贝叶斯决策的经典例题练习

合集下载

贝叶斯决策例题(精选.)

贝叶斯决策例题(精选.)

例:某工程项目按合同应在三个月内完工,其施工费用与工程完工期有关。

假定天气是影响能否按期完工的决定因素,如果天气好,工程能按时完工,获利5万元;如果天气不好,不能按时完工,施工单位将被罚款1万元;若不施工就要付出窝工费2千元。

根据过去的经验,在计划实施工期天气好的可能性为30%。

为了更好地掌握天气情况,可以申请气象中心进行天气预报,并提供同一时期天气预报资料,但需要支付资料费800元。

从提供的资料中可知,气象中心对好天气预报准确性为80%,对坏天气预报准确性为90%。

问如何进行决策。

解:采用贝叶斯决策方法。

(1)先验分析根据已有资料做出决策损益表。

根据期望值准则选择施工方案有利,相应最大期望收益值EMV*(先)=0.8(2)预验分析完全信息的最大期望收益值:EPPI=0.3×5+0.7×(-0.2)=1.36(万元)完全信息价值: EVPI=EPPI- EMV*(先)=1.36-0.8=0.56(万元)即,完全信息价值大于信息成本,请气象中心进行预报是合算的。

(3)后验分析①补充信息:气象中心将提供预报此时期内两种天气状态x 1(好天气)、x 2(坏天气)将会出现哪一种状态。

从气象中心提供的同期天气资料可得知条件概率: 天气好且预报天气也好的概率 P (x 1/θ1)=0.8 天气好而预报天气不好的概率 P (x 2/θ1)=0.2 天气坏而预报天气好的概率 P (x 1/θ2)=0.1 天气坏且预报天气也坏的概率 P (x 2/θ2)=0.9②计算后验概率分布:根据全概率公式和贝叶斯公式,计算后验概率。

预报天气好的概率1111212()()(/)()(/)P x P P x P P x θθθθ=+=0.31预报天气坏的概率2121222()()(/)()(/)P x P P x P P x θθθθ=+=0.69 预报天气好且天气实际也好的概率:111111()(/)(/)()P P x P x P x θθθ⋅==0.3×0.8/0.31=0.77预报天气好而天气坏的概率:212211()(/)(/)()P P x P x P x θθθ⋅==0.7×0.1/0.31=0.23预报天气坏而实际天气好的概率:121122()(/)(/)()P P x P x P x θθθ⋅==0.3×0.2/0.69=0.09预报天气坏且实际天气也坏的概率: 222222()(/)(/)()P P x P x P x θθθ⋅==0.7×0.9/0.69=0.91上述计算可以用表格表示:③ 后验决策:若气象中心预报天气好(x1),则每个方案的最大期望收益值 E(d1/x1)=0.77×5+0.23×(-1)=3.62 E(d2/x1)=0.77×(-0.2)+0.23×(-0.2)=-0.2选择d1即施工的方案,相应在预报x1时的最大期望收益值E (X1)=3.62若气象中心预报天气不好(x2),各方案的最大期望收益值 E(d1/x2)=0.09×5+0.91×(-1)=-0.46 E(d2/x2)=0.09×(-0.2)+0.91×(-0.2)=-0.2选择d2即不施工的方案,相应在预报x2时的最大期望收益值E (X2)=-0.2④ 计算补充信息的价值:得到天气预报的情况下,后验决策的最大期望收益值:1122*()()()()()EMV P x E x P x E x =⋅+⋅后=0.31×3.62+0.69×(-0.2)=0.9842则补充的信息价值为:EMV*(后)-EMV*(先)=0.9842-0.8=0.1842补充信息价值大于信息费(800元),即这种费用是合算的。

贝叶斯公式典型例题

贝叶斯公式典型例题

贝叶斯公式典型例题
贝叶斯公式是一种计算条件概率的公式,常用于根据已知条件更新某个事件发生的概率。

下面是一个贝叶斯公式的典型例题:
例:假设有两种类型的围棋棋手,分别是专业棋手和业余棋手。

专业棋手在比赛中获胜的概率为0.9,而业余棋手获胜的概率为0.3。

已知在所有棋手中,专业棋手占70%,业余棋手占30%。

现在有一场比赛,我们只知道其中一位棋手获胜了,那么这位棋手是专业棋手的概率是多少?
解:首先,我们定义以下事件:
•A:棋手是专业的
•B:棋手获胜
根据题意,我们知道:
•P(A) = 0.7(专业棋手占比)
•P(¬A) = 0.3(业余棋手占比)
•P(B|A) = 0.9(专业棋手获胜的概率)
•P(B|¬A) = 0.3(业余棋手获胜的概率)
我们要找的是P(A|B),即在已知棋手获胜的条件下,棋手是专业的概率。

根据贝叶斯公式,我们有:
P(A|B) = \frac{P(A) \times P(B|A)}{P(A) \times P(B|A) + P(¬A) \times P(B|¬A)}将已知的概率值代入公式中,我们得到:
P(A|B) = \frac{0.7 \times 0.9}{0.7 \times 0.9 + 0.3 \times 0.3} = \frac{0.63}{0.63
+ 0.09} = \frac{0.63}{0.72} = 0.875
所以,在已知棋手获胜的条件下,这位棋手是专业棋手的概率为0.875。

这个例题展示了贝叶斯公式在更新条件概率方面的应用。

通过已知的概率值和贝叶斯公式,我们可以计算出在给定条件下的未知概率。

贝叶斯推理例子

贝叶斯推理例子

贝叶斯推理例子
1. 嘿,你想想看啊,比如说你去买彩票,你觉得中奖的概率有多大呢?这就可以用贝叶斯推理呀!你先根据以往的开奖情况大概估计一个基础概率,然后每次开奖后根据新的结果来调整你的概率判断,这多有意思啊!
2. 来,咱说个生活中的例子。

你判断今天会不会下雨,你会先根据天气预报和以往的经验来有个初步想法吧,但如果突然天空变得阴沉沉的,你不得赶紧调整你觉得下雨的概率呀,这就是贝叶斯推理在起作用呀,你说是不是?
3. 你知道怎么猜别人手里的牌吗?这也能用贝叶斯推理呢!看他的表情动作,先有个初步判断,然后随着每一轮出牌,不断更新你对他手里牌的估计,哎呀,多带劲啊!
4. 你想想,你找工作的时候,对拿到某个 offer 的概率判断不也是这样嘛!开始根据公司的要求和自己的情况有个想法,然后面试过程中根据各种表现来调整,这可真是贝叶斯推理的活用呀!
5. 就像你猜你喜欢的人对你有没有意思,一开始你有个感觉,然后通过他跟你的每次互动,你不就会调整那个可能性嘛,这就是贝叶斯推理呀,神奇吧!
6. 好比你玩猜数字游戏,你先乱猜一个,然后根据提示不断缩小范围,调整你的猜测,这不就是活脱脱的贝叶斯推理嘛,多好玩呀!
7. 哎呀,你看医生诊断病情也是这样的呀!根据症状先有个初步判断,然后做各种检查,根据检查结果不断改变对病情的推测,贝叶斯推理真的无处不在呢!
8. 再比如你预测一场比赛的结果,先有个大概想法,比赛过程中根据双方的表现来不断调整胜败的概率,这不是贝叶斯推理在帮忙嘛,多有用啊!总之,贝叶斯推理在我们生活中可太常见啦,好多事情都能靠它来让我们的判断更准确呢!。

模式识别 第二章 贝叶斯决策论习题答案

模式识别 第二章 贝叶斯决策论习题答案
b) Σ − λ I = 0 计算特征值:
t t −1
0 0 0.5 1 1 0 5 21 − 2 21 0 − 2 0 − 2 21 5 21 1 2
i =1 ωi ≠ωmax
∑ P (ω x ) p ( x ) d x
i
c
= ∫ 1 − P (ωmax x ) p ( x ) dx = 1 − ∫ P (ωmax x ) p ( x ) dx
d) 续上式:
(
)
P ( error ) = 1 − ∫ P (ωmax x ) p ( x ) dx ≤ 1− ∫ 1 1 c −1 p ( x ) dx = 1 − = c c c
n t
′ ′ ′ Σ′ = ∑ ( x′ k − μ )( x k − μ )
k =1 n
= ∑ Tt ( x 0 k − μ )( x 0 k − μ ) T
t k =1
n t = Tt ∑ ( x 0 k − μ )( x 0 k − μ ) T k =1 = T t ΣT
+∞ ai
1 1 , p ( x ωi ) = exp ( − x − ai bi ) 2bi 2bi = x − a2 x − a1 b2 exp − b1 b1 b2 ;
b)
似然比 =
p ( x ω2 )
p ( x ω1 )
c)
x −1 a1 = 0, b1 = 1, a2 = 1, b2 = 2 ,则: 似然比 = 2exp −x 2
误差率的上界在 p ω1 x = p ω2 x = b) 如果我们令 p ω1 x = p ω2 x =

全概率公式和贝叶斯公式练习题

全概率公式和贝叶斯公式练习题

例题讲解:例题 1.市场上某产品由三家厂家提供,根据以往的记录,这三个厂家的次品率分别为,0.020.,0.01,0.03,三个厂家生产的产品所占的市场份额分别0.15,0.8,0.05.产品出厂后运到仓库,见面后再进入市场,设这三个厂家的产品在仓库是均匀混合(1)在仓库中随机的取一个产品,求它的次品的概率。

(2)在仓库中随机的取一个产品,发现为次品,如果你是管理者,该如何追究三个厂家的责任?例题2保险公司把被保险人分成三类”谨慎的”,”一般的”和”冒险的”,统计资料表明,上述三种人在一年内发生事故的概率依次为,0. 5. 0.15. 和0.30. 如果”谨慎的”被保险人占20%”一般的”,被保险人占50%,”冒失的”被保险人占30%,确认一个被保险人在一年内出事故的概率。

练习:1.设某工厂有两个车间生产同型号家用电器,第一车间的次品率为0.15,第二车间的次品率为0.12,两个车间的成品都混合堆放在一个仓库,假设第1,2车间生产的成品比例为2:3,今有一客户从成品仓库中随机提一台产品,求该产品合格的概率。

解:设B={从仓库中随机提出的一台是合格品}A i ={提出的一台是第i 车间生产的},i=1,2则有分解B=A 1B ∪A 2B由题意P(A1)=2/5,P(A2)=3/5,P(B|A1)=0.85,P(B|A2)=0.88由全概率公式P(B)= P(A 1) P(B|A 1)+ P(A 2) P(B|A 2)=0.4*0.85+0.6*0.88=0.868.2. 盒中有a 个红球,b 个黑球,今随机地从中取出一个,观察其颜色后放回,并加上同色球c 个,再从盒中第二次抽取一球,求第二次抽出的是黑球的概率。

解:设A={第一次抽出的是黑球},B={第二次抽出的是黑球},则B AB AB =+, 由全概率公式()()()()()P B P A P B A P A P B A =+, 由题意(),(|),(),(|)b b c a b P A P B A P A P B A a b a b c a b a b c +====++++++ 所以()()()()()()b b c ab b P B a b a b c a b a b c a b+=+=+++++++ 3. 设某公路上经过的货车与客车的数量之比为2:1,货车中途停车修理的概率为0.02,客车为0.01,今有一辆汽车中途停车修理,求该汽车是货车的概率。

贝叶斯决策例子

贝叶斯决策例子

贝叶斯决策练习某石油公司拟在一片估计含油的荒地上钻井。

如果钻井,费用为150万,若出油的概率为0.55,收入为800万元;若无油的概率为0.45,此时的收入为0。

该公司也可以转让开采权,转让费为160万元,但公司可以不担任何风险。

为了避免45%的无油风险,公司考虑通过地震试验来获取更多的信息,地震试验费用需要20万元。

已知有油的情况下,地震试验显示油气好的概率为0.8,显示油气不好的概率为0.2;在无油条件下,地震显示油气好的概率为0.15,而显示油气不好的概率为0.85。

又当试验表明油气好时,出让开采权的费用将增至400万元,试验表明油气不好时,出让开采权费用降至100万元,问该公司应该如何决策,使其期望收益值为最大。

解:该公司面临两个阶段的决策:第一阶段为要不要做地震试验,第二阶段为在做地震试验条件下,当油气显示分别为好与不好时,是采取钻井策略还是出让开采权。

若用A 1表示有油,A 2表示无油;用B 1表示地震试验显示油气好,B 2表示地震试验显示油气不好。

由题意可知:1211211222()0.55 ()0.45(|)0.8 (|)0.2(|)0.15 (|)0.85P A P A P B A P B A P B A P B A ======由贝叶斯公式计算得到:11111111212()(|)0.440.44(|)0.867()(|)()(|)0.440.06750.5075P A P B A P A B P A P B A P A P B A ====++ 同理,有: 2112220.0675(|)0.1330.50750.11(|)0.2230.49250.3825(|)0.7770.4925P A B P A B P A B ======该问题对应的决策树图采用逆序的方法,先计算事件点②③④的期望值:事件点 期望值② 800×0.867+0×0.133=693.6(万元)③ 800×0.223+0×0.777=178.4(万元)④ 800×0.55+0×0.45=440(万元) 在决策点2,按max[(693.6-150),400]=543.6万元,故选择钻井,删除出让开采权策略; 在决策点3,按max[(178.4-150),100]=100万元,故选择出让开采权,删除钻井策略; 在决策点4,按max[(440-150),160]=290万元,故选择钻井策略。

朴素贝叶斯公式例题

朴素贝叶斯公式例题

朴素贝叶斯公式例题朴素贝叶斯公式是一种基于贝叶斯定理的分类算法,它假设特征之间相互独立。

以下是一个朴素贝叶斯公式的例题:假设我们有一个数据集,其中包含了一些电子邮件的文本以及对应的标签(垃圾邮件或非垃圾邮件)。

我们想要使用朴素贝叶斯算法来对新的邮件进行分类。

现在,我们收到了一封新的邮件,内容如下:"购买廉价药物,快速发货!"我们需要使用朴素贝叶斯公式来判断这封邮件是属于垃圾邮件还是非垃圾邮件。

为此,我们首先需要计算两个条件概率:P(垃圾邮件|文本)和P(非垃圾邮件|文本)。

根据朴素贝叶斯公式,我们可以将问题转化为计算以下两个概率:1. P(垃圾邮件|文本):给定文本为"购买廉价药物,快速发货!",我们需要计算该邮件为垃圾邮件的概率。

假设训练集中共有100封邮件,其中有30封垃圾邮件。

而在这30封垃圾邮件中,有10封包含了"购买廉价药物,快速发货!"这样的文本。

因此,P(文本|垃圾邮件) = 10 / 30 = 1/3。

另外,P(垃圾邮件)表示在数据集中出现垃圾邮件的概率,假设为0.3。

综合利用贝叶斯公式,可以计算P(垃圾邮件|文本):P(垃圾邮件|文本) = (P(文本|垃圾邮件) * P(垃圾邮件)) / P(文本)2. P(非垃圾邮件|文本):同样地,我们需要计算给定文本为"购买廉价药物,快速发货!"时,该邮件为非垃圾邮件的概率。

假设在100封邮件中,有70封是非垃圾邮件,其中有20封包含了"购买廉价药物,快速发货!"这样的文本。

因此,P(文本|非垃圾邮件) = 20 / 70 = 2/7。

同样地,假设P(非垃圾邮件) = 0.7。

综合利用贝叶斯公式,可以计算P(非垃圾邮件|文本): P(非垃圾邮件|文本) = (P(文本|非垃圾邮件) * P(非垃圾邮件)) / P(文本)最后,比较P(垃圾邮件|文本)和P(非垃圾邮件|文本)的大小,即可确定这封邮件的分类。

最小风险贝叶斯例题

最小风险贝叶斯例题

最小风险贝叶斯例题假设有两个袋子,袋子A中有3个红球和7个蓝球,袋子B中有6个红球和4个蓝球。

从这两个袋子中随机选择一个袋子,然后从该袋子中随机抽出一个球。

如果抽出的球是红色的,你需要根据最小风险贝叶斯准则来判断该球来自哪个袋子。

先定义一些符号:- 假设袋子A被选择的概率为P(A),袋子B被选择的概率为P(B)。

由于只有2个袋子可供选择,因此P(A)+P(B)=1。

- 假设从袋子A中抽出红球的概率为P(红|A),从袋子B中抽出红球的概率为P(红|B)。

根据上述数据,P(红|A)=3/10,P(红|B)=6/10。

- 我们需要计算的是P(A|红),即在抽出红球的情况下,袋子A被选择的概率。

根据贝叶斯定理,我们有:P(A|红) = P(红|A) * P(A) / P(红)其中,P(红)表示从两个袋子中抽出红球的概率,可以用全概率公式计算:P(红) = P(红|A) * P(A) + P(红|B) * P(B)将上述数据代入公式,可得:P(红) = 3/10 * P(A) + 6/10 * P(B)因为P(A)+P(B)=1,所以可以将P(B)表示为1-P(A),代入公式,得到:P(红) = 3/10 * P(A) + 6/10 * (1 - P(A)) = 6/10 - 3/10 * P(A)将P(红)代入P(A|红)的公式,得到:P(A|红) = P(红|A) * P(A) / (3/10 * P(A) + 6/10 - 3/10 * P(A)) 化简上式,得到:P(A|红) = 3/7因此,根据最小风险贝叶斯准则,我们应该选择袋子A,因为袋子A被选择的概率为3/7,大于袋子B的被选择概率2/7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、贝叶斯决策(Bayes decision theory)
【例】某企业设计出一种新产品,有两种方案可供选择:—是进行批量生产,二是出售专利。

这种新产品投放市场,估计有3种可能:畅销、中等、滞销,这3种情况发生的可能性依次估计为:0.2,0.5和0.3。

方案在各种情况下的利润及期望利润如下表。

企业可以以1000元的成本委托专业市场调查机构调查该产品销售前景。

若实际市场状况为畅销,则调查结果为畅销、中等和滞销的概率分别为0.9、0.06和0.04;若实际市场状况为中等,则调查结果为畅销、中等和滞销的概率分别为0.05、0.9和0.05;若实际市场状况为滞销,则调查结果为畅销、中等和滞销的概率分别为0.04、0.06和0.9。

问:企业是否委托专业市场调查机构进行调查?
解:
1.验前分析:
记方案d1为批量生产,方案d2为出售专利
E(d1)=0.2*80+0.5*20+0.3*(-5)=24.5(万元)
E(d2)=40*0.2+7*0.5+1*0.3=11.8(万元)
记验前分析的最大期望收益为E1,则E1=max{E(d1),E(d2)}=24.5(万元)
因此验前分析后的决策为:批量生产
E1不作市场调查的期望收益
2.预验分析:
(1)设调查机构调查的结果畅销、中等、滞销分别用H1、H2、H3表示
由全概率公式
P(H1)=0.9*0.2+0.06*0.5+0.04*0.3=0.232
P(H2)=0.05*0.2+0.9*0.5+0.05*0.3=0.475
P(H3)=0.04*0.2+0.06*0.5+0.9*0.3=0.308
(2)由贝叶斯公式有
P(Ɵ1|H1)=0.9*0.2/0.232=0.776
P(Ɵ2|H1)=0.06*0.5/0.232=0.129
P(Ɵ3|H1)=0.04*0.3/0.232=0.052
P(Ɵ1|H2)=0.05*0.2/0.475=0.021
P(Ɵ2|H2)=0.9*0.5/0.475=0.947
P(Ɵ3|H2)=0.05*0.3/0.475=0.032
P(Ɵ1|H3)=0.04*0.2/0.308=0.026
P(Ɵ2|H3)=0.06*0.5/0.308=0.097
P(Ɵ3|H3)=0.9*0.3/0.308=0.877
(3)用后验分布代替先验分布,计算各方案的期望收益值
a)当市场调查结果为畅销时
E(d1|H1)=80* P(Ɵ1|H1)+20* P(Ɵ2|H1)+(-5)* P(Ɵ3|H1)
=80*0.776+20*0.129+(-5)*0.052=64.4(万元)
E(d2|H1)=40* P(Ɵ1|H1)+7* P(Ɵ2|H1)+1* P(Ɵ3|H1)
=40*0.776+7*0.129+1*0.052=31.995(万元)
因此,当市场调查畅销时,最优方案是d1,即批量生产
b)当市场调查结果为中等时
E(d1|H2)=80* P(Ɵ1|H2)+20* P(Ɵ2|H2)+(-5)* P(Ɵ3|H2)=20.46(万元)
E(d2|H2)=40* P(Ɵ1|H2)+7* P(Ɵ2|H2)+1* P(Ɵ3|H2)
=40*0.021+7*0.947+1*0.032=7.501(万元)
所以市场调查为中等时,最优方案是:d1,即批量生产
c)当市场调查结果为滞销时
E(d1|H3)=80* P(Ɵ1|H3)+20* P(Ɵ2|H3)+(-5)* P(Ɵ3|H3)
=80*0.026+20*0.097+(-5)*0.877=-0.365(万元)
E(d2|H3)=40* P(Ɵ1|H3)+7* P(Ɵ2|H3)+1* P(Ɵ3|H3)
=40*0.026+7*0.097+1*0.877=2.596(万元)
因此市场调查为滞销时,最优方案是:d2,即出售专利
(4)通过调查,该企业可获得的收益期望值为
E2= E(d1|H1)* P(H1)+ E(d1|H2)* P(H2)+ E(d2|H3)* P(H3)
=64.4*0.232+20.46*0.475+2.596*0.308=25.46(万元)通过调查,该企业收益期望值能增加
E2-E1=25.46-24.5=0.96(万元)
因此,在调查费用不超过0.96万元的情况下,应进行市场调查
3.验后分析
(1)本题中调查费用1000<9600,所以应该进行市场调查
(2)当市场调查结果为畅销时,选择方案1,即批量生产
(3)当市场调查结果为中等时时,选择方案1,即批量生产
(4)当市场调查结果为滞销时,选择方案2,即出售专利。

相关文档
最新文档