matlab非线性控制系统分析

合集下载

MATLAB优化应用非线性规划

MATLAB优化应用非线性规划

MATLAB优化应用非线性规划非线性规划是一类数学优化问题,其中目标函数和约束条件都是非线性的。

MATLAB作为一种强大的数值计算软件,提供了丰富的工具和函数,可以用于解决非线性规划问题。

本文将介绍如何使用MATLAB进行非线性规划的优化应用,并提供一个具体的案例来演示。

一、MATLAB中的非线性规划函数MATLAB提供了几个用于解决非线性规划问题的函数,其中最常用的是fmincon函数。

fmincon函数可以用于求解具有等式约束和不等式约束的非线性规划问题。

其基本语法如下:x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)其中,fun是目标函数,x0是变量的初始值,A和b是不等式约束的系数矩阵和右端向量,Aeq和beq是等式约束的系数矩阵和右端向量,lb和ub是变量的上下界,nonlcon是非线性约束函数,options是优化选项。

二、非线性规划的优化应用案例假设我们有一个工厂,需要生产两种产品A和B,目标是最大化利润。

产品A 和B的生产成本分别为c1和c2,售价分别为p1和p2。

同时,我们需要考虑两种资源的限制,分别是资源1和资源2。

资源1在生产产品A和B时的消耗分别为a11和a12,资源2的消耗分别为a21和a22。

此外,产品A和B的生产量有上下限限制。

我们可以建立以下数学模型来描述这个问题:目标函数:maximize profit = p1 * x1 + p2 * x2约束条件:c1 * x1 + c2 * x2 <= budgeta11 * x1 + a12 * x2 <= resource1a21 * x1 + a22 * x2 <= resource2x1 >= min_production_Ax2 >= min_production_Bx1 <= max_production_Ax2 <= max_production_B其中,x1和x2分别表示产品A和B的生产量,budget是预算,min_production_A和min_production_B是产品A和B的最小生产量,max_production_A和max_production_B是产品A和B的最大生产量。

非线性规划的MATLAB解法及其应用

非线性规划的MATLAB解法及其应用

题 目 非线性规划的MATLAB 解法及其应用(一) 问题描述非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。

非线性规划是20世纪50年代才开始形成的一门新兴学科。

70年代又得到进一步的发展。

非线性规划在工程、管理、经济、科研、军事等方面都有广泛的应用,为最优设计提供了有力的工具。

在经营管理、工程设计、科学研究、军事指挥等方面普遍地存在着最优化问题。

例如:如何在现有人力、物力、财力条件下合理安排产品生产,以取得最高的利润;如何设计某种产品,在满足规格、性能要求的前提下,达到最低的成本;如何确定一个自动控制的某些参数,使系统的工作状态最佳;如何分配一个动力系统中各电站的负荷,在保证一定指标要求的前提下,使总耗费最小;如何安排库存储量,既能保证供应,又使储存 费用最低;如何组织货源,既能满足顾客需要,又使资金周转最快等。

对于静态的最优化 问题,当目标函数或约束条件出现未知量的非线性函数,且不便于线性化,或勉强线性化后会招致较大误差时,就可应用非线性规划的方法去处理。

具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。

非线性规划研究一个n 元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。

目标函数和约束条件都是线性函数的情形则属于线性规划。

本实验就是用matlab 软件来解决非线性规划问题。

(二) 基本要求掌握非线性规划的MATLAB 解法,并且解决相关的实际问题。

题一 :对边长为3米的正方形铁板,在四个角剪去相等的正方形以制成方形无盖水槽,问如何剪法使水槽的容积最大?题二: 某厂生产一种产品有甲、乙两个牌号,讨论在产销平衡的情况下如何确定各自的产量,使总利润最大. 所谓产销平衡指工厂的产量等于市场上的销量.符号说明:z(x 1,x 2)表示总利润;p 1,q 1,x 1分别表示甲的价格、成本、销量; p 2,q 2,x 2分别表示乙的价格、成本、销量; a ij ,b i ,λi ,c i (i ,j =1,2)是待定系数.题三:设有400万元资金, 要求4年内使用完, 若在一年内使用资金x 万元, 则可得效益x 万元(效益不能再使用),当年不用的资金可存入银行, 年利率为10%. 试制定出资金的使用计划, 以使4年效益之和为最大.(三) 数据结构题一:设剪去的正方形的边长为x ,则水槽的容积为:x x )23(2-;建立无约束优化模型为:min y=-x x )23(2-, 0<x<1.5题二:总利润为: z(x1,x2)=(p1-q1)x1+(p2-q2)x2若根据大量的统计数据,求出系数b1=100,a11=1,a12=0.1,b2=280,a21=0.2,a22=2,r1=30,λ1=0.015,c1=20, r2=100,λ2=0.02,c2=30,则问题转化为无约束优化问题:求甲,乙两个牌号的产量x1,x2,使总利润z 最大.为简化模型,先忽略成本,并令a12=0,a21=0,问题转化为求:z1 = ( b1 - a11x1 ) x1 + ( b2 - a22x2 ) x2的极值. 显然其解为x1 = b1/2a11 = 50, x2 = b2/2a22 = 70,我们把它作为原问题的初始值.题三:设变量i x 表示第i 年所使用的资金数,则有 4,3,2,1,04.5321.121.1331.14841.121.14401.1400..max 43213212114321=≥≤+++≤++≤+≤+++=i x x x x x x x x x x x t s x x x x z i(四) 源程序题一:编写M 文件fun0.m:function f=fun0(x)f=-(3-2*x).^2*x;主程序为wliti2.m:[x,fval]=fminbnd('fun0',0,1.5);xmax=xfmax=-fval题二:建立M-文件fun.m:function f = fun(x)y1=((100-x(1)- 0.1*x(2))-(30*exp(-0.015*x(1))+20))*x(1); y2=((280-0.2*x(1)- 2*x(2))-(100*exp(-0.02*x(2))+30))*x(2); f=-y1-y2;输入命令:x0=[50,70];x=fminunc(‘fun ’,x0),z=fun(x)题三:建立M 文件 fun44.m,定义目标函数:function f=fun44(x)f=-(sqrt(x(1))+sqrt(x(2))+sqrt(x(3))+sqrt(x(4)));建立M 文件mycon1.m 定义非线性约束:function [g,ceq]=mycon1(x)g(1)=x(1)-400;g(2)=1.1*x(1)+x(2)-440;g(3)=1.21*x(1)+1.1*x(2)+x(3)-484;g(4)=1.331*x(1)+1.21*x(2)+1.1*x(3)+x(4)-532.4;ceq=0主程序youh4.m 为:x0=[1;1;1;1];vlb=[0;0;0;0];vub=[];A=[];b=[];Aeq=[];beq=[];[x,fval]=fmincon('fun44',x0,A,b,Aeq,beq,vlb,vub,'mycon1')(五) 运行结果题一:运算结果为: xmax = 0.5000,fmax =2.0000.即剪掉的正方形的边长为0.5米时水槽的容积最大,最大容积为2立方米.题二:运行结果为:x=23.9025, 62.4977, z=6.4135e+003即甲的产量为23.9025,乙的产量为62.4977,最大利润为6413.5.题三:运行结果为:x1=86.2;x2=104.2;x3=126.2;x4=152.8;z=43.1(六) 相关知识用Matlab 解无约束优化问题一元函数无约束优化问题21),(m in x x x x f ≤≤常用格式如下:(1)x= fminbnd (fun,x1,x2)(2)x= fminbnd (fun,x1,x2 ,options)(3)[x ,fval]= fminbnd (...)(4)[x ,fval ,exitflag]= fminbnd (...)(5)[x ,fval ,exitflag ,output]= fminbnd (...)其中(3)、(4)、(5)的等式右边可选用(1)或(2)的等式右边。

Matlab技术控制系统性能分析指南

Matlab技术控制系统性能分析指南

MatIab技术控制系统性能分析指南概论当今社会,控制系统已成为各种领域中重要的技术和应用之一。

它们被广泛用于工业自动化、机电设备、航天航空等众多领域中。

控制系统的性能分析是确保系统正常运行和提高系统性能的必要步骤。

Mat1ab作为一种功能强大的工具,为控制系统性能分析提供了多种方法和技术。

本文将介绍一些基本的MaIIab技术,帮助读者进行控制系统性能分析。

一、系统建模在进行控制系统性能分析之前,首先需要进行系统建模。

系统建模是将实际物理系统抽象为数学模型的过程。

掌握系统建模方法对于准确分析系统性能至关重要。

Mat1ab提供了一系列工具和函数,可以用于快速建立系统模型。

有两种常用的系统建模方法:时域建模和频域建模。

1.时域建模时域建模基于系统的时间响应特性。

通过测量系统的输入和输出信号,并对其进行采样和离散化,可以得到系统的差分方程。

MaUab中的State-space函数是进行时域建模的常用工具。

它可以根据系统的状态方程和输出方程生成系统模型。

可以使用如下代码进行建模:A=∏2;341;B=[1;1];C=[10];D=O;sys=ss(A,B,C,D);其中,A、B、C和D分别表示状态空间方程的系数矩阵。

利用该函数建立的系统模型可以方便地进行时域性能分析。

2.频域建模频域建模基于系统的频率响应特性。

通过测量系统的输入和输出信号的频谱,并进行信号处理,可以得到系统的传递函数。

Mat1ab中的tf函数是进行频域建模的常用工具。

它可以根据系统的传递函数生成系统模型。

可以使用如下代码进行建模:num=[1];den=[11];sys=tf(num,den);其中,num和den分别表示传递函数的分子和分母系数。

利用该函数建立的系统模型可以方便地进行频域性能分析。

二、系统性能评估建立了系统模型之后,就可以进行系统性能的评估了。

针对不同的性能指标,可以使用不同的分析方法。

1稳态误差分析稳态误差衡量了系统在输入信号为稳态信号时的输出误差。

MATLAB中的非线性优化算法详解

MATLAB中的非线性优化算法详解

MATLAB中的非线性优化算法详解在计算机科学和工程领域,非线性优化是一个非常重要的问题。

它涉及到在给定一些约束条件下,寻找使得目标函数取得最优值的变量取值。

MATLAB作为一种强大的数值计算工具,提供了多种非线性优化算法来解决这个问题。

本文将详细介绍一些常用的非线性优化算法,并探讨它们的特点和适用场景。

1. 数学背景在介绍非线性优化算法之前,我们先来了解一下非线性优化的基本数学背景。

一个非线性优化问题可以表示为以下形式:minimize f(x)subject to g(x) ≤ 0h(x) = 0其中,f(x)是目标函数,g(x)是不等式约束条件,h(x)是等式约束条件。

x是优化变量。

目标是找到x使得f(x)取得最小值,并且满足约束条件。

2. 黄金分割法黄金分割法是一种经典的非线性优化算法。

它基于一个简单的原则:将搜索区间按照黄金分割比例分为两段,并选择一个更优的区间进行下一次迭代。

该算法的思想简单明了,但是它的收敛速度比较慢,特别是对于高维问题。

因此,该算法在实际应用中较少使用。

3. 拟牛顿法拟牛顿法是一类比较常用的非线性优化算法。

它通过近似目标函数的梯度信息来进行迭代优化。

拟牛顿法的核心思想是构造一个Hessian矩阵的近似矩阵,来更新搜索方向和步长。

其中,DFP算法和BFGS算法是拟牛顿法的两种典型实现。

DFP算法是由Davidon、Fletcher和Powell于1959年提出的,它通过不断迭代来逼近最优解。

该算法的优点是收敛性比较好,但是它需要存储中间结果,占用了较多的内存。

BFGS算法是由Broyden、Fletcher、Goldfarb和Shanno于1970年提出的。

它是一种变种的拟牛顿法,通过逼近Hessian矩阵的逆矩阵来求解最优解。

BFGS算法在存储方面比DFP算法更加高效,但是它的计算复杂度相对较高。

4. 信赖域法信赖域法是一种迭代优化算法,用于解决非线性优化问题。

它将非线性优化问题转化为一个二次规划问题,并通过求解这个二次规划问题来逼近最优解。

非线性规划的MATLAB解法

非线性规划的MATLAB解法
特点
非线性规划问题通常具有多个局部最 优解,解的稳定性与初始条件有关, 需要使用特定的算法来找到全局最优 解。
非线性规划的应用场景
数据拟合、模型选择、参 数估计等。
生产计划、物流优化、设 备布局等。
投资组合优化、风险管理、 资本预算等。
金融
工业
科研
非线性规划的挑战与解决方法
挑战
非线性规划问题可能存在多个局部最优解,且解的稳定性与初始条件密切相关,需要使用特定的算法来找到全局 最优解。
共轭梯度法
总结词
灵活、适用于大型问题、迭代方向交替
详细描述
共轭梯度法结合了梯度下降法和牛顿法的思 想,通过迭代更新搜索方向,交替使用梯度 和共轭方向进行搜索。该方法适用于大型非 线性规划问题,具有较好的灵活性和收敛性。
04
非线性规划问题的约束 处理
不等式约束处理
处理方式
在Matlab中,可以使用 `fmincon`函数来求解非线性规划 问题,该函数可以处理不等式约 束。
要点二
详细描述
这类问题需要同时考虑多个目标函数,每个目标函数可能 有不同的优先级和权重。在Matlab中,可以使用 `gamultiobj`函数来求解这类问题。该函数可以处理具有 多个目标函数的约束优化问题,并允许用户指定每个目标 函数的权重和优先级。
谢谢观看
具体操作
将等式约束条件表示为线性方程组,并使用`Aeq`参 数指定系数矩阵,使用`beq`参数指定常数向量。
注意事项
等式约束条件需要在可行域内满足,否则会 导致求解失败。
边界约束处理
处理方式
边界约束可以通过在目标函数中添加惩罚项来处理,或者使用专门的优化算法来处理。
具体操作
在目标函数中添加惩罚项时,需要在目标函数中添加一个与边界约束相关的项,并调整 其权重以控制边界约束的重要性。

基于MATLAB语言的非线性系统相空间分析

基于MATLAB语言的非线性系统相空间分析

基于MATLAB语言的非线性系统相空间分析一、简述非线性系统相空间分析是研究非线性系统的动力学行为和稳定性的一种方法。

在MATLAB语言中,我们可以通过构建合适的数学模型来描述非线性系统,并利用其强大的数值计算和绘图功能进行相空间分析。

本文将介绍如何使用MATLAB语言对非线性系统进行相空间分析的基本步骤和技巧,包括:建立非线性系统方程、求解方程组、绘制相空间轨迹图等。

通过这些内容的学习,读者可以掌握MATLAB 在非线性系统相空间分析中的应用方法,为进一步深入研究非线性系统提供基础支持。

1. 非线性系统的概念和特点非线性系统是指其行为不能通过线性组合得到的系统,在自然科学、工程技术和社会科学等领域中,非线性系统无处不在,例如:自然生态系统、经济市场、生物医学过程等。

非线性系统的特点是它的输出不仅仅取决于输入,还受到内部状态的影响,这种影响通常是复杂的、难以预测的。

非线性系统的相空间分析是一种处理非线性系统的方法,在MATLAB语言中,我们可以通过使用各种工具箱进行相空间分析,包括解常微分方程(ODE)、解偏微分方程(PDE)以及求解复杂动力学系统等。

首先我们需要理解非线性系统的数学模型,这通常通过将系统的动态方程表示为微分方程来完成。

然后我们可以使用MATLAB的ODE 求解器来求解这些方程,得到系统的相空间轨迹。

此外我们还可以使用MATLAB的PDE工具箱来求解偏微分方程,得到系统的相空间曲面。

除了基本的数值方法外,MATLAB还提供了多种高级功能,如优化工具箱、控制工具箱等,这些都可以用于非线性系统的分析和设计。

例如我们可以使用优化工具箱来寻找最优的控制策略,或者使用控制工具箱来设计自适应控制器。

MATLAB为非线性系统的相空间分析提供了强大的支持,无论是对于理论研究还是实际应用都具有很高的价值。

2. 相空间分析的基本概念和方法相空间分析是一种研究非线性系统动态行为的方法,它通过将系统的微分方程组表示为相空间中的轨迹方程来描述系统的演化过程。

使用Matlab进行非线性系统辨识与控制的技巧

使用Matlab进行非线性系统辨识与控制的技巧

使用Matlab进行非线性系统辨识与控制的技巧在控制系统领域,非线性系统一直是研究的重点和难点之一。

与线性系统不同,非线性系统具有复杂的动力学特性和响应行为,给系统的建模、辨识和控制带来了挑战。

然而,随着计算机技术的快速发展,现在可以利用强大的软件工具如Matlab来进行非线性系统辨识与控制的研究。

本文将分享一些使用Matlab进行非线性系统辨识与控制的技巧,希望对相关研究人员有所帮助。

一、非线性系统辨识非线性系统辨识是指通过实验数据来确定系统的数学模型,以描述系统的动态行为。

在非线性系统辨识中,最常用的方法是基于系统响应的模型辨识技术。

这种方法通常包括以下几个步骤:1. 数据采集和预处理:首先,需要采集实验数据以用于系统辨识。

在数据采集过程中,应尽量减小噪声的影响,并确保数据的可靠性。

然后,对采集到的数据进行预处理,如滤波、采样等,以消除噪声和干扰。

2. 模型结构选择:在进行非线性系统辨识时,应选择合适的模型结构来描述系统的动态特性。

常见的模型结构包括非线性自回归移动平均模型(NARMA),广义回归神经网络(GRNN)等。

选择合适的模型结构对于准确地描述系统非线性特性至关重要。

3. 参数估计:根据选定的模型结构,使用最小二乘法或其他参数估计算法来估计模型的参数。

MATLAB提供了多种估计算法和工具箱,如系统辨识工具箱(System Identification Toolbox)等,可方便地进行参数估计。

4. 模型验证与评估:在参数估计完成后,应对辨识的模型进行验证和评估。

常用的方法是计算模型的均方根误差(RMSE)和决定系数(R-squared),进一步提高模型的准确性和可靠性。

二、非线性系统控制非线性系统控制是指通过设计控制策略来实现对非线性系统的稳定和性能要求。

与非线性系统辨识类似,非线性系统控制也可以利用Matlab进行研究和设计。

以下是一些常用的非线性系统控制技巧:1.反馈线性化控制:线性化是将非线性系统近似为线性系统的一种方法。

控制系统设计与分析MATLAB

控制系统设计与分析MATLAB

控制系统设计与分析MATLAB1. 引言控制系统是现代工程中的重要部分,它在各个领域中起着至关重要的作用。

MATLAB (Matrix Laboratory) 是一种广泛应用于科学与工程计算的高级技术计算与模型设计与仿真软件。

本文将介绍使用MATLAB进行控制系统的设计与分析的基本原理和方法。

2. 控制系统设计2.1. 控制系统概述控制系统主要由输入、输出和控制器组成。

输入是指系统的外部输入信号,输出是系统产生的响应信号,而控制器则决定输出信号如何调整以使系统达到所需的性能指标。

2.2. 开环控制系统设计开环控制系统是一种不考虑系统输出信号对控制器的影响的控制系统。

在MATLAB中,可以使用控制系统工具箱进行开环控制系统的设计。

首先,我们需要构建系统的传递函数模型,然后可以使用工具箱中的函数来设计控制器。

2.3. 闭环控制系统设计闭环控制系统是一种通过系统输出信号反馈给控制器来调整输出信号的控制系统。

在MATLAB中,可以使用控制系统工具箱进行闭环控制系统的设计。

与开环控制系统类似,我们需要构建系统的传递函数模型,并使用工具箱中的函数设计控制器。

不同的是,闭环系统设计中还需要考虑稳定性和性能指标。

2.4. 调整控制器参数在控制系统设计过程中,控制器的参数调整对系统性能有很大影响。

MATLAB 提供了多种方法来帮助我们调整控制器参数,例如PID调节器和根轨迹设计等。

通过实时仿真和反馈,我们可以调整控制器参数以满足系统性能要求。

3. 控制系统分析3.1. 系统响应分析控制系统的性能可以通过分析系统的响应来评估。

在MATLAB中,可以使用step函数、impulse函数和freqresp函数等来分析系统的阶跃响应、脉冲响应和频率响应。

通过分析这些响应,我们可以评估系统的稳定性、阻尼性能和频率特性等指标。

3.2. 频域分析频域分析是通过将输入和输出信号在频域上进行转换来分析系统的特性。

在MATLAB中,可以使用fft函数和bode函数等来进行频域分析。

使用MATLAB进行非线性系统辨识与自适应控制的基本原理

使用MATLAB进行非线性系统辨识与自适应控制的基本原理

使用MATLAB进行非线性系统辨识与自适应控制的基本原理随着现代科技的不断发展,非线性系统的研究和应用变得越来越重要。

非线性系统具有复杂的动力学行为,无法直接用常规的线性方法进行分析和控制。

因此,非线性系统辨识和自适应控制成为解决这个问题的关键手段。

本文将介绍使用MATLAB进行非线性系统辨识和自适应控制的基本原理。

第一部分:非线性系统辨识非线性系统辨识的目标是通过实验数据找到最佳的数学模型来描述非线性系统的行为。

在MATLAB中,我们可以利用系统辨识工具箱(System Identification Toolbox)实现这个目标。

首先,我们需要收集实验数据。

数据的选择应该尽可能覆盖非线性系统的各种工作条件和动态特性。

然后,我们可以使用MATLAB中的系统辨识工具箱来对实验数据进行处理和分析。

在系统辨识工具箱中,有多种方法可以用于建立非线性系统模型,如非线性ARX模型、基于支持向量机的系统辨识等。

这些方法都有各自的特点和适用范围。

根据实际情况选择合适的方法,并进行参数的估计和模型的验证。

在参数估计过程中,MATLAB会自动进行数学优化算法,以找到最佳的参数估计结果。

模型验证可以通过与实验数据的比较来评估模型的拟合程度和预测精度。

如果模型与实验数据有较好的拟合效果,我们可以认为该模型比较准确地描述了非线性系统的行为。

第二部分:自适应控制在得到非线性系统的数学模型后,我们可以使用自适应控制方法对非线性系统进行控制。

自适应控制的思想是根据系统的动态行为,通过在线更新控制器参数来实现系统的自适应调整。

在MATLAB中,可以使用自适应控制工具箱(Adaptive Control Toolbox)来实现自适应控制。

该工具箱提供了各种自适应控制算法,如基于模型参考自适应控制、基于直接自适应控制等。

在自适应控制中,我们需要根据非线性系统的数学模型来设计自适应控制器。

根据系统的特性和性能要求,可以选择不同的自适应控制算法和参数更新策略。

使用Matlab进行非线性优化问题求解的技巧

使用Matlab进行非线性优化问题求解的技巧

使用Matlab进行非线性优化问题求解的技巧介绍:非线性优化在工程、金融、科学等领域广泛应用,它涉及到求解一个目标函数的最小值或最大值,并且满足一系列约束条件。

Matlab是一个功能强大的数值计算软件,提供了许多用于求解非线性优化问题的工具和函数。

本文将介绍一些使用Matlab进行非线性优化问题求解的技巧,帮助读者更有效地应用这些工具。

一、定义目标函数和约束条件在使用Matlab求解非线性优化问题之前,首先要明确问题的数学模型。

假设我们要最小化一个目标函数F(x),并且存在一系列约束条件g(x) <= 0和h(x) = 0。

在Matlab中,可以使用函数形式或者符号形式来定义目标函数和约束条件。

例如,使用函数形式可以这样定义目标函数和约束条件:```matlabfunction f = objective(x)f = x(1)^2 + x(2)^2;endfunction [c, ceq] = constraints(x)c = [x(1) + x(2) - 1; x(1)^2 + x(2)^2 - 2];ceq = [];end```其中,objective函数定义了目标函数,constraints函数定义了约束条件。

在constraints函数中,c表示不等式约束条件g(x) <= 0,ceq表示等式约束条件h(x) = 0。

二、使用fmincon函数求解非线性优化问题Matlab提供了fmincon函数来求解非线性优化问题。

该函数的基本语法如下:```matlab[x, fval] = fmincon(fun, x0, A, b, Aeq, beq, lb, ub, nonlcon, options)```其中,fun表示目标函数,x0表示初始解,A表示不等式约束条件的线性部分,b表示不等式约束条件的右侧常数,Aeq表示等式约束条件的线性部分,beq表示等式约束条件的右侧常数,lb表示变量的下界,ub表示变量的上界,nonlcon表示非线性约束条件,options表示优化选项。

使用Matlab进行控制系统设计的基本步骤

使用Matlab进行控制系统设计的基本步骤

使用Matlab进行控制系统设计的基本步骤控制系统设计是一项重要的工程任务,它涉及到系统建模、控制器设计和系统分析等方面。

而Matlab作为一款强大的数学工具软件,提供了丰富的功能和工具,可以帮助工程师实现控制系统设计的各个环节。

本文将介绍使用Matlab进行控制系统设计的基本步骤。

一、系统建模控制系统设计的第一个关键步骤是系统建模。

系统建模是将实际的物理系统或过程转化为数学方程的过程。

Matlab提供了多种建模方法,可以根据实际需求选择适合的方法。

1.1 时域建模时域建模是一种基于微分方程和代数方程的建模方法,适合描述连续系统的动态特性。

可以使用Matlab的Simulink工具箱进行时域建模,通过拖拽模块和连接线的方式,构建系统模型。

1.2 频域建模频域建模是一种基于频率响应的建模方法,适合描述系统的幅频、相频特性。

可以使用Matlab的控制系统工具箱进行频域建模,通过输入系统的传递函数或状态空间矩阵,得到系统的频域特性。

1.3 时频域建模时频域建模是一种综合了时域和频域特性的建模方法,适合描述非线性和时变系统。

可以使用Matlab的Wavelet工具箱进行时频域建模,通过连续小波变换或离散小波变换,得到系统的时频域特性。

二、控制器设计在系统建模完成后,接下来是设计控制器。

控制器设计的目标是使得系统具有所需的稳定性、响应速度和鲁棒性等性能。

2.1 经典控制器设计Matlab提供了经典控制器的设计函数,如比例控制器(P控制器)、比例积分控制器(PI控制器)和比例积分微分控制器(PID控制器)等。

可以根据系统的特性和性能要求,选择合适的控制器类型和调节参数。

2.2 线性二次调节器设计线性二次调节(LQR)是一种优化控制方法,可以同时优化系统的稳态误差和控制能量消耗。

在Matlab中,可以使用lqr函数进行LQR控制器的设计,通过调整权重矩阵来获得不同的控制性能。

2.3 非线性控制器设计对于非线性系统,经典控制器往往无法满足要求。

基于MATLAB的锁相环非线性分析_微分方程法

基于MATLAB的锁相环非线性分析_微分方程法

基于MATLAB的锁相环非线性分析_微分方程法论文导读::利用MATLAB强大的绘图功能(4):。

基于MATLAB的锁相环非线性分析。

论文关键词:锁相环,微分方程法,非线性,MATLAB引言:锁相环是一种相位反馈的闭环自动控制系统[1],环路锁定之后,平均稳态频差等于零,稳态相差为固定值,锁相环的这一重要特征使其在电视、通信、雷达、遥测遥感、测量仪表,特别是在人造卫星和宇宙飞船的无线电系统中,得到了广泛应用[2]。

近年来,锁相环路的研究日趋深入,应用更加广泛。

由于鉴相器模型是非线性的,所以锁相环是一个非线性系统[3],很难用传统的解析方法来分析微分方程法,因而我们求助于仿真。

下面我们使用微分方程法来分析一个二阶锁相环的非线性特性。

1.锁相环模型1.1锁相环框图锁相环基本模型如图1所示[4]。

假设输入信号为(1)而压控振荡器的输出信号表达式假设为(2)锁相环的就是使VCO的相位与输入信号的相位同步,使得他们的相位差很小[5]图1.锁相环框图1.2鉴相器模型开发锁相环模型的第一步就是建立鉴相器的模型。

鉴相器的特性在很大程度上决定着锁相环的工作特性[6]。

有许多种不同类型的鉴相器,而选择在特定环境下所使用的鉴相器模型取决于具体的应用。

最常见的鉴相器模型就是正弦鉴相器,它的输出与输入信号的相位差的正弦成正比。

正弦鉴相器可以看成是有一个乘法器和一个低通滤波器组成的[7],则鉴相器输出信号为(3)其中,称为相位差论文开题报告范文。

我们希望VCO的输出相位是输入相位的一个估计,因此,锁相环正常工作要求相位差趋于零。

在稳态时,相位差是否为零取决于输入信号和环路滤波器[8] 。

使用传递函数为F(s)而单位冲击响应为f(t) 的环路滤波器,对鉴相器输出进行滤波。

这样,VCO的输入为(4)由定义,VCO的输出频率偏差与VCO的输入信号成正比,这样(5)式中,是VCO常数,单位。

带入上面式子可得到(6)式中。

1.3非线性相位模型从6式可以看出,与之间的关系与载波频率完全没有关系,因此仿真模型中不需要考虑载波频率。

第7章 非线性控制系统分析 《自动控制原理实验教程(硬件模拟与MATLAB仿真)》课件

第7章  非线性控制系统分析 《自动控制原理实验教程(硬件模拟与MATLAB仿真)》课件

N
1 (X
)
,则非线性系统
稳定,
若曲线
G( j)包围
1 N(X )
曲线,则非线性系统不
稳定。
若曲线
G( j)

N
1 (X
)
曲线相交,则系统存在周
期运动(振荡)。如果这个振荡是稳定的,则称
之为自振点。
2020/11/10
自动控制原理实验教程
3)非线性系统是否存在自振点(自激振荡)的
判别方法
非线性部分的幅相频率特性(奈氏图)把复平面
点数为P时,


G( j)
曲线逆时针包围整个
1 N (X
)
曲线P/2
周,则该非线性系统是稳定的,否则是不稳定
的。
2020/11/10
自动控制原理实验教程
7.4 非线性系统描述函数法分析

若曲线 G( j) 与曲线 1 没有交点,则系统 N(X )
不存在周期性的等幅振荡。

若曲线 G(j)与曲线 1 有交点,则非线性 N(X )
2020/11/10
自动控制原理实验教程
7.4 非线性系统描述函数法分析
(2)用描述函数法分析非线性系统的稳定性和自 振
在描述函数法中,可根据非线性控制系统中非线性部 分的频率特性曲线(奈氏图)和非线性部分的负倒描 述函数 1 的相对位置来判断非线性系统的稳定性。
N(X )
1)当线性部分传递函数 G(s) 在s右半平面有极
2020/11/10
自动控制原理实验教程
plot ( t , x ) 给定函数向量x,时间向量t,在直角坐标系中绘图。 plot ( x ( :, 2) , x ( :, 1) ) 命令用来绘制相平面图。[y , x , t ] =

基于MATLAB的非线性电路模型分析与仿真.doc

基于MATLAB的非线性电路模型分析与仿真.doc

基于MATLAB的非线性电路模型分析与仿真目录ﻭ中文摘要1前言1ﻭ1非线性电路中的混沌现象原理21。

1非线性电路中的混沌及其特征2ﻭ1。

2 非线性电路中的混沌产生的机理和条件3ﻭ2非线性电路的分析与仿真算法42.1非线性元件的分段线性化法42.2非线性电路的仿真算法4ﻭ3非线性电路模型分析与仿真43.1。

1 蔡氏电路的电路模型5ﻭ3。

1.23。

1 3阶蔡氏电路4ﻭ蔡氏电路的MATLAB仿真73。

23阶变形蔡氏电路103.2.1变形蔡氏电路的电路模型10ﻭ3.2.2变形蔡氏电路的MATLAB仿真 133。

3.3 仿真结果154 非线性电路通向混沌的道路18ﻭ结论1819ﻭ英文摘要19ﻭ致谢20基于MATLAB的非线性电路模型分析与仿真ﻭ摘要:近20年来,由于计算机技术的高度,使得对于混沌的研究成为当今科学研究的前沿,并成1门新兴的学科。

本文从理论分析与仿真两个角度分别研究非线性电路中的混沌现象。

简要介绍了混沌及其特征,混沌产生的机理和条件,以及非线性电路分析仿真的算法。

在分析与仿真蔡氏电路的基础上,构造1个变形蔡氏电路模型,对其电路的非线性元件利用分段线性化方法处理,接着利用非线性电路模型的仿真算法4阶龙格—库塔算法,并用MATLAB编程语言对该非线性微分方程进行分析与仿真该变形蔡氏电路通向混沌的道路。

结果表明该变形蔡氏电路也和蔡氏电路1样,在不同的参数下存在有丰富的分岔和混沌现象,并在特定参数下存在所谓的“双涡卷"混沌吸引子。

ﻭ:混沌;4阶龙格-库塔算法;非线性电路模型;MATLAB仿真分析。

ﻭAnalysis and Simulation byMATLAB in Nonlir uit delAbstract: In recent 20 years, because of the development of puter technology, os research has bee t he advanced sitionsof science research,andos has been a new academic subject.The osphe nomenon in nonlir uit is studied by MATLABsimulation and theoretical analysis in the paper. This paper introduces simplyos and its racteristic, theos output me and condition, and the calculable method of analytic simulation ofnonlir uit. In the foundation of the analysisand simulation ofChua'suit, a dified Chua’s uit del isconstructed. Its nonlir nent is p rocessed using the way of the segment ling。

Matlab中的非线性系统与非线性控制方法

Matlab中的非线性系统与非线性控制方法

Matlab中的非线性系统与非线性控制方法引言:随着科技的飞速发展,非线性系统的研究日益重要。

由于现实世界中的多数系统都是非线性的,对非线性系统的建模和控制方法的研究具有重要意义。

其中,Matlab作为一种强大的数学工具和编程语言,为非线性系统的研究和控制提供了许多便利。

本文将探讨在Matlab中对非线性系统进行建模和控制所涉及的方法。

1. 非线性系统的建模1.1 基于物理模型的建模方法对于一些具备明确物理背景的系统,可以通过基于物理模型的建模方法来描述其非线性行为。

这种方法涉及到对系统的物理量进行建模,例如质量、速度、力等。

在Matlab中,可以利用欧拉法、龙格-库塔法等数值求解方法来模拟这些物理量的变化,并得到非线性系统的状态方程。

1.2 基于数据的建模方法对于一些复杂的非线性系统,基于物理模型的建模方法可能会过于复杂或困难。

此时,可以利用基于数据的建模方法来无需事先了解系统的内部机制,仅通过收集和分析系统的输入和输出数据来推断出系统的数学模型。

在Matlab中,可以使用系统辨识工具箱来进行数据建模,例如最小二乘法、极大似然法等。

2. 非线性系统的控制方法2.1 经典控制方法经典控制方法是一些传统的线性控制方法在非线性系统中的应用。

例如,PID控制器是一种经典的反馈控制器,可以通过调整其参数来实现对系统的稳定性和性能的调节。

在Matlab中,可以使用控制系统工具箱中的函数来设计和分析PID控制器在非线性系统中的应用效果。

2.2 反演控制方法反演控制是一种基于非线性系统的逆模型设计的控制方法。

它通过将非线性系统建模为一个反演模型,并通过计算所需的控制输入来实现对系统的控制。

在Matlab中,可以使用反演控制工具箱来进行非线性系统的反演建模和控制。

2.3 自适应控制方法自适应控制是一种能够自动调整控制器参数的控制方法,以适应非线性系统的动态变化。

在Matlab中,可以使用自适应控制工具箱来设计和调整自适应控制器的参数。

第八章非线性控制系统的分析

第八章非线性控制系统的分析
否则,必须考虑死区的影响。而在工程实际中,有时为了提高系统的抗干扰能力,
会有意引入或增大死区。
3.间隙特性(滞环特性)
间隙特性的静特性曲线如图8.4所示,其数学表达式为
(8.3)
式中,a为间隙宽度,K为比例系数(线性段斜率),(t)=dx(t)/dt。

8.1
非线性控制系统概述
间隙特性是一种非单值特性,表现为正向特性与反向特性不是重叠在一起,而是在输入—输出曲线上出现
性具有明显的饱和非线性。
上述伺服电动机的非线性是因为使用的磁性材料具有非线性,
因此当输入电压超过一定数值时,伺服电动机的输出转矩就出现饱和现
象。实际上,由于伺服电动机还存在摩擦力矩和负载力矩,因此只有当
输入电压达到一定数值时,伺服电动机才会转动,即存在不灵敏区。所
以,伺服电动机的实际静特性是同时具有不灵敏区与饱和的非线性特性。
2.死区(不灵敏区)特性
死区特性的静特性曲线如图8.3所示,其数学表达式为
(8.2)
式中,a为死区宽度,K为线性输出斜率。
死区特性的特点是,当系统或环节有输入信号,但尚未超过数值a时,
无相应的信号输出。
死区特性在控制系统中也较为常见,一般的测量元件和执行机构都具
图8.3
死区特性
图8.4
间隙特性
有死区特性。当死区很小或对系统性能不会产生不利影响时,可以忽略不计。
现的这种周期运动即为自激振荡。自激振荡是非线性控制系统特有的,是非线性控制理论研究的重要问题。
8.1
非线性控制系统概述
8.1.4
非线性控制系统的分析与设计方法
描述非线性控制系统的基本数学模型是非线性微分方程,对非线性控制系统进行分析的重点是系统稳定性

利用Matlab进行控制系统设计和分析

利用Matlab进行控制系统设计和分析

利用Matlab进行控制系统设计和分析控制系统是各个工程领域中不可或缺的一部分。

它可以用来控制机器人、飞行器、电机以及其他众多的实际工程应用。

Matlab作为一种功能强大的数值计算软件,提供了丰富的工具和函数来进行控制系统设计和分析。

本文将介绍如何利用Matlab来进行控制系统的设计和分析。

一、控制系统基本概念在开始之前,我们先来了解一些控制系统的基本概念。

控制系统由三个基本组成部分构成:输入、输出和反馈。

输入是指信号或者指令,输出则是系统对指令的响应,而反馈则是输出信号对系统输入的影响。

二、Matlab中的控制系统工具箱Matlab提供了专门用于控制系统设计和分析的工具箱。

其中最重要的是Control System Toolbox。

该工具箱中包含了一系列用于控制系统设计和分析的函数和工具。

使用Control System Toolbox,我们可以很方便地进行控制系统的建模、设计和分析。

三、控制系统的建模控制系统的建模是指将实际系统抽象为数学模型。

在Matlab中,我们可以使用State Space模型、Transfer Function模型以及Zero-Pole-Gain模型来描述控制系统。

1. 状态空间模型状态空间模型是一种常用的描述系统动态响应的方法。

在Matlab中,我们可以使用stateSpace函数来创建状态空间模型。

例如,我们可以通过以下方式创建一个简单的二阶状态空间模型:A = [0 1; -1 -1];B = [0; 1];C = [1 0];D = 0;sys = ss(A, B, C, D);2. 传递函数模型传递函数模型是另一种常用的描述系统动态响应的方法。

在Matlab中,我们可以使用tf函数来创建传递函数模型。

例如,我们可以通过以下方式创建一个简单的一阶传递函数模型:num = 1;den = [1 2];sys = tf(num, den);3. 零极点增益模型零极点增益模型是用来描述系统频域特性的一种方法。

如何使用Matlab进行非线性优化问题求解

如何使用Matlab进行非线性优化问题求解

如何使用Matlab进行非线性优化问题求解概述:非线性优化问题在科学、工程和经济等领域中具有重要的应用价值。

Matlab作为一种有效的数值计算软件,提供了许多工具和函数可以用于解决非线性优化问题。

本文将介绍如何使用Matlab进行非线性优化问题求解,以帮助读者更好地利用这一强大的工具。

1. 定义非线性优化问题:非线性优化问题是指目标函数和约束条件中存在非线性函数的优化问题。

一般可表示为:min f(x)s.t. g(x) ≤ 0h(x) = 0其中,f(x)为目标函数,g(x)为不等式约束条件,h(x)为等式约束条件,x为待求解的变量。

2. 准备工作:在使用Matlab求解非线性优化问题之前,需要先准备好相应的工作环境。

首先,确保已安装了Matlab软件,并具备一定的编程基础。

其次,熟悉Matlab中的优化工具箱,该工具箱提供了各种用于求解优化问题的函数和工具。

3. 使用fmincon函数求解非线性优化问题:在Matlab中,可以使用fmincon函数来求解非线性优化问题。

该函数的基本语法如下:[x,fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)其中,fun为目标函数的句柄或字符串,x0为初始解向量,A、b为不等式约束条件的系数矩阵和常数向量,Aeq、beq为等式约束条件的系数矩阵和常数向量,lb、ub为变量的下界和上界,nonlcon为非线性约束条件的函数句柄或字符串,options为优化选项。

4. 设计目标函数和约束条件:在使用fmincon函数求解非线性优化问题之前,需要设计好目标函数和约束条件。

目标函数应根据实际问题进行建模,为求解问题提供一个优化目标。

约束条件则用于限制解的取值范围,可包括等式约束和不等式约束。

5. 设置初始解向量:在使用fmincon函数求解非线性优化问题时,需要设置一个合适的初始解向量x0。

初始解向量的选择可能对求解结果产生影响,因此可以根据问题的特点和求解经验来选择一个合适的初值。

matlab非线性控制系统分析

matlab非线性控制系统分析
第六页,共43页。
16.2 非线性特性模块的构建及示例
• 典型的非线性特性有死区非线性、饱和非线性、 间隙非线性、继电非线性等。Simulink给出了 部分非线性特性模块。这在Simulink一章中已 列出。在系统仿真中可以直接使用。但对于没 有提供的模块则需要我们自己构建。那么如何 根据需要构建任意的非线性模块呢?事实上, 任意的静态非线性模块,无论其是单值非线性, 还是多值非线性,都可以由Simulink构建,并 直接用于仿真。
第二十五页,共43页。
4.开始仿真。
相轨迹可以直接观察XYGraph输出,也可使用输出到工作空间的参数绘制, 如图16.11所示。
>> plot(simout(:,1),simout1(:,1)) >> grid
图16.11 例3输出的相轨迹
第二十六页,共43页。
• 系统阶跃响应输出如图16.12所示。
主要内容
• 原理要点 • 非线性系统概述 • 相平面法 • 描述平面法
第一页,共43页。
• 原理要点 • 非线性系统的研究方法由于系统的复杂性和多
样性而成为控制界的研究热点,从而产生了很 多理论方法。比较基本的有李雅普诺夫第二法, 小范围线性近似法,描述函数法,相平面法, 计算机仿真等等。
第二页,共43页。
第二十八页,共43页。
1. 描述函数法的定义:
设非线性环节的输入输出关系为 y f (x)
非线性环节输入正弦信号 x(t)Asin(t)
非线性环节的输出通常也为周期信号,可以分解为傅立叶级数
y (t) A 0 (A nc o sn t B nsin n t) A 0 Y nsin (n t n )
图16.9 例3的Simulink模型
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 例1:构建如图16.1分段线性的非线性特性模块。
(3,1) (4,1) (-1,0) (2,0) (-3,-1) (-2,-1)
图16.1 例1非线性特性
1.新建一个空白模型。在模型中添加子模块集Lookup Tables中 的Lookup Table模块。 2.设置模块属性。双击Lookup Table模块进入其属性设置窗口, 如图16.2,并添加非线性特性值。其中,Vector of input values栏为横坐标向量,而Table data栏为纵坐标向量。需要 注意的是,如果仅添加了图中的所有转折点坐标,则位于最左 侧与最右侧外边的特性将无法表现。因此还应该在特性曲线的 两侧再找两点,从而完整地表现非线性特性。根据非线性函数, 位于最左侧转折点(-3,-1)之外的点取为(-4,-2),位于最右侧 转折点(4,1)之外的点取为(5,2)。
0
0.2
0.4
0.6
0.8
1
1.2
1.4
图16.11 例3输出的相轨 迹
• 系统阶跃响应输出如图16.12所示。
图16.12 系统阶跃响应输出
由16.11分析可知,系统的稳定点在(1,0)点,即稳态值为1。
16.4 描述函数法
16.4.1 描述函数法概述 P.J.Daniel于1940年首先提出了描述函数法。非线性特性的 描述函数法是线性部件频率特性在非线性特性中的推广。 它是对非线性特性在正弦信号作用下的输出进行谐波线性 化处理之后得到的,是非线性特性的一种近似描述。
inrease
decrease
simout To Workspace
>= Sine Wave Relational Operator Memory Scope Switch
图16.7 例2非线性特性在正弦输入的Simulink模型
• 本例给定输入为正弦信号,其幅值分别设为2、 4,其输出可以用示波器模块直接观察,也可 以输出到工作空间后,使用plot函数绘制。其 Simulink模型如图16.7。本例输出到工作空间 变量名设为simout,其保存格式设为Array, 在命令窗口使用plot函数绘制,运行结果如图。 >> plot(tout,simout(:,1),tout,simout(:,2))
2
0
很小,则非线性环节的输出近似为
y (t ) Y1 sin(t 1 )
• 可见,其近似结果和线性环节频率响应形式相似,依 照线性环节的频率特性的定义,非线性环节的输入输 出特性可由描述函数表示:
N ( A) N ( A) e
jN ( A)
B1 jA1 Y1 j1 e A A
(3,2)
(2,2)
(-1,0) (2,0)
(-2,0) (1,0)
(-2,-2)
(-3,-2)
(a) 输入上升分支
(b) 输入下降分支
图16.4 特性分解后的两个单值函数
输入上升分支
输入下降分支
1 In 1
>= Relational Operator Memory Switch
1 Out1
ห้องสมุดไป่ตู้
图16.5 例2非线性特性的Simulink模型
16.1 非线性系统概述
• 含有非线性元件或环节的控制系统称为非线性控制 系统。
• 一般非线性系统的数学模型可表示为: d n x(t ) d n 1 x(t ) dx(t ) d mu (t ) F[ , ,..., , x(t ), ,..., u(t )] 0 n n 1 m dt dt dt dt 写成多变量的形式为:
N ( A)

1 被 N ( A)
G( j )
包围,则系统是不稳定的系统。
G( j )包围的区域称为不稳定区域,不包围的区域称为稳定区域。
1 沿着 G( j) ,则在交点处,若 N ( A) A 值增加的方向由不稳定区域进入稳定区域,则自激振荡是稳 定的,否则,自激振荡是不稳定的。
1 如果 N ( A) 与
n 1 n 1
其中,为直流分量,和是第n次谐波的幅值和相角, 且有
An
Bn

1
0
1
2
0
y (t ) cos ntd (t ), n 0,1,...

2
y(t )sin ntd (t ), n 1, 2,...
2
An Yn An Bn , n arctan Bn 若 A 0 ,且 n 1 Yn 时
1. 描述函数法的定义: 设非线性环节的输入输出关系为 非线性环节输入正弦信号

x(t ) A sin(t )

y f ( x)
非线性环节的输出通常也为周期信号,可以分解为傅立叶级数
y(t ) A0 ( An cos nt Bn sin nt ) A0 Yn sin(nt n )
图16.2 非线性特性属性设置窗口
例2:构建如图16.3的回环非线性特性模块。
(2,2) (3,2)
(-2,0) (-1,0) (1,0) (2,0)
(-3,-2) (-2,-2)
图16.3 例2非线性特性
• 分析:该特性在输入信号增加时走一条折线,而在输入信号减小 时走另一条折线。可以将特性分解为两个单值函数。如图16.4。 • 根据例1的结果,这两个单值函数都可以用查表模块实现。这里 有两个问题需要解决。一是如何判断输入是增加还是减小?在判 断输入信号是否为增加时,可通过比较输入信号的当前值和它的 上一步值进行判断。而Simulink离散模块组中提供的Memory模 块,可以用来记忆上一个计算步长的信号值,这样将输入信号的 当前值和它的上一步值分别作为比较模块(Relational Operator) 的输入,即可输出代表上升还是下降的逻辑值1 和0。二是如何 控制特性曲线走不同折线?Simulink中的Signal Routing子模 块组中Switch模块,使用比较模块的输出作为输入控制,即可 使模块对输入信号的不同变化走不同折线。具体实现如图16.5:
MATLAB 与控制系统仿真实践
第16章 非线性控制系统分析
主要内容
• • • • 原理要点 非线性系统概述 相平面法 描述平面法
• 原理要点 • 非线性系统的研究方法由于系统的复杂性和多 样性而成为控制界的研究热点,从而产生了很 多理论方法。比较基本的有李雅普诺夫第二法, 小范围线性近似法,描述函数法,相平面法, 计算机仿真等等。
图16.10 仿真参数设置窗口
4.开始仿真。 相轨迹可以直接观察XYGraph输出,也可使用输出到工作空间的 参数绘制,如图16.11所示。
>> plot(simout(:,1),simout1(:,1)) >> grid
0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -0.1
对于非线性控制系统的描述函数分析方法,常用的负倒 描述函数为:
1 1 jN ( A ) e N ( A) N ( A)
对于如图16.13 的等效非线性系统, G( j ) 且 在开环幅相平面上无右半平面的极点,稳定性判据为: 1 不被 G( j ) 包围,则系统是稳定的,如果 如果
X (t ) f [ X (t ), U (t ), t ]

• 在F与f函数中,如果相应的算子为线性, 则称为线性系统,否则称为非线性系统。 如果不显含t,则为时不变系统,若显含t, 则称为时变系统。 • 非线性系统输出暂态响应曲线的形状与 输入信号的大小和初始状态有关,非线 性系统的稳定性亦与输入信号的大小和 初始状态有关。非线性系统常会产生持 续振荡。
• 相平面法是一种求解二阶以下线性或非线 性微分方程的图解方法。 • 对于形如下式的二阶系统

x f ( x, x ) 0

• 涉及的概念有: • 1. 相平面:以为横坐标,为纵坐标的直角坐标平面 构成相平面。 • 2. 相轨迹:以时间为参变量,由表示运动状态的分 别作为横坐标和纵坐标而绘制的曲线称为相轨迹, 每根相轨迹与起始条件有关。表示了质点在时刻的 位置和速度。 • 3. 相平面图:同一系统,不同初始条件下的相轨迹 是不同的。由所有相轨迹组成的曲线族所构成的图 称为相平面图。
16.2 非线性特性模块的构建及示例
• 典型的非线性特性有死区非线性、饱和非线性、 间隙非线性、继电非线性等。Simulink给出了 部分非线性特性模块。这在Simulink一章中已 列出。在系统仿真中可以直接使用。但对于没 有提供的模块则需要我们自己构建。那么如何 根据需要构建任意的非线性模块呢?事实上, 任意的静态非线性模块,无论其是单值非线性, 还是多值非线性,都可以由Simulink构建,并 直接用于仿真。
10 s+4 Step Saturation Transfer Fcn
1 s Integrator
XY Graph
Scope
图16.9 例3的Simulink模型
• 3.设置仿真参数。如图16.10,将Solver options下的Type 项选为Fixed-step,Solver项选ode5(Dormand-Prince), Fixed-step size 设为0.01。
1. 典型的非线性特性 典型的非线性特性有死区非线性、饱和非线性、间隙非线性、 继电非线性等。Simulink给出了部分非线性特性模块。用 户也可以自行构建非线性特性模块。 2. 非线性控制系统 含有非线性元件或环节的控制系统称为非线性控制系统。 非线性系统输出暂态响应曲线的形状与输入信号的大小和初 始状态有关,非线性系统的稳定性亦与输入信号的大小和 初始状态有关。非线性系统常会产生持续振荡。
3. 描述函数法 非线性特性的描述函数法是线性部件频率特性在非线性特 性中的推广。它是对非线性特性在正弦信号作用下的输 出进行谐波线性化处理之后得到的,是非线性特性的一 种近似描述。 4. 用描述函数研究系统的稳定点的方法 用描述函数研究系统的稳定点的方法,是建立在线性系统 Nyquist稳定判据基础上的一种工程近似方法。其基本思 想是把非线性特性用描述函数来表示,将复平面上的整 个非线性曲线()理解为线性系统分析中的临界点,再将线 性系统有关稳定性分析的结论用于非线性系统。
相关文档
最新文档