条件概率与独立事件、二项分布练习题及答案

合集下载

条件概率与独立事件、二项分布练习题及答案

条件概率与独立事件、二项分布练习题及答案

4 B.B.223 C.C.335 D.123.(2011·湖北高考)如图,用K 、A 1、A 2三类不同的元件连接成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为() A .0.960 B .0.864 C .0.720 D .0.576 4.(2011·辽宁高考)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( ) A.18B.14C.25D.125.(2012·山西模拟)抛掷一枚硬币,出现正反的概率都是12,构造数列{a n },使得a n =îïíïì1 (第n 次抛掷时出现正面),-1 (第n 次抛掷时出现反面),记S n =a 1+a 2+…+a n (n ∈N *),则S 4=2的概率为( ) A.116 B.18 C.14D.126.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是( ) A.12B.13C.14D.257.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为________. 8.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于条件概率与独立事件、二项分布1.(2012·广东汕头模拟)已知某射击运动员,已知某射击运动员,每次击中目标的概率都是每次击中目标的概率都是0.8,则该射击运动员射击4次至少击中3次的概率为( ) A .0.85B .0.819 2 C .0.8 D .0.75 2.(2011·广东高考)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ) A.A.33________.9.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的一粒,则这粒种子能成长为幼苗的概率概率为________.10.(2012·厦门质检)从装有大小相同的3个白球和3个红球的袋中做摸球试验,每次摸出一个球.如果摸出白球,则从袋外另取一个红球替换该白球放入袋中,则从袋外另取一个红球替换该白球放入袋中,继续做下一次摸球继续做下一次摸球试验;如果摸出红球,则结束摸球试验.试验;如果摸出红球,则结束摸球试验.(1)求一次摸球后结束试验的概率P 1和两次摸球后结束试验的概率P 2; (2)记结束试验时的摸球次数为X ,求X 的分布列.的分布列.11.某地区为下岗人员免费提供财会和计算机培训,某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,以提高下岗人员的再就业能力,以提高下岗人员的再就业能力,每名下每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.相互之间没有影响.(1)任选1名下岗人员,求该人参加过培训的概率;名下岗人员,求该人参加过培训的概率;(2)任选3名下岗人员,记X 为3人中参加过培训的人数,求X 的分布列.的分布列.12.学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱) (1)求在1次游戏中,①摸出3个白球的概率;②获奖的概率;个白球的概率;②获奖的概率; (2)求在2次游戏中获奖次数X 的分布列.的分布列.2;第二类,需比赛2局,第一局甲负,第二局甲赢,其概率P 2=12×12=14.故甲队获得冠军的概率为P 1+P 2=34. 3.选B 可知K 、A 1、A 2三类元件正常工作相互独立.所以当A 1,A 2至少有一个能正常工作的概率为P =1-(1-0.8)2=0.96,所以系统能正常工作的概率为P K ·P =0.9×0.96=0.864. 4.选B P (A )=C 23+C 2C 25=410=25,P (A ∩B )=C 2C 25=1)=110410=14. 5.选C 依题意得知,“S 4=2”表示在连续四次抛掷中恰有三次出现正面,因此“S 4=2”的概率为C 34èæøö123·12=14. 6.选C 设“甲、乙二人相邻”为事件A ,“甲、丙二人相邻”为事件B ,则所求概率为P (B |A ),由于P (B |A )=P (AB )P (A ),而P (A )=2A 44A 55=25,AB 是表示事件“甲与乙、丙都相邻”,故P (AB )=2A 33A 5=110,于是P (B |A )=11025=14. 7.解析:设该队员每次罚球的命中率为p , 则1-p 2=1625,p 2=925.又0<p <1.所以p =35. 答案:358.解析:此选手恰好回答4个问题就晋级下一轮,说明此选手第2个问题回答错误,第3、第4个问题均回答正确,第1个问题答对答错都可以.因为每个问题的回答结果相互独立,故所求的概率为1×0.2×0.82=0.128. 答案:0.128 9.解析:设种子发芽为事件A ,种子成长为幼苗为事件B .出芽后的幼苗成活率为P (B |A )=0.8,P (A )=0.9. 故P (AB )=0.9×0.8=0.72. 答案:0.72 10.解:(1)一次摸球结束试验的概率P 1=36=12;两次摸球结束试验的概率 P 2=36×46=13. 1.选B P =C 34×0.83×0.2+C 44×0.84=0.819 2. 2.选A 问题等价为两类:第一类,第一局甲赢,其问题等价为两类:第一类,第一局甲赢,其概率概率P 1=110. 由条件概率计算公式,得P (B |A )=P (A ∩B )P (A1,=1,=3×2×5=5,=3×2×1×6=1X 1 2 3 4 P1213536136X 0 1 2 3 P0.0010.0270.2430.729 =C 3C 2·C 2C 2=15. =C 3C 2·C 2C 2+C 3C 2C 2·C 2C 2=12,且=12+15=710. øö,710øö-7102=9100;C 12710×øö-710=2150;èæøö710=49100. X 0 1 2 P9100215049100(A B )(A )·(B )。

高中数学二项分布例题

高中数学二项分布例题

高中数学二项分布例题二项分布适用于一系列独立重复试验,每次试验只有两种结果,通常称为“成功”和“失败”。

设每次试验成功的概率为p,失败的概率为1p,进行n次试验后,成功的次数X遵循二项分布,其概率质量函数为:P(X = k) = C(n, k) p^k (1 p)^(n k)其中,C(n, k)表示从n次试验中选取k次成功的组合数。

例题一:简单二项分布的应用在一项产品质量检验中,某种产品合格率为80%。

若随机抽取10件产品,求其中恰好8件合格的概率。

解:此问题可以看作进行10次独立试验,每次试验成功的概率p 为0.8,失败的概率为0.2,n为10,k为8。

根据二项分布的概率质量函数,可以计算如下:P(X = 8) = C(10, 8) (0.8)^8 (0.2)^2计算组合数C(10, 8) = 45,带入公式后得:P(X = 8) = 45 (0.8)^8 (0.2)^2 ≈ 0.1937。

恰好8件合格的概率约为19.37%。

例题二:计算不超过某个成功次数的概率在一场考试中,某学生在过去的测试中,答对题目的概率为0.7。

若该学生参加5次测试,求至少有3次答对的概率。

解:求至少有3次答对的概率,可以通过计算0到2次答对的概率并用1减去得到:P(X ≥ 3) = 1 P(X ≤ 2)计算P(X ≤ 2):P(X = 0) = C(5, 0) (0.7)^0 (0.3)^5 = 1 1 0.00243 ≈ 0.0024。

P(X = 1) = C(5, 1) (0.7)^1 (0.3)^4 = 5 0.7 0.0081 ≈ 0.028.P(X = 2) = C(5, 2) (0.7)^2 (0.3)^3 = 10 (0.49) 0.027 ≈ 0.1323。

P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2) ≈ 0.0024 + 0.028 + 0.1323 ≈ 0.1627。

(完整版)条件概率独立事件习题

(完整版)条件概率独立事件习题

条件概率与独立事件习题课1.抛掷红、蓝两颗骰子,设事件A为“蓝色骰子的点数为3或6”,事件B为“两颗骰子的点数之和大于8”则P(B|A)的值为()A .B .C .D .2.从1~9这9个正整数中任取2个不同的数,事件A为“取到的2个数之和为偶数”,事件B为“取到的2个数均为偶数”,则P(B|A)=()A .B .C .D .3.10件产品中有5件次品,从中不放回的抽取2次,每次抽1件,已知第一次抽出的是次品,则第二次抽出的是正品的概率()A .B .C .D .4.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为和P,且甲、乙两人各射击一次得分之和为2的概率为.假设甲、乙两人射击互不影响,则P值为()A .B .C .D .5.若甲以10发8中,乙以10发6中,丙以10发7中的命中率打靶,三人各射击一次,则三人中只有一人命中的概率是.二.解答题6.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求重量超过505克的产品数量.(2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列.(3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.(删)7.2013年12月21日上午10时,省会首次启动重污染天气Ⅱ级应急响应,正式实施机动车车尾号限行,当天某报社为了解公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]频数510151055赞成人数469634(Ⅰ)完成被调查人员的频率分布直方图;(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行进行追踪调查,记选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列8.盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布.9.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(Ⅰ)求甲在3局以内(含3局)赢得比赛的概率;(Ⅱ)记X为比赛决出胜负时的总局数,求X的分布列.10.甲、乙两人独立破译一个密码,他们能独立译出密码的概率分别为和.(I)求甲、乙两人均不能译出密码的概率;(II)假设有4个与甲同样能力的人一起独立破译该密码,求这4人中至少有3人同时译出密码的概率.条件概率与独立事件答案1.解:设x为掷白骰子得的点数,y为掷黑骰子得的点数,则所有可能的事件与(x,y)建立一一对应的关系,由题意作图,如图.其中事件A为“黑色骰子的点数为3或6”包括12件,P(A)==事件AB包括5件,P(AB)=,由条件概率公式P(B|A)==,2.解:P(A)==,P(AB)==.由条件概率公式得P(B|A)==.3. 解:根据题意,在第一次抽到次品后,有4件次品,5件正品;则第二次抽到正品的概率为P=4.解:设“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B,则“甲射击一次,未击中目标”为事件,“乙射击一次,未击中目标”为事件,则P(A)=,P ()=1﹣=,P(B)=P,P ()=1﹣P ,依题意得:×(1﹣p)+×p=,解可得,p=,故选C.5.解:设出甲,乙,丙,射击一次击中分别为事件A,B,C,∵甲以10发8中,乙以10发6中,丙以10发7中∴甲,乙,丙,射击一次击中的概率分别为:,,∵“三人各射击一次,则三人中只有一人命中”的事件为:,,∴三人各射击一次,则三人中只有一人命中的概率为:=6.解:(1)重量超过505克的产品数量是40×(0.05×5+0.01×5)=12件;(2)Y的所有可能取值为0,1,2;,,,Y的分布列为Y012P(3)从流水线上任取5件产品,重量超过505克的概率为=,重量不超过505克的概为1﹣=;恰有2件产品合格的重量超过505克的概率为•.7.解:(Ⅰ)根据频率=得各组的频率分别是:0.1;0.2;0.3;0.2;0.1;0.1.由组距为10,可得小矩形的高分别为0.01;0.02;0.03;0.02;0.01;0.01.由此得频率分布直方图如图:(Ⅱ)由题意知ξ的所有可能取值为:0,1,2,3.P(ξ=0)=•=;P(ξ=1)=•+•=;P(ξ=2)=•+•=;P(ξ=3)=•=.∴ξ的分布列是:ξ0123Pξ的数学期望Eξ=0×+1×+2×+3×==.8.解(1)一次取2个球共有=36种可能,2个球颜色相同共有=10种可能情况∴取出的2个球颜色相同的概率P=.(2)X的所有可能值为4,3,2,则P(X=4)=,P(X=3)=于是P(X=2)=1﹣P(X=3)﹣P(X=4)=,X的概率分布列为X234P故X数学期望E(X)=9. 解:(Ⅰ)用事件A i表示第i局比赛甲获胜,则A i两两相互独立.…(1分)===.…(4分)(Ⅱ)X的取值分别为2,3,4,5,…(5分)P(x=2)=,P(x=3)=,P(x=4)=,P(x=5)=,…(9分)所以X的分布列为X2345P…(11分)EX==.…(13分)10.解:(I)由题意知本题是一个相互独立事件同时发生的概率,设“甲、乙两人均不能译出密码”为事件A,则P(A)=(1﹣)(1﹣)=即甲、乙两人均不能译出密码的概率是(II)有4个与甲同样能力的人一起独立破译该密码,相当于发生四次独立重复试验,成功的概率是∴这4人中至少有3人同时译出密码的概率为=即这4人中至少有3人同时译出密码的概率为。

二项分布经典例题

二项分布经典例题

二项分布经典例题二项分布是概率统计中的经典概率分布之一,常用于描述二元试验中成功次数的概率分布。

下面我们来看一个经典的例题,通过解答这个例题,可以更深入地理解二项分布的应用。

例题:某制造公司生产一种产品,每天生产的产品中有5%是次品。

现在从该公司的生产线上随机抽取10个产品进行检验,问至少有2个次品的概率是多少?解析:根据题目要求,我们需要计算至少有2个次品的概率。

这就意味着我们需要计算出有2个、3个、4个...一直到全部10个产品都是次品的概率,然后将这些概率相加即可得到答案。

首先,我们来计算有2个次品的概率。

根据二项分布的公式,概率密度函数为P(X=k) = C(n,k) * p^k * (1-p)^(n-k),其中n表示试验次数,k表示成功次数,p表示单次试验的成功概率。

在这个例题中,n=10,k=2,p=0.05。

所以有2个次品的概率为P(X=2) = C(10,2) * (0.05)^2 * (1-0.05)^(10-2) = 0.387420489。

接下来,我们继续计算有3个次品的概率。

同样地,我们可以利用二项分布的公式计算出概率为P(X=3) = C(10,3) * (0.05)^3 *(1-0.05)^(10-3) = 0.282429536。

依此类推,我们可以计算出有4个次品的概率为P(X=4) =0.156920249,有5个次品的概率为P(X=5) = 0.058399961,有6个次品的概率为P(X=6) = 0.015365716,有7个次品的概率为P(X=7) = 0.002812757,有8个次品的概率为P(X=8) = 0.000355036,有9个次品的概率为P(X=9) = 0.000029531,有10个次品的概率为P(X=10) = 0.000001488。

最后,将以上各个概率相加,即可得到至少有2个次品的概率为0.903409091。

通过这个例题的计算,我们可以发现二项分布在描述二元试验中成功次数的概率分布时非常有用。

高中概率分布练习题及讲解

高中概率分布练习题及讲解

高中概率分布练习题及讲解一、基础概念题1. 某班级有40名学生,其中男生20名,女生20名。

随机抽取一名学生,求抽到男生的概率。

2. 一个袋子里有5个红球和3个蓝球,每次抽取一个球后放回。

求连续抽取三次,至少出现一次红球的概率。

3. 一个骰子掷出数字1的概率是多少?二、条件概率题1. 已知一个事件A发生的概率为0.3,另一个事件B在A发生的条件下发生的概率为0.5。

求事件A和B同时发生的概率。

2. 一个班级有50名学生,其中20名是男生,30名是女生。

如果从班级中随机抽取一名学生,发现他是男生,那么他是班级中成绩最好的学生的概率是多少?(假设班级中成绩最好的学生是男生的概率为0.4)三、独立事件题1. 一个袋子里有10个球,其中2个是白球,8个是黑球。

如果从袋子中随机抽取一个球,观察颜色后放回,再抽取一次。

求两次都抽到白球的概率。

2. 一个家庭有两个孩子,假设生男生女的概率各为1/2。

求这个家庭有两个男孩的概率。

四、二项分布题1. 一个硬币连续投掷10次,求至少出现5次正面的概率。

2. 一个学生在10次考试中,每次考试通过的概率为0.7。

求这个学生至少通过8次考试的概率。

五、正态分布题1. 一个班级的学生数学成绩服从均值为80分,标准差为10分的正态分布。

求数学成绩在70到90分之间的学生所占的比例。

2. 一个工厂生产的零件长度服从均值为50厘米,标准差为1厘米的正态分布。

求长度在49到51厘米之间的零件所占的比例。

六、泊松分布题1. 一个电话服务中心平均每小时接到4个电话。

求在任意一个小时内接到6个或更多电话的概率。

2. 一个网站平均每分钟有2个访问者。

求在任意一分钟内有5个或更多访问者的概率。

七、综合题1. 一个班级有50名学生,其中30名是男生,20名是女生。

如果随机抽取5名学生,求至少有3名男生的概率。

2. 一个工厂每天生产100个零件,其中每个零件都是合格品的概率为0.95。

求工厂一天中生产的零件中有超过5个不合格品的概率。

【高中】二项分布经典练习题

【高中】二项分布经典练习题

【高中】二项分布经典练习题问题1假设一枚硬币有50%的概率正面朝上,50%的概率反面朝上。

现在我们投掷这枚硬币10次,问以下问题:1. 正面朝上的次数是多少?2. 反面朝上的次数是多少?问题2某班级有30名学生,其中有60%的学生是女生。

现在我们从这个班级随机选择5名学生,问以下问题:1. 这5名学生中女生的人数是多少?2. 这5名学生中男生的人数是多少?问题3有一个大,里面装有500个小球。

其中有40%的小球是红色的,60%的小球是蓝色的。

现在我们从这个中随机取出20个小球,问以下问题:1. 这20个小球中红色小球的个数是多少?2. 这20个小球中蓝色小球的个数是多少?问题4假设每个人生日的概率是均等的,每年有365天。

现在考虑一个班级有30个学生,问以下问题:1. 这个班级的学生中,至少有两人生日相同的概率是多少?2. 这个班级的学生中,至少有三人生日相同的概率是多少?问题5某公司的质量控制部门进行产品检验,发现其中10%的产品存在缺陷。

现在他们从一个批次中随机选择了100个产品进行检验,问以下问题:1. 这100个产品中存在缺陷的产品数量是多少?2. 这100个产品中没有缺陷的产品数量是多少?问题6假设一个城市的某种传染病的患病率为5%,一天中有1000人去医院就诊。

问以下问题:1. 这1000个人中患有该传染病的数量是多少?2. 这1000个人中没有患有该传染病的数量是多少?以上是关于二项分布的经典练习题,根据题目情况进行分析和计算,可以应用二项分布的知识解决。

二项分布经典例题+练习题

二项分布经典例题+练习题

二项分布1.n 次独立重复试验一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 与A ,每次试验中()0P A p =>。

我们将这样的试验称为n 次独立重复试验,也称为伯努利试验。

(1)独立重复试验满足的条件 第一:每次试验是在同样条件下进行的;第二:各次试验中的事件是互相独立的;第三:每次试验都只有两种结果。

(2)n 次独立重复试验中事件A 恰好发生k 次的概率()P X k ==(1)k kn k nC p p --。

2.二项分布若随机变量X 的分布列为()P X k ==kk n k nCp q -,其中0 1.1,0,1,2,,,p p q k n <<+==则称X 服从参数为,n p 的二项分布,记作(,)XB n p 。

1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。

2.一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是31. (1)设ξ为这名学生在途中遇到红灯的次数,求ξ的分布列; (2)设η为这名学生在首次停车前经过的路口数,求η的分布列; (3)求这名学生在途中至少遇到一次红灯的概率.3.甲乙两人各进行3次射击,甲每次击中目标的概率为21,乙每次击中目标的概率为32.(1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率;(3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和.(Ⅰ)求X的分布列;(Ⅱ)求X的数学期望E(X).2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.)甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(Ⅰ) 求甲获胜的概率;(Ⅱ) 求投篮结束时甲的投篮次数ξ的分布列与期望3.设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜4场则比赛宣告结束,假定,A B在每场比赛中获胜的概率都是12,试求需要比赛场数的期望.3.(2012年高考(辽宁理))电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(Ⅰ)根据已知条件完成下面的22⨯列联表,并据此资料你是否认为“体育迷”与性别有关(Ⅱ)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X .若每次抽取的结果是相互独立的,求X 的分布列,期望()E X 和方差()D X .5.(2007陕西理)某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为54、53、52,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手被淘汰的概率; (Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数数期望.(注:本小题结果可用分数表示) 6. 一批产品共10件,其中7件正品,3件次品,每次从这批产品中任取一件,在下述三种情况下,分别求直至取得正品时所需次数ξ的概率分别布. (1)每次取出的产品不再放回去; (2)每次取出的产品仍放回去;(3)每次取出一件次品后,总是另取一件正品放回到这批产品中.7. (2007山东)设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x 2+bx+c=0实根的个数(重根按一个计). (I )求方程x 2+bx+c=0有实根的概率; (II )求ξ的分布列和数学期望;8.(本题满分12分).活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在A 区域返券60元;停在B 区域返券30元;停在C 区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.(I )若某位顾客消费128元,求返券金额不低于30元的概率; (II )若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X (元),求随机变量X 的分布列和数学期望.湖北理工学院湖北师范学院99 6507 21 1516171819891258934 60 19. (本题满分12分)中国∙黄石第三届国际矿冶文化旅游节将于2012年8月20日在黄石铁山举行,为了搞好接待工作,组委会准备在湖北理工学院和湖北师范学院分别招募8名和12名志愿者,将这20名志愿者的身高编成如下茎叶图(单位:cm)若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有湖北师范学院的“高个子”才能担任“兼职导游”。

高中数学223_独立重复试验与二项分布(一)(有答案)

高中数学223_独立重复试验与二项分布(一)(有答案)

2.2.3 独立重复试验与二项分布(一)一、选择题。

1. 每次试验的成功率为p (0<p <1),重复进行10次试验,其中前7次都未成功后3次都成功的概率为( )A.C 103p 3(1−p )7B.C 103p 3(1−p )3C.p 3(1−p )7D.p 7(1−p )32. 10张奖券中含有3张中奖的奖劵,每人购买1张,则前3个购买者中,恰有1人中奖的概率为( )A.C 103×0.72×0.3B.C 31×0.72×0.3C.310D.3A 72⋅A 31A 1033. 某人有5把钥匙,其中有两把房门钥匙,但忘记了开房门的是哪两把,只好逐把试开,则此人在3次内能开房门的概率是( ) A.1−A 33A 53B.A 32⋅A 21A 53+A 31⋅A 22A 53C.1−(35)3D.C 32×(35)2×(25)+C 31×(35)1×(25)24. 甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )A.C 32(35)3⋅25B.C 32(35)2(23)C.C 43(35)3(25)D.C 43(23)3(13)5. 设两个相互独立事件A 、B 都不发生的概率是19,则A 与B 都发生的概率范围是( )A.[0, 89] B.[19, 59]C.[23, 89]D.[0, 49]6. 一台M 型号的自动机床在1小时内不需要工人照看的概率为0.8,有4台这种型号的自动机床各自独立工作,则在1小时内至多2台机床需要工人照看的概率为( ) A.0.1536B.0.1808C.0.5632D.0.9728二、填空题。

一射手命中10环的概率为0.7,命中9环的概率为0.3,则该射手打3发得到不少于29环的概率为________.(设每次命中的环数都是自然数)一名篮球运动员投篮命中率为60%,在一次决赛中投10个球,则投中的球数不少于9个的概率为________一袋中装有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X次球,则P(X=12)等于________.三、解答题。

最新高中数学二项分布及其应用知识点+练习

最新高中数学二项分布及其应用知识点+练习

高中数学二项分布及其应用知识点+练习二项分布及其应用要求层次重难点条件概率A 了解条件概率和两个事件相互独立的概念,理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.事件的独立性A n 次独立重复试验与二项分布B(一) 知识内容条件概率对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号“(|)P B A ”来表示.把由事件A 与B 的交(或积),记做D A B =(或D AB =).(二)典例分析:【例1】 在10个球中有6个红球,4个白球(各不相同),不放回的依次摸出2个球,在第1次摸出红球的条件下,第2次也摸出红球的概率是( )A .35B .23C .59D .13【例2】 某地区气象台统计,该地区下雨的概率是415,刮风的概率是215,既刮风又下雨的概率是条件概率事件的独立性独立重复实验二项分布高考要求例题精讲知识框架二项分布及其应用板块一:条件概率1,10设A=“刮风”,B=“下雨”,求()(),.P B A P A B【例3】设某种动物活到20岁以上的概率为0.7,活到25岁以上的概率为0.4,求现龄为20岁的这种动物能活到25岁以上的概率.【例4】把一枚硬币抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现反面”,则()_____P B A=.【例5】抛掷一颗骰子两次,在第一次掷得向上一面点数是偶数的条件下,则第二次掷得向上一面点数也是偶数的概率为.【例6】设某批产品有4%是废品,而合格品中的75%是一等品,任取一件产品是一等品的概率是_____.【例7】掷两枚均匀的骰子,记A=“点数不同”,B=“至少有一个是6点”,求(|)P B A.P A B与(|)【例8】甲、乙两班共有70名同学,其中女同学40名.设甲班有30名同学,而女生15名,问在碰到甲班同学时,正好碰到一名女同学的概率?【例9】从1~100个整数中,任取一数,已知取出的—数是不大于50的数,求它是2或3的倍数的概率.【例10】袋中装有21n-个白球,2n个黑球,一次取出n个球,发现都是同一种颜色的,问这种颜色是黑色的概率是多少?【例11】 一袋中装有10个球,其中3个黑球,7个白球,先后两次从袋中各取一球(不放回)⑴已知第一次取出的是黑球,求第二次取出的仍是黑球的概率;⑵已知第二次取出的是黑球,求第一次取出的也是黑球的概率; ⑶已知第一次取出的是黑球,求第二次取出的是白球的概率.【例12】 有两箱同类零件,第一箱内装50件,其中10件是一等品;第二箱内装30件,其中18件是一等品.现从两箱中随意挑出一箱,然后从该箱中先后随机取出两个零件(取出的零件均不放回),试求:⑴先取出的零件是一等品的概率;⑵在先取出的零件是一等品的条件下后取出的仍然是一等品的概率.(保留三位有效数字)【例13】 设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机地取一个地区的报名表,从中先后抽出两份,⑴求先抽到的一份是女生表的概率p .⑵己知后抽到的一份是男生表,求先抽到的是女生的概率q .(一) 知识内容事件的独立性如果事件A 是否发生对事件B 发生的概率没有影响,即(|)()P B A P B =,这时,我们称两个事件A ,B 相互独立,并把这两个事件叫做相互独立事件.如果事件1A ,2A ,…,n A 相互独立,那么这n 个事件都发生的概率,等于每个事件发生的概率的积,即1212()()()()n n P A A A P A P A P A =⨯⨯⨯,并且上式中任意多个事件i A 换成其对立事件后等式仍成立.(二)典例分析:板块二:事件的独立性cba【例14】 判断下列各对事件是否是相互独立事件⑴容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”.⑵一筐内有6个苹果和3个梨,“从中任意取出1个,取出的是苹果”与“把取出的苹果放回筐子,再从筐子中任意取出1个,取出的是梨”.⑶甲组3名男生、2名女生;乙组2名男生、3名女生,今从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”.【例15】 从甲口袋摸出一个红球的概率是13,从乙口袋中摸出一个红球的概率是12,则23是( )A .2个球不都是红球的概率B .2个球都是红球的概率C .至少有一个红球的概率D .2个球中恰好有1个红球的概率【例16】 猎人在距离100m 处射击一只野兔,其命中率为12.如果第一次射击未命中,则猎人进行第二次射击,但距离为150m ;如果第二次又未命中,则猎人进行第三次射击,但在射击瞬间距离野兔为200m .已知猎人命中率与距离的平方成反比,求猎人命中野兔的概率.【例17】 如图,开关电路中,某段时间内,开关a b c 、、开或关的概率均为12,且是相互独立的,求这段时间内灯亮的概率.【例18】 甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112,甲、丙两台机床加工的零件都是一等品的概率为29. 分别求甲、乙、丙三台机床各自加工的零件是一等品的概率.【例19】 椐统计,某食品企业一个月内被消费者投诉的次数为012,,的概率分别为0.4,0.5,0.1 ⑴ 求该企业在一个月内被消费者投诉不超过1次的概率;⑵假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.【例20】某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为45、35、25、15,且各轮问题能否正确回答互不影响.⑴求该选手进入第四轮才被淘汰的概率;⑵求该选手至多进入第三轮考核的概率.【例21】甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.⑴求再赛2局结束这次比赛的概率;⑵求甲获得这次比赛胜利的概率.【例22】纺织厂某车间内有三台机器,这三台机器在一天内不需工人维护的概率:第一台为0.9,第二台为0.8,第三台为0.85,问一天内:⑴3台机器都要维护的概率是多少?⑵其中恰有一台要维护的概率是多少?⑶至少一台需要维护的概率是多少?【例23】为拉动经济增长,某市决定新建一批重点工程,分为基础设施工程、民生工程和产业建设工程三类.这三类工程所含项目的个数分别占总数的12,13,16.现有3名工人独立地从中任选一个项目参与建设.求:⑴他们选择的项目所属类别互不相同的概率;⑵至少有1人选择的项目属于民生工程的概率.【例24】甲、乙两个人独立地破译一个密码,他们能译出密码的概率分别为13和14,求:⑴两个人都译出密码的概率;⑵两个人都译不出密码的概率;⑶恰有1个人译出密码的概率;⑷至多1个人译出密码的概率;⑸至少1个人译出密码的概率.【例25】从10位同学(其中6女,4男)中,随机选出3位参加测验,每位女同学能通过测验的概率均为45,每位男同学能通过测验的概率均为35,试求:⑴选出的3位同学中至少有一位男同学的概率;⑵10位同学中的女同学甲和乙及男同学丙同时被抽到,且三人中恰有二人通过测验的概率.【例26】甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p,且乙投球2次均未命中的概率为116.⑴求乙投球的命中率p;⑵求甲投球2次,至少命中1次的概率;⑶若甲、乙两人各投球2次,求两人共命中2次的概率.【例27】一汽车沿一街道行驶,需要通过三个设有红绿灯的路口,每个信号灯彼此独立工作,且红绿灯信号显示时间相等.以X表示该汽车首次遇到红灯时已通过的路口个数,求X的分布列以及该汽车首次遇到红灯时至少通过两个路口的概率.【例28】甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:⑴2人都射中的概率?⑵2人中有1人射中的概率?⑶2人至少有1人射中的概率?⑷2人至多有1人射中的概率?【例29】(07福建)甲、乙两名跳高运动员一次试跳2米高度成功的概率分别是0.7,0.6,且每次试跳成功与否相互之间没有影响,求:⑴甲试跳三次,第三次才成功的概率;⑵甲、乙两人在第一次试跳中至少有一人成功的概率;⑶甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率.【例30】A、B两篮球队进行比赛,规定若一队胜4场则此队获胜且比赛结束(七局四胜制),A、B两队在每场比赛中获胜的概率均为12,X为比赛需要的场数,求X的分布列及比赛至少要进行6场的概率.【例31】已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.求依方案甲、乙分别所需化验次数的分布列以及方案甲所需化验次数不少于方案乙所需化验次数的概率.【例32】 为防止某突发事件发生,有甲、乙、丙、丁四种相互独立的预防措施可供采用,单独采用甲、乙、丙、丁预防措施后此突发事件不发生的概率(记为P )和所需费预防措施 甲 乙 丙 丁P0.9 0.8 0.7 0.6 费用(万元)90 60 30 10 120万元的前提下,请确定一个预防方案,使得此突发事件不发生的概率最大.【例33】 某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别是a b c ,,,且三门课程考试是否及格相互之间没有影响.⑴ 分别求该应聘者用方案一和方案二时考试通过的概率;⑵ 试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)(一) 知识内容板块三:独立重复试验与二项分布1.独立重复试验如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为()C (1)kk n k n nP k p p -=-(0,1,2,,)k n =.2.二项分布若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是()C k k n kn P X k p q -==,其中0,1,2,,k n =. 于是得到由于表中的第二行恰好是二项展开式0()C C C C n n n n n n q p p q p q p q p q +=++++各对应项的值,所以称这样的离散型随机变量X 服从参数为n ,p 的二项分布,记作~(,)X B n p .(二)典例分析:【例1】 某人参加一次考试,4道题中解对3道则为及格,已知他的解题正确率为0.4,则他能及格的概率为_________(保留到小数点后两位小数)【例2】 某篮球运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率 .(用数值表示)【例3】 接种某疫苗后,出现发热反应的概率为0.80,现有5人接种了该疫苗,至少有3人出现发热反应的概率为 .(精确到0.01)【例4】 甲乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3∶1的比分获胜的概率为( )A .827B .6481C .49D .89【例5】 一台X 型号的自动机床在一小时内不需要人照看的概为0.8000,有四台这种型号的自动机床各自独立工作,则在一小时内至多有2台机床需要工人照看的概率是( )A .0.1536B .0.1808C .0.5632D .0.9728【例6】 某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.⑴求3位购买该商品的顾客中至少有1位采用一次性付款的概率;⑵求3位位顾客每人购买1件该商品,商场获得利润不超过650元的概率.【例7】某万国家具城进行促销活动,促销方案是:顾客每消费1000元,便可获得奖券一张,每张奖券中奖的概率为15,若中奖,则家具城返还顾客现金200元.某顾客消费了3400元,得到3张奖券.⑴求家具城恰好返还该顾客现金200元的概率;⑵求家具城至少返还该顾客现金200元的概率.【例8】某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为56和45,且各株大树是否成活互不影响.求移栽的4株大树中:⑴至少有1株成活的概率;⑵两种大树各成活1株的概率.【例9】一个口袋中装有n个红球(5n≥且*n∈N)和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.⑴试用n表示一次摸奖中奖的概率p;⑵若5n=,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;⑶记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P.当n取多少时,P最大?【例10】已知随机变量ξ服从二项分布,1~(4)3Bξ,,则(2)Pξ=等于____【例11】已知随机变量ξ服从二项分布,1~(6)3Bξ,,则(2)Pξ=等于()A.316 B.4243C.13243D.80243【例12】从一批由9件正品、3件次品组成的产品中,有放回地抽取5次,每次抽一件,求恰好抽到两次次品的概率(结果保留2位有效数字).【例13】袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是13,从B中摸出一个红球的概率为p.⑴从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止.①求恰好摸5次停止的概率;②记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布.⑵若A B,两个袋子中的球数之比为1:2,将A B,中的球装在一起后,从中摸出一个红球的概率是25,求p的值.【例14】设在4次独立重复试验中,事件A发生的概率相同,若已知事件A至少发生一次的概率等于6581,求事件A在一次试验中发生的概率.【例15】我舰用鱼雷打击来犯的敌舰,至少有2枚鱼雷击中敌舰时,敌舰才被击沉.如果每枚鱼雷的命中率都是0.6,当我舰上的8个鱼雷发射器同是向敌舰各发射l枚鱼雷后,求敌舰被击沉的概率(结果保留2位有效数字).【例16】某厂生产电子元件,其产品的次品率为5%,现从一批产品中的任意连续取出2件,求次品数ξ的概率分布列及至少有一件次品的概率.【例17】某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是12.若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助.求:⑴该公司的资助总额为零的概率;⑵该公司的资助总额超过15万元的概率.【例18】射击运动员李强射击一次击中目标的概率是0.8,他射击3次,恰好2次击中目标的概率是多少?【例19】设飞机A有两个发动机,飞机B有四个发动机,如有半数或半数以上的发动机没有故障,就能够安全飞行,现设各个发动机发生故障的概率p是t的函数1tp eλ-=-,其中t为发动机启动后所经历的时间,λ为正的常数,试讨论飞机A与飞机B哪一个安全?(这里不考虑其它故障).【例20】假设飞机的每一台发动机在飞行中的故障率都是1P-,且各发动机互不影响.如果至少50%的发动机能正常运行,飞机就可以顺利地飞行.问对于多大的P而言,四发动机飞机比二发动机飞机更安全?【例21】一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是13.⑴设ξ为这名学生在途中遇到红灯的次数,求ξ的分布列;⑵设η为这名学生在首次停车前经过的路口数,求η的分布列;⑶求这名学生在途中至少遇到一次红灯的概率.【例22】一个质地不均匀的硬币抛掷5次,正面向上恰为1次的可能性不为0,而且与正面向上恰为2次的概率相同.令既约分数ij为硬币在5次抛掷中有3次正面向上的概率,求i j+.【例23】某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位)⑴5次预报中恰有2次准确的概率;⑵5次预报中至少有2次准确的概率;⑶5次预报中恰有2次准确,且其中第3次预报准确的概率;【例24】某大厦的一部电梯从底层出发后只能在第181920,,层可以停靠.若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为13,求至少有两位乘客在20层下的概率.【例25】10个球中有一个红球,有放回的抽取,每次取一球,求直到第n次才取得()k k n≤次红球的概率.【例26】某车间为保证设备正常工作,要配备适量的维修工.设各台设备发生的故障是相互独立的,且每台设备发生故障的概率都是0.01.试求:⑴若由一个人负责维修20台,求设备发生故障而不能及时维修的概率;⑵若由3个人共同负责维修80台设备,求设备发生故障而不能及时维修的概率,并进行比较说明哪种效率高.【例27】A B,是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为23,服用B有效的概率为12.观察3个试验组,求至少有1个甲类组的概率.(结果保留四位有效数字)【例28】已知甲投篮的命中率是0.9,乙投篮的命中率是0.8,两人每次投篮都不受影响,求投篮3次甲胜乙的概率.(保留两位有效数字)【变式】若甲、乙投篮的命中率都是0.5p=,求投篮n次甲胜乙的概率.(1n n∈N,≥)【例29】省工商局于某年3月份,对全省流通领域的饮料进行了质量监督抽查,结果显示,某种刚进入市场的x饮料的合格率为80%,现有甲,乙,丙3人聚会,选用6瓶x饮料,并限定每人喝2瓶,求:⑴甲喝2瓶合格的x饮料的概率;⑵甲,乙,丙3人中只有1人喝2瓶不合格的x饮料的概率(精确到0.01).【例30】在一次考试中出了六道是非题,正确的记“√”号,不正确的记“×”号.若某考生随手记上六个符号,试求:⑴全部是正确的概率;⑵正确解答不少于4道的概率;⑶至少答对2道题的概率.【例31】 某大学的校乒乓球队与数学系乒乓球队举行对抗赛,校队的实力比系队强,当一个校队队员与系队队员比赛时,校队队员获胜的概率为0.6.现在校、系双方商量对抗赛的方式,提出了三种方案:⑴双方各出3人;⑵双方各出5人;⑶双方各出7人.三种方案中场次比赛中得胜人数多的一方为胜利. 问:对系队来说,哪一种方案最有利?(一) 知识内容二项分布的均值与方差:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.(二)典例分析:【例32】 一盒子内装有10个乒乓球,其中3个旧的,7个新的,每次取一球,取后放回,取4次,则取到新球的个数的期望值是______.【例33】 同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为ξ,则ξ的数学期望是( )A .20B .25C .30D .40【例34】 已知~()X B n p ,,()8E X =,() 1.6D X =,则n 与p 的值分别为( ) A .10和0.8 B .20和0.4 C .10和0.2 D .100和0.8【例35】 某服务部门有n 个服务对象,每个服务对象是否需要服务是独立的,若每个服务对象一天中需要服务的可能性是p ,则该部门一天中平均需要服务的对象个数是( )A .(1)np p -B .npC .nD .(1)p p -【例36】 已知随机变量X 服从参数为60.4,的二项分布,则它的期望()E X =_______,方差()D X =_____.【例37】 已知随机变量X 服从二项分布,且() 2.4E ξ=,() 1.44D ξ=,则二项分布的参数n ,p 的值板块四:二项分布的期望与分别为__________、_________.【例38】一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,则其中含红球个数的数学期望是_________.(用数字作答)【例39】已知(100.8)X B,,求()E X与()D X.【例40】同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为ξ,则ξ的数学期望是()A.20 B.25 C.30 D.40【例41】甲、乙、丙3人投篮,投进的概率分别是121 352,,.⑴现3人各投篮1次,求3人都没有投进的概率;⑵用ξ表示乙投篮3次的进球数,求随机变量ξ的概率分布及数学期望.【例42】抛掷两个骰子,当至少有一个2点或3点出现时,就说这次试验成功.⑴求一次试验中成功的概率;⑵求在4次试验中成功次数X的分布列及X的数学期望与方差.【例43】某寻呼台共有客户3000人,若寻呼台准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为4%.问:寻呼台能否向每一位顾客都发出奖邀请?若能使每一位领奖人都得到礼品,寻呼台至少应准备多少礼品?【例44】某批数量较大的商品的次品率是5%,从中任意地连续取出10件,X为所含次品的个数,求()E X.【例45】某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人%的选择相互之间没有影响.⑴任选1名下岗人员,求该人参加过培训的概率;⑵任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布和期望.【例46】设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布及期望.【例47】某班级有n人,设一年365天中,恰有班上的m(m n≤)个人过生日的天数为X,求X的期望值以及至少有两人过生日的天数的期望值.【例48】购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10000元的赔偿金.假定在一年度内有10000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10000元的概率为410-.10.999⑴求一投保人在一年度内出险的概率p;⑵设保险公司开办该项险种业务除赔偿金外的成本为50000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).【例49】某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,则必须进行整改.若整改后复查仍不合格,则强行关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01).⑴恰好有两家煤矿必须整改的概率;⑵平均有多少家煤矿必须整改;⑶至少关闭一家煤矿的概率.。

二项分布计算练习题求二项分布的概率

二项分布计算练习题求二项分布的概率

二项分布计算练习题求二项分布的概率二项分布计算练习题:求二项分布的概率在概率论中,二项分布是最重要且常用的离散概率分布之一。

它描述了在一系列独立的重复试验中成功次数的概率分布。

本文将通过几个计算练习题来帮助读者更好地理解和应用二项分布的概率计算方法。

问题一:某电子产品制造公司在生产特定型号的智能手机时,将每个手机的组装零件检测为合格(符合标准)或不合格(不符合标准)。

已知该公司的生产线在正常运行时,每个组装零件的合格率为0.85。

现在随机抽取了10个组装零件进行检测,请计算恰有7个合格零件的概率。

解答一:根据二项分布的概率公式,可以得到恰有7个合格零件的概率计算公式为:P(X=7) = C(10, 7) * p^7 * (1-p)^(10-7)其中,C(n, k)表示从n个元素中取出k个元素的组合数,p为每个组装零件的合格率。

代入数据进行计算,得到:P(X=7) = C(10, 7) * 0.85^7 * 0.15^3通过计算,可得P(X=7) ≈ 0.2668,即恰有7个合格零件的概率约为0.2668。

问题二:一批电子元件中有20%的不良品。

现在从中抽取了30个元件进行检验,请计算至少有5个不良品的概率。

解答二:本题可以通过计算至少有5个不良品的概率来求解。

计算过程如下:P(X≥5) = P(X=5) + P(X=6) + ... + P(X=30)依次计算每个概率值然后相加。

再利用二项分布的概率公式进行计算,得到:P(X≥5) = P(X=5) + P(X=6) + ... + P(X=30) = Σ[C(30, k) * 0.2^k *0.8^(30-k)] (k=5到30)通过计算,可得P(X≥5) ≈ 0.9988,即至少有5个不良品的概率约为0.9988。

问题三:某服装店销售一种T恤,每件T恤被退换的概率为0.1。

现在该店卖出了100件T恤,请计算有30件及以上被退换的概率。

解答三:类似于问题二的解答过程,我们可以利用概率公式计算有30件及以上被退换的概率。

二项分布概率例题及解析精选全文

二项分布概率例题及解析精选全文

可编辑修改精选全文完整版二项分布概率例题及解析二项式概型答题高分策略、模板例析如下:二项分布的简单应用是求n次独立重复试验中事件A恰好发生k 次的概率.解题的一般思路是:根据题意设出随机变量→分析出随机变量服从二项分布→找到参数n,p→将k值代入求解概率→写出二项分布的分布列.若离散型随机变量X~B(n,p),则E(X)=np,D(X)=np(1-p),即其均值和方差的求解既可以利用定义,也可以直接代入上述公式.例1:某气象站天气预报的准确率为80%,计算(结果保留到小数点后第2位):(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.思路分析:直接代入公式求解,其中第(2)问可以利用对立事件求概率.令X表示5次预报中预报准确的次数,则X~B(5,4/5),故其分布列为反思:弄清“5次中有2次准确且第3次准确”表示的意义是求解第(3)问的关键,它表示第3次准确,其他4次有1次是准确的.总结:(1)独立重复实验的条件:①每次试验在相同条件下可重复进行;②各次试验是相互独立的;③每次试验都只有两种结果,即事件要么发生,要么不发生.(2)独立重复试验是相互独立事件的特例,只要有“恰好”“恰有”字样,用独立重复试验的概率公式计算更简单.(2)二项分布:一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,则事件A恰好发生k次的概率为P(X=k)=pk(1-p)n-k,k=0,1,2,…,n.则称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.例2:一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为1/2,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?思路分析:(1)X可能的取值为10,20,100,-200,运用几何概率公式得出相应的概率,得出分布列.(2)利用对立事件求解得出P(A1A2A3)=P(A1)∪P(A2)∪P(A3)=1/8,即可得出1-P(A1A2A3).。

二项分布及其应用(答案)

二项分布及其应用(答案)

二项分布及其应用【知识要点】一、条件概率及其性质1、条件概率一般地,设A ,B 为两个事件,且0)(>A P ,称)()()(A P AB P A B P =为在事件A 发生的条件下,事件B 发生的条件概率。

2、性质(1)任何事件的条件概率都在0和1之间,即1)(0≤≤A B P .(2)如果B 和C 是两个互斥事件,则)()()(A C P A B P A C B P ==Y 。

【例题1—1】从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则=)(A B P ( B ) A 、81 B 、41 C 、52 D 、21 【例题1—2】在一次考试的5道题中,有3道理科题和2道文科题,如果不放回地依次抽取2道题,则在第一次抽到理科题的条件下,第二次抽到理科题的概率为 21 。

【例题1—3】某地区空气质量监测表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( A )A 、0.8B 、0.75C 、0.6D 、0.45【例题1—4】从混有5张假钞的20张一百元钞票中任意抽取2张,将其中一张在验钞机上检验发现是假钞,则这两张都是假钞的概率为( A )A 、172B 、152C 、51D 、103 【例题1—5】把一枚硬币连续抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则=)(A B P ( A )A 、21B 、41 C 、61 D 、81 【例题1—6】1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则在从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是94 。

二、相互独立事件及n 次独立重复事件1、相互独立事件同时发生的概率(1)相互独立事件的定义:如果事件A (或B )是否发生对事件B (A )发生的概率没有影响,这样的两个事件叫做相互独立事件。

(完整版)二项分布专题练习

(完整版)二项分布专题练习

二项分布专题练习1.已知随机变量X 服从二项分布,X ~B 16,3⎛⎫ ⎪⎝⎭,则P (X =2)=( ). A .316B .4243C .13243D .802432.设某批电子手表正品率为34,次品率为14,现对该批电子手表进行测试,设第X 次首次测到正品,则P (X =3)等于( ).A .22313C 44⎛⎫⨯ ⎪⎝⎭B .22331C 44⎛⎫⨯ ⎪⎝⎭C . 21344⎛⎫⨯ ⎪⎝⎭D .23144⎛⎫⨯ ⎪⎝⎭3.甲、乙两名篮球队员轮流投篮直至某人投中为止,设甲每次投篮命中的概率为0.4,乙投中的概率为0.6,而且不受其他次投篮结果的影响,设投篮的轮数为X ,若甲先投,则P (X =k )等于( ).A .0.6k -1×0.4B .0.24k -1×0.76C .0.4k -1×0.6D .0.76k -1×0.244.10个球中有一个红球,有放回地抽取,每次取出一球,直到第n 次才取得k (k ≤n )次红球的概率为( ).A .2191010n k-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭B . 191010k n k-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭C .1119C 1010kn kk n ---⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭D .11119C 1010k n kk n ----⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭5.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为6581,则事件A 在1次试验中发生的概率为( ). A .13B .25C .56D .346.某一批花生种子,如果每一粒发芽的概率为45,那么播下4粒种子恰有2粒发芽的概率是__________.7.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为__________.(用数字作答)8.假定人在365天中的任意一天出生的概率是一样的,某班级中有50名同学,其中有两个以上的同学生于元旦的概率是多少?(结果保留四位小数)9.某安全生产监督部门对6家小型煤矿进行安全检查(安检).若安检不合格,则必须进行整改.若整改后经复查仍不合格,则强行关闭.设每家煤矿安检是否合格是相互独立的, 每家煤矿整改前安检合格的概率是0.6,整改后安检合格的概率是0.9,计算:(1)恰好有三家煤矿必须整改的概率; (2)至少关闭一家煤矿的概率.(精确到0.01)10.甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率, (I )甲恰好击中目标的2次的概率; (II )乙至少击中目标2次的概率;(III )求乙恰好比甲多击中目标2次的概率.2132参考答案1. 答案:D解析:P (X =2)=24201180C 133243⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭. 2. 答案:C解析:P (X =3)是前两次未抽到正品,第三次抽到正品的概率,则P (X =3)=21344⎛⎫⨯ ⎪⎝⎭.3. 答案:B解析:甲每次投篮命中的概率为0.4,不中的概率为0.6,乙每次投篮命中的概率为0.6,不中的概率为0.4,则在一轮中两人均未中的概率为0.6×0.4=0.24,至少有一人中的概率为0.76. 所以P (X =k )的概率是前k -1轮两人均未中,第k 轮时至少有一人中,则P (X =k )=0.24k-1×0.76. 4. 答案:C解析:10个球中有一个红球,每次取出一球是红球的概率为110,不是红球的概率为910,直到第n 次才取得k (k ≤n )次红球,说明前n -1次中已取得红球k -1次,其余均不为红球.则概率为11119C 1010k n kk n ----⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭×110=1119C 1010k n kk n ---⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.5. 答案:A解析:事件A 在一次试验中发生的概率为p , 由题意得1-04C p 0(1-p )4=6581. 所以1-p =23,p =13.6. 答案:96625解析:每粒种子的发芽概率为45,并且4粒种子的发芽与不发芽互不影响,符合二项分布B 44,5⎛⎫ ⎪⎝⎭,则4粒种子恰有2粒发芽的概率为:22244196C 55625⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. 7. 答案:0.947 7解析:治愈的病人数X ~B (4,0.9),则4个病人中至少被治愈3人的概率为P (X ≥3)=P (X =3)+P (X =4)=34C 0.93×0.1+44C 0.94=0.947 7.8. 解:由题意,设“一个人生日是元旦”为事件A ,要研究50人的生日,则相当于进行50次试验,显然各人的生日是随机的,互不影响的,所以属于50次独立重复试验,P (A )=1365,设50人中生于元旦的人数为ξ, 则P (ξ=0)=0500501364C 365365⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,P (ξ=1)=1491501364C 365365⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭, “两人以上生于元旦”的概率为:P (ξ≥2)=1-P (ξ<2)=1-P (ξ=0)-P (ξ=1)=1-0500501364C 365365⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭-1491501364C 365365⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭≈0. 008 4. 9. 解:(1)每家煤矿需整改的概率是1-0.6=0.4,且每家煤矿是否整改是独立的.所以恰好有三家煤矿必须整改的概率是p 1=36C ·0.43·0.63≈0.28.(2)每家煤矿被关闭的概率是0.4×0.1=0.04,且每家煤矿是否被关闭是相互独立的,所以至少关闭一家煤矿的概率是p 2=1-(1-0.04)6≈0.22.。

概率统计中的二项分布模拟试题

概率统计中的二项分布模拟试题

概率统计中的二项分布模拟试题在概率统计中,二项分布是一个重要的概率分布模型。

在实际应用中,我们经常会遇到需要通过模拟试题来理解和应用二项分布的情况。

本文将通过模拟试题的形式,详细介绍二项分布的基本概念、计算方法和实际应用。

1. 试题一某公司的产品有 3% 的瑕疵率,现从该公司生产的产品中随机抽取100 个进行质量检测,请问:a) 有多少产品是有瑕疵的?b) 至少有多少产品是有瑕疵的?解析:a) 根据二项分布的定义,设随机变量 X 表示有瑕疵的产品数量,X ~ B(100, 0.03)。

根据二项分布的概率计算公式,可以得到有瑕疵的产品数量的概率。

b) 至少有多少产品是有瑕疵的,可以通过计算不同数量有瑕疵的产品的概率之和得到。

2. 试题二某班级有 40 名学生,其中男生占 60%。

现在要从该班级中随机选择 10 名学生进行问卷调查,请问所选学生中有 5 名男生的概率是多少?解析:设随机变量 X 表示所选学生中男生的数量,X ~ B(10, 0.6)。

根据二项分布的概率计算公式,可以计算得到有 5 名男生的概率。

3. 试题三某车间质量检测员对生产的产品进行抽样检查。

已知该车间生产的产品瑕疵率为5%,现从500 个产品中随机抽取50 个进行检测,请问:a) 抽取的样本中有多少个瑕疵品?b) 样本中至多有多少个瑕疵品?解析:a) 设随机变量 X 表示抽取的样本中瑕疵品的数量,X ~ B(50, 0.05)。

根据二项分布的概率计算公式,可以计算得到样本中出现不同数量瑕疵品的概率。

b) 样本中至多有多少个瑕疵品,可以通过计算不同数量瑕疵品的概率之和得到。

通过以上三个模拟试题的解析,我们可以看到二项分布在概率统计中的重要性和应用价值。

在实际问题中,对于涉及到成功与失败、好与坏等二选一情况的随机事件,我们可以通过二项分布来进行概率计算和预测,从而更好地了解和应用概率统计的知识。

总结:本文通过模拟试题的形式,详细介绍了概率统计中的二项分布模型。

考点49 条件概率与二项的分布原卷

考点49    条件概率与二项的分布原卷

考点49 条件概率与二项的分布【考纲要求】了解条件概率的概念,了解两个事件相互独立的概念;理解n 次独立重复试验模型及二项分布,并能解决一些简单问题.【命题规律】条件概率与二项的分布问题在选择题、填空题以及解答题中都会考查,在解答题中出现时难度较大. 【典型高考试题变式】 (一)二项分布例1.【2017年高考全国II 理13】一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则()D X = .【变式1:改变条件】已知随机变量X 服从二项分布B (n ,p ),若E (X )=30,D (X )=20,则p =________.【变式2:改编条件和结论】设事件A 在每次试验中发生的概率相同,且在三次独立重复试验中,若事件A 至少发生一次的概率为6364,则事件A 恰好发生一次的概率为________.【变式3:改编条件和结论】(2022浙江·高三月考)甲与乙进行投篮游戏,在每局游戏中两人分别投篮两次,每局投进的次数之和不少于3次则胜利,已知甲乙两名队员投篮相互独立且投进篮球的概率均为23,设X 为甲乙两名队员获得胜利的局数,若游戏的局数是27,则()E X =______.(二)条件概率例2.【2014全国2高考理第5题】某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A . 0.8B . 0.75C . 0.6D . 0.45例3.【2010高考安徽理15】甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以12,A A 和3A 表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号).①()25P B =; ②()15|11P B A =; ③事件B 与事件1A 相互独立; ④123,,A A A 是两两互斥的事件; ⑤()P B 的值不能确定,因为它与123,,A A A 中哪一个发生有关【变式1:改编条件】先后掷骰子(骰子的六个面分别标有1、2、3、4、5、6个点)两次落在水平桌面后,记正面朝上的点数分别为x 、y ,设事件A 为“x +y 为偶数”,事件B 为“x 、y 中有偶数,且x ≠y ”,则概率P (B |A )=( )A .12B .13C .14D .25【变式2:改编条件和结论】甲、乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.5,现已知目标被击中,则它是被甲击中的概率为( )A .0.45B .0.6C .0.65D .0.75【变式3:改编条件和结论】(2022宁夏·银川一中高三月考(理))在一个不透明的袋中装有5个白球,3个红球(除颜色外其他均相同),从中任意取出2个小球,记事件A 为“取出的球中有红色小球”,事件B 为“取出的2个小球均是红球”,则()P B A =__________.【数学思想】(1)函数方程思想;(2)转化与化归思想. 【温馨提示】(1)条件概率的问题中:①事件A 与事件B 有时是相互独立事件,有时不是相互独立事件,要弄清P (AB )的求法.②当基本事件适合有限性和等可能性时,可借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再在事件A 发生的条件下求事件B 包含的基本事件数,即n (AB ),得P (B |A )=n (AB )n (A ).(2)注意二项分布满足的条件:①每次试验中,事件发生的概率是相同的. ②各次试验中的事件是相互独立的.③每次试验只有两种结果:事件要么发生,要么不发生. ④随机变量是这n 次独立重复试验中事件发生的次数. ③注意弄清楚超几何分布与二项分布的区别与联系. 【典例试题演练】 一、单选题1.(2022广西·南宁市东盟中学模拟预测(理))某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布()2100050N ,,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为( )A .18B .38C .58D .782.(2022浙江·诸暨中学高三月考)设X 为随机变量,~(6,)X B p ,若随机变量X 的期望为4,则(1)P X ≥=( )A .1729B .4243C .716729D .7287293.(2022四川成都·高三月考(理))若随机事件A ,B 满足1()3P A =,1()2P B =,3()4P A B +=,则()P A B =( )A .29B .23C .14D .164.(2022·全国·高三专题练习)从某高中2021名学生中选取50名学生参加数学竞赛,若采用以下方法选取:先用简单随机抽样方法从2021名学生中剔除21名,再从余下的2000名学生中随机抽取50名.则其中学生丙被选取和被剔除的概率分别是( )A .140,212021B .502021,212021C .140,212000D .212000,5020215.(2022·全国·高三专题练习)设,m n 分别是先后抛掷一枚骰子得到的点数,则在先后两次出现的点数中有5的条件下,方程20x mx n ++=有实根的概率为( )A .610B .710C .611D .7116.(2022·全国·高三专题练习)某公司为方便员工停车,租了6个停车位,编号如图所示.公司规定:每个车位只能停一辆车,每个员工只允许占用一个停车位.记事件A 为“员工小王的车停在编号为奇数的车位上”,事件B 为“员工小李的车停在编号为偶数的车位上”,则()|P A B =( )A .16B .310C .12 D .357.(2022福建省南平市高级中学高三月考)已知在 10 支铅笔中,有 8 支正品,2 支次品,从中任取 2 支,则在第一次抽的是次品的条件下,第二次抽的是正品的概率是( )A .15B .845 C .89D .458.(2022·全国·高三专题练习)某校为宣传《中华人民共和国未成年人保护法》,特举行《中华人民共和国未成年人保护法》知识竞赛,规定两人为一组,每一轮竞赛中,小组两人分别答两题,若答对题数不少于3,则被称为“优秀小组”,已知甲、乙两位同学组成一组,且同学甲和同学乙答对题的概率分别为1p ,2p .若13p 4=,223p =,则在第一轮竞赛中他们获得“优秀小组”的概率为( ) A .23B .25C .12D .139.(2018·浙江·高三学业考试)一袋中有6个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则(12)P ξ=等于( )A .101021212()()33C B .91021112()()33C C .9119221()()33C D .9119212()()33C10.(2022·浙江·高三专题练习)某工厂产品合格的概率均为p ,各产品合格与否相互独立.设X 为该工厂生产的5件商品中合格的数量,其中() 1.2D X =,(2)(3)P X P X =<=,则p =( )A .0.7B .0.6C .0.4D .0.311.(2022重庆市第七中学校高三月考)一个口袋中装有3个白球,4个黑球和5个红球,先摸出一个球后放回,再摸出一个球,则两次摸出的球是1白1黑的概率是( )A .13B .14C .16D .11212.(2022浙江杭州·高三期中)设随机变量()~2,X B p ,若()519P X ≥=,则()E X =( ) A .23B .13C .43D .113.(2022全国·高三专题练习(文))将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落入A 袋中的概率为( )A .14B .12C .34D .45二、填空题14.(2022山东·广饶一中高三月考)甲问乙:“您有几个孩子”,乙说:“我的第三胎是双胞胎,共四个孩子”.此时,一男孩过来.乙对甲说:“这个是我小孩”,接着乙对该男孩说:“去把哥哥姐姐都叫过来,你们四人一起跟甲去趟学校”.根据上述信息,结合正确的推理,最多需要猜测___________次,才可以推断乙的四个小孩从长到幼的正确性别情况;第3次才猜对的概率为___________.15.(2022·全国·高三专题练习)甲箱中有5个红球,2个白球和3.不黑球,乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出行球放入乙箱中,分别以1A 、2A 、3A 表示由甲箱中取出的是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B 表示由乙箱中取出的球是红球的事件,则()1P B A =___________,()P B =___________.16.(2022福建·福州四中高三月考)东北育才高中部高一年级开设游泳、篮球和足球三门体育选修课,高一某班甲、乙、丙三名同学每人从中只选修一门课程.设事件A 为“甲独自选修一门课程”,B 为“三人选修的课程都不同”,则概率()|P B A =______.17.(2022·全国·高三专题练习)同时抛掷一颗红骰子和一颗蓝骰子,观察向上的点数,记“红骰子向上的点数大于2”为事件A .“两颗骰子的点数之和等于6”为事件B ,则()P B A =_________.18.(2022北京市八一中学高三开学考试)设某工厂有两个车间生产同型号家用电器,第一车间的次品率为0.15,第二车间的次品率为0.12,两个车间的成品都混合堆放在一个仓库,假设第1,2车间生产的成品比例为2:3,今有一客户从成品仓库中随机提一台产品,求该产品合格的概率为______.19.(2022·全国·高三专题练习)某工厂有四条流水线生产同一种产品,这四条流水线的产量分别占总产量的0.20,0.25,0.3,0.25,这四条流水线的合格率依次为0.95,0.96,0.97,0.98,现在从出厂产品中任取一件,则恰好抽到不合格的概率是___________.20.(2022黑龙江·哈尔滨市第六中学校模拟预测(理))投掷红、蓝两颗均匀的骰子,设事件A :蓝色骰子的点数为5或6;事件B :两骰子的点数之和大于9,则在事件B 发生的条件下事件A 发生的概率()|P A B =______.四、解答题21.(2022江苏·海安高级中学高三月考)某校将进行篮球定点投篮测试,规则为:每人至多投3次,在M 处投一次三分球,投进得3分,未投进不得分,在N 处连续投2次两分球,每投进一次得2分,未投进不得分,测试者累计得分高于3分即通过测试,并终止投篮(若前两次投篮后确定不能通过测试也终止投篮).甲同学为了通过测试,刻苦训练,投中3分球的概率为15,投中2分球的概率为12,且每次投篮结果相互独立不受影响.(1)若甲同学先投3分球,则通过测试的概率;(2)为使投篮累计得分期望最大,甲同学应先投几分球?并说明理由.22.(2022广东·高三月考)新疆棉以绒长、品质好、产量高著称于世.现有两类以新疆长绒棉为主要原材料的均码服装,A 类服装为纯棉服饰,成本价为120元/件,总量中有30%将按照原价200元/件的价格销售给非会员顾客,有50%将按照8.5折的价格销售给会员顾客.B 类服装为全棉服饰,成本价为160元/件,总量中有20%将按照原价300元/件的价格销售给非会员顾客,有40%将按照8.5折的价格销售给会员顾客.这两类服装剩余部分将会在换季促销时按照原价6折的价格销售给顾客,并能全部售完.(1)通过计算比较这两类服装单件收益的期望(收益=售价-成本);(2)某服装专卖店店庆当天,全场A ,B 两类服装均以会员价销售.假设每位来店购买A ,B 两类服装的顾客只选其中一类购买,每位顾客限购1件,且购买了服装的顾客中购买A 类服装的概率为13.已知该店店庆当天这两类服装共售出5件,设X 为该店当天所售服装中B 类服装的件数,Y 为当天销售这两类服装带来的总收益.求当()0.5()P X n n <∈N 时,n 可取的最大值及Y 的期望E (Y ).23.(2022湖南·长郡中学高三月考)教育是阻断贫困代际传递的根本之策.补齐贫困地区义务教育发展的短板,让贫困家庭子女都能接受公平而有质量的教育,是夯实脱贫攻坚根基之所在.治贫先治愚,扶贫先扶智.为了解决某贫困地区教师资源匮乏的问题,某市教育局拟从5名优秀教师中抽选人员分批次参与支教活动.支教活动共分3批次进行,每次支教需要同时派送2名教师,且每次派送人员均从这5人中随机抽选.已知这5名优秀教师中,2人有支教经验,3人没有支教经验.(1)求5名优秀教师中的“甲”,在这3批次支教活动中恰有两次被抽选到的概率;(2)求第一次抽取到无支教经验的教师人数X的分布列;(3)求第二次抽选时,选到没有支教经验的教师的人数最有可能是几人?请说明理由.24.(2022海南·海口市第四中学高三月考)一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次分).设每次击鼓出音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得200,且各次击鼓出现音乐相互独立.现音乐的概率为12(1)若第一次击鼓出现音乐,求该盘游戏获得100分的概率;(2)设每盘游戏获得的分数为X,求X的分布列;(3)玩三盘游戏,至少有一盘出现音乐的概率为多少?25.(2022海南·三亚华侨学校高三月考)某校从学生文艺部6名成员(4男2女)中,挑选2人参加学校举办的文艺汇演活动.(1)求男生甲被选中的概率;(2)在已知男生甲被选中的条件下,女生乙被选中的概率.26.(2022吉林长春·高三月考(理))移动支付在中国大规模推广五年之后,成功在10亿移动互联网用户中获得了九成的渗透率,这大约是中国自宽带和手机之后,普及率最高的一项产品,甚至,移动支付被视为新时代中国的四大发明之一.近日,lpsosChina 针对第三方移动支付市场在一家大型超市进行了顾客使用移动支付情况的调查.调查人员从年龄在20岁到60岁的顾客中随机抽取了200人,得到如下数据:年龄段人数类型[)20,30[)30,40[)40,50[]50,60使用移动支付 45 40 25 15 不使用移动支付102045(1)现从这200人中随机依次抽取2人,已知第1次抽到的人使用移动支付的条件下,求第2次抽到的人不使用移动支付的概率;(2)在随机抽取的200人中对使用移动支付的人群采用分层抽样的方式抽取25人做进一步的问卷调查再从这25人中随机选出3人颁发参与奖,设这3人中年龄在[)40,50之间的人数为X ,求X 的分布列及数学期望.27.(2020·江苏·南京市第五高级中学高三月考)甲乙两个袋子中,各放有大小和形状相同的小球若干.每个袋子中标号为0的小球为1个,标号为1的2个,标号为2的n 个.从一个袋子中任取两个球,取到的标号都是2的概率是110. (1)求n 的值;(2)从甲袋中任取两个球,已知其中一个的标号是1,求另一个标号也是1的概率; (3)从两个袋子中各取一个小球,用ξ表示这两个小球的标号之和,求ξ的分布列和()E ξ.28.(2022湖南·长郡中学高三月考)设甲、乙两位同学在高中年级上学期间,甲同学每天6:30之前到校的概率均为23,乙同学每天6:30之前到校的概率均为34,假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)设A为事件“上学期间的五天中,甲同学在6:30之前到校的天数为3天”,B为事件“上学期间的五天中,甲同学有且只有一次连续两天在6:30之前到校”,求在事件A发生的条件下,事件B发生的概率,(2)甲、乙同学组成了学习互助小组后,若某天至少有一位同学在6:30之后到校,则之后的一天甲,乙同学必然同时在6:30之前到校,在上学期间的五天,随机变量Y表示甲、乙同学同时在6:30之前到校的天数,求Y的分布列与数学期望.29.(2022广东·高三月考)有专家指出,与新冠病毒感染者密切接触过的人,被感染的概率是9%.王某被确诊为新冠病毒感染者后,当地准备对王某的密切接触者共78人逐一进行核酸检测.(1)设X为这78名密切接触者中被感染的人数,求X的数学期望;(2)核酸检测并不是100%准确,有可能出现假阴性(新冠病毒感染者的检测结果为阴性,即漏诊)或假阳性(非新冠病毒感染者的检测结果为阳性,即误诊).假设当地核酸检测的灵敏度为98%(即假阴性率为2%),特异度为99%(即假阳性率为1%).已知王某的一个密切接触者赵某的核酸检测结果为阳性,求他被感染的概率(结果保留3位有效数字).30.(2022山东潍坊·高三期中)2021年7月18日第30届全国中学生生物学竞赛在浙江省萧山中学隆重举行.为做好本次考试的评价工作,将本次成绩转化为百分制,现从中随机抽取了50名学生的成绩,经统计,这批学生的成绩全部介于40至100之间,将数据按照[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100分成6组,制成了如图所示的频率分布直方图.(1)求频率分布直方图中m 的值,并估计这50名学生成绩的中位数;(2)在这50名学生中用分层抽样的方法从成绩在,[)70,80,[)80,90,[]90,100的三组中抽取了11人,再从这11人中随机抽取3人,记ξ的分布列和数学期望;(3)转化为百分制后,规定成绩在[]90,100的为A 等级,成绩在[)70,90的为B 等级,其它为C 等级.以样本估计总体,用频率代替概率,从所有参加生物竞赛的同学中随机抽取100人,其中获得B 等级的人数设为η,记B 等级的人数为k 的概率为()P k η=,写出()P k η=的表达式,并求出当k 为何值时,()P k η=最大?31.(2022湖北·高三期中)小C 和小D 两个同学进行摸球游戏,甲、乙两个盒子中各装有6个大小和质地相同的球,其中甲盒子中有1个红球,2个黄球,3个蓝球,乙盒子中红球、黄球、蓝球均为2个,小C 同学在甲盒子中取球,小D 同学在乙盒子中取球.(1)若两个同学各取一个球,求取出的两个球颜色不相同的概率;(2)若两个同学第一次各取一个球,对比颜色后分别放入原来的盒子;第二次再各取一个球,对比颜色后再分别放入原来的盒子,这样重复取球三次.记球颜色相同的次数为随机变量X,求X的分布列和数学期望。

条件概率练习题含答案

条件概率练习题含答案

条件概率练习题含答案条件概率是概率论中的一个重要概念,用于描述事件在给定其他事件发生的条件下发生的概率。

条件概率的计算往往需要运用到贝叶斯定理,是解决实际问题中复杂概率计算的基础。

下面将给出一些条件概率的练习题,并附带答案供读者参考。

练习题一:某城市有两个广播车队,A车队和B车队,各自服务不同的区域。

根据统计数据,A车队在A区域的音质不良时间占总时间的5%,而在B区域的音质不良时间占总时间的10%。

已知听众在该城市80%来自A区域,20%来自B区域。

现在假设一位听众正遇到音质不良的情况,请问这位听众是来自A区域的概率是多少?解答一:设事件A为来自A区域,事件B为遇到音质不良。

根据题意,我们要求的是在遇到音质不良的条件下,该听众来自A区域的概率。

根据条件概率公式,可以得到:P(A|B) = P(A∩B) / P(B),其中P(A∩B)表示事件A和B同时发生的概率,P(B)表示事件B发生的概率。

根据题目中的信息,我们可以得到P(A∩B) = P(A) * P(B|A) = 0.8 * 0.05 = 0.04,P(B) = P(A) * P(B|A) + P(B') * P(B|B') = 0.8 * 0.05 + 0.2 * 0.1 = 0.06,所以P(A|B) = 0.04 / 0.06 = 2/3。

练习题二:一家剧院即将上演两台戏剧,A戏剧和B戏剧,已知A戏剧的门票占总票数的60%,B戏剧的门票占总票数的40%。

观众对A戏剧感兴趣的概率是70%,对B戏剧感兴趣的概率是50%。

现在假设一位观众购票,且对所购剧目感兴趣,请问该观众购买的是B戏剧门票的概率是多少?解答二:设事件A为购买A戏剧门票,事件B为对所购剧目感兴趣。

求解的是在对所购剧目感兴趣的条件下,购买B戏剧门票的概率。

根据条件概率的定义,可以得到:P(B|A) = P(B∩A) / P(A),其中P(B∩A)表示事件B和A同时发生的概率,P(A)表示购买A戏剧门票的概率。

条件概率与超几何分布及二项分布练习题

条件概率与超几何分布及二项分布练习题

条件概率及乘法公式练习题1.一个袋中有9张标有1,2,3,…,9的票,从中依次取两张,则在第一张是奇
数的
条件下第二张也是奇数的概率()
2.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽
取一粒,求这粒种子能成长为幼苗的概率。

3.某种电路开关闭合后,会出现红灯或绿灯闪烁,已知开关第一次闭合后出现
(II)若将4名教师安排到三个年级(假设每名教师加入各年级是等可能的,且各位教师的选择是相互独立的),记安排到高一年级的教师人数为X,求随机变量X的分布列和数学期望.
3.某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].
来源:网络转载
(Ⅰ)求直方图中x的值;
可申请在学校住宿,请估计学校600名新生中有
多少名学生可以申请住宿;
(Ⅲ)从学校的新生中任选4名学生,这4名
学生中上学所需时间少于20分钟的人数记为
X,求X的分布列和数学期望.(以直方图中新
生上学所需时间少于20分钟的频率作为每名学
道题中,甲答对其中每道题的概率都是
分球投篮比赛,甲每次投中的概率为
(Ⅱ)我们把在A、B两区射击得分的数学期望高者作为选择射击区的标准,如果选手甲最终选择了在B区射击,求p的取值范围.
.
来源:网络转载。

条件概率、独立事件及二项分布【学生试卷】

条件概率、独立事件及二项分布【学生试卷】

C.56
D.以上都不对
4.如图所示,在两个圆盘上,指针落在本圆盘每 个数所在区域的机会均等,那么两个指针同时落在
第 1 页,共 3 页
奇数所在区域的概率是( )
一只并不放回,则他在第 1 次抽到螺口灯泡的条件 下,第 2 次抽到卡口灯泡的概率为( )
A.130
B.29
C.78
D.79
A.49
B.29
AB AB AB .
2.条件概率及其性质 (1)条件概率的定义 设 A、B 为两个事件,且 P(A)>0,
P A,
事件 B 发生的条件概率. (2)条件概率的求法 求条件概率除了可借助定义中的公式,还可以借助
n AB 古典概型概率公式,即 P(B|A)= n A .
A.π1
B.
2 2
C.12
D.14
9.已知盒中装有 3 只螺口灯泡与 7 只卡口灯泡, 这些灯泡的外形与功率都相同且灯口向下放着,现 需要使用一只卡口灯泡,若电工师傅每次从中任取
10.位于坐标原点的一个质点 P 按下述规则移动: 质点每次移动一个单位,移动的方向为向上或向
右,并且向上、向右移动的概率都是12,质点 P 移
(3)若 A 与 B 相互独立,则 A 与 B ,A 与 B ,A
与 B 也都相互独立.
4.二项分布 在 n 次独立重复试验中,设事件 A 发生的次数为 X,
在 每次 试验中事件 A 发生的概率为 p,那么在 n
次独立重复试验中,事件 A 恰好 发生 k 次的概率 为
P(X=k)= Cnk pk 1 p nk
动五次后位于点(2,3)的概率是( )
A.125
B.C25125
C.C53123
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

条件概率与独立事件、二项分布
1.(2012·广东汕头模拟)已知某射击运动员,每次击中目标的概率都是,则该射击运动员射击4次至少击中3次的概率为( )
A .
B . 2
C .
D .
2.(2011·广东高考)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( )
3.(2011·湖北高考)如图,用K 、A 1、A 2三类不同的元件连接成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为、、,则系统正常工作的概率为( )
A .
B .
C .
D .
4.(2011·辽宁高考)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )
5.(2012·山西模拟)抛掷一枚硬币,出现正反的概率都是12,构造数列{a n },使得a n =

⎪⎨⎪⎧
1 第n 次抛掷时出现正面,-1 第n 次抛掷时出现反面, 记S n =a 1+a 2+…+a n (n ∈N *),则S 4=2的概率为( )
6.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是( )
7.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为16
25,则该队员每次罚球的命中率为________.
8.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________.
9.有一批种子的发芽率为,出芽后的幼苗成活率为,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.
10.(2012·厦门质检)从装有大小相同的3个白球和3个红球的袋中做摸球试验,每次摸出一个球.如果摸出白球,则从袋外另取一个红球替换该白球放入袋中,继续做下一次摸球试验;如果摸出红球,则结束摸球试验.
(1)求一次摸球后结束试验的概率P1和两次摸球后结束试验的概率P2;
(2)记结束试验时的摸球次数为X,求X的分布列.
11.某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.
(1)任选1名下岗人员,求该人参加过培训的概率;
(2)任选3名下岗人员,记X为3人中参加过培训的人数,求X的分布列.
12.学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(1)求在1次游戏中,①摸出3个白球的概率;②获奖的概率;
(2)求在2次游戏中获奖次数X的分布列.
1.选B P=C34××+C44×=2.
2.选A问题等价为两类:第一类,第一局甲赢,其概率P1=1
2;第二类,需比赛2
局,第一局甲负,第二局甲赢,其概率P 2=12×12=14.故甲队获得冠军的概率为P 1+P 2=3
4.
3.选B 可知K 、A 1、A 2三类元件正常工作相互独立.所以当A 1,A 2至少有一个能正常工作的概率为P =1-(1-2=,所以系统能正常工作的概率为P K ·P =×=.
4.选B P (A )=C 23+C 22
C 25
=410=25,P (A ∩B )=C 22C 25
=110.
由条件概率计算公式,得P (B |A )=PA ∩B PA =1
10410
=1
4.
5.选C 依题意得知,“S 4=2”表示在连续四次抛掷中恰有三次出现正面,因此“S 4=2”的概率为C 34
⎝⎛⎭⎫123·
12=14.
6.选C 设“甲、乙二人相邻”为事件A ,“甲、丙二人相邻”为事件B ,则所求概率为P (B |A ),由于P (B |A )=PAB PA ,而P (A )=2A 44
A 55
=25,
AB 是表示事件“甲与乙、丙都相邻”,故P (AB )=2A 33
A 55
=110,于是P (B |A )=11025=14.
7.解析:设该队员每次罚球的命中率为p , 则1-p 2=1625,p 2=925.又0<p <1.所以p =3
5. 答案:35
8.解析:此选手恰好回答4个问题就晋级下一轮,说明此选手第2个问题回答错误,第3、第4个问题均回答正确,第1个问题答对答错都可以.因为每个问题的回答结果相互独立,故所求的概率为1××=.
答案:
9.解析:设种子发芽为事件A ,种子成长为幼苗为事件B .出芽后的幼苗成活率为P (B |A )=,P (A )=. 故P (AB )=×=.
答案:
10.解:(1)一次摸球结束试验的概率P 1=36=12; 两次摸球结束试验的概率 P 2=36×46=1
3. (2)依题意得,X 的所有可能取值有1,2,3,
4.
P (X =1)=12,P (X =2)=13,P (X =3)=36×26×56=536,P (X =4)=36×26×16×66=1
36.
则X 的分布列为
11.解:(1)任选1名下岗人员,记“该人参加过财会培训”为事件A ,“该人参加过计算机培训”为事件B ,由题设知,事件A 与事件B 相互独立,且P (A )=,P (B )=.
所以该下岗人员没有参加过培训的概率是 P (A B )=P (A )·P (B )=(1-(1-=. 所以该人参加过培训的概率为1-=.
(2)因为每个人的选择是相互独立的,所以3人中参加过培训的人数X 服从二项分布B (3,,
P (X =k )=C k 3×-
k
,k =0,1,2,3,
所以X 的分布列为
12.解:(1)①设“在1次游戏中摸出i 个白球”为事件A i (i =0,1,2,3),
则P (A 3)=C 23C 25·C 12
C 2
3
=15. ②设“在1次游戏中获奖”为事件B ,则B =A 2∪A 3.
P (A 2)=C 23C 25·C 22C 23+C 13C 12C 25·C 12
C 23=12
,且A 2,A 3互斥, 所以P (B )=P (A 2)+P (A 3)=12+15=710. (2)由题意可知X 的所有可能取值为0,1,2.
由于X 服从二项分布,即X ~B ⎝⎛⎭⎫2,710.∴P (X =0)=⎝⎛⎭⎫1-7102=9100; P (X =1)=C 12710×⎝⎛⎭⎫1-710=2150;P (X =2)=⎝⎛⎭
⎫7102=49
100.
所以X 的分布列为。

相关文档
最新文档