《电动力学电子教案》PPT课件
《电动力学电子教案》课件

这个电动力学电子教案的PPT课件将带领大家深入了解电动力学的基础知识, 从电场和电势到麦克斯韦方程组,探索电磁场的奥秘。
课Hale Waihona Puke 介绍我们将介绍电动力学的重要性以及课程的目标和结构,通过深入讨论电动力 学在现实生活和工程领域中的应用。
电动力学基础知识
我们将学习电荷、电流、电场、电势能等基本概念,为后续学习电动力学提供坚实的理论基础。
电磁场的麦克斯韦方程组
学习麦克斯韦方程组对电磁场的描述,深入理解电磁波和电磁辐射的本质。
课程总结及展望
回顾电动力学的重要概念和原理,并展望电动力学在未来的发展和应用前景。
电场与电势
了解电场的概念和性质,学习如何计算电场强度和电势。探索电场对电荷和导体的作用。
电场的高斯定律
学习高斯定律的基本原理和应用,理解电场的通量与电荷的关系。
静电场中的电流和导体
了解静电场中的电流分布和导体内部电荷分布。探索导体的电场和电势分布特性。
磁场与电磁感应
学习磁场的属性和产生机制,了解电磁感应的原理和应用。探索电磁场与电 流的相互作用。
电动力学第一讲..41页PPT

39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
41
电动力学(全套课件)ppt课件

电磁波的传播遵循惠更斯原理,即波 面上的每一点都可以看作是新的波源。
电磁波在真空中的传播速度等于光速, 而在介质中的传播速度会发生变化。
电磁波的能量与动量
01
电磁波携带能量和动量,其能量密度和动量密度与 电场和磁场的振幅平方成正比。
02
电磁波的能量传播方向与波的传播方向相同,而动 量传播方向则与波的传播方向相反。
03
电磁波的能量和动量可以通过坡印廷矢量进行描述 和计算。
06
电动力学的应用与发展前 景
电动力学在物理学中的应用
描述电磁现象
电动力学是描述电荷和电流如何 产生电磁场,以及电磁场如何对 电荷和电流产生作用的理论基础。
解释光学现象
光是一种电磁波,电动力学为光 的传播、反射、折射、衍射等现 象提供了理论解释。
麦克斯韦方程组与电磁波
01
麦克斯韦方程组是描述电磁场的基本方程组,包括高斯定律、 高斯磁定律、法拉第电磁感应定律和安培环路定律。
02
电磁波是由变化的电场和磁场相互激发而产生的,其传播速度
等于光速。
麦克斯韦方程组揭示了电磁波的存在和传播规律,为电磁学的
03
发展奠定了基础。
电磁波的性质与传播
电磁波具有横波性质,其电场和磁场 振动方向相互垂直,且都垂直于传播 方向。
电场能量
W=∫wdV,表示整个电场 中的总能量。
功率
P=UI,表示单位时间内电 场中消耗的能量或提供的 能量。
04
恒磁场
磁感应强度与磁场强度
磁感应强度的定义与物理意义 磁感应强度与磁场强度的关系
磁场强度的定义与计算 磁场的叠加原理
安培环路定理与磁通量
01
安培环路定理 的表述与证明
《电动力学电子教案》3电流与电流密度

3 恒定电场在静电场中,导体中没有电场,没有电荷的运动,导体是等位体,导体表面是等位面,我们所研究的是介质中的电场。
当导体中有电场存在时,导体中的自由电荷在电场力的作用下就会作定向运动,形成电流。
如果导体中的电场保持不变,那么,运动着的自由电荷在导体中的分布将达到一种动态平衡,不随时间而改变,这种运动电荷形成的电流称为恒定电流,维持导体中具有恒定电流的电场称为恒定电场。
处于恒定电场中的导体表面,将有恒定的电荷分布,它们将在导体周围的介质中引起恒定电场,其性质与静电场类似,遵从与静电场相同的规律。
所以,本章的重点在研究导电媒质中的恒定电场。
3.1 电流与电流密度3.1.1 电源与电动势要维持导线中有恒定的电流,导线中必须维持有恒定的电场。
恒定电场的产生和维持依靠相连接的外部电源。
(1) 电源与电动势定义:一种能将其他形式的能量转换为电能的装置称为电源。
要产生恒定电场,在导线中引起恒定电流,需要连接直流电源。
直流电源能将电源内的原子或分子的正、负电荷分开,使正电荷移向正极,负电荷移向负极。
显然,这种移动电荷的作用力不是电场的库仑力,我们称之为局外力,用f e 表示,设想作用在单位正的点电荷上的局外力是一种等效的电场作用的结果,定义局外场强t e q e q t /f E 0lim →= (3.1.1) 其单位为V/m (伏特/米)。
描述电源特性的电动势可定义为⎰⋅=⋅⎰=A B el e εl E l E d d (3.1.2) 它的单位是V (伏)。
(2) 电源内的电场在局外场强的作用下,于电源的A 、B 两极板上分别积累了正、负电荷,它们又在电源内部产生库仑电场E ,于是电源内部的合成场强为E E E +=e t (3.1.3) e E 和E 方向相反。
当外电路开路时,局外力不断移动正、负电荷,使库仑电场E 逐步增强,直到e E E =,达到了动态平衡0=+=E E E e t合成场强为零,电荷的移动结束。
《电动力学》课程多媒体课件

传输线理论
介绍传输线方程及其解,分析传 输线上电磁波传播特性。
介质中电磁场分布与传输特性
介质中电磁波传播
研究电磁波在不同介质中的传播特性,如折射、 反射、散射等。
介质极化与磁化
分析介质在电磁场作用下的极化与磁化现象,及 其对电磁场分布的影响。
介质损耗与色散
讨论介质损耗、色散等特性对电磁波传播的影响 及其机制。
等离子体中电磁现象简介
等离子体基本性质
介绍等离子体基本概念、性质及其分类。
等离子体中电磁波传播
研究电磁波在等离子体中的传播特性,如截止频率、吸收等。
等离子体应用
探讨等离子体在通信、材料加工、能源等领域的应用前景。
06
电磁场数值计算方法简介
有限差分法基本原理及应用实例
基本原理
将电磁场连续问题离散化,利用差分 格式替代微分格式,通过求解差分方 程得到电磁场分布。
辐射原理
基于电磁感应和电磁场理论,解释天线辐射电磁波的机制,包括电基本振子和磁 基本振子的辐射特性,以及天线辐射方向图、增益、效率等参数的计算和分析。
05
导体与介质中电磁场
导体中电磁场分布与传输特性
导体内部电磁场
分析导体内部电磁场分布规律, 讨论趋肤效应、邻近效应等现象
。
导体表面电磁场
研究导体表面电磁场分布特点, 如感应电荷、镜像法等。
包括电磁波传播、电磁辐射、等离子 体物理、光电子学等。
电动力学与电磁学的关系
电磁学包含静电学、静磁学和电动力 学,电动力学是电磁学的重要组成部 分。
课程目标与要求
课程目标
掌握电动力学的基本概念、基本 理论和基本方法,能运用电动力 学知识解决实际问题。
学习要求
《高中物理课件-电动力学》

1
并联电容器的优点是什么?
2
并联电容器的优点和应用场景是什么?
3
什么是并联与串联电容器?
其对电容量的影响和其相对应计算公式 是什么?
串联电容器的优点是什么?
串联电容器的优点和应用场景是什么?
电容器充电和放电
什么是电容器充电和放 电?
如何计算电容器的充电和放 电曲线?
电容器充电放电的应用 场景
电容器充电和放电在哪些情 景下会用到?
什么是变压器?
变压器的工作原理和种类有哪些?
洛伦兹力、安培力和磁场能量
什么是洛伦兹力? 安培力有什么作用? 磁场有哪些应用?
怎样计算洛伦兹力?有哪些应用? 什么是安培力?如何计算? 磁场有哪些应用?有哪些重要性?
磁场线和电场线有什么区别?如何计算
电磁感应
2
磁感应强度和互感?
电磁感应现象和法拉第电磁感应定律是
什么,有哪些应用?
3
感生电动势和洛伦兹力
什么是感生电动势和洛伦兹力?如何计 算?有哪些应用?
安培定律和磁场强度
什么是安培定律?
安培定律公式和意义是什么?
什么是磁场强度?
怎么计算磁场强度?磁场的方向 和种类有哪些?
电势和电势能是怎么计算的?
电势能有哪些应用?如何解决和电势能相关的问 题?
电容器和电容量
电容器是什么?
电容器的基本原理是什么?分布 式参数和集中参数有什么意义?
电容量是什么?
什么是电容量?计算公式与单位 是什么?
电容器有哪些种类?
电容器如何分类?什么时候选择 固定电容器和变电容器?
并联与串联电容器
高中物理课件——电动力学
本课程为高中物理电动力学课件,内容包括电荷、电场、静电场与电介质、 电路、磁力线等基础知识。
《电动力学》课件

目录•课程介绍与基础知识•静电场•稳恒电流场•恒定磁场•时变电磁场•电磁辐射与散射课程介绍与基础知识0102 03电动力学的定义和研究范围电动力学是物理学的一个重要分支,主要研究电磁场的基本性质、相互作用和变化规律。
电动力学的发展历史从库仑定律、安培定律到麦克斯韦方程组的建立,电动力学经历了漫长的发展历程。
电动力学在物理学中的地位电动力学是经典物理学的基础之一,对于理解物质的微观结构和相互作用具有重要意义。
电动力学概述03电磁场与物质的相互作用洛伦兹力、电磁辐射等。
01静电场和静磁场的基本性质电荷守恒定律、库仑定律、高斯定理等。
02电磁感应和电磁波的基本性质法拉第电磁感应定律、麦克斯韦方程组等。
电磁现象与基本规律数学物理方法简介向量分析和场论基础向量运算、微分和积分运算、场论的基本概念等。
微分方程和偏微分方程基础常微分方程、偏微分方程、分离变量法等。
复变函数和积分变换基础复数运算、复变函数、傅里叶变换和拉普拉斯变换等。
特殊函数和数学物理方程简介勒让德多项式、贝塞尔函数、超几何函数等,以及波动方程、热传导方程、泊松方程等数学物理方程的基本概念和求解方法。
静电场库仑定律与电场强度库仑定律描述两个点电荷之间的相互作用力,其大小与电荷量的乘积成正比,与它们之间的距离的平方成反比。
电场强度表示电场中某点的电场力作用效果的物理量,其方向与正电荷在该点所受的电场力方向相同。
电场强度的计算通过库仑定律和叠加原理,可以计算多个点电荷在某点产生的电场强度。
电势与电势差电势描述电场中某点电势能的物理量,其大小等于将单位正电荷从该点移动到参考点时电场力所做的功。
电势差表示电场中两点间电势的差值,等于将单位正电荷从一点移动到另一点时电场力所做的功。
电势的计算通过电势的定义和叠加原理,可以计算多个点电荷在某点产生的电势。
1 2 3在静电场中,导体内部电场强度为零,电荷分布在导体的外表面。
导体的这种性质使得它可以用来屏蔽电场。
《电动力学电子教案》课件

《电动力学电子教案》课件第一章:电磁场基本概念1.1 电磁场的定义与特性电磁场的概念电磁场的分类:静态电磁场和动态电磁场电磁场的特性:保守场与非保守场1.2 电磁场的基本方程高斯定律法拉第电磁感应定律安培环路定律麦克斯韦方程组1.3 电磁波的产生与传播电磁波的产生:麦克斯韦方程组的波动解电磁波的传播:波动方程和解电磁波的频率、波长和速度第二章:电磁波的波动方程及其解2.1 电磁波的波动方程电磁波的波动方程推导波动方程的边界条件2.2 电磁波的解平面电磁波的解球面电磁波的解2.3 电磁波的极化线极化圆极化椭圆极化第三章:电磁波的反射与折射3.1 电磁波在介质边界上的反射反射定律反射波的性质3.2 电磁波在介质边界上的折射折射定律折射波的性质3.3 电磁波的全反射全反射的条件全反射的物理意义第四章:电磁波的传播与应用4.1 电磁波在自由空间中的传播自由空间中的电磁波传播特性电磁波的传播速度和波长4.2 电磁波在大气中的传播大气对电磁波传播的影响大气层对电磁波的吸收和散射无线通信雷达微波炉第五章:电磁波的辐射与吸收5.1 电磁波的辐射电磁波的辐射机制天线辐射特性5.2 电磁波的吸收电磁波被物质吸收的机制吸收系数和损耗5.3 电磁波的辐射与吸收的应用无线通信设备的设计电磁兼容性分析电磁波探测与成像第六章:电磁波的量子电动力学基础6.1 量子力学与经典电磁学的对比经典电磁学的基本原理量子力学的基本原理6.2 量子电动力学的基本概念费米子的电磁相互作用光子与物质的相互作用6.3 量子电动力学的应用激光的原理与应用电子加速器与粒子物理实验第七章:相对论性电子学7.1 狭义相对论与电子学狭义相对论的基本原理狭义相对论对电子学的影响7.2 洛伦兹变换与电子学洛伦兹变换的定义与性质洛伦兹变换在电子学中的应用7.3 相对论性效应的应用高速电子设备的相对论性效应分析粒子加速器中的相对论性效应第八章:电子加速器与辐射效应8.1 电子加速器的基本原理电子加速器的工作原理电子束的特性和应用8.2 辐射效应的基本概念辐射对物质的影响辐射防护的基本原则8.3 辐射效应的应用医学影像学中的辐射效应无线电通信中的辐射效应第九章:电磁波探测器与测量9.1 电磁波探测器的原理与分类光电探测器微波探测器射线探测器9.2 电磁波测量技术直接测量法与间接测量法频率测量与功率测量9.3 电磁波探测与测量的应用无线电通信系统的性能评估地球物理勘探第十章:电磁波在现代科技中的应用10.1 电磁波在信息技术中的应用光纤通信技术无线通信技术10.2 电磁波在医学中的应用磁共振成像(MRI)射频消融技术10.3 电磁波在其他领域的应用雷达与遥感技术电磁兼容性与电磁防护重点和难点解析重点环节:1. 电磁场的定义与特性:电磁场的分类、电磁场的特性。
2024版《电动力学》ppt课件

电势分布及等势面描绘方法
电势定义
单位正电荷在电场中某点所具有的电势能。
电势差与电势分布
描述电场中两点间电势的差值,电势分布可通过求解泊松方程或 拉普拉斯方程得到。
等势面描绘
电势相等的点构成的曲面,其描绘方法包括解析法、图解法等。
2024/1/24
10
导体在静电场中特性研究
导体静电平衡条件
导体内部电场强度为零,电荷只分布在导体表面。
物理意义
揭示了电磁现象的基本规律,是电磁学的基础理 论。
方程组包括
高斯定律、高斯磁定律、麦克斯韦-安培定律和法 拉第感应定律。
2024/1/24
5
电磁波传播特性及波动方程
2024/1/24
电磁波
01
电场和磁场相互激发并在空间中传播形成的波动现象。
传播特性
02
电磁波在真空中以光速传播,具有能量和动量。
铁磁材料在恒定磁场中表现出非线性、磁饱和、磁滞等特性。
2024/1/24
03
应用举例
利用铁磁材料的特性制作电感器、变压器、电机等电气设备,以及用于
磁记录、磁放大等领域。
16
恒定磁场能量储存与转换
2024/1/24
恒定磁场能量密度 恒定磁场中储存的能量与磁场强度的平方成正比,能量密 度w=(1/2)BH。
26
无线通信系统基本原理简介
无线通信系统组成
包括发射机、信道、接收机等部分,实现信息 的传输和接收。
2024/1/24
无线通信基本原理
利用电磁波作为信息载体,通过调制将信息加载到载 波上,经过信道传输后,在接收端进行解调还原出原 始信息。
无线通信关键技术
包括调制与解调、信道编码与解码、多址接入、 抗干扰等技术,保证通信系统的可靠性和有效 性。
电动力学-第四章PPT课件

二、导体内的电磁波
1.基本方程(导体内部)
E
B
H
J
t
D
t
D 0
B 0
E iH H (i
E 0 H 0
)E
引入复介电场数
i
i i [ i ] 编辑 版p ppit
H i E
12
§4.3 有导体存在时电磁波的传播
2.导体中的平面波解
c2 1
00
22BE(())(())(())22BEtt((22))
0 0
2、时谐电磁波(单色、定态电磁波)
以一定频率作正弦振荡的波称为时谐电磁波(单色电磁波)。
B E((xxtt))B E((xx))eeiitt
2Ek2E 0 2Bk2B0
2 E
பைடு நூலகம்
k
2E
0
E 0
B
i
E
编辑版pppt
这样,反射和折射波就被变为部分偏振光(各
个方向上 E大小不完全相同)。
(2)布儒斯特定律:若
则反 射 波
,
2
即反E射∥波只0有 分量;若自然E光 入射,则反射波为完全线偏
振波。
三、全反射(略)
编辑版pppt
9
§4.3 有导体存在时电磁波的传播
由于导体内有自由电荷存在,在电磁 波的电场作用下,自由电荷运动形成传导 电流,而传导电流要产生焦耳热,使电磁 波能量有损耗。由此可见,在导体内部的 电磁场(波)是一种衰减波,在传播过程 中,电磁能量转化为热量。
3.导E 体i内磁H 场 与电H 场 的i 关 系 E k E i E
对良导体 H ( i )n ˆ E ( 1 2 i)n ˆ E e i 4 n ˆ E
电动力学ppt课件

a)
b)
B与 E E B
E, B, k
同相位;
E构 B成 右E手 k螺 E旋关0系
c) E v,振幅比为波速(因为
B E,
B,
k k
相互垂直且
B
k
E
)。
12
机动 目录 上页 下页 返回 结束
(5)波形图
假定在某一时刻( t t0),取 E, B 的实部。
k
13
机动 目录 上页 下页 返回 结束
(2)波长与周期 波长 2
k
周期 T 1 2 f
波长定义:两相位差为 2
两等相面相位差:k(Rs Rs
的等相面间的距离。
) 2 Rs Rs
2
k
波长、波 k k 2
v f
速、频率
v
2
间的关系 T 1 2 v
f
T
(3)横波特性(TEM波) k E k B 0
第四章
电磁波的传播
1
本章重点:
1、电磁场波动方程、亥姆霍兹方程和平面电磁波 2、反射和折射定律的导出、振幅的位相关系、偏振 3、导体内的电磁波特性、良导体条件、趋肤效应 4、了解谐振腔和波导管中电磁波的运动形式
本章难点:
1、振幅的位相关系 2、导体内电磁波的运动 3、波导管中电磁波解的过程
2
机动 目录 上页 下页 返回 结束
9
机动 目录 上页 下页 返回 结束
2.平面电磁波的传播特性 平面波:波前或等
相面为平面,且波
(1)解为平面波
设
S
面ES上为x相,t与位kE垂k0直eix的kx平k面tR。s 在
沿等相面法线方向
传播。
x
电动力学PPT第5章

式中 t t r
V
c
r
(x x)2
(y
y)2
(z z)2
1 2
2020-6-16
物理系
5-23
则有
A
0 4
V
j (x,t)d
r
0 4
V
(1 r
j
j
1)d
r
其中
j(
x,
t
)
j(
x,
t
)
t常数
j ( x, t )
x 常数
|| 0
这是因为微分只对x进行的
则
j(
x,
1
4 0 V
1 r
t
t t
d
1
4
0
V
1 r
t
d
由此得到:
A
1 c2
t
0 4
V
1 r
j
t常 d
1 c2
1
4 0
V
1 r
t
d
0 4
V
1 r
j
t常
t
d
2020-6-16
物理系
5-28
由电荷守恒定律
j
t常
t
0
A
1 c2
t
0 4
V
1 r
j
t常
t
d
0
即得
A
和
的解满足Lorentz条件。
5.1.1.用势描述电磁场 真空中,麦克斯韦方程组为
2020-6-16
物理系
5-3
引入矢势A 代入式
电磁场的矢势和标势
可得
由此可见,
是无旋场,因此它可以用标势 φ 描述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I
Id l
I
F4 0
L
IdlIdl(xx)
L
xx3
x r
Rxx
称为安培定律
I d l
xr
电流激发磁场,磁场对位于场中的电流施 力作用。
12
改写安培定律为
FLIdl[4 0
Idl(xx) L xx3 ]
方 括 号 中 的 量 是 描 写 磁 场 特 征 的 量 , 通 常 称 为 磁 感 应 强 度 矢 量 。 用 矢 量 B (x)表 示
E(x) Q
40
(xx) xx3
若电荷连续分布在某一区域内
E(x) 1
40
V
(x)(x
x x 3
x)
dV
1 (x) 1 dV
40 V
x x
5
2、高斯定理和电场的散度 高斯定理
Ed S 0 Q i Ed S1 0Vd V
依据矢量场散度的定义
E 0
6
3、静电场的旋度 依据库仑定律,在点电荷激发的电场中任取一闭 合回路,有
2sind
0
0
sincosdey
2 d
0
0sin3dez]
230f R0ezFra bibliotek18例题2 一个半径为a的通有稳恒电流为I的无限长中空圆柱体,其中空部分 也是圆柱形,半径为b,但二者不同轴,其中心距为c.求: (1)空间各点的磁场B (2)空间各点处B的散度及旋度
x 2 B a P(x)
R R Bb
解:将系统看成两个柱体,通以电流密度 大小相同而方向相反的电流,其中半径 为a的柱体电流与原电流同向,由安培环 路定律知
o
φb
O(c, 0)
x1
I0 a
2(a02a2bI2)Re (Ra)
B 2Re { a
2(a02IR b2)e (Ra)
19
I 0 b
2(a2 0b2bI2)Re (Rb)
B2R(e){ b
2(a02IR b2)e (Rb)
所求磁场为
B Ba Bb [
Bb x2
(x1 c)2 x22
[
Ba x1 x12 x22
z
dS
dB
R0
O
x
解:由转动引起的等效面电流分布
f fezR0eRfR0sine
电流元fdS在球心处激发的磁感
应强度为
y
dB
0 4
f dS
R(0 -eR) R03
0 f sin 4 R0
dS(-e)
17
利用球坐标基矢与笛卡儿基矢的关系得
B0f
4
R0
[
2
0
cosd
0 sincosdex
14
B 0 [ j(x) d3x]
4
x x
0 j(x) 1 d3x 0 j(x)2 1 d3x
4
x x
4
x x
0
4
j(x)
1 x x
d3x 0
j(x)(x x)d3x
0 [ j(x)d2x
4 S x x
x
j(x) x
d3x]
0
j(x)(x x)d3x
B2
2
0I (a2
b2) {[1
( x1
b2 c)2
x
2 2
]
x
2
e1
[ x1
b 2 ( x1 c )
( x1
c)2
x
2 2
]e2
21
当 R b, R a时
B3
2
0I
(a2
b2)
e2
(2)对于磁场散度和旋度,直接运算有
B1 B2 B3 0
B1 B3 0
B2
0 I (a2 b2)
8
计算电场的散度
当r a时
rr3r1 2 r( r2r 1 2) =0
因而 E4Q0rr3 0
当 r a 时 E 4 Q 0 a 3 r 4 3 Q 0 a 30
9
§2
1、电荷守恒定律
电流和磁场
电流区域内电流的分布是用电流密度矢量表示的。
电流密度和电流强度的关系为
d I J ( x ) d SI S J ( x ) d S
Edl 0
根据矢量场旋度的定义
E0
静电场是无旋 场
7
例 电荷Q均匀分布于半径为a的球体内,求各点的电场强度, 并由此直接计算电场的散度。
解:以球心为原点作球坐标系,由于对称性,空间各点的电场 强度沿径向,半径相同面上场强大小相等。由高斯定理可知
当r a时 当r a时
E Qr
40r3
E
Qr
40a3
B(x)0 Idl(xx)
4 L xx3
这一关系式称为毕奥-萨伐尔定律
13
对于分布电流
B 0
4
V
j
(
x) ( x x x
3
x)
d
3
x
0 j(x) 1 d3x
4 V
x x
3、磁场的环量和旋度
B 0 j(x) 1 d3x
4 V
x x
0 j(x) d3x
4
x x
对此式两 边取旋度
Bb (x1 c) (x1 c)2 x22
]e2
Ba x2 x12 x22
]e1
20
当 R a时
B1
2
0 (a 2
I
b
2
)
{
[
a2
x
2 1
x
2 2
b2 ( x1 c )2
x
2 2
]e1
[
a
x
2 1
2 x1 x
2 2
( x1 c ) ( x1 c )2
x
2 2
]e2
当 R b, R a时
在任何物理过程中,“一个封闭系统内”的电荷不能凭空产生,也不能 凭空消灭,这个规律称为电荷守恒定律。
依据这个定律
10
SJdSVt dV
这是电荷守恒定律的积分形式。应用高斯定理即得微分形式
J 0
t
在恒定电流情况下,方程为
J0
11
2、毕奥-萨伐尔定律
在真空中回路电流I′作用在回路电流I上的的力为
电动力学电子教案
1
第一章 电磁现象的普遍规律
本章主要是从基本实验定律出发建立麦克斯韦 方程组,讨论边值关系及电介质的电磁性质方程和 洛伦兹力公式.这些内容是本书以后各章论述电磁 场的理论依据。
2
§1 电荷和电场
1、库仑定律
Q Rxx
xr
Q
O xr
相对于观察者静止的两个 点电荷之间的相互作用, 在真空中的数学表示式为
F
1
4 0
QQ R2
电荷Q作用在电荷Q上的力为
F
40
(xx) x x 3
3
库仑定律要求:1 电荷必须是点性的;2 电荷相对于观察者 必须处于静止状态。 库仑定律的主要物理内容是:1库仑力是距离的平方反比定 律。2电荷在其效果上具有可加性。
电场强度矢量定义
E(x) F(x) Q0
4
一个静止点电荷激发的电场为
B (x)0j(x)
15
相应的积分形式是
L B d l0Sjd S
将 B 4 0 x j( x x )d 3 x 两 边 取 散 度
B0
积分形式
SBdS0
16
例 题 1: 一 个 半 径 为 R0的 均 匀 带 电 的 薄 导 体 球
壳 , 以 恒 定 速 度 绕 一 直 径 转 动 , 其 面 电 荷 密 度 为 f。 求 球 心 处 的 磁 感 应 强 度 矢 量 。