沪科版数学八年级下册第十八章《勾股定理》【说课稿】 认识勾股定理

合集下载

(精品教案)沪科版《勾股定理》讲课稿(精选6篇)

(精品教案)沪科版《勾股定理》讲课稿(精选6篇)

(精品教案)沪科版《勾股定理》讲课稿(精选6篇)帮大伙儿整理的沪科版《勾股定理》讲课稿(精选6篇),欢迎大伙儿借鉴与参考,希翼对大伙儿有所帮助。

勾股定理是学生在差不多掌握了直角三角形的有关性质的基础上举行学习的,它是直角三角形的一条很重要的性质,是几何中最重要的定理之一,它揭示了一具三角形三条边之间的数量关系,它能够解决直角三角形中的计算咨询题,是解直角三角形的要紧依照之一,在实际日子中用途非常大。

教材在编写时注意培养学生的动手操作能力和分析咨询题的能力,经过实际分析、拼图等活动,使学生获得较为直观的印象;经过联系和比较,明白勾股定理,以利于正确的举行运用。

据此,制定教学目标如下:1、明白并掌握勾股定理及其证明。

2、可以灵便地运用勾股定理及其计算。

3、培养学生观看、比较、分析、推理的能力。

4、经过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。

教学重点:勾股定理的证明和应用。

教学难点:勾股定理的证明。

教法和学法是体如今整个教学过程中的,本课的教法和学法体现如下特点:1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学日子动,让学生主动参与学习全过程。

2、切实体现学生的主体地位,让学生经过观看、分析、讨论、操作、归纳,明白定理,提高学生动手操作能力,以及分析咨询题和解决咨询题的能力。

3、经过演示实物,引导学生观看、操作、分析、证明,使学生得到获得新知的成功感觉,从而激发学生钻研新知的欲望。

本节内容的教学要紧体如今学生动手、动脑方面,依照学生的认知规律和学习心理,教学程序设计如下:(一)创设情境以古引新1、由故事引入,3000多年前有个叫商高的人对周公讲,把一根直尺折成直角,两端连接得到一具直角三角形。

假如勾是3,股是4,这么弦等于5。

如此引起学生学习兴趣,激发学生求知欲。

2、是别是所有的直角三角形都有那个性质呢?教师要善于激疑,使学生进入乐学状态。

《勾股定理》说课稿(精选5篇)

《勾股定理》说课稿(精选5篇)

《勾股定理》说课稿(精选5篇)作为一名教职工,通常需要用到说课稿来辅助教学,说课稿有利于教学水平的提高,有助于教研活动的开展。

怎么样才能写出优秀的说课稿呢?为了让您对于勾股定理说课稿的写作了解的更为全面,下面作者给大家分享了5篇《勾股定理》说课稿,希望可以给予您一定的参考与启发。

《勾股定理》说课稿篇一教材分析《勾股定理》是人教版新课标八年级数学第十八章一节一课时内容,勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,是中学数学几个重要定理之一。

它揭示了一个直角三角形三条边之间的数量关系,是解直角三角形的主要根据之一,在实际生活中用途很大。

勾股定理的发现、验证和应用蕴含着丰富的文化价值,它在理论上占有重要地位,学好本节至关重要。

教学目标根据新课程标准对学生知识、能力的要求,结合八年级学生实际水平、认知特点制定以下教学目标。

知识与技能:知道勾股定理的由来,理解和掌握勾股定理的证明方法。

能够灵活地运用勾股定理及其计算。

过程与方法:让学生经历观察-猜想-归纳-验证的数学过程,并从中体会数形结合及从特殊到一般的数学思想。

培养学生观察、比较、分析、推理的能力。

情感态度与价值观:介绍我国古代在研究勾股定理方面取得的伟大成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感在探索问题的过程中,培养学生的合作交流意识和探索精神。

(三)本节课的重点:是勾股定理的发现、验证和应用。

难点:是用拼图方法、面积法证明勾股定理教法和学法教法指导:数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,要展现获取知识和方法的思维过程,针对八年级学生的知识结构和心理特征,本节课采取自主探究发现式教学,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性。

让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。

使学生得到获得新知的成功感受,从而激发学生钻研新知。

勾股定理说课稿

勾股定理说课稿

《勾股定理》说课稿明光市管店中学谢凯各位评委老师大家好:我是管店中学谢凯,我今天说课的内容是沪科版八年级数学第十八章勾股定理的第一课时。

下面我主要从以下几个方面加以说明。

一、说教材(一)教材所处的地位勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。

它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

(二)根据课程标准,本课的教学目标是:1、能说出勾股定理的内容。

会初步运用勾股定理进行简单的计算和实际运用。

2、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。

3、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。

(三)本课的教学重点:探索勾股定理本课的教学难点:用不同方法来证明勾股定理。

教法分析:针对八年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。

引导学生自主探索,合作交流,这种教学理念新课改的精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。

学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

(四)教学准备准备多媒体,学生方格纸三、教学过程设计(一)提出问题——引入新课通过欣赏2002年我国北京召开的国际数学家大会的会徽图案,引出赵爽弦图,让学生了解我国古代辉煌的数学成就,引入课题。

接下来创设一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是 2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三角形的两边,如何求第三边?”的问题。

沪科版八年级下册数学第18章勾股定理单元复习说课稿

沪科版八年级下册数学第18章勾股定理单元复习说课稿
2.生生互动:
(1)分组合作:将学生分成小组,进行探究式学习,共同解决勾股定理相关问题。
(2)讨论与分享:鼓励学生在小组内讨论,分享解题思路和方法,互相学习,共同提高。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将采用以下方式导入新课:
1.创设情境:通过展示一张著名的直角三角形图形,如埃及金字塔的截面图,引导学生思考直角三角形在建筑和生活中的应用。
1.提高课堂教学的趣味性和直观性,吸引学生的注意力。
2.帮助学生更好地理解和掌握勾股定理及其应用。
3.拓展教学时空,提高教学效率。
(三)互动方式
我计划设计以下师生互动和生生互动环节,以促进学生的参与和合作:
师生互动:
(1)提问:在教学过程中,通过提问引导学生思考,检查学生的学习效果。
(2)反馈:针对学生的回答和表现,给予及时、积极的反馈,鼓励学生积极参与课堂讨论。
2.提出问题:提问学生:“同学们,你们知道直角三角形有什么特殊的性质吗?”、“在直角三角形中,三条边之间是否存在某种关系?”
3.数学故事:讲述古希腊数学家毕达哥拉斯发现勾股定理的传说,激发学生对勾股定理的好奇心和探索欲望。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
1.回顾直角三角形的定义和性质,为学习勾股定理做好铺垫。
3.情感态度与价值观目标:
(1)激发学生对数学学习的兴趣,提高学生的数学素养。
(2)通过勾股定理的学习,使学生认识到数学在现实生活中的应用价值,培养学生的科学态度和价值观。
(三)教学重难点
根据对学生的了解和教学内容的分析,本节课的教学重点和难点如下:
1.教学重点:
(1)勾股定理的定义、证明和应用。

沪科版数学八年级下册18.1《勾股定理》教学设计

沪科版数学八年级下册18.1《勾股定理》教学设计

沪科版数学八年级下册18.1《勾股定理》教学设计一. 教材分析《勾股定理》是沪科版数学八年级下册第18章第1节的内容。

本节主要介绍勾股定理的证明和应用。

学生通过学习本节内容,能够理解和掌握勾股定理,并能够运用勾股定理解决一些实际问题。

二. 学情分析八年级的学生已经学习了平面几何的基本概念和性质,具备了一定的逻辑思维能力和空间想象能力。

但是,对于证明勾股定理的理解可能会存在一定的困难,因此需要教师在教学过程中进行引导和解释。

三. 教学目标1.理解勾股定理的内容和证明方法。

2.能够运用勾股定理解决一些实际问题。

3.培养学生的逻辑思维能力和空间想象能力。

四. 教学重难点1.勾股定理的证明方法的理解和应用。

2.解决实际问题时,如何运用勾股定理。

五. 教学方法1.讲授法:教师讲解勾股定理的证明方法和应用。

2.案例分析法:通过具体案例,让学生学会如何运用勾股定理解决实际问题。

3.讨论法:学生分组讨论,分享各自的解题方法和思路。

六. 教学准备1.PPT课件:包括勾股定理的证明过程和应用案例。

2.练习题:包括不同难度的练习题,用于巩固所学知识。

3.板书:勾股定理的公式和关键点。

七. 教学过程1.导入(5分钟)教师通过PPT展示勾股定理的历史背景和古希腊数学家毕达哥拉斯的故事,激发学生的学习兴趣。

2.呈现(10分钟)教师讲解勾股定理的证明方法,包括几何画图法和代数法。

同时,通过PPT展示勾股定理的证明过程,让学生理解和掌握证明方法。

3.操练(10分钟)学生根据PPT上的练习题,独立完成勾股定理的证明和应用。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)学生分组讨论,分享各自的解题方法和思路。

教师选取一些学生的解题过程,进行讲解和分析,巩固所学知识。

5.拓展(10分钟)教师通过PPT展示一些勾股定理的实际应用案例,让学生学会如何运用勾股定理解决实际问题。

同时,教师提出一些拓展问题,引导学生思考。

6.小结(5分钟)教师对本节课的主要内容进行总结,强调勾股定理的证明方法和应用。

勾股定理说课稿15篇

勾股定理说课稿15篇

勾股定理说课稿15篇勾股定理说课稿15篇作为一名默默奉献的教育工作者,通常需要用到说课稿来辅助教学,说课稿有助于顺利而有效地开展教学活动。

写说课稿需要注意哪些格式呢?以下是小编为大家收集的勾股定理说课稿,仅供参考,希望能够帮助到大家。

勾股定理说课稿1尊敬的各位评委,各位老师,大家好:我今天说课的内容是《勾股定理的逆定理》第一课时。

下面我将从教材、目标、重点难点、教法、教学流程等几个方面向各位专家阐述我对本节课的教学设想。

一、说教材。

这节内容选自《苏科版》义务教育课程标准实验教科书数学八年级上册第三章《勾股定理》中的第二节。

勾股定理的逆定理是几何中一个非常重要的定理,它是对直角三角形的再认识,也是判断一个三角形是不是直角三角形的一种重要方法。

还是向学生渗透“数形结合”这一数学思想方法的很好素材。

八年级正是学生由实验几何向推理几何过渡的重要时期,通过对勾股定理逆定理的探究,培养学生的分析思维能力,发展推理能力。

在教学中渗透类比、转化,从特殊到一般的思想方法。

二、说教学目标。

教学目标支配着教学过程,教学目标的制定和落实是实施课堂教学的关键。

考虑到学生已有的认知结构心理特征及本班学生的实际情况,我制定了如下教学目标:1、知识与技能:探索并掌握直角三角形判别思想,会应用勾股定理及逆定理解决实际问题。

2、过程与方法:通过对勾股定理的逆定理的探索和证明,经历知识的发生,发展与形成的过程,体验“数形结合”方法的应用。

3、情感、态度、价值观:培养数学思维以及合情推理意识,感悟勾股定理和逆定理的应用价值。

渗透与他人交流、合作的意识和探究精神,体验数与形的内在联系。

三、说教学重点、难点,关键。

本着课程标准,在吃透教材的基础上,我确立了如下的教学重、难点及关键。

重点:理解并掌握勾股定理的逆定理,并会应用。

难点:理解勾股定理的逆定理的推导。

关键:动手验证,体验勾股定理的逆定理。

四、说教法。

在本节课中,我设计了以下几种教法学法:情景教学法,启发教学法,分层导学法。

新沪科版八年级数学下册《18章 勾股定理 18.1 勾股定理》教案_4

新沪科版八年级数学下册《18章 勾股定理  18.1 勾股定理》教案_4

公开课教学设计课题:18.1 勾 股 定 理 (第一课时)一、教学内容:勾股定理的探究、证明与简单应用。

二、教学目标:1、知识与技能:(1)、使学生掌握勾股定理及其简单应用;(2)、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单推理的意识及能力;(3)、在勾股定理应用的过程中,培养学生的数学实际应用能力。

2、过程与方法:(1)、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识和主动探索的习惯,进一步体会数学与现实生活的紧密联系;(2)、通过动手操作、分组合作学习活动,学会在活动中与他人合作,并能与他人交流思维的过程与结果。

3、情感、态度与价值观:通过动手操作、独立思考与合作学习的过程,提高学生学习数学的兴趣,形成锲而不舍的钻研精神,培养独立思考的良好学习习惯。

三、教学重难点及关键:1、教学重点:勾股定理的探究及其应用;2、教学难点:勾股定理的发现过程及勾股定理的证明;3、教学关键:通过用数格子的办法探索勾股定理,并用面积法证明勾股定理。

四、教学方法:引导发现与启发讲解相结合。

五、教学准备:1、教师准备:投影仪、多媒体教学,四个全等的直角三角形。

2、学生准备:四个全等的直角三角形。

六、教学过程:(一)、创设问题情境,导入新课:1、问题情境: 受台风影响,一棵树在离地面5米处断裂,树的顶部落在离树的底部12米处,这棵树折断前有多高? (不解答)(1)、折断的大树与地面形成了什么图形?(2)、直角三角形是特殊的三角形,它的三条边之间有什么特殊关系呢?2、引出新课:直角三角形是特殊的三角形,除了具备 上述特殊性质外,它的三边也具有特定的关系,这个关系早在公元前3世纪,我国数学家赵爽就证明了直角三角形三边之间的关系,我们称之为勾股定理。

今天我们就来探索这个关系。

(二)、合作交流,解读探索:1、创设问题情境(一):(1)、在坐标纸上画一个格点直角三角形,然后分别以直角三角形的各边为正方形的一边,向形外作正方形。

《勾股定理》说课稿(通用6篇)精选全文

《勾股定理》说课稿(通用6篇)精选全文

可编辑修改精选全文完整版《勾股定理》说课稿(通用6篇)《勾股定理》篇1尊敬的各位评委、老师,您们好,我是临沂市苍山县实验中学的宋宁。

今天我说课的内容是人教版《数学》八年级下册第十八章第一节《勾股定理》第一课时,我将从教材、教法与学法、教学过程、教学评价以及设计说明五个方面来阐述对本节课的理解与设计。

一、教材分析:(一) 教材的地位与作用从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。

从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。

其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。

(二)重点与难点为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。

限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。

二、教学与学法分析教学方法叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。

”因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。

学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。

三、教学过程我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。

首先,情境导入古韵今风给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。

(请看视频)让学生观察并思考三个正方形面积之间的关系?它们围成了什么三角形?反映在三边上,又蕴含着什么数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。

初中数学《勾股定理》说课稿5篇

初中数学《勾股定理》说课稿5篇

初中数学《勾股定理》说课稿5篇初中数学《勾股定理》说课稿1一、教材分析^p :〔一〕、本节课在教材中的地位作用“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有非常广泛的应用,同时在应用中浸透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。

课标要求学生必须掌握。

〔二〕、教学目的:根据数学课标的要求和教材的详细内容,结合学生实际我确定了本节课的教学目的。

知识技能:1、理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。

2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理断定一个三角形是不是直角三角形过程与方法:1、通过对勾股定理的逆定理的探究,经历知识的发生、开展与形成的过程2、通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。

情感态度:1、通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联络,感受定理与逆定理之间的和谐及辩证统一的关系2、在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,浸透与别人交流、合作的意识和探究精神〔三〕、学情分析^p :尽管已到初二下学期学生知识增多,才能增强,但思维的局限性还很大,才能也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键。

重点:勾股定理逆定理的应用难点:勾股定理逆定理的证明关键:辅助线的添法探究二、教学过程:本节课的设计原那么是:使学生在动手操作的根底上和合作交流的良好气氛中,通过巧妙而自然地在学生的认识构造与几何知识构造之间筑了一个信息流通渠道,进而到达完善学生的数学认识构造的目的。

沪科版八年级数学下册《【说课稿】 认识勾股定理》

沪科版八年级数学下册《【说课稿】 认识勾股定理》

沪科版八年级数学下册说课稿勾股定理各位评委老师大家好:今天我说课的课题是《勾股定理》,下面就教材分析、教学方法选择、学法指导、教学程序设计等四个方面,谈谈我对本课题的理解和认识。

一、教材分析(一)、教材地位作用这节课是沪科版八年级下册第十八章第一节第一课时。

勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了直角三角形三条边之间的数量关系,为以后学习解直角三角形奠定基础,在实际生活中用途很大。

(二)、教学目标(八年级学生对新事物充满好奇,他们喜欢动手,勤于思考,乐于探究,已经具备了一定的探索新知的能力。

因此,我制定如下教学目标) 1、知识与技能目标(1)理解并掌握勾股定理的内容和证明,能够运用勾股定理进行简单计算和运用;(2)通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

2、过程与方法目标在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学过程,并体会数形结合和从特殊到一般的数学思想方法。

3、情感态度与价值观目标(1)在探索勾股定理的过程中,培养学生的合作交流意识和探索精神,增进数学学习的信心,感受数学之美,探究之趣。

(2)利用远程教育资源突出介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

(3)培养数形结合的思想。

(三)、教学重点及难点【教学重点】勾股定理的证明与运用【教学难点】用面积法和拼图法等方法证明勾股定理【难点成因】对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难二、教学方法及教学手段的选择针对八年级学生的认知结构和心理特征,本节课选择“引导探索法”,由浅到深,由特殊到一般的提出问题,引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。

《勾股定理》说课稿(优秀5篇)

《勾股定理》说课稿(优秀5篇)

《勾股定理》说课稿(优秀5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!《勾股定理》说课稿(优秀5篇)作为一名无私奉献的老师,总不可避免地需要编写说课稿,说课稿有助于学生理解并掌握系统的知识。

沪科版数学八年级下册《18.1勾股定理》教学设计2

沪科版数学八年级下册《18.1勾股定理》教学设计2

沪科版数学八年级下册《18.1 勾股定理》教学设计2一. 教材分析勾股定理是八年级下册《数学》中的一个重要内容,它揭示了直角三角形三边之间的一种固定关系。

本节课通过探究勾股定理的发现和证明,让学生体会数学的探究过程,培养学生的逻辑思维能力和空间想象能力。

二. 学情分析学生在学习本节课之前,已经掌握了勾股定理的简单应用,但对勾股定理的发现和证明过程可能还不够了解。

因此,在教学过程中,需要引导学生通过实际问题探究勾股定理的发现,并通过推理和证明,加深对勾股定理的理解。

三. 教学目标1.了解勾股定理的发现过程,理解勾股定理的含义。

2.学会运用勾股定理解决实际问题,提高解决问题的能力。

3.培养学生的探究精神,提高学生的合作能力。

四. 教学重难点1.教学重点:勾股定理的发现过程,勾股定理的应用。

2.教学难点:勾股定理的证明,解决实际问题。

五. 教学方法1.探究式教学法:引导学生通过实际问题探究勾股定理的发现过程。

2.小组合作学习:培养学生的团队协作能力,提高学生的沟通能力。

3.案例教学法:通过典型例题,让学生学会运用勾股定理解决实际问题。

六. 教学准备1.课件:制作勾股定理的相关课件,包括图片、动画、视频等。

2.学具:为学生准备一些三角形模型,方便学生进行实际操作。

3.例题:挑选一些典型的勾股定理应用题,供学生练习。

七. 教学过程1.导入(5分钟)利用课件展示勾股定理的动画,引导学生思考:为什么会有勾股定理?引出本节课的主题。

2.呈现(10分钟)讲解勾股定理的发现过程,引导学生了解勾股定理的来历。

通过实际问题,让学生感受勾股定理在实际生活中的应用。

3.操练(15分钟)让学生分组讨论,尝试证明勾股定理。

每组选取一个证明方法,进行汇报。

教师点评,讲解证明过程。

4.巩固(10分钟)出示一些勾股定理的应用题,让学生独立解决。

教师巡回指导,解答学生疑问。

5.拓展(10分钟)引导学生思考:勾股定理在其他领域的应用。

出示一些相关案例,让学生了解勾股定理在现实生活中的广泛应用。

勾股定理说课稿

勾股定理说课稿

勾股定理说课稿 The latest revision on November 22, 2020文稿说课题目《勾股定理》教师姓名:;学校名称:蚌埠尊敬的各位评委老师,您们好,我是经开区。

今天我说课的课题是《勾股定理》,它选自沪科版数学八年级下册第十八章第一节。

下面,我将从教材、学情、教法与学法、教学过程设计、教学反思与自我评价,这五个方面来阐述我对本节课的理解与设计。

一、说教材(一)教材的地位本节课为沪科版八年级数学下册第十八章第一节,勾股定理是人类数学最伟大的发现之一,也是几何学中最重要最基本的定理之一,它揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,它又把形的特征转化成数量关系,架起了几何与代数之间的桥梁。

勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

(二)教学目标1.在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会实验探究、由特殊到一般的思想方法。

2.会初步使用勾股定理进行计算和实际运用。

3.通过引导学生阅读中国古代对勾股定理的研究,激发他们的爱国热情,激励学生奋发学习。

(三) 教学重难点教学重点: 勾股定理的探索过程及应用。

教学难点: 面积法证明勾股定理二、说学情学情分析:八年级学生已经学过直角三角形以及三角形的三边关系,根据已有的知识储备,他们有能力利用面积法直观、形象的证明勾股定理。

思维特点上,八年级学生已经具有一定的几何图形观察能力、抽象思维能力、逻辑推理能力。

他们更希望老师可以创设问题情境,引发他们思考、引导他们实验操作,给他们发表自己见解和展示能力的机会,这也符合了中学生的心理特点。

三、说教法与学法教法:为了使学生经历观察、思考、交流等实践活动,教学过程中,我使用多媒体辅助教学法、探究式教学法,由浅入深,由特殊到一般,形成勾股定理的猜想,再用面积法证明勾股定理。

学法:根据新课标的理念以及本节课的特点,以问题的提出、解决为主线,倡导学生积极参与、自主、合作、探究学习,在师生互动中,让学习过程成为主动认知过程,提升学生的参与度、拓展思维的深度及广度。

沪科版数学八年级下册说课稿:18.1勾股定理(4)

沪科版数学八年级下册说课稿:18.1勾股定理(4)
1.设计一些填空题和选择题,让学生快速回忆和练习勾股定理的基本概念和公式。
2.安排一些证明题,让学生独立完成勾股定理的证明,加深对定理证明方法的理解。
3.创造一些实际问题的情境,让学生运用勾股定理解决问题,如计算斜坡的斜度、设计直角三角形的结构等。
4.在课堂上进行小组竞赛,让学生在限定时间内完成勾股定理相关的任务,提高他们的反应速度和团队合作能力。
2.勾股定理的证明方法,包括数形结合、拼贴法等。
3.勾股定理的应用,解决实际问题,如计算直角三角形斜边长度、判断三角形类型等。
在整个课程体系中,本节课起到了承前启后的作用,为后续学习勾股定理的逆定理、三角形全等条件等知识奠定了基础。
(二)教学目标
1.知识与技能:
(1)使学生掌握勾股定理的定义和表达形式。
(二)教学反思
在教学过程中,我预见到可能的问题包括学生对勾股定理证明过程的理解困难,以及实际应用题目的解决策略不清。为应对这些问题,我会适时调整教学节奏,通过举例、重复解释和个别辅导来帮助学生理解。课后,我将通过学生的作业、课堂表现和反馈来评估教学效果。具体的反思和改进措施包括:根据学生的反馈调整教学方法和难度,对难点知识进行额外的讲解和练习,以及增加与学生的互动环节,以提高他们的参与度和理解力。此外,我还会定期检查学生的学习进度,根据需要调整教学计划和策略。
4.通过问卷调查或口头询问的方式,收集学生对本节课内容的理解程度和教学方式的意见,以便调整后续的教学策略。
(五)作业布置
课后作业将包括以下内容,其目的是巩固学生对勾股定理的理解,并提高他们的独立学习能力:
1.布置一些书面作业,包括计算题、证明题和应用题,让学生独立完成,以检验他们对课堂所学知识的掌握。
(二)新知讲授
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021勾股定理
各位评委老师大家好:
今天我说课的课题是《勾股定理》,下面就教材分析、教学方法选择、学法指导、教学程序设计等四个方面,谈谈我对本课题的理解和认识。

一、教材分析
(一)、教材地位作用
这节课是沪科版八年级下册第十八章第一节第一课时。

勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了直角三角形三条边之间的数量关系,为以后学习解直角三角形奠定基础,在实际生活中用途很大。

(二)、教学目标(八年级学生对新事物充满好奇,他们喜欢动手,勤于思考,乐于探究,已经具备了一定的探索新知的能力。

因此,我制定如下教学目标) 1、知识与技能目标
(1)理解并掌握勾股定理的内容和证明,能够运用勾股定理进行简单计算和运用;
(2)通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

2、过程与方法目标
在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学过程,并体会数形结合和从特殊到一般的数学思想方法。

3、情感态度与价值观目标
(1)在探索勾股定理的过程中,培养学生的合作交流意识和探索精神,增进数学学习的信心,感受数学之美,探究之趣。

(2)利用远程教育资源突出介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

(3)培养数形结合的思想。

(三)、教学重点及难点
【教学重点】勾股定理的证明与运用
【教学难点】用面积法和拼图法等方法证明勾股定理
【难点成因】对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难
二、教学方法及教学手段的选择
2021
针对八年级学生的认知结构和心理特征,本节课选择“引导探索法”,
由浅到深,由特殊到一般的提出问题,引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。

基本的教学程序包含“提出问题-实
验操作 -归纳验证-解决问题-课堂小结-布置作业”六个环节。

三、学法指导
新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、
有针对性的引导学生并一同参与到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,
使学生真正成为学习的主人。

四、教学程序设计 教学流程图
(一)创设情境,探索新知
1.教师展示2002年我国北京召开的国际数学大会会徽图片,让学生观察改会徽由哪些图形构成?它有什么含义呢?教师简单介绍该会徽的情况。

这是我国古代
对勾股定理的研究成果。

板书:勾 股 定 理
设计意图:对学进行爱国主义教育,激发学习兴趣。

2、多媒体播放毕达哥拉斯发现了什么?引导学生观察下图思考: (1)图中等腰直角三角形有何性质?这个问题引导学生观察出等腰直角三角形的三条边就是正方形的边长。

(2)三个正方形的面积有什么数量关系? 这个问题要学生观察出:以等腰直角三角形两直角边为边长的小正方形的面积和以斜边为边长的大正方形的面积相等。

通过以上两问引导学生观察归纳出:等腰直角三角形三边之间的特殊关系,即斜边的平方和等于直角边的平方和。

2021
【设计说明】这一环节利用农远资源,取材于生活,自然、贴切,为探索勾股定理提供了背景。

通过图片展示,以问题激发学生好奇探索,主动学习的欲望,以直观形象的图形观察,引导学生由三个正方形面积之间的关系过渡到等腰直角三
角形的三边关系,为下一步的面积计算验证直角三角形三边关系奠定基础。

(二)实验操作,获取新知
通过刚才的问题我们发现等腰直角三角形的三边具有“两直角边的平方和等于斜边的平方”这一结论,那么一般的直角三角形是否也有这样的特点呢? 教师组织学生小组学习,在方格纸上画出一个直角边分别为3和2的直角三
角形,并以其三边为边长向外作三个正方形,并分别计算其面积。

教学时要注意,在这里计算以斜边为边长的正方形的面积可能很多学生有一定难度,教师可以提示:以斜边为边长的正方形面积等于某个正方形的面积减去四个直角三角形的面积。

3、通过三个正方形的面积关系学生很易发现直角三角形的两直角边的平方和等
于斜边的平方。

【设计说明】为了突破用面积法证明直角三角形三边关系这一难点,本人先让学生自己动手,小组合作,互相交流,共同分享,其间教师巡视引导学生用割补的
方法计算以斜边为边长的正方形面积,进而得到直角三角形两直角边的平方和等于斜边的平方。

由特殊到一般对直角三角形三边关系进行探索,使直角三角形数
与形的关系展示得更为直观,更易被学生接受,更有利于难点的突破,为学生接
下来归纳结论打下基础,符合学生的认知规律。

(三)归纳验证,完善新知
1、猜想:命题 如果直角三角形的两条直角边分别a 和b ,斜边为c ,那么222c b a =+。

2、验证命题
在这里我对教材的证明方法进行了改进:
由于上课开始教师让学生观察会徽,即赵爽弦图。

,这个图有两个正方形和
四个全等的直角三角形构成。

在这里教师让学生讨论思考:两个正方形的面积和四个直角三角形的面积有何关系?通过学生思考发现小正方行的面积+四个直角三角行的面积=大正方形面积。

找出这个等量关系后。

假设直角三角形的直角边为a,b 斜边为c.让后用a,b,c 表示出相应的面积,带入上面的等式化简既可以得到222c b a =+。

这样设计的意图:更符合学生的思维特点。

而且这种方法对于学生阅读教材72页的内容很有帮助。

教材上采用的方法设计到图形的拼凑、割补、旋转。

学生不
易思考。

教师可以然学生自学教材上的证明方法。

2021
最后教师介绍古今中外对勾股定理的研究,及“勾,股,弦”的含义,从而
进行点题。

(四)解决问题,应用新知
例题1:(1)直角三角形的两直角边是6.8.求斜边
(2)一直角三角形的一直角边长5,斜边为13 求另一直角边.
这个例题一方面是让学生熟悉勾股定理的公式。

另一方面这两小题的数
据都是常见的勾股数,让学生掌握有利于提高计算速度。

教师要总结强调:知道直角三角形的两边利用勾股定理可以求出第三边。

但是利用勾股定理计算出的是边的平方,最后求边长一定要开方。

这点一定要强调,因为从实际情况来看。

很多学生在作业当中经常忘记开方。

【设计说明】讲练结合。

由浅入深,既加深了对勾股定理的理解,又使学生初步
感受到勾股定理在实际生活中的运用。

(五)课堂小结,巩固新知 2、师小结:今天我们学习了 数学知识:{
勾股定理

勾股定理的简单运用计
经历过程:观察猜想探索归纳验证 数学思想:
{
由一般到特殊数形结合
(六)推荐作业,拓展新知
【设计说明】必做题是让学生巩固勾股定理的公式。

选作题是为了拓展思维,激发兴趣,鼓励成绩优秀的学生自己研究,学习。

进一步提高他们的数学思维能力。

(七)板书设计。

把黑板分四块:从左到右第一块是探究特殊的直角三角形。

第二块是证明勾股定理。

第三块例题一、二 第四块课堂练习和小结。

这样设计层次清晰,展示了整个教学的主要内容。

相关文档
最新文档