苏科版初三《圆》章节知识点复习专题

合集下载

九年级上册数学《圆》复习资料苏教版

九年级上册数学《圆》复习资料苏教版

九年级上册数学《圆》复习资料苏教版一、圆的定义、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段。

4、弧:圆上两点之间的曲线部分。

半圆周也是弧。

劣弧:小于半圆周的弧。

优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质、圆的对称性圆是轴对称图形,它的对称轴是直径所在的直线。

圆是中心对称图形,它的对称中心是圆心。

圆是旋转对称图形。

2、垂径定理。

垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

推论:平分弦的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。

圆周角的度数等于它所对弧度数的一半。

同弧所对的圆周角相等。

直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙o的半径为r,oP=d。

7、过两点的圆的圆心一定在两点间连线段的中垂线上。

不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。

8、直线与圆的位置关系。

d表示圆心到直线的距离,r 表示圆的半径。

直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。

9、平面直角坐标系中,A、B。

0、圆的切线判定。

d=r时,直线是圆的切线。

切点不明确:画垂直,证半径。

经过半径的外端且与半径垂直的直线是圆的切线。

切点明确:连半径,证垂直。

1、圆的切线的性质。

经过切点的直径一定垂直于切线。

经过切点并且垂直于这条切线的直线一定经过圆心。

九年级上册数学《圆》复习资料苏教版

九年级上册数学《圆》复习资料苏教版

九年级上册数学《圆》复习资料苏教版一、圆的定义、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段。

4、弧:圆上两点之间的曲线部分。

半圆周也是弧。

劣弧:小于半圆周的弧。

优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质、圆的对称性圆是轴对称图形,它的对称轴是直径所在的直线。

圆是中心对称图形,它的对称中心是圆心。

圆是旋转对称图形。

2、垂径定理。

垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

推论:平分弦的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。

圆周角的度数等于它所对弧度数的一半。

同弧所对的圆周角相等。

直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙o的半径为r,oP=d。

7、过两点的圆的圆心一定在两点间连线段的中垂线上。

不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。

8、直线与圆的位置关系。

d表示圆心到直线的距离,r 表示圆的半径。

直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。

9、平面直角坐标系中,A、B。

0、圆的切线判定。

d=r时,直线是圆的切线。

切点不明确:画垂直,证半径。

经过半径的外端且与半径垂直的直线是圆的切线。

切点明确:连半径,证垂直。

1、圆的切线的性质。

经过切点的直径一定垂直于切线。

经过切点并且垂直于这条切线的直线一定经过圆心。

苏科版初三《圆》章节知识点复习专题

苏科版初三《圆》章节知识点复习专题

精心整理一、圆的概念集合形式的概念:1. 圆可以看作是到定点的距离等于定长的点的集合;2.圆的外部:可以看作是到定点的距离大于定长的线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1.点在圆内 ⇒ d r < ⇒ 点C 在圆内;2.点在圆上 ⇒ d r = ⇒ 点B 在圆上;A3.点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1.直线与圆相离⇒d r>⇒无交点;2.直线与圆相切⇒d r=⇒有一个交点;3.直线与圆相交⇒d r<⇒有两个交点;所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②AB CD=④弧BC=弧BD⑤弧⊥③CE DEAC=弧AD中任意2个条件推出其他3个结论。

推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O 中,∵AB ∥CD角∴2AOB ACB ∠=∠ 2.圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或B D等圆中,相等的圆周角所对的弧是等弧;即:在⊙O中,∵C∠都是所对的圆周角∠、D∴C D∠=∠九、切线的性质与判定定理(1)切线的判定定理:过半径外端且垂直于半径的直线是切线;两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN OA ⊥且MN 过半径OA 外端∴MN 是⊙O 的切线十一、圆幂定理(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。

即:在⊙O 中,∵弦AB 、CD 相交于点P , ∴PA PB PC PD ⋅=⋅DB(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。

即:在⊙O 中,∵直径AB CD ⊥, ∴2CE AE BE =⋅1O 、⊙2O 相交于A 、B 两点 ∴12O O 垂直平分AB 十三、圆的公切线 两圆公切线长的计算公式: (1)公切线长:12Rt O O C∆中,BA221AB CO =(2)外公切线长:2CO 是半径之差; 内公切线长:2CO 是半径之和 。

初三《圆》章节知识点复习专题(简单明了)

初三《圆》章节知识点复习专题(简单明了)

《圆》章节知识点复习一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;图1A图4图5图2五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论。

初三《圆》章节知识点复习专题(8页)

初三《圆》章节知识点复习专题(8页)

一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

有关概念:圆——到定点的距离等于定长的点的集合圆的内部——可以看作是圆心的距离小于半径的点的集合圆的外部——可以看作是圆心的距离大于半径的点的集合等圆——圆心不相同,半径相等的圆;同心圆——圆心相同,半径不等的圆。

弧——圆上任意两点间的部分叫做圆弧,简称弧。

按与半圆的大小关系可分为:优弧和劣弧等弧——在同圆或等圆中,能够重合的两条弧弦——连接圆上任意两点间的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。

弦心距——圆心到直线的距离弓形——弧与所对的弦所组成得图形。

圆的内部——到圆心的距离小于半径的点的集合叫做圆的内部圆的外部——到圆心的距离大于半径的点的集合叫做圆的外部圆心角:顶点在圆心的角圆周角:顶点在圆周上,并且两边都和圆相交的角叫做圆周角。

弦切角、圆内角、圆外角及性质:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。

顶点在圆外的角(两边与圆相交)的度数等于其所截两弧度数差的一半.顶点在圆内的角(两边与圆相交)的度数等于其及其对顶角所截弧度数和的一半.确定圆的条件:定理——不在同一直线上的三点确定一个圆。

相关概念及性质——三角形的外接圆圆的内接三角形三角形的外心三角形的外心的性质:三角形的外心到各个顶点的距离相等。

苏科版数学九上第二章轴对称图形--圆复习

苏科版数学九上第二章轴对称图形--圆复习
A.150°
B.130°
C.120°
D.60°
2.5.直线与圆的位置关系
一、直线与圆的位置关系
r
O
┐d

相交
r
O
┐d

相切
1、直线和圆相交
d < r.
2、直线和圆相切
d = r.
3、直线和圆相离
d > r.
r
O
d


相离
2.5 直线与圆的位置关系
二、切线的判定定理
经过半径的外端,并且垂直于这条半径的直线是圆的切线
线平分两条切线的夹角.
A
∵PA,PB切⊙O于A,B
∴PA=PB ∠1=∠2
P
1
2
O

B
练习
1、已知:如图1,△ABC中,AC=BC,以BC为直径 的⊙O交
AB于点D,过点D作DE⊥AC于点E,交 BC的延长线于点F.
求证:(1)AD=BD;(2)DF是⊙O的切线.
A
A
D
E
B
O
C
P
F
C
图1
B
图2
2、如图2,PA、PA是圆的切线,A、B为切点,AC为

练习
三、选择题:
下列命题正确的是( C )
A、三角形外心到三边距离相等
B、三角形的内心不一定在三角形的内部
C、等边三角形的内心、外心重合
D、三角形一定有一个外切圆
四、一个三角形,它的周长为30cm,它的内切圆半径为2cm,则这个三
30
角形的面积为______.
2.5直线与圆的位置关系
七、圆线与圆的位置关系
⌒ ⌒

初三《圆》章节知识点复习总结专题

初三《圆》章节知识点复习总结专题

《圆》章节知识点复习一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外;三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;A四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;图1五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②AB CD⊥③CE DE=④弧BC=弧BD⑤弧AC=弧AD图2图4图5中任意2个条件推出其他3个结论。

(完整版),初三《圆》章节知识点复习专题,推荐文档

(完整版),初三《圆》章节知识点复习专题,推荐文档
-6-
D A
D1
周 周周
周 周周 周 周
B
C1
C
B1
O
R
C
A
r
B
(2)圆锥侧面展开图
(1) S表底 S侧 S = Rr r2 (2)圆锥的体积:V 1 r2h
3Байду номын сангаас
《圆》章节知识点复习
-7-
即:在⊙ O 中, ∵四边形 ABCD 是内接四边形
C
D
∴ C BAD 180 B D 180
DAE C
B
A
E
九、切线的性质与判定定理
(1)切线的判定定理:过半径外端且垂直于半径的直线是切线;
两个条件:过半径外端且垂直半径,二者缺一不可
即:∵ MN OA 且 MN 过半径 OA 外端
∴ MN 是⊙ O 的切线
积相等(如上图)。
即:在⊙ O 中,∵ PB 、 PE 是割线 ∴ PC PB PD PE
十二、两圆公共弦定理 圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆 的公共弦。
如图: O1O2 垂直平分 AB 。 即:∵⊙ O1 、⊙ O2 相交于 A 、 B 两点
∴ O1O2 垂直平分 AB
十三、圆的公切线 两圆公切线长的计算公式:
O
OD : BD : OB 1: 3 : 2 ;
B
D
A
(2)正四边形
同理,四边形的有关计算在 RtOAE 中进行,
OE : AE : OA 1:1: 2 :
B
C
O
A
E
D
(3)正六边形
同理,六边形的有关计算在 RtOAB 中进行, AB : OB : OA 1: 3 : 2 .

初三《圆》章节知识点复习专题

初三《圆》章节知识点复习专题

《圆》章节知识点复习一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;rddCBAO2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;rdd=rdr图3rR drRdr Rd 图4rRd图5r Rd(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

初三《圆》章节知识点复习专题

初三《圆》章节知识点复习专题

《圆》章节知识点复习一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系A外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

初三《圆》章节知识点复习专题

初三《圆》章节知识点复习专题

《圆》章节知识点复习一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外;三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;A<⇒有两个交点;3、直线与圆相交⇒d r四、圆与圆的位置关系>+;外离(图1)⇒无交点⇒d R r=+;外切(图2)⇒有一个交点⇒d R r-<<+;相交(图3)⇒有两个交点⇒R r d R r=-;内切(图4)⇒有一个交点⇒d R r<-;内含(图5)⇒无交点⇒d R r五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

初三《圆》章节知识点复习专题

初三《圆》章节知识点复习专题

《圆》章节知识点复习一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;rddCBAO2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;rdd=rdr图3rR drRdr Rd 图4rRd图5r Rd(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、圆的概念集合形式的概念:1. 圆可以看作是到定点的距离等于定长的点的集合; 2.圆的外部:可以看作是到定点的距离大于定长的点的集合; 3.圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1.圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2.垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3.角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4.到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5.到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1.点在圆内 ⇒ d r < ⇒ 点C 在圆内;2.点在圆上 ⇒ d r = ⇒ 点B 在圆上;3.点在圆外 ⇒ d r > ⇒ 点A 在圆外;三、直线与圆的位置关系1.直线与圆相离 ⇒ d r > ⇒ 无交点;2.直线与圆相切 ⇒ d r = ⇒ 有一个交点;3.直线与圆相交 ⇒ d r < ⇒ 有两个交点;A四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD图4图5D圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。

此定理也称1推3定理,即上述四个结论中, 只要知道其中的1个相等,则可以推出其它的3个结论, 即:①AOB DOE ∠=∠;②AB DE =;③OC OF =;④ 弧BA =弧BD七、圆周角定理1.圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。

即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠2.圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。

即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒ ∴90C ∠=︒ ∴AB 是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

即:在△ABC 中,∵OC OA OB ==∴△ABC 是直角三角形或90C ∠=︒注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。

BBABA O圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。

即:在⊙O 中,∵四边形ABCD 是内接四边形∴180C BAD ∠+∠=︒ 180B D ∠+∠=︒ DAE C ∠=∠九、切线的性质与判定定理(1)切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN OA ⊥且MN 过半径OA 外端 ∴MN 是⊙O 的切线(2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。

推论2:过切点垂直于切线的直线必过圆心。

以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。

十、切线长定理切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。

即:∵PA 、PB 是的两条切线 ∴PA PB =PO 平分BPA ∠十一、圆幂定理(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。

即:在⊙O 中,∵弦AB 、CD 相交于点P , ∴PA PB PC PD ⋅=⋅PDB(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。

即:在⊙O 中,∵直径AB CD ⊥, ∴2CE AE BE =⋅(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

即:在⊙O 中,∵PA 是切线,PB 是割线 ∴ 2PA PC PB =⋅(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。

即:在⊙O 中,∵PB 、PE 是割线 ∴PC PB PD PE ⋅=⋅十二、两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。

如图:12O O 垂直平分AB 。

即:∵⊙1O 、⊙2O 相交于A 、B 两点 ∴12O O 垂直平分AB 十三、圆的公切线 两圆公切线长的计算公式:(1)公切线长:12Rt O O C ∆中,221AB CO ==(2)外公切线长:2CO 是半径之差; 内公切线长:2CO 是半径之和 。

十四、圆内正多边形的计算 (1)正三角形在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::2OD BD OB =;BA(2)正四边形同理,四边形的有关计算在Rt OAE ∆中进行,::OE AE OA =(3)正六边形同理,六边形的有关计算在Rt OAB ∆中进行,::2AB OB OA =.十五、扇形、圆柱和圆锥的相关计算公式 1.扇形:(1)弧长公式:180n Rl π=; (2)扇形面积公式: 213602n R S lR π== n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积2.圆柱:(1)圆柱侧面展开图2S S S =+侧表底=222rh r ππ+(2)圆柱的体积:2V r h π=(2)圆锥侧面展开图(1)S S S =+侧表底=2Rr r ππ+ (2)圆锥的体积:213V r h π=lOC 1D 1一、考点分析与例题分析 1、 线段的比1)比例的合比性质,比例的等比性质 2)线段求比需注意:单位要统一 2、 黄金分割1)定义:在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果ACBCAB AC,即AC 2=AB ×BC ,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。

其中ABAC≈0.618。

2)矩形中,如果宽与长的比是黄金比,这个矩形叫做黄金矩形。

3、 相似多边形性质:相似多边形的对应角相等,对应边成比例。

(可与定义互推)1、如果四边形ABCD ∽四边形A ′B ′C ′D ′相似,且∠A=68°,则∠A ′= 。

2、下列说法中正确的是( )A 、所有的矩形都相似B 、所有的正方形都相似C 、所有的菱形都相似D 、所有的等腰梯形都相似3、已知,ABCDE ∽五边形FGHIJ ,且AB=2cm ,CD=3cm ,DE=2.2cm ,GH=6cm ,HI =5cm ,FJ=4cm ,∠A=120°,∠H=90°。

求:(1)相似比等于多少 (2)求FG,IJ,BC,AE, ∠F, ∠C 4、 相似三角形1)定义:如果两个三角形中,三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。

如△ABC 与△DEF 相似,记作△ABC ∽△DEF 。

相似比为k 。

几种特殊三角形的相似关系:两个全等三角形一定相似。

两个等腰直角三角形一定相似。

两个等边三角形一定相似。

两个直角三角形和两个等腰三角形不一定相似。

2)性质:两个相似三角形中,对应角相等、对应边成比例。

3)判定:①定义法:对应角相等,对应边成比例的两个三角形相似。

ABCDEFGHIJ②三角形相似的预备定理:平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似。

参照三角形全等的判定方法:③两角对应相等的两个三角形相似。

④三边对应成比例的两个三角形相似。

⑤两边对应成比例且夹角相等的两个三角形相似。

1、下列各组三角形一定相似的是()A.两个直角三角形 B.两个钝角三角形 C.两个等腰三角形 D.两个等边三角形2、如图,△ABC∽△AED, 其中DE∥BC,写出对应边的比例式。

3、如图,已知△ABC∽△ADE,AE=50 cm,EC=30 cm,BC=70 cm,∠BAC=45°,∠ACB=40°,求:1)∠AED和∠ADE的度数;2)DE的长。

5、相似多边形的周长比和面积比关系:若△ABC∽△A′B′C′,相似比为k,那么△ABC与△A′B′C′的周长比为k,面积比为k 2。

6、位似1)定义:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。

需注意:①位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形。

②两个位似图形的位似中心只有一个。

③两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧。

④位似比就是相似比。

2)性质:①位似图形首先是相似图形,所以它具有相似图形的一切性质。

②位似图形是一种特殊的相似图形,它又具有特殊的性质,位似图形上任意一对对应点到位似中心的距离等于位似比(相似比)。

③每对位似对应点与位似中心共线,不经过位似中心的对应线段平行。

练习设计1、△ABC 与△DEF 相似,且相似比是32,则△DEF 与△ABC 与的面积比是( ) A 、32 B 、23 C 、52 D 、942、如图,△ABC 中,点D 、E 、F 分别是AB 、BC 、CA 的中点,求证:△ABC ∽△DEF 。

3、已知:如图,P 为△ABC 中线AD 上的一点,且BD 2=PD•AD,求证:△ADC ∽△CDP 。

4、已知:如图,P 为△ABC 中线AD 上的一点,且BD 2=PD•AD,求证:△ADC ∽△CDP .5、如图,正方形ABCD 中,E 、F 分别在AB 、BC 边上,且AE=CF 、BG ⊥CE 于G 。

相关文档
最新文档