二元一次方程 课件ppt课件

合集下载

二元一次方程PPT课件

二元一次方程PPT课件

下列方程,哪些是一元一次方程?
(1) − =


(2) − =


(3) − − =
(4) − =
×
×
什么叫做方程的解?
如果未知数所取得某个值能
使方程左右两边的值相等,那么
这个未知数的值叫做方程的解。
下列括号内的数是不是该方程的解?
(1) − = (x=1)
(2) − = (y=)
×

上个月我校进行义卖活动,六(5)班义
卖罐装可乐和罐装雪碧。
问题一:小宁同学花费30元购买了x罐
雪碧,请完成下表:
单价(元)数量(罐)总价(元)可列方程
雪碧
3
x
3/30 =
问题二:小宁同学一共花费40元购买了可
乐和雪碧12罐,请完成下表:
雪碧 可乐
单价(元)
3
数量(罐)
总价(元)
3
雪碧+可乐
可得方程:
4
+ /12 + = 12
4 3 + 4/40 3 + 4=40
视察刚才得到的方程:
1. =
2. + =
3. + = 40
二元一次方程
6.8 二元一次方程
二元一次方程:
含有两个未知数的一次方程叫做
哪些能使方程两边的值相等?
(1) = , =
×
(2) = , = − √
(3) = , =

使二元一次方程两边的值相等
的两个未知数的值,叫做二元
一次方程的解
=
=
记作:ቊ
,ቊ

(完整版)二元一次方程组优秀课件PPT

(完整版)二元一次方程组优秀课件PPT

矩阵法解二元一次方程组
总结词
利用矩阵的运算性质和逆矩阵的性质,将二元一次方程组转化为线性方程组进行求解。
详细描述
矩阵法的基本思路是将二元一次方程组转化为线性方程组,然后利用矩阵的运算性质和 逆矩阵的性质求解。具体步骤包括:将二元一次方程组写成矩阵形式,然后对矩阵进行 变换,将其化为行最简形式,得到线性方程组;然后利用逆矩阵的性质求解线性方程组
示例
x + y = 1, 2x - y = 3
二元一次方程组的解法概述
01
02
03
消元法
通过加减或代入法消去一 个未知数,将二元一次方 程组转化为一元一次方程 求解。
替换法
通过一个方程中的未知数 表示另一个未知数,然后 将其代入另一个方程求解 。
矩阵法
利用矩阵表示方程组,通 过矩阵运算求解。
二元一次方程组的应用场景
化学问题
在化学中,有些问题涉及到两种化学物质之间的反应,如反 应速率和反应物浓度等,这时也可以用二元一次方程组来表 示和解决。
04
二元一次方程组的扩展知识
二元一次方程组的几何意义
平面直角坐标系
二元一次方程组可以表示平面上的点集,通过坐标系将代数问题与几何问题相互 转换。
直线交点
二元一次方程组的解对应于直线交点,即两个方程的公共解。
二元一次方程组的解的个数与性质
解的个数
二元一次方程组可能有无数解、唯一 解或无解,取决于方程组中方程的系 数和常数项。
解的性质
解的个数与方程组系数矩阵的秩和增 广矩阵的秩有关,通过比较两者可以 判断解的情况。
二元一次方程组的解的判定定理
定理内容
如果二元一次方程组的系数矩阵的秩等于增广矩阵的秩,则该方程组有唯一解;如果秩不相等,则该 方程组无解或有无数解。

二元一次方程PPT课件全

二元一次方程PPT课件全

1. 根据上面的定义请每位同学写一个 2. 二元一次方程与同桌交流.
2.它们是二元一次方程吗?
(1) 3-2x =1 不是
(2) x2 y 0 不是
(3) x y 2y 0 是 3
(4)
y
1 2
x
不是
(5) x 2 1 不是 y
(6) 3 - 2xy =1 不是
选一选
下列各式是二元一次方程的是
5.已知方程 ( k 2 4 ) x 2 ( k 2 ) x ( k 8 )y k 7 ,当
k=
时,方程为一元一次方程;当ຫໍສະໝຸດ k=时,方程为二元一次方程。
学以致用
下列各式是二元一次方程的
c 是( )
A、x2 y 0 C、xy 2y 0
3
BD、、xy2y1x1
2
试 一
把下列各对数代入二元一次方程
.
(1) a+b+c=1 (2) mn=3
(3)4x+ =0
(4)2x=1-3y
1.根据题意列出方程:
(1)买5kg苹果和3kg梨共需23.6元,分 别求苹果和梨的单价.设苹果的单价 为x元/kg,梨的单价为y元/kg;
5x+3y=23.6
使二元一次方程两边的值相等的一 对未知数的值,叫做二元一次方程的 一个解。
二元一次方程PPT课件
(2)在高速公路上,一辆轿车行驶2时的路 程比一辆卡车行驶3时的路程还多20千米.如 果设轿车的速度是a千米/时,卡车的速度是b 千米/时,你能列出怎样的方程?
2a-3b=20
观察它们有什么共同点?
0.5x+0.8y=7.4 2a - 3b=20
含有两个未知数,且含未知 数的项的次数都是一次的 方程叫做二元一次方程.

二元一次方程组ppt课件

二元一次方程组ppt课件

5. B 提示:A.当
时,x-2y=0-2×
=1,是方程的解;B.当
时,x-2y=1-2×1=-1,不是方程的解;C.当
时,x-2y=1-2×0=1,是
方程的解;D.当
时,x-2y=-1-2×(-1)=1,是方程的解.
6. C 提示:A、B 方程组里含有 x,y,z 三个未知数,不符合二元一次方程组
方程组)
共计 44 元
共计 26 元
解析:从题图中可获得信息:2 件 T 恤衫和 2 瓶 矿泉水一共是 44 元
;1 件 T 恤衫和 3 瓶矿泉水一共 是 26 元.列出二元一次方程组即可.
答案:解:设每件 T 恤衫 x 元,每瓶矿泉水 y 元.
由题意,得 题型解法:解答有关二元一次方程组的图表信息题的关键是认真分析和提 取图表中的数据信息,挖掘图表中所隐含的等量关系,从而建立方程组求解.
D. 1
是方程 2x-ay=3b 的一个解,那么 a-
解析:将
代入方程2x-ay=3b,得 2+a= 3b,所以 a-3b=-2.故
选 C. 答案:C 题型解法:解决本题的关键是将方程的解代入,从而求出待定式子的值.
-9-
6.1 二元一次方程组
例 4 (巴中中考)已知关于 x,y 的二元一次方程组
为解的二元一次方程有无穷多个,只要从这些方
程中选中两个方程联立,即可得所要求的二元一次方程组.注意:在找两个
方程联立时,不能找系数成比例的两个方程.
-13-
6.1 二元一次方程组
[方法总结]
■检验二元一次方程组的解的方法———代入检验法 将这对数值分别代入方程组中的每个方程,只有当这对数值满足所有方程
k 的值为 ( )

二元一次方程ppt课件

二元一次方程ppt课件

04
二元一次方程的扩展知识
二元一次方程与不等式的关系
1 2 3
表达式形式
二元一次方程和不等式在表达式形式上具有相似 性,但不等式中可能包含“<”、“>”等符号 ,而方程中则以等号“=”为主。
解法
二元一次方程的解法通常包括代入法、消元法和 加减消元法等,而解不等式则需要使用区间估计 、数轴标根法等技巧。
二元一次方程
contents
目录
• 二元一次方程的定义 • 二元一次方程的解法 • 二元一次方程的应用 • 二元一次方程的扩展知识 • 总结与回顾
01
二元一次方程的定义
什么是二元一次方程
• 二元一次方程是指包含两个未知数,且未知数的最高次数为 1的方程。
如何定义二元一次方程
• 二元一次方程通常表示为 ax + by = c,其中 a、 b、c 是常数,且 a 和 b 不等于0。
扩展知识
二元一次方程的解法还可以推广到多 元一次方程和线性方程组,是数学中 重要的基础知识。
对学习二元一次方程的建议与指导
建议 1. 理解方程的意义和背景;
2. 熟悉解方程的基本步骤和方法;
对学习二元一次方程的建议与指导
01
3. 通过练习和实例掌握解题技巧 ;
02
4. 培养数学思维和逻辑推理能力 。
二元一次方程在微积分中的应用
微积分基本定理
微积分基本定理是微积分学的基础,它描述了函数改变量 与自变量改变量之间的极限关系。
二元一次方程与微积分
二元一次方程在微积分中有着广泛的应用,例如求解空间 曲线的一般方程、求解平面的一般方程等都需要用到二元 一次方程。
重要性
二元一次方程在微积分中扮演着重要的角色,它是连接初 等数学和高等数学的重要桥梁之一。

(完整版)二元一次方程组优秀课件PPT

(完整版)二元一次方程组优秀课件PPT

距离问题
浓度问题
通过给定的两点坐标,利用二元一次 方程组求解两点之间的距离。
通过给定的溶液浓度和体积,利用二 元一次方程组求解溶液的配制比例和 浓度。
速度问题
通过给定的时间和速度,利用二元一 次方程组求解物体的运动轨迹和速度 。
THANKS
[ 感谢观看 ]
(完整版)二元一次方程 组优秀课件
汇报人:可编辑
2023-12-25
CONTENTS
目录
• 二元一次方程组的基本概念 • 二元一次方程组的解法 • 二元一次方程组的实际应用 • 二元一次方程组的变式与拓展
CHAPTER 01
二元一次方程组的基本概念
二元一次方程组的定义
定义
二元一次方程组是由两个或两个以上的方程组成,其中含有两个未知数,且每 个方程中未知数的次数都是一次。
代数问题
例如,在求解两个未知数的和、差、 积、商等问题时,需要使用二元一次 方程组来表示和求解。
物理中的二元一次方程组问题
运动问题
例如,在计算两个物体之间的相对速度和距离时,需要使用二元一次方程组来表示和求 解。
力的问题
例如,在计算两个物体之间的相互作用力和扭矩时,需要使用二元一次方程组来表示和 求解。
示例
x + y = 1, 2x - y = 3。
二元一次方程组的表示方法
代数表示法
使用代数符号表示二元一次方程 组,如x + y = 1, 2x - y = 3。
图形表示法
通过图形表示二元一次方程组的 解,如平面直角坐标系中的直线 。
二元一次方程组的解的概念
01
02
03
解的概念
满足二元一次方程组的未 知数的值称为解。

二元一次方程组-图课件

二元一次方程组-图课件

解二元一次方程组时,可以通过消元 法、代入法等方法得到不同的解。
二元一次方程组的拓展
多元一次方程组
除了二元外,还可以扩展 到更多未知数的多元一次 方程组。
分式方程组
将一次方程组的未知数次 数降低,可以得到分式方 程组。
高次方程组
将一次方程组的未知数次 数提高,可以得到高次方 程组。
二元一次方程组与其他数学知识的结合
二元一次方程组可以表示为平面上的两条直线, 这两条直线的交点就是解。解的几何意义是两条 直线的交点坐标,即两条直线的公共点。
02
二元一次方程组的图解法
直线交点法
总结词
通过作图找到两条直线的交点,该交点即为方程组的解 。
详细描述
首先,将二元一次方程组中的两个方程分别表示为两条 直线的方程。然后,在坐标系上画出这两条直线。最后 ,找到这两条直线的交点,该交点的坐标即为方程组的 解。
02 代数问题
在代数中,二元一次方程组是基本的问题类型之 一,需要掌握其解法。
03 概率统计问题
在概率统计中,经常需要计算两个事件同时发生 的概率或两个变量的相关性。
科学中的二元一次方程组问题
01
02
03
物理问题
在物理学中,经常需要解 决与速度、力和加速度相 关的二元一次方程组问题 。
化学问题
在化学中,二元一次方程 组可以用来描述化学反应 中两种物质的反应速率和 反应条件。
进阶习题2
解方程组$begin{cases}x + 2y = 6 2x + y = 4end{cases}$
进阶习题3
解方程组$begin{cases}5x - y = 11 x + 2y = 7end{cases}$

《二元一次方程与一次函数》PPT课件讲义

《二元一次方程与一次函数》PPT课件讲义
y 5 y=2x-2
4 3
进而作出 y 1 x 1的图象
2
2
1 P(2,2)
由(2)得 y=2x-2 由此可得 x=0 x=1
y=-2 y=0
进而作出Y=2X-2的图象
-4 -3 -2 -1 O 1 2 3 4 -1
x
y 1 x 1 2
-2 -3
-4
-5
x=2 所以方程组的解为:
y=2
(1)对应关系
二元一次方程与一次函数
(Suitable for teaching courseware and reports)
十七世纪法国
数学家笛卡尔有一次 生病卧床,看见屋顶 上的一只蜘蛛顺着左 右爬行,笛卡尔看到 蜘蛛的“表演”猛的 灵机一动。他想,可 以把蜘蛛看成一个点, 它可以上、下、左、 右运动,能不能知道 蜘蛛的位置用一组数 确定下来呢?
师生互动
在一次函数Y=5-X的图象上任取一个点 (0,5),它的坐标适合方程X+Y=5. (4)以方程X+Y=5的解为坐标的所有的点所组 成的图象与一次函数Y=5-X的图象相同吗 ?
过(0,5) 、(5,0) 两点的直线图象与一次函 数Y=5-X的图象相同.
知识源于悟 益智的“机会”
师:通过以上结论,你能分析研究出二元一次方程与一次 函数图象的关系吗?
生:二元一次方程的解就是一次函数图象的点的 坐标;一次函数图象上的点的坐标就是二元一次 方程的解.
二元一次方程与一次 函数的基本关系
做一做
x+y=5 x=0 y=5
2x-y=1 x=0 y=-1
x+y=5
2x-y=1
1) 在同一直角坐标系中分别作一 次函数Y=5-X和Y=2X-1的图象, 这两个图象有交点吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2个未知数,x和y,次数都为一次
活动探究
4.在告诉路上,一辆轿车行驶2小时的路程比 一辆卡车行驶3小时的路程还多29千米.如果设轿 车的速度为a千米/小时,卡车的速度为b千米/小 时,你能列出怎样的方程?
解:轿车2小时的路程=卡车3小时的路程+29 2×轿车速度=3×卡车速度+29
∵已经设轿车速度为a,卡车速度为b ∴可得方程:2a=3b+29
2个未知数,a和b,次数都为一次
探究结果
观察2a=3b+29、3.3=0.6x+0.8y、10.8=2x+1.2y, 想一想它们有什么共同点?
共同点: 整式方程; 未知数的个数为2个; 含有未知数项的次数个数为1.
讲授新课
二元一次方程的定义:
含有两个未知数,并且所含未知数的项的 次数都为1的方程.
做一做
2.判断下列式子是不是二元一次方程:
× x的次数不为1,b的次数为2
× x的次数不为1

× 不为等式

× x的次数为2
活动探究
对于一元一次方程,
使等式两边相等的x的值称为一元一次方程的解
.
活动探究
对于二元一次方程“8x+6y=20”的解是什么呢?
二元一次方程
X值
y值
1
2
2
3
8x+6y=20
一元一次方程
活动探究 2.小杰买了单价为2元和1.2元的贺卡若干张,花了
10.8元.问这两种贺卡各买了多少张?
解:∵总价=第一种贺卡总价+第二种贺卡总价 ∴10.8=第一种单价×数量+第二种单价×数量 ∴10.8=2×那数如量何列+ 出1.有2×两数个量 未未知知数数的式子呢未?知数
10.8=2x+1.2y
达标检测
1.检验下列各组数是不是方程2a-3b=20的解.
(1) a=4, b=3.
(2) a=5, (3) a=100, b=60.
解:(1)将a=4带入方程得2×4-3b=20,解得b=-4≠3,
所以不是方程解.
(2)将a=5带入方程得2×5-3b=20,解得b=-
10/3=-10/3,所以是方程的解.
二元一次方程
教学目标
1.理解二元一次方程的定义; 2.能够准确叙述处二元一次方程的解的概念; 3.能熟练的求出二元一次方程的一个解。
重点: 1.探索二元一次方程的解的过程; 2.利用一元一次方程求解的方法求二元一次方程的一个解。 难点:二元一次方程的解的求解。
课前回顾
一元一次方程
定义: 含有一个未知数,并且未知数的的项的 次数为一次的方程。
(3)将a=100带入方程得100×2-3b=20,解得
b=60=60,所以是方程的解.
达标检测
2.已知二元一次方程2x+3y=2.
(1)用关于y的代数式表示x.把y看成已知数,当只有未
2x=2-3y
知数x的一元一次方程
即x=1-3/2y
(2)根据给出的y值,求出对应的x的值,填入表内. 把y值带入方程,化为一元一次方程,求出对应的x值.
例子: x=3x 、2x=6x-1 、9x-6=2x
注: 元:一个未知数. 一次:未知数的次数为一次.
活动探究
1.小杰买了单价为2元的贺卡一共花了20元, 问他买了多少张这样的贺卡?(列出方程即可)
解:设:他买了x张这样的贺卡,则 ∵“总价=单价×数量” ∴2x=20 只有一个未知数x,x的次数为一次
y 0 2 -2 2/3 1 ...
x 1 -2 4 1/2 -
...
1/2
达标检测
3.已知二元一次方程2xn+3ym-2=2.
(1)求n和m的值. 二元一次方程未知数的项的指数都为1 n=1 m-2=1
∴n=1,m=3.
(2)当y=10时,求出对应的x的值. ∵方程为二元一次方程 ∴方程为2x+3y=2 ∴当y=10时带入方程得2x+30=2 ∴此时x=-14.
使二元一次方程两边的值相等的一对未知 数的值,叫做二元一次方程的一个解.
特别说明: 二元一次方程的解有很多对,但是每一
对是唯一的。
比一比
一元一次方程的解和二元一次方程的解有什么异同呢?
一元一次方程的解 二元一次方程的解
个数
一个
无数个
解的形式 一个未知数的值 一对未知数的值
实例讲解
例1 已知方程3x+2y=10. (1)用关于x的代数式表示y. (2)求当x=-2,0,3时对应的y值,并写出方程的三个解. 解:(1)移项,得2y=10-3x.
2个未知数,x和y,次数都为一次
活动探究 3.小红到邮局寄挂号信,需要邮资3元3角.小红有面
额为6角和8角的邮票若干张,问各自需要多少张这两种面 额的邮票?如果设需要面额为6角的邮票x张,面额为8角 的邮票y张,你能列出方程吗?
解:∵总价=面额为6角的总价+面额为8角的总价 ∴3.3=0.6×6角张数+0.8×8角张数 2个未知数 ∴3.3=0.6x+0.8y
(2)当x=-2时,y=5-3/2×(-2)=8;
当x=0时,y=5-3/2×0=5;
当x=3时,y=-3/2×3=1/2.
由二元一次方程的解的ห้องสมุดไป่ตู้义x,=-2, y=8,
x=0, y=5,
x=3,
都是方程3x+2y=10的解.
实例讲解 例2 已知二元一次方程2xn-2+ym+1=6,求m、n的值.
解:∵ 2xn-2+ym+1=6是二元一次方程 ∴未知数x和y的次数都得为1 ∴n-2=1,m+1=1 解得n=3;m=0 ∴n=3;m=0.
实例讲解
例3 如果x=1,y=3是方程6x+2by=6的一个解,求b的值.
解:∵ x=1,y=3是6x+2by=6的一个解 ∴这一对值满足方程6x+2by=6 ∴6×2+2×b×3=6 即12+6b=6 解得b=-1 ∴b=-1.
4
-2
5


SUCCESS
THANK YOU
2021/4/24
探究结果
➢ 对于二元一次方程:
使得方程两边的值相等的未知数有很多对。
例如 x=1 y=2
使8x+6y=20成立的值有很多对:
使得方程两边的
x=2 x=3
x=4 x=5
值相等的这些未
y=-2
知数叫做什么呢?
x=… y=…
讲授新课
对于二元一次方程:
体验收获
总结
1.二元一次方程:含有两个未知数,且未知数的项的次 数都是一次的方程.
2.二元一次方程的解:使二元一次方程两边的值相等的 一对未知数的值,叫做二元一次 方程的一个解.
3.求二元一次方程的 消元法. 解:
布置作业
教材34页习题第1、4、5、6题。
相关文档
最新文档