正多边形的定义、性质。

2.正多边形与圆的关系。

五. 教学方法采用问题驱动法、探究法、合作学习法等,引导学生通过观察、操作、思考、探究等活动,自主发现正多边形的性质,理解正多边形与圆的关系。

六. 教学准备1.准备一些正多边形的图片,如正三角形、正方形、正五边形等。

2.准备一些圆的图片,如圆桌、轮子等。

3.准备黑板、粉笔。

七. 教学过程1.导入(5分钟)利用多媒体展示一些正多边形的图片,如正三角形、正方形、正五边形等,引导学生观察这些图形的特点。

同时,展示一些圆的图片,如圆桌、轮子等,引导学生思考圆的特点。

2.呈现(10分钟)教师在黑板上画出一个正三角形,提问:“这个图形是什么?”学生回答:“正三角形。

”教师继续提问:“正三角形有哪些性质?”学生回答:“正三角形的三个角都相等,三条边都相等。

”教师引导学生观察正三角形的特点,然后引入正多边形的定义:“像正三角形这样的图形,所有的边都相等,所有的角都相等,我们称之为正多边形。

”3.操练(10分钟)教师发放一些正多边形的卡片,让学生分组讨论,找出正多边形的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《正多边形和圆》教学反思
《正多边形和圆》教学反思
身为一名优秀的人民教师,课堂教学是我们的任务之一,借助教学反思我们可以快速提升自己的教学能力,优秀的教学反思都具备一些什么特点呢?下面是小编帮大家整理的《正多边形和圆》教学反思,希望对大家有所帮助。

《正多边形和圆》教学反思1
昨天在学校上了《正多边形与圆》一节,在前一节课,我花了十分钟的时间已经让学生通过看书感知了中心、中心角、半径、边心距的定义,这节的教学重点是特殊的正多边形和圆中边心距、边长、半径的关系。

我先给了学生五分钟看书上正六边形的例题,在黑板上画了半径为R的正四边形、正六边形、正三角形及其外接圆,点拨例题后我以表格的形式给出学生的第一个问题是:分别用R表示正四边形、正六边形、正三角形的边长、周长、边心距和面积。

以前一直习惯于我讲学生听,这节我试着让学
生讲,学生在黑边前的讲解的时候我发现其他学生听的更认真,虽然讲解的学生还存在着声音小、讲解不是太透彻等缺点,但整体还可以,多给学生机会肯定会有提高。

整节课我围绕这个问题花了很长的时间,目的是让更多的学生体会并且学会这种构造直角三角形的思想。

其中我给学生补充的知识有:有一个角是30度的直角三角形的三边比和等腰直角三角形的三边比的推导及结论,我觉得这样可以为学生的运算节省时间。

这节课的第二个问题是:探究正三角形的外接圆半径R 和内切圆的半径r的数量关系,以及它们与正三角形的高之间的数量关系。

在这个过程由两个同学去讲解,田礼厚同学通过连接半径转化R构造直角三角形,而郑文豪同学通过构造弦心距转化r构造直角三角形,同样都是转化,但转化的不一样,我觉得学生的思维表现的很活跃。

整节课设计的问题较少,重点在于让学生体会构造思想和转化思想,学生表现很积极,但是没有练习以及反馈的时间,在接下来的练习课上我觉得困扰学生的不是构造直角三角形的思想而是计算的速度及准确性,但快速准确运算又不是一天两天的功夫,我认为对于我的学生而言,每节课还得给适当的运算来锻炼学生。

《正多边形和圆》教学反思2
《正多边形和圆》是在第24章《圆》的一节内容。


是学生在学习完三种位置关系之后的教学内容,通过本节的学习,使学生能进一步去探索有关圆的计算问题。

按教科书的编排,我个人认为本节教学内容应分2个课时:第1课时为正多边形和圆,第2课时为画正多边形。

另外,我个人认为本节教学目标有如下三个方面:
知识与技能:了解正多边形和圆的关系,了解正多边形半径、边心距、中心、中心角等概念;会应用正多边形的有关知识解决圆的有关计算问题;会应用正多边形和圆的有关知识画正多边形。

过程与方法:结合生活中的正多边形、圆形状的图案,发现正多边形和圆的关系,然后学会用圆的有关知识解决正多边形问题。

情感、态度和价值观:使学生经历观察、发现、探究等数学活动,感受数学在生活中的美丽体现,从中获取事物之间相互联系、相互作用的知识。

因为本节课要回顾正多边形的内容,又要学习它和圆的之间的关系,有很多新的概念,对后面圆的有关计算的学习起着关键性作用。

为了更好的让学生学习好本节内容,我将两节课时教学内容进行如下设计:
第1课时在引入时,启发学生探索运用量角器画正多边形,然后介绍基本概念,并探索数量关系。

第2课时巩固有关正多边形和圆的计算,并由此探求特
殊正多边形运用尺规方法画图。

下面是我第1课时的教学过程:
首先,回顾“正多边形的概念”,给出生活中常见的美丽的“正多边形图形”,再给出生活中美丽的圆形图案。

两种美丽的图形在生活中随处可见,哪么它们之间会有什么联系么?
课题:正多边形和圆
从日常生活中画正多边形入手,如:画正五边形,学生感觉很难。

启发学生如何在圆中画正五边形?学生发现:只要弧相等就可以。

师:如何使弧相等?
生:只要所对圆心角相等?
师:如何使圆心角相等?
生:用量角器度量。

然后,大家一起作出圆内接正五边形。

之后介绍有关概念,从概念介绍中,启发学生探讨中心角,R,r,d,a等量之间的关系,学生根据图形很容易发现这些数量之间的关系。

然后给出有关例题:
例题:半径为4的圆内接正六边形的计算。

问:最容易计算到什么?
生:中心角。

计算后,教师没有马上讲解,学生发现正六边形的边长
与半径相等。

这是我要达到的效果,正是因为这样的教学,才让学生积极探讨,发现结论,激发热情和兴趣。

特别是在求面积时,学生所使用的方法各种各样,我让所有学生自行探讨,结果有:分成六个等边三角形求解的、有分成梯形求解的、有分成直角三角形求解的、有分成等腰三角形+矩形求解的等等方法,每一种方法让学生讲解,教师又给予指导,从中又发现很多内容,如:求正六边形的对角线有两个值等。

整个课堂紧张而有序,付出而有收获,活动而又稳定,学生积极参与并思考,主动性全部被调动起来了,教师完全只是在启发、引导、点评,促使学生一步一步向成功的顶峰前进!
课后,来观摩听课的宜春学院数理学院的见习生们齐声说道:老师,您的课真是太精彩的。

我们受益非浅,以后还想来听。

《正多边形和圆》教学反思3
教学目标:
(1)理解正多边形与圆的关系定理;
(2)理解正多边形的对称性和边数相同的正多边形相似的性质;
(3)理解正多边形的中心、半径、边心距、中心角等概念;
(4)通过正多边形性质的教学培养学生的探索、推理、归
纳、迁移等能力;
教学重点:
理解正多边形的中心、半径、边心距、中心角的概念和性质定理.
教学难点:
对“正多边形都有一个外接圆和一个内切圆,并且这两个圆是同心圆”的理解.
教学活动设计:
(一)提出问题
问题:上节课我们学习了正多边形的定义,并且知道只要n等分(n≥3)圆周就可以得到的圆的内接正n边形和圆的外切正n边形.反过来,是否每一个正多边形都有一个外接圆和内切圆呢?
(二)实践与探究
组织学生自己完成以下活动.
实践:1、作已知三角形的外接圆,圆心是已知三角形的什么线的交点?半径是什么?
2、作已知三角形的内切圆,圆心是已知三角形的什么线的交点?半径是什么?
探究1:当三角形为正三角形时,它的外接圆和内切圆有什么关系?
探究2:(1)正方形有外接圆吗?若有外接圆的圆心在
哪?(正方形对角线的交点.)
(2)根据正方形的哪个性质证明对角线的交点是它的外接圆圆心?
(3)正方形有内切圆吗?圆心在哪?半径是谁?
(三)拓展、推理、归纳
(1)拓展、推理:
过正五边形ABCDE的顶点A、B、C、作⊙O连结OA、OB、OC、OD.
同理,点E在⊙O上.
所以正五边形ABCDE有一个外接圆⊙O.
因为正五边形ABCDE的各边是⊙O中相等的弦,所以弦心距相等.因此,以点O为圆心,以弦心距(OH)为半径的圆与正五边形的各边都相切.可见正五边形ABCDE还有一个以O为圆心的内切圆.
(2)归纳:
正五边形的任意三个顶点都不在同一条直线上
它的任意三个顶点确定一个圆,即确定了圆心和半径.
其他两个顶点到圆心的距离都等于半径.
正五边形的各顶点共圆.
正五边形有外接圆.
圆心到各边的距离相等.
正五边形有内切圆,它的圆心是外接圆的圆心,半径是
圆心到任意一边的距离.
照此法证明,正六边形、正七边形、…正n边形都有一个外接圆和内切圆.
定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.
正多边形的外接圆(或内切圆)的`圆心叫做正多边形的中心,外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距.正多边形各边所对的外接圆的圆心角都相等.正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角.正n边形的每个中心角都等于.
(3)巩固练习:
1、正方形ABCD的外接圆圆心O叫做正方形ABCD的______.
2、正方形ABCD的内切圆⊙O的半径OE叫做正方形ABCD的______.
3、若正六边形的边长为1,那么正六边形的中心角是______度,半径是______,边心距是______,它的每一个内角是______.
4、正n边形的一个外角度数与它的______角的度数相等.
(四)正多边形的性质
1、各边都相等.
2、各角都相等.
观察正三角形、正方形、正五边形、正六边形是不是轴对称图形?如果是,它们又各应有几条对称轴?
3、正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.边数是偶数的正多边形还是中心对称图形,它的中心就是对称中心.
4、边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.
5、任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.
以上性质,教师引导学生自主探究和归纳,可以以小组的形式研究,这样既培养学生的探究问题的能力、培养学生的研究意识,也培养学生的协作学习精神.
(五)总结
知识:(1)正多边形的中心、半径、边心距、中心角等概念;
(2)正多边形与圆的关系定理、正多边形的性质.
能力:探索、推理、归纳等能力.
方法:证明点共圆的方法.
(六)作业P159中练习1、2、3.。

相关文档
最新文档