一元二次方程课件ppt

合集下载

初三数学中考专题复习 一元二次方程 课件(共22张PPT)

初三数学中考专题复习    一元二次方程  课件(共22张PPT)
• 8、若9am2-4m+4与5a9是同类项,则m= ___
• 9、某商场将进货价为30元的台灯以40元售 出,平均每月能售出600个,调查表明:, 这种台灯的售价每上涨1元,其月销售量就 将减少10个,若销售利润率不得高于100% ,为了实现平均每月10000元的销售利润, 这种台灯的售价应定为多少?这时应进台 灯多少个?
• 5、 若x,y为矩形的边长,且(x+y+4)(x +y+5)=42, 则矩形的周长为___.
• 6、如果正整数a是一元二次方程x2-3x+ m=0的一 个根,-a是一元二次方程
• x2+3x-m=0的一个 根,则a=____.
• 7、一元二次方程ax2+bx+c=0,若x=1是它 的一个根,则 a+b+c= ___,若a-b+c=0, 则方程必有一根为___
运动与方程
如图,在Rt△ACB中,∠C=90°,
AC=6m,BC=8m,点P、Q同时由A、
B速两点出发分别沿AC,BC方向 A
向点C匀运动,它们的速度都是 P 1m/s,几秒后四边形APQB的面积
为Rt△ACB面积的1\3?
C
QB
几何与方程
1.将一块正方形的铁皮四角剪去一个边长为4cm的小正 方形,做成一个无盖的盒子.已知盒子的容积是400cm3, 求原铁皮的边长.
适应于左边能分解为两个一次因式的积右边是00的方程一一元二次方程的定义1判断下面方程是不是一元二次方程14xx2023x2y103ax?bxc04853xx13????122方程m2xm3mx40是关于x的一元二次方程则m3方程m21x2m1x2m10当m时是一元二次方程
第二章 一元二次方程 复习
把握住:一个未知数,最高次数是2,

人教版九年级数学上册《一元二次方程》PPT优秀课件

人教版九年级数学上册《一元二次方程》PPT优秀课件


①都是整式方程; ②都只含一个未知数; ③未知数的最高次数都是2.
那么这三个方程与一元一次方程的区别在哪里? 它们有什么共同特点呢?
知识要点
一元二次方程的概念 等号两边都是整式,只含有一个未知数(一元),并且未知
数的最高次数是2(二次)的方程,叫做一元二次方程.
一元二次方程的一般形式是 ax2+bx +c = 0(a,b,c为常数, a≠0)
想一想: 还有其他的方法吗?试说明原因. (20-x)(32-2x)=570
32-2x
32
20-x 20
归纳小结
建立一元二次方程模型的一般步骤

审题,弄 清已知量 与未知量 之间的关 系
设 设未知数

找出等量 关系

根据等量 关系列方 程
随堂演练
1.下列关于x的方程一定是一元二次方程的是( D )
解:当x=-3时,左边=9-(-3)-2=10, 则左边≠右边, 所以-3不是方程x2-x-2=0的解; 下面几个数同理可证. 经检验得-1,2为原方程的根.
获取新知
知识点三:建立一元二次方程模型
问题 在一块宽20m、长32m的矩形空地上,修筑三条宽相等 的小路(两条纵向,一条横向,纵向与横向垂直),把矩形空 地分成大小一样的六块,建成小花坛.如图要使花坛的总面积 为570m2,问小路的宽应为多少?
4.如图,在一块长12 m,宽8 m的矩形空地上,修建同样宽的两条互 相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种 花草,且栽种花草的面积为77 m2.设道路的宽为x m,则根据题意, 可列方程为 (12-x)(8-x)=77.
样的正方形,再将四周突出部分折起,就能制作一个无盖方盒.如果要制作的

一元二次方程的解法ppt课件

一元二次方程的解法ppt课件
的各项系数a、b、c确定的,当 2 -4ac≥0时,它的实数根

公式法推导过程
这叫做一元二次方程的求根公式,解一元二次方程时,
2
把各项系数的值直接代入这个公式,若 -4ac≥0就可以
求得方程的根,这种解一元二次方程的方法叫做公式法.
尝试与交流
2
2
在一元二次方程 +bx+c=0(a≠0)中,如果 -4ac<0那
解:原方程可变形为(2x-1+x)(2x-1-x)=0
即(3x-1)(x-1)=0
3x-1=0或x-1=0
所以x1=

,x
2=1

观察与思考
2=4(x+2)
(x+2)
解方程
小丽、小明的解法如下:
小丽、小明的解法,哪个正确?
因式分解法练习
1.用因式分解法解下列方程
①x2-3x=0
② 3x2= x
③2( x-1 ) + x ( x-1 ) =0
叫做因式分解法
例题8
解下列方程
① = −
② + − + =
原方程可变形为x2+4x=0
原方程可变形为
x(x+4)=0
(x+3)(1-x)=0
x=0或x+4=0
x+3=0或1-x=0.
所以x1=0,x2=-4
所以x1=-3,x2=1
例题9
解方程
(2x-1)2-x2=0
的矩形割补成一个正方形
数学实验室
一个矩形通过割、拼、补,成为一个正方形的过程配方
的过程
数学实验室
数学实验室
数学实验室
数学实验室

《二次函数与一元二次方程》参考PPT课件

《二次函数与一元二次方程》参考PPT课件

有两个不相 等的实数根
b2 – 4ac > 0
只有一个交点 有两个相等的 实数根
b2 – 4ac = 0
没有交点
没有实数根
b2 – 4ac < 0 16
随堂练习
1.不与x轴相交的抛物线是( D )
A. y = 2x2 – 3
B. y=-2 x2 + 3
C. y= -x2 – 3x D. y=-2(x+1)2 -3
7.一元二次方程 3 x2+x-10=0的两个根是x1-2 , x2=5/3,那么二次函数 y= 3 x2+x-10与x轴的交点坐
标是__(_-2_,_0)_(_5/_3,. 0)
19
8.已知抛物线y = ax2+bx+c的图象如图,则关 于x的方程ax2 + bx + c-3 = 0根的情况是( A)
20.5 m
6
0m
0s
4s
(4)当 h = 0 时, 20 t – 5 t 2 = 0 t2-4t =0 t 1 = 0,t 2 = 4 当球飞行 0s 和 4s 时,它的高度为 0m ,即 0s时,球从地面飞出,4s 时球落回地面。
7
二次函数与一元二次方程的关系(1)
已知二次函数,求自变量的值
2.若抛物线 y = ax2+bx+c= 0,当 a>0,c<0时,图
象与x轴交点情况是( C )
A. 无交点
B. 只有一个交点
C. 有两个交点 D. 不能确定
17
3. 如果关于x的一元二次方程 x2-2x+m=0有两
个相等的实数根,则m=_1__,此时抛物线 y=x2- 2x+m与x轴有_1_个交点.

解一元二次方程ppt课件

解一元二次方程ppt课件

21.2 解一元二次方程

难 ■题型二 利用根的判别式判断三角形的形状
题 型
例 2 已知△ABC 中,a,b,c 分别是∠A,∠B,∠C 的对边,且关于 x
突 的一元二次方程 b(x2-1)-2ax+c(x2+1)=0 有两个相等的实数根.判断
破 △ABC 的形状.
[解析] 根据已知条件得出 Δ=0,将等式变形,利用勾股定理的逆定理
B. 只有一个实数根

C. 有两个不相等的实数根
D. 没有实数根
[解题思路]
原方程
x(x-2)=1
化为一般形式
x2-2x-1=0
确定 a,b,c 的值
a=1,b=-2,c=-1
代入判别式 Δ
b2-4ac=8>0
判断根的情况
[答案] C
有两个不相等的实数根
方法点拨 应用根的判别式时要准确确定 a,b,c 的值,代入时要注意不 要丢掉各项系数的符号.
清 单
(1)x2-4x-3=0; (2)2x2-6x=1; (3)(t+3)(t-1)=12.

[解题思路] 按照下面的顺序进行求解.

[答案] 解:(1)移项,得 x2-4x=3,配方,得 x2-4x+4=3+4,即(x-
2)2=7,开方,得 x-2=±
,所以 x1=2+
,x2=2-

(2)二次项系数化为 1,得 x2-3x= ,配方,得 x2-3x+
21.2 解一元二次方程


21.2.1 配 方 法

单 ■考点一 直接开平方法


原理 根据平方根的意义进行“降次”,转化为一元一次方程求解

一元二次方程根的判别式ppt课件

一元二次方程根的判别式ppt课件
2.3 一元二次方程根的判别式
第2章 一元二次方程
基础主干落实 重点典例探析 5+2思维赋能
基础主干落实
一元二次方程根的判别式 1.定义:b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,记作 “Δ”,即Δ=b2-4ac. 2.与一元二次方程的根的关系
判别式 Δ>0
Δ=0 Δ<0
【挑战】(2021·邵阳中考)在平面直角坐标系中,若直线 y=-x+m 不经过第一象限,
则关于 x 的方程 mx2+x+1=0 的实数根的个数为( D )
A.0 个 B.1 个 C.2 个 D.1 或 2 个
【解析】∵直线 y=-x+m 不经过第一象限, ∴m≤0, 当 m=0 时,方程 mx2+x+1=0 是一次方程,有一个根,当 m<0 时, ∵关于 x 的方程 mx2+x+1=0, ∴Δ=12-4m>0, ∴关于 x 的方程 mx2+x+1=0 有两个不相等的实数根.
【自主解答】由关于 x 的一元二次方程 x2+kx-k-1=0 可知:Δ=k2+4k+4=(k+ 2)2, 分情况讨论: 当 k=-2 时,Δ=0,方程有两个相等实根 当 k≠-2 时,Δ>0,方程有两个不相等的实根.
1.x 的一元二次方程 x2+kx-4=0 根的情况是__有__两__个__不__相___等__的__实__数__根___. 【解析】Δ=k2-4×(-4)=k2+16>0,所以方程有两个不相等的实数根. 2.(变问法)求证:无论 k 取何值,关于 x 的一元二次方程 x2+kx-k-1=0 总有实数 根. 【证明】由题意知:Δ=k2+4k+4=(k+2)2≥0,所以方程总有实数根.
【归纳提升】 根的判别式的应用 1.可以直接用:不解方程,可以判断方程根的情况. 2.可以逆用:知道方程根的情况,从而确定字母系数的取值范围. 3.证明一个方程根的情况.

一元二次方程ppt课件

一元二次方程ppt课件
一元二次方程ppt课件
contents
目录
• 一元二次方程的定义 • 一元二次方程的解法 • 一元二次方程的应用 • 一元二次方程的判别式 • 一元二次方程的根的性质 • 一元二次方程的根与系数的关系
01
一元二次方程的定义
定义与特点
定义
只含有一个未知数,且未知数的 最高次数为2的整式方程叫做一元 二次方程。

根的判别条件
判别式
一元二次方程的判别式Δ=b²-4ac,当 Δ>0时,方程有两个不相等的实根;当 Δ=0时,方程有两个相等的实根;当 Δ<0时,方程没有实根。
VS
根的存在性
一元二次方程一定有两个实根,除非判别 式Δ<0。
根的性质与关系
根与系数的关系
一元二次方程的两个根x1和x2与系数a、b、c之间存在关系,如 x1+x2=-b/a,x1*x2=c/a等。
配方法
步骤 1. 将方程 $ax^2 + bx + c = 0$ 移项,使等号右侧为0。
2. 将二次项系数化为1,即方程两边都除以 $a$。
配方法
01
3. 将一次项系数的一半的平方加 到等式两边,使左侧成为一个完 全平方项。
02
4. 对方程两边同时开平方,得到 $x$ 的解。
公式法
总结词
利用一元二次方程的解的公式直接求解。
根的积
一元二次方程的根的积等于常数项与 二次项系数之比。
根的平方和与积的性质
要点一
根的平方和
一元二次方程的根的平方和等于常数项与二次项系数绝对 值的商。
要点二
根的平方积
一元二次方程的根的平方积等于二次项系数绝对值的商。
感谢您的观看

一元二次方程的应用-ppt课件

一元二次方程的应用-ppt课件

例1
如图,某小区计划在一块长为 20 m,宽为 12 m

型 的矩形场地上修建三条互相垂直且宽度一样的小路,其余

破 部分种花草,若要使花草的面积达到 160 m2,则小路的宽
为 ______ m.
第一课时 几何图形面积问题
[解析]如解析图,设小路的宽为 x m,将小路进行平


题 移,则其余部分可合成相邻两边的长分别为(20-2x) m,
握手问题、照相问
素之间算一 题、比赛问题(每

双循环
每两个元素
之间算两次
两队之间赛一场)
循环次数


n(n-1)
互赠贺卡、比赛问
题(每两队之间赛 n(n-1)
两场)
第三课时 循环问题、销售问题及数字问题
归纳总结


解决循环问题,首先确定是单循环还是双循环,即确定

单 每两个元素之间算一次还是算两次,再代入公式列方程求解


2 的
26
m)的空旷场地为提前到场的观众设立面积为
300
m

读 封闭型矩形等候区.如图,为了方便观众进出,在两边空出
两个宽各为 1 m 的出入口,共用去隔栏绳 48 m.求工作人
员围成的这个矩形的相邻两边的长度.
第一课时 几何图形面积问题
[答案] 解:设 AB=x m,则 BC=(48-2x+1+1) m,由
重 ■题型一 传播问题

例 1 某种病毒传播非常快,如果一个人被传染,经过

型 两轮传染后就会有 64 个人被传染.


清 题意得 x(48-2x+1+1)=300,解得 x1=10,x2=15.当 x=10

24.1 一元二次方程课件(共20张PPT)

24.1 一元二次方程课件(共20张PPT)
同学们再见!
授课老师:
时间:2024年9月15日
解:设有x人参加了这次聚会,根据题意,得 x(x-1)=10,整理,得 x2-x-20=0.
拓展提升
课堂小结
1.一元二次方程的概念只含有一个未知数,并且未知数的最高次数为2的整式方程,叫做一元二次方程.2.一元二次方程的一般形式 ax2+bx+c=0(a≠0).3.一元二次方程的解使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做这个方程的根.4.根据题意列一元二次方程
为什么规定a≠0?
因为a=0时,未知数的最高次数小于2
一元二次方程的项和各项系数
ax2+bx+c=0(a≠0)
一次项系数
例 将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.
解:去括号,得 3x2-3x=5x+10. 移项,合并同类项,得一元二次方程的一般形式 3x2-8x-10=0. 其中二次项系数为3,一次项系数为-8,常数项为-10.
知识点1
一元二次方程的定义

如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端A处到地面的距离为8 m.如果梯子的顶端沿墙面下滑1 m,那么梯子的底端B在地面上滑动的距离是多少米?如果设梯子的底端B在地面上滑动的距离为x,请列出方程,并谈谈所列方程的特征.
x2+12x-15=0
x2-90x+1 400=0,x2-45x+350=0,x2+12x-15=0
建立一元二次方程模型的一般步骤:(1)审题,认真阅读题目,弄清未知量和已知量之间的关系;(2)设出合适的未知数,一般设为x;(3)确定等量关系;(4)根据等量关系列出一元二次方程,有时要化为一般形式.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

韦达定理(根与系数关系)
• (1)我们将一元二次方程化成一般式ax2+bx+c=0之 后,设它的两个根是和,则和与方程的系数a,b,c 之间有如下关系: • +=; =可以由公式法解一元二次方程的两个根证明。 • *实根与虚根。 • (2)如果方程x2+px+q=0的两个根是x1,x2,那么 x1+x2=-P, x1x2=q • (3)以x1,x2为根的一元二次方程(二次项系数为1) 是 x2-(x1+x2)x+x1x2=0.
b b2 4ac x 2a

b2 4ac 0 )
• • • •
一般步骤: 2 ①将方程化为一般形式 ax bx c 0(a 0) ②确定方程的各系数a,b,c,计算 b 2 4ac 的值; ③当b2 4ac 0 ,将a,b,c以及 b2 4ac 的值代入求
应用拓展
求证:关于x的方程(m2-8m+17)x2+2mx+1=0, 不论m取何值,该方程都是一元二次方程.
• 分析:要证明不论m取何值,该方程都是一元 二次方程,只要证明m2-8m+17•≠0即可. • 证明:m2-8m+17=(m-4)2+1 • ∵(m-4)2≥0 • ∴(m-4)2+1>0,即(m-4)2+1≠0 • ∴不论m取何值,该方程都是一元二次方 程.
程x2+3mx+n=0的解,则 6m+2n=______.

已知关于x的方程(k2-1)x2+(k+1)x -2=0. (1)当k取何值时,此方程为一元一次方程? 并求出它的根; (2)当k取何值时,此方程为一元二次方程? 写出这个方程的二次项系数,一次项系数和常 数项.
二次函数y=ax2的 图象和性质
x … -3 -2 -1 9 4 1 0 0 1 1 2 4 3 9 …
y=x2 …

描点,连线
y
10 8 6 4
y = x2
b b2 4ac x 2a
根公式,得出方程的根
注意:
• ①当时 b 4ac 0 ,方程无解; • ②公式法是解一元二次方程的万能方法; • ③利用 的值,可以不解方程 2 就能判断方程根的情况; b 4ac
2
一元二次方程的根的判别式
• 一元二次方程 ax2 bx c 0(a 0) 的根的判 别式△= b2 4ac • 当△>0时,方程有两个不相等的实数根; • 当△=0时,方程有两个相等的实数根, • 当△<0时,方程没有实数根.
1、下列式子哪些是方程? 2+3=5 没有未知数
方程的本质 特征是什么?
3x+2 不是等式 5x+3=18 含有未知数的等式叫方程 x-2y=5 含有未知数的等式叫方程
3 1 2 x
不是等式
2、我们学过哪些方程? • 一元一次方程、二元一次方程、分式方程。
3、什么叫一元一次方程?方程的“元”和 “次”是什么意思?
(x+10)
x
问题1、绿苑小区住宅设计,准备在每两幢楼房之间, 开辟面积为900平方米的一块长方形绿地,并且 长比宽多10米,那么绿地的长和宽各为多少?
解:设长方形绿地的宽为x米, 设未知数 则长为(x+10)米,可得方程: 长×宽=面积 x(x+10)=900 相等关系
• 问题2、学校图书馆去年年底有图书5万册,预计到明 年年底增加到7.2万册。求这两年的年平均增长率。
3x 11x 4 0
配方法
• 用配方法解一元二次方程 ax bx c 0(a 0) 的一般步骤 • ①二次项系数化为1:方程两边都除以二次项 系数; • ②移项:使方程左边为二次项与一次项,右边 为常数项; • ③配方:方程两边都加上一次项系数一般的平 方,把方程化为 ( x m)2 n(n 0) 的形式; • ④用直接开平方法解变形后的方程。 • 注意:当 n 0 时,方程无解
二次项 一次项 常数项
练习 1、指出下列一元二次方程的二次项 系数、一次项系数和常数项:
方程 二次项 一次项 系数 系数 常数 项
2x 2 x 3 0
2 3 1
1 0 -3
-3 -5 0
3x 5 0
2
x 3x 0
2
2、将下列一元二次方程化为一般形式,并分别 指出它们的二次项系数、一次项系数和常数项:
拓展练习:
2、已知关于x的一元二次方程 (m-1)x2+3x-5m+4=0有一根为2,求m。 • 什么叫方程的根?
• 能够使方程左右两边相等的未知数的值, 叫方程的根。 • 解:把x=2代入原方程得: • (m-1) ×22+3 ×2 -5m+4=0 • 解这个方程得:m=6
3、已知关于x的方程

b
例题:
• 将方程左边配成完全平方式,得到的方 程是( ) • A、( x 3) 2 3 B、( x 3) 2 6 • 2 2 • C、( x 3) 3 D、 ( x 3) 12
因式分解法
• 一般步骤如下: • ①将方程右边得各项移到方程左边,使方 程右边为0; • ②将方程左边分解为两个一次因式相乘的形式; • ③令每个因式分别为零,得到两个一元一次方程; • ④解这两个一元一次方程,他们的解就是原方程的解。 • 例题:解方程 2
• 解:设这两年的年平均增长率为x, • 去年底:5 • 今年底:5+5x=5(1+x)
注意:每年都是 在上一年的基础 上增长!
• 明年底:5(1+x)+5(1+x)x • =5(1+x)(1+x) • =5 (1+x)2
• 根据题意得方程:5(1+x)2=7.2
• 整理得: x2+10x-900=0 5x2+10x-2.2=0
2
Байду номын сангаас
例题:
• 将方程 x 4 x 1 0 配方后,原方 程变形为( ) 2 2 • A. B.( x 4) 3 ( x 2) 3
2
2 ( x 2 ) 3 • C.
( x 2) 5 D.
2
公式法
• 一元二次方程 ax2 bx c 0(a 0) 的求根公式:
3x 2 5 x 3
不是 是 不是
2
x 4
2
x2 2 x x 1
x 4 ( x 2)
2
不是
2 ax +bx+c=0(a≠0)
讨论:为什么二次项系数a不能为0?假如a=0 会出现什么情况?b、c能不能为0?
一元二次方程的项和各项系数
二次项 系数
一次项 系数
a≠0
2 ax +bx+c=0
(m 1) x
m 1
mx m 1 0
2
是一元二次方程,求m的值。
• 分析:因为方程是一元二次方程,故未知数x 的最高次数∣m∣+1=2, • 解之得,m=1或m=-1, • 又因二次项系数m+1≠0, 即m≠-1, • 所以m=1。 温馨提示:注意陷井
二次项系数a≠0!
若x=1是关于x的一元二次方
1、二次函数的一般形式是怎样的? y=ax² +bx+c(a,b,c是常数,a≠ 0)
2.下列函数中,哪些是二次函数?
① ③
yx
2
y xx
2
1 ② yx x
2
④ y x x 1
2
1 2 ⑤ y x 2x 4 3
你会用描点法画二次函数y=x2的图象吗? 观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
本节课要掌握:
(1)一元二次方程的概念; 2 0(a 0) (2)一元二次方程的一般形式 ax bx c •和 二次项、二次项系数,一次项、一次项 系数,常数项的概念及其它们的运用.
第二课时
• 1.一元二次方程根的概念; • 2.根据题意判定一个数是否是一元二次 方程的根及其利用它们解决一些具体题 目.
( 1 ) 3x 2 x 2
(2) 7 x 3 2x 2
3x2-1x-2=0 2x2-7x+3=0 1x2-5x+0=0 2x2-5x-11=0
(3)x(2 x 1) 3x( x 2) 0
(4) 2 x( x 1) 3( x 5) 4
友情提示:某一项的系数包括它前 面的符号。
例1.将方程(8-2x)(5-2x)=18化成一元二次 方程的一般形式,并写出其中的二次项系数、一次 项系数及常数项.
• 分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此, 方程(8-2x)•(•5-2x)=18必须运用整式运算进行整理,包括 去括号、移项等. • 解:去括号,得: • 40-16x-10x+4x2=18 • 移项,得:4x2-26x+22=0 • 其中二次项系数为4,一次项系数为-26,常数项为22.
一元二次方程的应用
• 列一元二次方程解应用题,其步骤和二元一次方程组解 应用题类似 • ①“审”,弄清楚已知量,未知量以及他们之间的等量 关系; • ②“设”指设元,即设未知数,可分为直接设元和间接 设元; • ③“列”指列方程,找出题目中的等量关系,再根据这 个关系列出含有未知数的等式,即方程。 • ④“解”就是求出说列方程的解; • ⑤“答”就是书写答案,检验得出的方程解,舍去不符 合实际意义的方程。
一元二次方程
教学目标:
• 一元二次方程概念 • 解一元二次方程的方法 • 一元二次方程应用题
一元二次方程概念
• 一元二次方程概念及一元二次方程一 般式及有关概念.
一元二次方程概念
• 只含有一个未知数(一元),并且未知 数的最高次数是2(二次)的整式方程, 叫做一元二次方程.
相关文档
最新文档