(完整版)七年级上解方程50道
初一解方程100道练习题
初一解方程100道练习题1. 解方程:2x + 5 = 152. 解方程:3(x - 2) = 123. 解方程:4x + 3 = 274. 解方程:7 - 2x = 135. 解方程:5x - 2 = 186. 解方程:6(x + 2) = 547. 解方程:8x + 4 = 368. 解方程:12 - 3x = 5x9. 解方程:9x - 6 = 5110. 解方程:10(x - 3) = 70在初一的数学学习中,解方程是一个重要的概念。
解方程是通过一系列的变换和运算,找到使等式成立的未知数的值。
本文将为初一学生提供100道解方程的练习题,帮助他们熟悉解方程的过程和方法。
题目一至题目十为本组的练习题,让我们一起来解答这些问题。
1. 解方程:2x + 5 = 15解:首先,我们需要将x的系数与常数项分开。
通过逆向运算,我们将5从等式两边减去,得到2x = 10。
然后,我们将2除以x的系数2,可得x = 5。
2. 解方程:3(x - 2) = 12解:首先,我们需要将括号中的表达式进行运算。
3乘以x得3x,3乘以-2得-6。
等式变为3x - 6 = 12。
接下来,我们将等式两边加上6,得到3x = 18。
最后,我们将3除以x的系数3,可得x = 6。
3. 解方程:4x + 3 = 27解:首先,我们需要将方程中的常数项与x的系数分开。
通过逆向运算,我们将3从等式两边减去,得到4x = 24。
然后,我们将4除以x的系数4,可得x = 6。
4. 解方程:7 - 2x = 13解:首先,我们需要将x的系数与常数项分开。
通过逆向运算,我们将7从等式两边减去,得到-2x = 6。
然后,我们将-2除以x的系数-2,可得x = -3。
5. 解方程:5x - 2 = 18解:首先,我们需要将方程中的常数项与x的系数分开。
通过逆向运算,我们将2从等式两边减去,得到5x = 16。
然后,我们将5除以x的系数5,可得x = 3.2。
初一解方程100道练习题及答案
初一解方程100道练习题及答案1. 解下列方程:a) 5x + 7 = 12b) 3x - 4 = 14c) 2x + 3 = 5x + 1d) 4(x + 2) = 24e) 2(3x - 5) = 4x + 8f) 5(2x - 3) + 4 = 3(4 - x)答案:a) 解:5x = 12 - 75x = 5x = 1b) 解:3x = 14 + 43x = 18x = 6c) 解:2x - 5x = 1 - 3-3x = -2x = 2/3d) 解:4x + 8 = 244x = 24 - 84x = 16x = 4e) 解:6x - 10 = 4x + 86x - 4x = 8 + 102x = 18x = 9f) 解:10x - 15 + 4 = 12 - 3x 13x = 31 + 1513x = 46x = 46/132. 解下列方程组:a)3x + 2y = 132x - y = 4b)4x + 3y = 22-2x + 5y = 13c)5x + 4y = 143x - y = 7答案:a) 解:将第二个方程转换为y的表达式: y = 2x - 4将y的表达式代入第一个方程: 3x + 2(2x - 4) = 133x + 4x - 8 =137x - 8 = 137x = 13 + 87x = 21x = 3将x的值代入第二个方程求解y: 2(3) - y = 46 - y = 4-y = 4 - 6-y = -2y = 2解为:x = 3,y = 2b) 解:将第二个方程转换为x的表达式: x = (13 - 5y) / -2将x的表达式代入第一个方程: 4((13 - 5y) / -2) + 3y = 22(52 - 20y + 3y) / -2 = 2252 - 20y + 3y = -44-17y = -96y = 96 / 17将y的值代入第二个方程求解x: -2x + 5(96/17) = 13-2x + 480/17 = 13-2x = 13 - 480/17-2x = (221 - 480) / 17-2x = -259 / 17x = (-259 / 17) * (-1/2)x = 259/34解为:x ≈ 7.62,y ≈ 5.65c) 解:将第二个方程转换为y的表达式:y = 3x - 7将y的表达式代入第一个方程:5x + 4(3x - 7) = 145x + 12x - 28 = 1417x = 42x = 42 / 17将x的值代入第二个方程求解y:3(42/17) - y = 7126/17 - y = 7y = 126/17 - 7y = 55/17解为:x ≈ 2.47,y ≈ 3.243. 解下列实际问题,并用方程表示:a) 一个数的三分之一比它自身的四分之一少4,求这个数是多少。
解方程练习题初一50个
解方程练习题初一50个1. 已知2x + 5 = 13,求x的值。
解答:将已知方程化简为2x = 13 - 5,得到2x = 8。
再将等式两边同时除以2,得到x = 4。
因此,x的值为4。
2. 求满足4x - 3 = 9的x的值。
解答:将已知方程化简为4x = 9 + 3,得到4x = 12。
再将等式两边同时除以4,得到x = 3。
因此,x的值为3。
3. 解方程3y + 7 = 19。
解答:将已知方程化简为3y = 19 - 7,得到3y = 12。
再将等式两边同时除以3,得到y = 4。
因此,y的值为4。
4. 求满足6z - 5 = 19的z的值。
解答:将已知方程化简为6z = 19 + 5,得到6z = 24。
再将等式两边同时除以6,得到z = 4。
因此,z的值为4。
5. 已知2m + 3 = 9,求m的值。
解答:将已知方程化简为2m = 9 - 3,得到2m = 6。
再将等式两边同时除以2,得到m = 3。
因此,m的值为3。
6. 求满足5n - 2 = 23的n的值。
解答:将已知方程化简为5n = 23 + 2,得到5n = 25。
再将等式两边同时除以5,得到n = 5。
因此,n的值为5。
7. 解方程7p + 5 = 47。
解答:将已知方程化简为7p = 47 - 5,得到7p = 42。
再将等式两边同时除以7,得到p = 6。
因此,p的值为6。
8. 求满足8q - 2 = 34的q的值。
解答:将已知方程化简为8q = 34 + 2,得到8q = 36。
再将等式两边同时除以8,得到q = 4.5。
因此,q的值为4.5。
9. 已知2a + 6 = 18,求a的值。
解答:将已知方程化简为2a = 18 - 6,得到2a = 12。
再将等式两边同时除以2,得到a = 6。
因此,a的值为6。
10. 求满足3b - 4 = 14的b的值。
解答:将已知方程化简为3b = 14 + 4,得到3b = 18。
【名师点睛】七年级数学上册 一元一次方程计算题练习 50题(含答案)
一元一次方程计算题练习50题1.解方程:3x+.2.解方程:.3.4.5.=36.7.8.9.10.11.12.2{3[4(5x-1)-8]-20}-7=1;13.14.15.16.5x﹣0.7=6.5﹣1.3x17.3x﹣7(x﹣1)=3﹣2(x+3)18.3x+7=32-2x 19.2(x﹣3)﹣(3x﹣1)=1 20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.3x-7(x-1)=3-2(x+3) 35.36.37.38.39.40.41.7+ 42.43.2(3x-5)-3(4x-3)=0 44.45.4-4(x-3)=2(9-x) 46. 47.48.49.﹣=16.50.参考答案1.解:去分母得,18x+3(x﹣1)=18﹣2(2x﹣1),去括号得,18x+3x﹣3=18﹣4x+2,移项得,18x+3x+4x=18+2+3,合并同类项得,25x=23,系数化为1得,x=.2.解:去分母得:2x﹣3(30﹣x)=60,去括号得:2x﹣90+3x=60,移项合并得:5x=150,解得:x=30.3.解:原方程化为,整理得12x=6.解得x=.4.5.x=56.x=7.原方程可化为: 去分母, 得40x+60=5(18-18x)-3(15-30x),去括号得40x+60=90-90x-45+90x, 移项, 合并得40x=-15, 系数化为1, 得x=8.9.10.11.解:,,,.12.解:2{3[4(5x-1)-8]-20}-7=1,2{3[20x-12]-20}-7=1,2{60x-56}-7=1,60x-56=4,60x=60,x=1;13.x=-414.x=115.16.解:(1)移项得:5x+1.3x=6.5+0.7,合并同类项得:6.3x=7.2,化系数为1得:x=.17.去括号得:3x﹣7x+7=3﹣2x﹣6,移项合并得:﹣3x=﹣10,解得:x=;18.19.去括号得:2x﹣6﹣3x+1=1,移项合并得:﹣x=6,解得:x=﹣6;20.x=-121.解:,,,.22.解:去分母得:2(x﹣1)﹣(3x﹣1)=8,去括号得:2x﹣2﹣3x+1=8,移项合并得:﹣x=9,解得:x=﹣9.23.24.x=16.25.解:26.x=0.727.去分母得,6(x+2)+3x﹣2(2x﹣1)﹣24=0,去括号得,6x+12+3x﹣4x+2﹣24=0,移项得,6x+3x﹣4x=24﹣2﹣12,合并同类项得,5x=10,系数化为1得,x=2.28.x=-3;29.30.31.x=.32.33.34.x=535.x=-1.5;36.x=;37.x=3;38.x=-;39.x=0.240.x=-【名师点睛】七年级数学上册一元一次方程计算题练习50题(含答案)41.x=-42.x=1;43.x=-;44.-3445.-146.47.48.x=﹣1;49.x=﹣14.50.x=2.8。
初一30道解方程练习题
初一30道解方程练习题1. 解方程:3x + 5 = 17解答:首先将方程两边减去5,得到3x = 12,然后将方程两边除以3,得到x = 4。
因此,方程的解为x = 4。
2. 解方程:2(x + 3) = 10解答:首先将方程中的括号展开,得到2x + 6 = 10,然后将方程两边减去6,得到2x = 4,最后将方程两边除以2,得到x = 2。
因此,方程的解为x = 2。
3. 解方程:4x - 3 = 9解答:首先将方程两边加上3,得到4x = 12,然后将方程两边除以4,得到x = 3。
因此,方程的解为x = 3。
4. 解方程:5(x - 2) = 15解答:首先将方程中的括号展开,得到5x - 10 = 15,然后将方程两边加上10,得到5x = 25,最后将方程两边除以5,得到x = 5。
因此,方程的解为x = 5。
5. 解方程:2x + 7 = 3x - 5解答:首先将方程中的变量移到一边,得到7 + 5 = 3x - 2x,简化得到12 = x。
因此,方程的解为x = 12。
6. 解方程:3(x - 4) = 2(x + 5)解答:首先将方程中的括号展开,得到3x - 12 = 2x + 10,然后将方程两边减去2x,得到x - 12 = 10,最后将方程两边加上12,得到x = 22。
因此,方程的解为x = 22。
7. 解方程:3(2x - 1) = 9解答:首先将方程中的括号展开,得到6x - 3 = 9,然后将方程两边加上3,得到6x = 12,最后将方程两边除以6,得到x = 2。
因此,方程的解为x = 2。
8. 解方程:4x + 3 = 7 - 2x解答:首先将方程中的变量移到一边,得到4x + 2x = 7 - 3,简化得到6x = 4,最后将方程两边除以6,得到x = 2/3。
因此,方程的解为x = 2/3。
9. 解方程:3(x + 4) - 2(x - 1) = 2(x + 2)解答:首先将方程中的括号展开,得到3x + 12 - 2x + 2 = 2x + 4,然后将方程中的变量移到一边,得到3x - 2x - 2x = 4 - 12 - 2,简化得到-x = -10,最后将方程两边乘以-1,得到x = 10。
七年级上解方程练习题
七年级上解方程练习题解方程是数学中的重要内容,掌握解方程的方法和技巧对于学生来说至关重要。
在七年级上学期,解方程是一个基础且必学的内容。
本文将为大家提供一些七年级上解方程练习题,帮助大家巩固和加深对解方程的理解与应用。
练习题一:一元一次方程1. 3x + 5 = 142. 2(x - 4) = 103. 1/2(3x - 6) = 94. 4 - 2x = 10 - x5. 2(5x - 3) - (x + 2) = 4(2x - 1)练习题二:一元一次方程的应用1. 某数的3倍减去5等于17,求这个数。
2. 小明的年龄比小红大9岁,两年后小红的年龄将是小明的1/2,求他们现在的年龄。
3. 某商品原价为x元,现在正在打6折促销,打折后的价格是21元,求原价x。
4. 一辆自行车先后以8km/h和15km/h的速度连续行驶了3小时,求自行车总共行驶的距离。
练习题三:一元二次方程1. x^2 + 4x - 5 = 02. 2x^2 - 3x + 1 = 03. 3x^2 + 2x - 5 = 04. 2(x^2 + 1) = 3(x + 2)练习题四:一元二次方程的应用1. 某地的长方形花坛的长是宽的2倍,花坛的面积是32平方米,求长和宽分别是多少米。
2. 甲乙两数之和为7,甲的平方加上乙的平方等于41,求甲和乙分别是多少。
3. 某商店的电视机原价为x元,现在正在打8折促销,打折后的价格是3000元,求原价x。
4. 一架飞机以360km/h的速度飞行了t小时,总飞行距离为600千米,求时间t。
练习题五:含有分式的方程1. 2/(x - 3) - 3/(x + 2) = 12. 1/(2x + 1) + 2/(3x - 1) = 33. (x + 2)/(x - 3) + (2x - 1)/(x + 4) = 24. 4/(x - 1) + 3/(x + 2) - 5/(x - 3) = 0以上是一些七年级上解方程的练习题,通过反复练习这些题目,相信大家对解方程的理解和应用能力会有较大提升。
人教版七年级上册数学方程计算题
人教版七年级上册数学方程计算题一、一元一次方程。
1. 解方程:2x + 3 = 7- 解析:- 首先进行移项,把常数项3移到等号右边,得到2x=7 - 3。
- 计算等号右边7-3 = 4,方程变为2x = 4。
- 然后两边同时除以2,解得x = 2。
2. 解方程:3x-5 = 4x + 1- 解析:- 移项,将含有x的项移到等号一边,常数项移到另一边。
把4x移到左边,变为3x-4x = 1 + 5。
- 计算左边3x-4x=-x,右边1 + 5 = 6,方程变为-x = 6。
- 两边同时乘以 - 1,解得x=-6。
3. 解方程:(1)/(2)x+3=(3)/(2)x - 1- 解析:- 移项,把(1)/(2)x移到右边,-1移到左边,得到3 + 1=(3)/(2)x-(1)/(2)x。
- 左边3 + 1 = 4,右边(3)/(2)x-(1)/(2)x=x,所以x = 4。
4. 解方程:5(x - 3)+2(3 - x)=12- 解析:- 先去括号,5x-15 + 6 - 2x = 12。
- 合并同类项,得到5x-2x-15 + 6 = 12,即3x-9 = 12。
- 移项得3x = 12+9。
- 计算得3x = 21,解得x = 7。
5. 解方程:2 - (2x+1)/(3)=(1 + x)/(2)- 解析:- 去分母,方程两边同时乘以6,得到12-2(2x + 1)=3(1 + x)。
- 去括号得12-4x-2 = 3 + 3x。
- 移项得-4x-3x = 3+2 - 12。
- 合并同类项得-7x=-7,解得x = 1。
6. 解方程:(0.1x - 0.2)/(0.02)-(x + 1)/(0.5)=3- 解析:- 先将方程中的分数分子分母同时乘以适当的数化为整数,对于(0.1x - 0.2)/(0.02),分子分母同乘100得5x-10,对于(x + 1)/(0.5),分子分母同乘10得2x + 2。
新人教版七年级一元一次解方程计算题100道经典题型全部
新人教版七年级一元一次解方程计算题100道经典题型全部新人教版七年级一元一次解方程计算题100道经典题型(全部)一、解方程(移项与合并同类项)20分1、x-2=3-2x2、3x-1.3x+5x-2.7x=-12×3-6×43、-x=1-2x4、5=5-3x5、x-5=16、5-3x=8x+17、7x=3+2x8、x-3x-1.2=4.8-5x9、3x-7+4x=6x-210、11x+64-2x=100-9x11、x-7+8x=9x-3-4x12、2x-x+3=1.5-2x13、0.5x-0.7=6.5-1.3x14、-4x+6x-0.5x=-0.315、-x=-x+1/516、x-6=-x+3/517、(32/23)x=1/418、x=1+2/319、(x/3)+(1/x)=2/2420、x-2x=1-(2/3)x二、解方程(去括号)30分1、2(x-1)=42、10(x-1)=53、-(x-3)=5x+94、3(x-2)+1=x-(2x-1)5、5(x+2)=2(5x-1)6、2(x-1)-(x+2)=3(4-x)7、4x+3=2(x-1)+18、(x+1)-2(x-1)=1-3x9、2(x-2)-6(4x-1)=3(1-x)10、4(x-2)-3(5x-1)=9(1-x)11、1-2(2x+3)=-3(2x+1)12、(x+1)-2(x-1)=1-3x13、4x-3(20-x)=6x-7(9-x)14、2(x-2)=-(x+3)15、2(x-4)+2x=7-(x-1)16、2x-(5x+16)=3-2(3x-4)17、-3(x-2)+1=4x-(2x-1)18、4x+2(x-2)=12-(x+4)19、2(x-2)-3(4x-1)=9(1-x)20、2(y+2)-3(4y-1)=9(1-y)21、4x-3(20-x)=6x-7(9-x)22、2{3[4(5x-1)-8]-20}-7=123、x-(x-1)=(x-1)24、(2/3)x-1/2=1/225、(2/3)x-1/2=1/426、(1/3)[(x-1)/(4/5)]-6+4=127、(x-1)^2=228、6(x-4)+2x=7-(x-1)1.232.113.解方程(去分母)50分3x-6) = x-35y-17/63 = 2x+1)/x+1 = 132x-1)(10x+1) = -364x-2)/(x+2) = 2-55x^2)/(2x-3) = 262x)/(2x+1) = -17x-10)/(x-6) = 80.1x+0.2x)/(1-0.3x) = 195-3x)/(3-5x) = 10x-3)/(2x+5) = -1.6112x+1)/(x+1) = 212y+4)/(y-2) - (y+5)/(y-2) = 2-13 y-1)/(y+2) = 2-14x-1)/(x+3) + 1 = 2-15x-1)/(x+1) = 16x-1)/(x+1) + 1 = 2-17x-2)/(x+2) = 181-x)/(x+1) - 1 = 19x-1)/(2-x) - 1 = 3-205x-13)/(x+2) - 12/(x-1) = -215x+19)/(x+2) + 11/(x-1) = -222x+1)/(x+2) - 123 = 03x+2)/(2x-1) - 1 = -243x-2/(x-2) - 5/(x+3) = 2-25x-1)/(x+2) = 2-26x-2/(3x-2) = -(2x-3) - 274x-15/x+5 = 28x-1)/(x+1) - 2x-1/(x-1) = -293x+243/(x-2)(x+3) - (2x-3)/(2x-5) + 3 = 30 2/(x+2) - 5/(x+3) = 2317x-15/13x+2 = 2-320.8-9x/1.3-3x + 5x-1 = 33x+1)/(x-4) + 2 = 3419x-2 = 351.8-8x/1.3-3x + 5x-0.4 = 36x-4/(x-3)(x-1) = x-2/x = 3738.0.1x-0.27x+0.18 = 1x+4)/(x+3) - (x-5)/(x-2) = 532/41140.-7x = 341.x = -1/242.y+1/y-1 = -y/643.x-2/(3x-2) = -144.x^2+5x-4/(2x-4) = -145.x-4/x-3 = -2.5/2.051.题目未给出具体内容,无需改写。
专题 解一元一方程计算题(50题)(解析版)-七年级数学上册
七年级上册数学《第三章一元一次方程》专题训练解一元一次方程计算题(50题)步骤依据具体做法注意事项等式的性质2方程两边同时乘各分母的最小公倍数.(1)不要漏乘不含分母的项.(2)当分子是多项式时,去分母后应将分子作为一个整体加上括号.乘法分配律、去括号法则先去小括号,再去中括号,最后去大括号(也可以先去大括号,再去中括号,最后去小括号).(1)不要漏乘括号里的任何一项.(2)不要弄错符号.等式的性质1把含未知数的项移到方程的一边,常数项移到方程的另一边.(1)移项一定要变号.(2)不移的项不要变号.合并同类项法则系数相加,字母及字母的指数不变,把方程化成ax =b (a ≠0)的形式.未知数的系数不要弄错.等式的性质2在方程ax =b (a ≠0)的两边同除以a (或乘),得到方程的解为x=.不要将分子、分母的位置颠倒.1.(2022秋•宁津县校级期中)解下列方程:(1)﹣3x+3=1﹣x﹣4x;(2)﹣4x+6=5x﹣3;【分析】(1)根据解一元一次方程——移项合并同类项进行计算即可;(2)根据解一元一次方程——移项合并同类项进行计算即可.【解答】解:(1)移项得﹣3x+x+4x=1﹣3,合并得2x=﹣2,系数化为1得x=﹣1;(2)移项得﹣4x﹣5x=﹣3﹣6,合并得﹣9x=﹣9,系数化为1得x=1.【点评】本题考查解一元一次方程——移项合并同类项,掌握一元一次方程的解法是解决此题的关键.2.(2023秋•洛阳期中)解下列方程:(1)−3=12+1;(2)9+3x=4x+3.【分析】(1)先去分母,然后移项,合并同类项即可;(2)通过移项,合并同类项,系数化为1解方程即可.【解答】解:(1)原方程去分母得:2x﹣6=x+2,移项得:2x﹣x=2+6,合并同类项得:x=8;(2)原方程移项得:3x﹣4x=3﹣9,合并同类项得:﹣x=﹣6,系数化为1得:x=6.【点评】本题考查解一元一次方程,熟练掌握解方程的方法是解题的关键.3.(2023秋•西丰县期中)解方程:(1)3x﹣2=4+2x;(2)6x﹣7=9x+8.【分析】(1)根据等式的性质,移项、合并同类项即可;(2)根据等式的性质,移项、合并同类项系数化为1即可.【解答】解:(1)移项,得3x﹣2x=4+2,合并同类项,得x=6.(2)移项,得6x﹣9x=7+8,合并同类项,得﹣3x=15,系数化1,得x=﹣5.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的基本步骤是解题的关键.4.(2023秋•郧阳区期中)解方程:(1)2x﹣x+3=1.5﹣2x;(2)7x+2=5x+8.【分析】利用解一元一次方程的步骤:移项,合并同类项,系数化为1解各方程即可.【解答】解:(1)原方程移项得:2x﹣x+2x=1.5﹣3,合并同类项得:3x=﹣1.5,系数化为1得:x=﹣0.5;(2)原方程移项得:7x﹣5x=8﹣2,合并同类项得:2x=6,系数化为1得:x=3.【点评】本题考查解一元一次方程,熟练掌握解方程的方法是解题的关键.5.(2022秋•莲湖区校级月考)解方程:(1)3x﹣2=5x﹣4;(2)2x+3(x﹣1)=2(x+3).【分析】(1)根据解一元一次方程的步骤,移项,合并同类项,最后将x的系数化为1即可求解.(2)根据解一元一次方程的步骤,先去括号,然后移项,合并同类项,最后将x的系数化为1即可求解.【解答】解:(1)3x﹣2=5x﹣4移项得,3x﹣5x=2﹣4,合并同类项得,﹣2x=﹣2,将x的系数化为1得,x=1.(2)2x+3(x﹣1)=2(x+3)去括号得,2x+3x﹣3=2x+6,移项得,2x+3x﹣2x=6+3,合并同类项得,3x=9,将x的系数化为1得,x=3.【点评】本题主要考查一元一次方程的解法,掌握解方程的基本步骤是解题的关键.6.(2023秋•青秀区校级期中)解下列方程:(1)3x+6=31﹣2x;(2)1−8(14+0.5p=3(1−2p.【分析】根据一元一次方程的解法,经历去括号、移项、合并同类项以及系数化为1进行计算即可.【解答】解:(1)移项得,3x+2x=31﹣6,合并同类项得,5x=25,两边都除以5得,x=5;(2)去括号得,1﹣2﹣4x=3﹣6x,移项得,﹣4x+6x=3+2﹣1,合并同类项得,2x=4,两边都除以2得,x=2.【点评】本题考查解一元一次方程,掌握一元一次方程的解法,理解去括号、移项、合并同类项以及系数化为1的依据是正确解答的前提.7.(2023秋•西城区校级期中)解下列方程:(1)3x﹣4=2x+8;(2)5﹣2x=3(x﹣2).【分析】(1)移项,合并同类项即可;(2)去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)3x﹣4=2x+8,移项,得3x﹣2x=8+4,合并同类项,得x=12;(2)5﹣2x=3(x﹣2),去括号,得5﹣2x=3x﹣6,移项,得﹣2x﹣3x=﹣6﹣5,合并同类项,得﹣5x=﹣11,系数化成1,得x=115.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.8.(2023秋•海珠区校级期中)解方程:(1)x+5=8;(2)3x+4=5﹣2x;(3)8(2x﹣1)﹣(x﹣1)=﹣2(2x﹣1).【分析】根据一元一次方程的解法,经历去括号、移项、合并同类项以及系数化为1等过程,进而求出未知数x的值即可.【解答】解:(1)移项得,x=8﹣5,合并同类项得,x=3;(2)移项得,3x+2x=5﹣4,合并同类项得,5x=1,两边都除以5得,x=15;(3)去括号得,16x﹣8﹣x+1=﹣4x+2,移项得,16x﹣x+4x=2﹣1+8,合并同类项得,19x=9,两边都除以19得,x=919.【点评】本题考查解一元一次方程,掌握一元一次方程的解法和步骤是正确解答的前提,理解去括号、移项、合并同类项以及系数化为1的做法的依据是正确解答的关键.9.(2023秋•重庆期中)解方程:(1)2x﹣6=﹣3x+9;(2)−32−1=−+1.【分析】根据一元一次方程的解法,依次进行移项、合并同类项以及系数化为1进行计算即可.【解答】解:(1)移项得,2x+3x=9+6,合并同类项得,5x=15,两边都除以5得,x=3;(2)移项得,32x﹣x=﹣1﹣1,合并同类项得,12x=﹣2,两边都乘以2得,x=﹣4.【点评】本题考查解一元一次方程,掌握一元一次方程的解法步骤是正确解答的前提.10.(2023秋•新吴区校级期中)解下列方程:(1)3(2x﹣1)=5﹣2(x+2);(2)2(x﹣2)﹣3(4x﹣1)=5(1﹣x).【分析】根据解一元一次方程的步骤解答即可.【解答】解:(1)6x﹣3=5﹣2x﹣4,6x+2x=5﹣4+3,8x=4,x=12;(2)2x﹣4﹣12x+3=5﹣5x,2x﹣12x+5x=5+4﹣3,﹣5x=6,x=−65.【点评】本题考查解一元一次方程,理解并熟练掌握解一元一次方程的步骤是解题的关键.11.(2022秋•陵城区期末)解方程(1)18(x﹣1)﹣2x=﹣2(2x﹣1);(2)3K110−1=5K74.【分析】(1)先去括号,再移项、合并同类项、系数化为1即可;(2)先去分母,再去括号、移项、合并同类项、系数化为1即可.【解答】解:(1)去括号得,18x﹣18﹣2x=﹣4x+2,移项得,18x﹣2x+4x=2+18,合并同类项得,20x=20,x的系数化为1得,x=1;(2)去分母得,2(3y﹣1)﹣20=5(5y﹣7)去括号得,6y﹣2﹣20=25y﹣35,移项得,6y﹣25y=﹣35+20+2,合并同类项得,﹣19y=﹣13,x的系数化为1得,y=1319.【点评】本题考查的是解一元一次方程,熟知去分母、去括号、移项、合并同类项、系数化为1是解一元一次方程的一般步骤是解题的关键.12.(2023秋•九龙坡区校级期中)解下列一元一次方程:(1)3x+4=2﹣x;(2)1−r12=1−25.【分析】根据一元一次方程的解法,经过去分母、去括号、移项、合并同类项以及系数化为1进行解答即可.【解答】解:(1)移项得,3x+x=2﹣4,合并同类项得,4x=﹣2,两边都除以4得,x=−12;(2)两边都乘以10得,10﹣5(x+1)=2(1﹣2x),去括号得,10﹣5x﹣5=2﹣4x,移项得,5x﹣4x=10﹣5﹣2,合并同类项得,x=3.【点评】本题考查解一元一次方程,掌握一元一次方程的解法是正确解答的前提.13.(2022秋•青川县期末)解下列方程:(1)2x﹣(x+10)=3x+2(x+1);(2)K12−2K13=+1.【分析】(1)根据去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程;(2)根据去分母、去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程.【解答】解:(1)2x﹣(x+10)=3x+2(x+1),去括号,得2x﹣x﹣10=3x+2x+2,移项,得2x﹣x﹣3x﹣2x=2+10,合并同类项,得﹣4x=12,系数化为1,得x=﹣3;(2)K12−2K13=+1,去分母,得3(x﹣1)﹣2(2x﹣1)=6x+6,去括号,得3x﹣3﹣4x+2=6x+6,移项,得3x﹣4x﹣6x=6+3﹣2,合并同类项,得﹣7x=7,系数化为1,得x=﹣1.【点评】本题考查解一元一次方程的解法,掌握解一元一次方程的步骤,使方程逐渐向x=a形式转化是解题关键.14.(2022秋•安次区校级月考)解方程:(1)3x﹣4(x+1)=6﹣2(2x﹣5);(2)0.3K0.10.2−2r93=−8.【分析】(1)按照去括号,移项,合并同类项,系数化为1的步骤解方程即可;(2)按照去分母,去括号,移项,合并同类项,系数化为1的步骤解方程即可.【解答】解:(1)3x﹣4(x+1)=6﹣2(2x﹣5)去括号得:3x﹣4x﹣4=6﹣4x+10,移项得:3x﹣4x+4x=6+10+4,合并同类项得:3x=20,系数化为1得;=203;(2)0.3K0.10.2−2r93=−8整理得:3K12−2r93=−8,去分母得:3(3x﹣1)﹣2(2x+9)=﹣48,去括号得:9x﹣3﹣4x﹣18=﹣48,移项得:9x﹣4x=﹣48+18+3,合并同类项得:5x=﹣27,系数化为1得;=−275.【点评】本题主要考查了解一元一次方程,熟知解一元一次方程的步骤是解题的关键.15.(2022秋•工业园区校级月考)解方程:(1)5(x﹣1)=8x﹣2(x+1);(2)3K14−1=5K76.【分析】(1)方程去括号,移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)5(x﹣1)=8x﹣2(x+1)去括号得:5x﹣5=8x﹣2x﹣2,移项得:5x﹣8x+2x=﹣2+5,合并得:﹣x=3,解得:x=﹣3;(2)3K14−1=5K76去分母得:3(3x﹣1)﹣12=2(5x﹣7),去括号得:9x﹣3﹣12=10x﹣14,移项得:9x﹣10x=3+12﹣14,合并得:﹣x=1,解得:x=﹣1【点评】此题考查了解一元一次方程,熟练掌握一元一次方程的解法是解本题的关键.16.(2022秋•青川县期末)解下列方程:(1)2x﹣(x+10)=3x+2(x+1);(2)K12−2K13=+1.【分析】(1)根据去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程;(2)根据去分母、去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程.【解答】解:(1)2x﹣(x+10)=3x+2(x+1),去括号,得2x﹣x﹣10=3x+2x+2,移项,得2x﹣x﹣3x﹣2x=2+10,合并同类项,得﹣4x=12,系数化为1,得x=﹣3;(2)K12−2K13=+1,去分母,得3(x﹣1)﹣2(2x﹣1)=6x+6,去括号,得3x﹣3﹣4x+2=6x+6,移项,得3x﹣4x﹣6x=6+3﹣2,合并同类项,得﹣7x=7,系数化为1,得x=﹣1.【点评】本题考查解一元一次方程的解法,掌握解一元一次方程的步骤,使方程逐渐向x=a形式转化是解题关键.17.(2022秋•平桥区校级月考)解方程:(1)8y﹣3(3y+2)=6;(2)r12−1=2+2−4.【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:8y﹣9y﹣6=6,移项得:8y﹣9y=6+6,合并同类项得:﹣y=12,系数化为1得:y=﹣12;(2)方程两边同时乘4得:2(x+1)﹣4=8+(2﹣x),去括号得:2x+2﹣4=8+2﹣x,移项得:2x+x=8+2﹣2+4,合并同类项得:3x=12,系数化为1得:x=4.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法和步骤是解题的关键.18.(2022秋•汉阳区期末)解方程:(1)4x+3(2x﹣3)=12﹣(x+4);(2)3r22−1=2K14−2r15.【分析】(1)去括号、移项、合并同类项、系数化为1,依此即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.【解答】解:(1)4x+3(2x﹣3)=12﹣(x+4),去括号得:4x+6x﹣9=12﹣x﹣4,10x﹣9=8﹣x,移项得:10x+x=9+8,合并同类项得:11x=17,系数化1得:x=1711;(2))3r22−1=2K14−2r15,去分母得:10(3x+2)﹣20=5(2x﹣1)﹣4(2x+1),去括号得:30x+20﹣20=10x﹣5﹣8x﹣4,移项得:30x﹣10x+8x=﹣5﹣4﹣20+20,合并得:28x=﹣9,化系数为1得:x=−928.【点评】本题考查一元一次方程的解法,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.19.(2023秋•蜀山区校级期中)解方程.(1)3(x﹣7)+5(x﹣4)=15;(2)5r16=9r18−1−3.【分析】(1)根据去括号、移项、合并同类项、系数化1计算即可.(2)根据去分母、去括号、移项、合并同类项、系数化1计算即可.【解答】解:(1)去括号得:3x﹣21+5x﹣20=15,移项、合并同类项得:8x=56,系数化1得:x=7.(2)去分母得:4(5y+1)=3(9y+1)﹣8(1﹣y),去括号得:20y+4=27y+3﹣8+8y,移项、合并同类项得:﹣15y=﹣9,系数化1得:=35.【点评】本题考查解一元一次方程,熟练掌握一元一次方程的解法是解答本题的关键.20.(2023秋•裕安区校级期中)解方程:(1)2(x﹣1)=2﹣5(x+2);(2)5r12−6r24=1.【分析】(1)方程去括号,移项,合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x﹣2=2﹣5x﹣10,移项得:2x+5x=2﹣10+2,合并得:7x=﹣6,解得:x=−67;(2)去分母得:2(5x+1)﹣(6x+2)=4,去括号得:10x+2﹣6x﹣2=4,移项得:10x﹣6x=4﹣2+2,合并得:4x=4,解得:x=1.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并,把未知数系数化为1,求出解.20.(2023秋•越秀区校级期中)解方程:(1)3x+20=4x﹣25;(2)2K13=1−2K16.【分析】根据解一元一次方程的步骤,依次经过去分母,去括号、移项、合并同类项、系数化为1求出未知数x的值即可.【解答】解:(1)移项得,4x﹣3x=20+25,合并同类项得,x=45;(2)两边都乘以6得,2(2x﹣1)=6﹣(2x﹣1),去括号得,4x﹣2=6﹣2x+1,移项得,4x+2x=6+1+2,合并同类项得,6x=9,两边都除以6得,x=32.【点评】本题考查解一元一次方程,掌握一元一次方程的解法是正确解答的关键.21.(2023秋•工业园区校级期中)解方程:(1)3=1+2(4﹣x);(2)1−K56=r12.【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【解答】解:(1)去括号,可得:3=1+8﹣2x,移项,可得:2x=1+8﹣3,合并同类项,可得:2x=6,系数化为1,可得:x=3.(2)去分母,可得:6﹣(x﹣5)=3(x+1),去括号,可得:6﹣x+5=3x+3,移项,可得:﹣x﹣3x=3﹣6﹣5,合并同类项,可得:﹣4x=﹣8,系数化为1,可得:x=2.【点评】此题主要考查了解一元一次方程的方法,解答此题的关键是要明确解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.22.(2023秋•富川县期中)解方程:(1)3(x﹣1)﹣4=2(1﹣3x);(2)K74−5r82=1.【分析】(1)先去括号,再移项,合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,移项、合并同类项,把x的系数化为1即可.【解答】解:(1)3(x﹣1)﹣4=2(1﹣3x),3x﹣3﹣4=2﹣6x,3x+6x=2+3+4,9x=9,x=1;(2)K74−5r82=1,x﹣7﹣2(5x+8)=4,x﹣7﹣10x﹣16=4,x﹣10x=4+16+7,﹣9x=27,x=﹣3.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解题的关键.23.(2022秋•丰都县期末)解下列方程:(1)2(x+3)=3(x﹣3);(2)K40.2−2.5=K30.05.【分析】(1)按解一元一次方程的步骤求解即可;(2)利用分数的基本性质先去分母,再按解一元一次方程的步骤求解即可.【解答】解:(1)去括号,得2x+6=3x﹣9,移项,得2x﹣3x=﹣6﹣9,合并同类项,得﹣x=﹣15,系数化为1,得x=15.(2)K40.2−2.5=K30.05,5(K4)5×0.2−2.5=20(K3)0.05×20,5(x﹣4)﹣2.5=20x﹣60,5x﹣20﹣2.5=20x﹣60,﹣15x=﹣37.5,x=2.5.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤是解决本题的关键.24.(2023秋•天河区校级期中)解方程:(1)4x=3x+7;(2)r12−2K13=1.【分析】(1)方程移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)移项得:4x﹣3x=7,合并同类项得:x=7;(2)去分母得:3(x+1)﹣2(2x﹣1)=6,去括号得:3x+3﹣4x+2=6,移项得:3x﹣4x=6﹣3﹣2,合并同类项得:﹣x=1,解得:x=﹣1.【点评】此题考查了解一元一次方程,熟练掌握一元一次方程的解法是解本题的关键.25.(2023秋•南岗区校级期中)解方程:(1)2(x+6)=3(x﹣1);(2)K72−1+3=1.【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可;(2)去分母、去括号、移项、合并同类项,据此求出方程的解即可.【解答】解:(1)去括号,可得:2x+12=3x﹣3,移项,可得:2x﹣3x=﹣3﹣12,合并同类项,可得:﹣x=﹣15,系数化为1,可得:x=15.(2)去分母,可得:3(x﹣7)﹣2(1+x)=6,去括号,可得:3x﹣21﹣2﹣2x=6,移项,可得:3x﹣2x=6+21+2,合并同类项,可得:x=29.【点评】此题主要考查了解一元一次方程的方法,解答此题的关键是要明确解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.26.(2023秋•武昌区期中)解方程:(1)2x+10=2(2x﹣1);(2)K35−r42=−2.【分析】(1)去括号、移项、合并同类项、系数化为1,解出x的值即可;(2)去分母、去括号、移项、合并同类项、系数化为1,解出x的值即可.【解答】解:(1)2x+10=2(2x﹣1),去括号得:2x+10=4x﹣2,移项得:2x﹣4x=﹣2﹣10,合并同类项得:﹣2x=﹣12,系数化为1得:x=6;(2)K35−r42=−2.去括号得:2(x﹣3)﹣5(x+4)=﹣20,去括号得:2x﹣6﹣5x﹣20=﹣20,移项得:2x﹣5x=﹣20+20+6,合并同类项得:﹣3x=6,系数化为1得:x=﹣2.【点评】本题考查了解一元一次方程,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.27.(2023秋•金安区校级期中)解下列方程:(1)3x+5=5x﹣7;(2)3K23=r26−1.【分析】(1)方程移项合并,将x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)移项合并得:2x=12,解得:x=6;(2)去分母得:6x﹣4=x+2﹣6,移项合并得:5x=0,解得:x=0.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.28.(2023秋•西城区校级期中)解方程:(1)3x﹣4=2x+5;(2)K34−2r12=1.【分析】(1)移项,合并同类项即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)3x﹣4=2x+5,移项,得3x﹣2x=5+4,合并同类项,得x=9;(2)K34−2r12=1,去分母,得x﹣3﹣2(2x+1)=4,去括号,得x﹣3﹣4x﹣2=4,移项,得x﹣4x=4+3+2,合并同类项,得﹣3x=9,系数化成1,得x=﹣3.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.29.(2022秋•枣阳市期末)解方程:(1)2K13−10r16=2r14−1;(2)0.7−0.17−0.20.03=2.【分析】(1)按解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,求解即可;(2)先利用分数的基本性质,把分子、分母化为整数,再按解一元一次方程的一般步骤求解即可.【解答】解:去分母,得4(2x﹣1)﹣2(10x+1)=3(2x+1)﹣12,去括号,得8x﹣4﹣20x﹣2=6x+3﹣12,移项,得8x﹣20x﹣6x=3﹣12+4+2,合并,得﹣18x=﹣3,系数化为1,得x=16.(2)原方程可变形为:107−17−203=2,去分母,得30x﹣7(17﹣20x)=42,去括号,得30x﹣119+140x=42,移项,得30x+140x=119+42,合并,得170x=161,系数化为1,得x=161170.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤是解决本题的关键.30.(2022秋•虎丘区校级月考)解方程:(1)2K13=2r16−2;(2)2K50.6−3r10.2=10.【分析】(1)去分母,去括号,移项,合并同类项可得结果;(2)去分母,去括号,移项,合并同类项可得结果.【解答】解:(1)2K13=2r16−2,去分母得,2(2x﹣1)=2x+1﹣2×6,去括号得,4x﹣2=2x+1﹣12,移项得,4x﹣2x=1﹣12+2,合并同类项得,2x=﹣9,系数化为1得,=−92;(2)2K50.6−3r10.2=10,去分母得,2x﹣5﹣3(3x+1)=6,去括号得,2x﹣5﹣9x﹣3=6,移项得,2x﹣9x=6+5+3,合并同类项得,﹣7x=14,系数化为1得,x=﹣2.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1.31.(2023秋•鼓楼区期中)解方程:(1)2x﹣2(3x+1)=6;(2)r12−1=2−33.【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)2x﹣2(3x+1)=6,去括号,得2x﹣6x﹣2=6,移项,得2x﹣6x=6+2,合并同类项,得﹣4x=8,系数化成1,得x=﹣2;(2)r12−1=2−33,去分母,得3(x+1)﹣6=2(2﹣3x),去括号,得3x+3﹣6=4﹣6x,移项,得3x+6x=4﹣3+6,合并同类项,得9x=7,系数化成1,得x=79.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.32.(2022秋•连云港期末)解下列方程:(1)3(x+2)=5x;(2)r12−2=K34.【分析】(1)先去括号移项,然后合并后把x的系数化为1即可;(2)先去分母,再去括号,然后移项、合并后把x的系数化为1即可.【解答】解:(1)3(x+2)=5x,3x+6=5x,3x﹣5x=﹣6,﹣2x=﹣6,x=3;(2)r12−2=K34,2x+2﹣8=x﹣3,2x﹣x=﹣3﹣2+8,x=3.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是关键.33.(2022秋•射阳县校级期末)解方程:(1)2(x﹣2)=3x﹣7;(2)K12−2r36=1.【分析】(1)按照去括号、移项、合并同类项、系数化为1的步骤解一元一次方程;(2)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次方程即可求解.【解答】解:(1)2(x﹣2)=3x﹣7,去括号,得:2x﹣4=3x﹣7,移项,得:2x﹣3x=﹣7+4,合并同类项,得:﹣x=﹣3,系数化为1:x=3;(2)K12−2r36=1,去分母,得:3(x﹣1)﹣(2x+3)=6,去括号,得:3x﹣3﹣2x﹣3=6,移项,得:3x﹣2x=6+3+3,合并同类项,得:x=12.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是解题的关键.34.(2022秋•硚口区期中)解方程:(1)2﹣3(x+1)=1﹣2(1+0.5x);(2)3+K12=3−2K13.【分析】(1)根据去括号、移项、合并同类项、化系数为1的步骤解一元一次方程即可;(2)根据去分母、去括号、移项、合并同类项、化系数为1的步骤解一元一次方程即可.【解答】解:(1)去括号,得2﹣3x﹣3=1﹣2﹣x,移项、合并同类项,得﹣2x=0,化系数为1,得x=0,∴原方程的解为x=0;(2)去分母,得18x+3(x﹣1)=18﹣2(2x﹣1),去括号,得18x+3x﹣3=18﹣4x+2,移项、合并同类项,得25x=23,化系数为1,得=2325,∴原方程的解为=2325.【点评】本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤并正确求解是解答的关键.35.(2022秋•湖北期末)解方程:(1)2﹣(4﹣x)=6x﹣2(x+1);(2)r32−1=2−5−4.【分析】(1)通过去括号、移项、合并同类项、系数化成1,几个步骤进行解答;(2)通过去分母、去括号、移项、合并同类项、系数化成1,几个步骤进行解答.【解答】(1)解:去括号,得,2﹣4+x=6x﹣2x﹣2,移项,得,x﹣6x+2x=﹣2﹣2+4,合并同类项,得,﹣3x=0,系数化为1,得,x=0;(2)去分母得:2(x+3)﹣4=8x﹣(5﹣x),去括号得:2x+6﹣4=8x﹣5+x,移项得:2x﹣8x﹣x=﹣5﹣6+4,合并得:﹣7x=﹣7,解得:x=1.【点评】本题考查了解一元一次方程,解题关键是熟记解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化成1.36.(2023春•太康县期中)解方程:(1)3x﹣5=2x+3;(2)1−K32=2+3+2.【分析】(1)移项,合并同类项即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)3x﹣5=2x+3,移项得:3x﹣2x=3+5,合并同类项得:x=8;(2)1−K32=2+3+2,去分母得:6﹣3(x﹣3)=2(2+x)+12,去括号得:6﹣3x+9=4+2x+12,移项得:﹣3x﹣2x=4+12﹣6﹣9,合并同类项得:﹣5x=1,系数化成1得:x=−15.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.37.(2022秋•万源市校级期末)解方程(1)4﹣3(2﹣x)=5x(2)K22−1=r13−r86.【分析】(1)方程去括号,移项合并,将x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)方程去括号得:4﹣6+3x=5x,移项合并得:2x=﹣2,解得:x=﹣1;(2)去分母得:3(x﹣2)﹣6=2(x+1)﹣(x+8),去括号得:3x﹣6﹣6=2x+2﹣x﹣8,移项合并得:2x=6,解得:x=3.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.38.(2023秋•五华区校级期中)解方程:(1)7x+2(3x﹣3)=20;(2)2K13=3r52−1.【分析】(1)先去括号,再移项,合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,移项,合并同类项,把x的系数化为1即可.【解答】解:(1)去括号得,7x+6x﹣6=20,移项得,7x+6x=20+6,合并同类项得,13x=26,x的系数化为1得,x=2;(2)去分母得,2(2x﹣1)=3(3x+5)﹣6,去括号得,4x﹣2=9x+15﹣6,移项得,4x﹣9x=15﹣6+2,合并同类项得,﹣5x=11,x的系数化为1得,x=−115.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解题的关键.39.(2023•开州区校级开学)解方程:(1)5x+34=2x+534;(2)K20.2=r10.5.【分析】(1)按照解一元一次方程的步骤:移项,合并同类项,系数化为1,进行计算即可解答;(2)先把分母的系数化为整数,然后再按照解一元一次方程的步骤进行计算,即可解答.【解答】解:(1)5x+34=2x+534,5x﹣2x=534−34,3x=5,x=53;(2)K20.2=r10.5,5x﹣10=2x+2,5x﹣2x=2+10,3x=12,x=4.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.40.(2023秋•镇海区校级期中)解方程:(1)3(20﹣y)=6y﹣4(y﹣11);(2)0.4r30.2−2=0.45−0.3.【分析】(1)方程去括号,移项合并,把y系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:60﹣3y=6y﹣4y+44,移项合并得:5y=16,解得:y=3.2;(2)去分母得:1.2x+9﹣1.2=0.9﹣2x,移项合并得:3.2x=﹣6.9,解得:x=−6932.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.41.(2022秋•张店区期末)解方程:(1)3(y﹣7)﹣5(4﹣y)=15;(2)r20.4−2K10.2=−0.5.【分析】(1)去括号,移项合并同类项,系数化为1即可得到答案;(2)去分母,去括号,移项合并同类项,系数化为1即可得到答案.【解答】解:(1)去括号得,3y﹣21﹣20+5y=15,移项得,3y+5y=15+21+20,合并同类项可得,8y=56系数化为1得,y=7;(2)去分母可得,10(x+2)﹣20(2x﹣1)=﹣2,去括号得,10x+20﹣40x+20=﹣2,移项得,10x﹣40x=﹣2﹣20﹣20,合并同类项得,﹣30x=﹣42,系数化为1得,=75.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是关键.42.(2022秋•莲湖区校级月考)解方程:(1)K32−2r13=1.(2)r12−3K14=1.【分析】(1)去分母、去括号、移项、合并同类项、系数化为1即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1即可求解.【解答】解:(1)K32−2r13=1,3(x﹣3)﹣2(2x+1)=6,3x﹣9﹣4x﹣2=6,3x﹣4x=6+9+2,﹣x=17,x=﹣17;(2)r12−3K14=1,2(x+1)﹣(3x﹣1)=4,2x+2﹣3x+1=4,﹣x=4﹣2﹣1,x=﹣1.【点评】本题考查了解一元一次方程,解答本题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a的形式转化.43.解下列方程:(1)2r13−10r16=1;(2)4K1.50.5−5K0.80.2=1.2−0.1.【分析】(1)利用等式的性质先去分母,再求解一元一次方程;(2)利用分数的基本性质去分母后,再解一元一次方程.【解答】解:(1)2r13−10r16=1,去分母,得2(2x+1)﹣(10x+1)=6,去括号,得4x+2﹣10x﹣1=6,移项,得4x﹣10x=6﹣2+1,合并同类项,得﹣6x=5,系数化为1,得x=−56;(2)4K1.50.5−5K0.80.2=1.2−0.1.去分母,得2(4x﹣1.5)﹣5(5x﹣0.8)=10(1.2﹣x),去括号,得8x﹣3﹣25x+4=12﹣10x,移项,得8x﹣25x+10x=12+3﹣4,合并同类项,得﹣7x=11,系数化为1,得x=−117.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤,灵活运用等式的性质和分数的性质去分母是解决本题的关键.44.解方程;(1)2K366−33−23=−1﹣x;(2)K10.2−r10.05=3.【分析】(1)利用等式的性质去分母后,求解一元一次方程;(2)利用分数的性质去分母后,求解一元一次方程.【解答】解:(1)2K366−33−23=−1﹣x,去分母,得2x﹣36﹣2(33﹣2x)=6(﹣1﹣x),去括号,得2x﹣36﹣66+4x=﹣6﹣6x,移项,得2x+4x+6x=﹣6+36+66,合并同类项,得12x=96,系数化为1,得x=8;(2)K10.2−r10.05=3.去分母,得5(x﹣1)﹣20(x+1)=3,去括号,得5x﹣5﹣20x﹣20=3,移项,得5x﹣20x=3+5+20,合并同类项,得﹣15x=28系数化为1,得x=−2815.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤,灵活运用等式的性质和分数的性质去分母是解决本题的关键.45.(2023春•周口月考)解方程:(1)34[2(+1)+13p=3;(2)3−2K83=−r54.【分析】(1)按照解一元一次方程的步骤,进行计算即可解答;(2)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答.【解答】解:(1)34[2(+1)+13p=3,32(x+1)+14x=3x,6(x+1)+x=12x,6x+6+x=12x,6x+x﹣12x=﹣6,﹣5x=﹣6,x=1.2;(2)3−2K83=−r54,36﹣4(2x﹣8)=﹣3(x+5),36﹣8x+32=﹣3x﹣15,﹣8x+3x=﹣15﹣36﹣32,﹣5x=﹣83,x=835.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.46.(2022秋•文登区期末)解方程:(1)4﹣2(x+4)=2(x﹣1);(2)13(+7)=25−12(−5);(3)0.3K0.40.2+2=0.5K0.20.3.【分析】(1)去括号,移项,合并同类项,系数化为1,求解即可;(2)去分母,去括号,移项,合并同类项,系数化为1,求解即可;(3)分母化为整数,去分母,去括号,移项,合并同类项,系数化为1,求解即可.【解答】解:(1)4﹣2(x+4)=2(x﹣1),去括号得:4﹣2x﹣8=2x﹣2,移项得:2x+2x=4﹣8+2,合并同类项得:4x=﹣2,系数化为1得:x=−12;(2)13(+7)=25−12(−5),去分母得:10(x+7)=12﹣15(x﹣5),去括号得:10x+70=12﹣15x+75,移项得:10x+15x=12+75﹣70,合并同类项得:25x=17,系数化为1得:x=1725;(3)0.3K0.40.2+2=0.5K0.20.3,分母化为整数得:3K42+2=5K23,去分母得:3(3x﹣4)+12=2(5x﹣2),去括号得:9x﹣12+12=10x﹣4,合并同类项得:9x=10x﹣4,移项、合并同类项得:x=4.【点评】本题考查了解一元一次方程,解题的关键是熟练掌握一元一次方程的解题步骤.47.解下列方程:(1)(5x﹣2)×30%=(7x+8)×20%;(2)34[43(14−1)+8]=73+23;(3)4K1.50.5−5K0.80.2=1.2−0.1.【分析】(1)方程去括号,移项,合并同类项,即可求出解;(2)方程去括号,去分母,移项,合并同类项,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)(5x﹣2)×30%=(7x+8)×20%,去括号得:15x﹣6=14x+16,移项得:15x﹣14x=16+6,合并同类项得:x=22;(2)34[43(14−1)+8]=73+23;去括号得:14x﹣1+6=73+23,去分母得:3x+60=28+8x,移项得:3x﹣8x=28﹣60,合并同类项得:﹣5x=﹣32,解得:x=325;(3)4K1.50.5−5K0.80.2=1.2−0.1.去分母得:2(4x﹣1.5)﹣5(5x﹣0.8)=10(1.2﹣x),去括号得:8x﹣3﹣25x+4=12﹣10x,移项得:8x﹣25x+10x=12﹣4+3,合并同类项得:﹣7x=11,解得:x=−117.【点评】此题考查了解一元一次方程,解决本题的关键是掌握解一元一次方程的步骤,为:去分母,去括号,移项合并,把未知数系数化为1,求出解.48.(2023春•朝阳区校级月考)解下列方程:(1)2x﹣19=7x+6;(2)4(x﹣2)﹣1=3(x﹣1);(3)K12=23+1;(4)2K13−10r112=2r14−1.【分析】(1)方程移项,合并同类项,把x系数化为1,即可求出解;(2)方程去括号,移项,合并同类项,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项,合并同类项,把m系数化为1,即可求出解;(4)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)移项得:2x﹣7x=6+19,合并同类项得:﹣5x=25,解得:x=﹣5;(2)去括号得:4x﹣8﹣1=3x﹣3,移项得:4x﹣3x=﹣3+8+1,合并同类项得:x=6;(3)去分母得:3(m﹣1)=4m+6,去括号得:3m﹣3=4m+6,移项得:3m﹣4m=6+3,合并同类项得:﹣m=9,解得:m=﹣9;(4)去分母得:4(2x﹣1)﹣(10x+1)=3(2x+1)﹣12,去括号得:8x﹣4﹣10x﹣1=6x+3﹣12,移项得:8x﹣10x﹣6x=3﹣12+4+1,合并同类项得:﹣8x=﹣4,解得:x=0.5.【点评】此题考查了解一元一次方程,熟练掌握方程的解法是解本题的关键.49.(2023秋•香坊区校级月考)解方程:(1)3x﹣8=x+4;(2)1﹣3(x+1)=2(1﹣0.5x);(3)16(3−6)=25x﹣3;(4)3K14−1=5K76.【分析】(1)按照解一元一次方程的步骤:移项,合并同类项,系数化为1,进行计算即可解答;(2)按照解一元一次方程的步骤:去括号,移项,合并同类项,系数化为1,进行计算即可解答;(3)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答;(4)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答.【解答】解:(1)3x﹣8=x+4,3x﹣x=4+8,2x=12,x=6;(2)1﹣3(x+1)=2(1﹣0.5x),1﹣3x﹣3=2﹣x,﹣3x+x=2+3﹣1,﹣2x=4,x=﹣2;。
七年级上方程题
七年级上方程题一、一元一次方程基础题(1 - 10)1. 解方程:3x + 5=14- 解析:首先将方程两边同时减去5,得到3x+5 - 5=14 - 5,即3x = 9。
然后两边同时除以3,3x÷3 = 9÷3,解得x = 3。
2. 解方程:2(x - 3)=10- 解析:先使用乘法分配律,得到2x-6 = 10。
接着方程两边同时加上6,2x-6 + 6=10 + 6,即2x = 16。
最后两边同时除以2,2x÷2 = 16÷2,解得x = 8。
3. 解方程:(x)/(3)-2 = 5- 解析:方程两边先同时加上2,得到(x)/(3)-2+2 = 5 + 2,即(x)/(3)=7。
然后两边同时乘以3,(x)/(3)×3 = 7×3,解得x = 21。
4. 已知方程4x - 3 = kx + 11的解是x = 2,求k的值。
- 解析:把x = 2代入方程4×2-3 = k×2+11,即8 - 3=2k + 11,5 = 2k+11。
方程两边同时减去11,5-11 = 2k+11 - 11,得到-6 = 2k。
两边同时除以2,解得k=-3。
5. 解方程:5x+1 = 3(x - 1)+4- 解析:先展开括号得5x + 1=3x-3 + 4,即5x+1 = 3x + 1。
两边同时减去3x,5x+1-3x = 3x + 1-3x,得到2x+1 = 1。
再两边同时减去1,2x+1 - 1=1 - 1,即2x = 0,解得x = 0。
6. 若关于x的方程3x + 2m = 5与2x - 1 = 5x+8的解相同,求m的值。
- 解析:先解方程2x-1 = 5x + 8,移项得2x-5x = 8 + 1,即-3x = 9,解得x=-3。
把x = -3代入方程3x+2m = 5,得到3×(-3)+2m = 5,即-9 + 2m = 5。