一元二次方程直接开方法ppt课件

合集下载

21-2 解一元二次方程 课件(共33张PPT)

21-2 解一元二次方程 课件(共33张PPT)
2×2 2
小练习
用公式法解下列一元二次方程:
(3)5x2-3x=x+1
(4)x2+17x=8x
解:方程化为5x2-4x-1=0
解:方程化为x2-8x+17=0
a=5,b=-4,c=-1.
a=1,b=-8,c=17.
Δ=b2-4ac=(-4)2-4×5×(-1)=36>0. Δ=b2-4ac=(-8)2-4×1×17=-4<0.
因式分解,可以考虑配方法;
(4)三项都有,且二次项系数不为1时的,一般可以用公式法。
小练习
例 3:解方程:x2-6x-16=0。
解:原方程变形为(x-8)(x+2)=0。
于是,得x-8=0或x+2=0
∴x1=8,x2=-2
解析:一元二次方程的解法有:配方法,公式法和因式分解法,解题时要
注意选择合适的解题方法。解此一元二次方程选择因式分解法最简单,因
(3)求解b2-4ac的值,如果b2-4ac≥0;
−± 2−4
(4)代入公式x=
,即可求出一元二次方程的根。
2
知识梳理
例 2:用公式法解方程x2-3x-1=0正确的解为( D )
−3± 13
A. x1,2=
2
3± 5
C.x1,2=
2
B.
D.
−3± 5
x1,2=
2
3± 13
x1,2=
2
解析:x2-3x-1=0。这里a=1,b=-3,c=-1。
Δ=b2-4ac=(-4)2-4×1×(-7)=44>0. Δ=b2-4ac=(-2 2)2-4×2×1=0.
−± 2−4
方程有两个不等的实数根x=
2

华师大版九年级数学上册《用直接开平方法和因式分解法解较简单的一元二次方程》课件

华师大版九年级数学上册《用直接开平方法和因式分解法解较简单的一元二次方程》课件
22.2 一元二次方程的解法
22.2.1 直接开平方法和因式分解法 第1课时 用直接开平方法和因式分解法解较简单的一元二次方程
1.利用__平__方__根__的定义直接开平方求一元二次方程的解叫做直 接开平方法. 2.解一元二次方程,实质上是把一个一元二次方程“_降__次___” ,转化为两个__一__元__一__次___方程. 3.当p≥0时,x2=p的解为____x_=__±___p___. 4.当把一元二次方程的一边化为0,而另一边易分解成两个一 次因式的乘积时,可令每个因式分别等于0,得到两个 _____一__元__一__次__方__程______,从而实现降次求解的目的,这种解法 叫做因式分解法.
19.已知方程(x-1)2=k2+2的一个根是x=3,求k的值和另一个 根.
解:将 x=3 代入原方程得 k 的值为± 2,再把 k=± 2代入 方程得另一个根为 x=-1
20.关于x的一元二次方程(2m-4)x2+3mx+m2-4=0有一根为0, 求m的值. 解:将x=0代入原方程,得m2-4=0,解得m=±2,∵2m-4≠0 ,m≠2,∴m=-2
不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 书籍是屹立在时间的汪洋大海中的灯塔。
A.x=4

一元二次方程的解法 PPT课件 10(共6份) 华东师大版

一元二次方程的解法 PPT课件 10(共6份) 华东师大版
21.2 降次——解一元二次方程
第1课时 用直接开平方法解一元二次方程
学习目标
• 1.体会解一元二次方程降次的转化思想. • 2.会利用直接开平方法解形如x2=p或 • (mx+n)2=p(p≥0)的一元二次方程.
创设情景 明确目标
一桶某种油漆可刷的面积为1500dm2,李林用这 桶油漆恰好刷完10个同样的正方体现状的盒子的全 部外表面,你能算出盒子的棱长吗?

46、在浩瀚的宇宙里,每天都只是一瞬,活在今天,忘掉昨天。

47、小事成就大事,细节成就完美。

48、凡真心尝试助人者,没有不帮到自己的。

49、人往往会这样,顺风顺水,人的智力就会下降一些;如果突遇挫折,智力就会应激增长。

50、想像力比知识更重要。不是无知,而是对无知的无知,才是知的死亡。

51、对于最有能力的领航人风浪总是格外的汹涌。

32、肯承认错误则错已改了一半。

33、快乐不是因为拥有的多而是计较的少。

34、好方法事半功倍,好习惯受益终身。

35、生命可以不轰轰烈烈,但应掷地有声。

36、每临大事,心必静心,静则神明,豁然冰释。

37、别人认识你是你的面容和躯体,人们定义你是你的头脑和心灵。

38、当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。
② 方程(2)与方程(1)有什么不同?怎样将方程 (2)转化为方程(1)的形式?
③方程(3)左右两边有什么特点?怎样达到降次的 目的?
小组讨论2
对于可化为(mx+n)2=p(p≥0)或(ax+b)2=(cx+d)2 的方程,可以用直接开平方发求解吗?

人教版数学九年级上册解一元二次方程(直接开平方法)公开课PPT课件

人教版数学九年级上册解一元二次方程(直接开平方法)公开课PPT课件

左边为完全平方式 所以可以直接化 为平方形式.利用 直接开平方法来解
一元二次方程.
右边是大于0的数所以方 程有个不同的的实数解
直接开平方得: x 3 2 x3 2
x3 2
x1 3 2 x2 3 2
【例2】 市政府计划2年内将人均住房面积由现在的10 m2
3.如果方程能化为x2=p(p≥0)或(mx+n)2=p(p≥0)的形式, 那么x=____p_或mx+n=____p_.
1.方程x2-16=0的根为( C ).
A.x=4
B. x=16
C. x=±4
D. x=±8
2.方程x2+m=0有实数根的条件是( D ).
A.m>0 B.m≥0 C.m<0 D.m≤0 3.方程5y2-3=y2+3的实数根的个数是( C ).
3.某企业 2011 年向全国上缴利税 400 万元,2013 年增加到
484 万元,则该企业两年上缴的利税平均每年增长的百分率为( B )
A.5% B.10% C.15% D.20%
4.用直接开平方法解下列方程: (1)1x 2-9=0;
3
解:x1=3,x2=-3
(2)4(x -2)2-3=0;
配方法
直接开平方法
1.理解一元二次方程“降次”的转化思想. 2.根据平方根的意义解形如x2=p(p≥0)的一元二次方 程,然后迁移到解(mx+n)2=p(p≥0)型的一元二次方 程3..通过生活学习数学,并用数学解决生活中的问题来激发 学生的学习热情.
运用开平方法解形如(mx+n)2=p(p≥0)的方程;领会 降次──转化的数学思想.
提高到14.4 m2,求每年人均住房面积增长率. 解析:此题为

人教部初三九年级数学上册 直接开平方解一元二次方程 名师教学PPT课件

人教部初三九年级数学上册 直接开平方解一元二次方程 名师教学PPT课件

解:系数化为1得x2 25 9
由平方根的意义得:
解:由平方根的意义得: 2x 1 3
x5 3
x1
5 3
,
x2
5 3
2x 1 3,或2x 1 3
x1
-1 2
3 ,x2
1 2
3
利用直接开平方法解下列方程
(3)、3(x 1)2 6 0
解:移项得 3(x 1)2 6 系数化为1得(x 1)2 2
人教版数学九年级上册第二十一章
21.2.1 解一元二次方程(1) ——直接开平方法
1、用直接开平方法解形如 x²=p(p≥0)或 (x+m)²=p(p≥0)的方程;
2、理解一元二次方程的解法——直接开 平方法;
3、体会一元二次方程“降次”──转化 的数学思想。
1、如果x2=a,则x叫做a的__平_方_根__; 2、如果x2=a(a≥0),则x=____; 3、如果x2=64,则x=_____.
开方得x 1 2
(4)、x2 4x 4 25
解:原方程整理得 (x 2)2 25
开方得x 2 5
x1 1 2, x2 1- 2
x1 7, x2 3
利用直接开平方法解下列方程 (5)、9x2 5 1
解:移项得 9x2 4
由平方根的意义得 原方程无实数根
直接开平方法 解一元二次方程
由平方根的意义得:
由平方根的意义得:
x 10
x 5
x1 10, x2 10
x1 5, x2 5
例1:利用直接开平方法解下列方程
(3)、4x2 100
思考:
解:两边同时 4得 x2 0的解是什么?
x2 25
x2 4呢?
由平方根的意义得:

一元二次方程的解法ppt课件

一元二次方程的解法ppt课件
的各项系数a、b、c确定的,当 2 -4ac≥0时,它的实数根

公式法推导过程
这叫做一元二次方程的求根公式,解一元二次方程时,
2
把各项系数的值直接代入这个公式,若 -4ac≥0就可以
求得方程的根,这种解一元二次方程的方法叫做公式法.
尝试与交流
2
2
在一元二次方程 +bx+c=0(a≠0)中,如果 -4ac<0那
解:原方程可变形为(2x-1+x)(2x-1-x)=0
即(3x-1)(x-1)=0
3x-1=0或x-1=0
所以x1=

,x
2=1

观察与思考
2=4(x+2)
(x+2)
解方程
小丽、小明的解法如下:
小丽、小明的解法,哪个正确?
因式分解法练习
1.用因式分解法解下列方程
①x2-3x=0
② 3x2= x
③2( x-1 ) + x ( x-1 ) =0
叫做因式分解法
例题8
解下列方程
① = −
② + − + =
原方程可变形为x2+4x=0
原方程可变形为
x(x+4)=0
(x+3)(1-x)=0
x=0或x+4=0
x+3=0或1-x=0.
所以x1=0,x2=-4
所以x1=-3,x2=1
例题9
解方程
(2x-1)2-x2=0
的矩形割补成一个正方形
数学实验室
一个矩形通过割、拼、补,成为一个正方形的过程配方
的过程
数学实验室
数学实验室
数学实验室
数学实验室

解一元二次方程ppt课件

解一元二次方程ppt课件

21.2 解一元二次方程

难 ■题型二 利用根的判别式判断三角形的形状
题 型
例 2 已知△ABC 中,a,b,c 分别是∠A,∠B,∠C 的对边,且关于 x
突 的一元二次方程 b(x2-1)-2ax+c(x2+1)=0 有两个相等的实数根.判断
破 △ABC 的形状.
[解析] 根据已知条件得出 Δ=0,将等式变形,利用勾股定理的逆定理
B. 只有一个实数根

C. 有两个不相等的实数根
D. 没有实数根
[解题思路]
原方程
x(x-2)=1
化为一般形式
x2-2x-1=0
确定 a,b,c 的值
a=1,b=-2,c=-1
代入判别式 Δ
b2-4ac=8>0
判断根的情况
[答案] C
有两个不相等的实数根
方法点拨 应用根的判别式时要准确确定 a,b,c 的值,代入时要注意不 要丢掉各项系数的符号.
清 单
(1)x2-4x-3=0; (2)2x2-6x=1; (3)(t+3)(t-1)=12.

[解题思路] 按照下面的顺序进行求解.

[答案] 解:(1)移项,得 x2-4x=3,配方,得 x2-4x+4=3+4,即(x-
2)2=7,开方,得 x-2=±
,所以 x1=2+
,x2=2-

(2)二次项系数化为 1,得 x2-3x= ,配方,得 x2-3x+
21.2 解一元二次方程


21.2.1 配 方 法

单 ■考点一 直接开平方法


原理 根据平方根的意义进行“降次”,转化为一元一次方程求解

一元二次方程ppt课件

一元二次方程ppt课件
一元二次方程ppt课件
contents
目录
• 一元二次方程的定义 • 一元二次方程的解法 • 一元二次方程的应用 • 一元二次方程的判别式 • 一元二次方程的根的性质 • 一元二次方程的根与系数的关系
01
一元二次方程的定义
定义与特点
定义
只含有一个未知数,且未知数的 最高次数为2的整式方程叫做一元 二次方程。

根的判别条件
判别式
一元二次方程的判别式Δ=b²-4ac,当 Δ>0时,方程有两个不相等的实根;当 Δ=0时,方程有两个相等的实根;当 Δ<0时,方程没有实根。
VS
根的存在性
一元二次方程一定有两个实根,除非判别 式Δ<0。
根的性质与关系
根与系数的关系
一元二次方程的两个根x1和x2与系数a、b、c之间存在关系,如 x1+x2=-b/a,x1*x2=c/a等。
配方法
步骤 1. 将方程 $ax^2 + bx + c = 0$ 移项,使等号右侧为0。
2. 将二次项系数化为1,即方程两边都除以 $a$。
配方法
01
3. 将一次项系数的一半的平方加 到等式两边,使左侧成为一个完 全平方项。
02
4. 对方程两边同时开平方,得到 $x$ 的解。
公式法
总结词
利用一元二次方程的解的公式直接求解。
根的积
一元二次方程的根的积等于常数项与 二次项系数之比。
根的平方和与积的性质
要点一
根的平方和
一元二次方程的根的平方和等于常数项与二次项系数绝对 值的商。
要点二
根的平方积
一元二次方程的根的平方积等于二次项系数绝对值的商。
感谢您的观看

一元二次方程课件ppt

一元二次方程课件ppt

• 问题1、绿苑小区住宅设计,准备在每两幢楼 房之间,开辟面积为900平方米的一块长方 形绿地,并且长比宽多10米,那么绿地的长 和宽各为多少?
(x+10)
x
问题1、绿苑小区住宅设计,准备在每两幢楼房之间, 开辟面积为900平方米的一块长方形绿地,并且 长比宽多10米,那么绿地的长和宽各为多少?
例1.将方程(8-2x)(5-2x)=18化成一元二次 方程的一般形式,并写出其中的二次项系数、一次
项系数及常数项.
• 分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此, 方程(8-2x) (•5-2x)=18必须运用整式运算进行整理,包括 去括号、移项等.
• 解:去括号,得: • 40-16x-10x+4x2=18 • 移项,得:4x2-26x+22=0 • 其中二次项系数为4,一次项系数为-26,常数项为22.
3
你会用描点法画二次函数y=x2的图象吗?
观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10
y=x2
8
6
4
2
?
-4 -3 -2 -1 0 1 2 3 4 x -2
二次函数 y=x2的图象 形如物体抛 射时所经过 的路线,我们 把它叫做抛 物线
方程
二次项 一次项 常数 系数 系数 项
2x2 x 3 0 2
1
-3
3x2 5 0
3
0
-5
x2 3x 0 1
-3
0
2、将下列一元二次方程化为一般形式,并分别 指出它们的二次项系数、一次项系数和常数项:

人教版九年级上册数学第二十一章一元二次方程课件PPT

人教版九年级上册数学第二十一章一元二次方程课件PPT
说明:⑴未知数个数1个。
⑵未知数的最高次数是2次。
一元二次方程
定义
只含有一个未知数,且未知数的最高次数是2的方程
二次项系数
二次项
一次项
一次项系数
常数项
一般形式
a x2 + b x + c = 0
当b≠0,c ≠0时,
当b=0或c =0时,
方程ax2+b x+c=0 (a≠0)叫一般的~
解:
两边开平方,得:
解:
两边同加上1,得
解:
把方程左边分解因式,得
化简,得
例9 解方程
解:
化简得
解:
化简得
较复杂的方程,先整理化简,再寻找合适的解法
练习1 用适当的方法解下列方程
练习2 用适当的方法解下列方程
(x1=-1+ ,x2=-1- )
(t1= ,t2= - )
(a≠0, b2-4ac≥0)
例 6用公式法解方程: x2 – x - =0
解:方程两边同乘以 3 得 2 x2 -3x-2=0 a=2,b= -3,c= -2. ∴b2-4ac=(-3) 2-4×2×(-2)=25.
解:
直接开平方法
一元二次方程的第二种解法:配方法
配方法的一般步骤:
1)把方程化成二次项系数是1的形式
2)移项整理使方程左边仅有二次项和一次项,右边仅有常数项。
3)配方:方程的两边同时加上一次项系数的一半的平方。
4)再把方程左边化成完全平方式
5)最后用直接开平方法求方程的解。
求根公式 : X=
∴x=
即 x1=2, x2= -
例7用公式法解方程: x2 +3 = 2 x

(精编课件)直接开平方法解一元二次方程PPT.ppt

(精编课件)直接开平方法解一元二次方程PPT.ppt
Excellent courseware
学以致用
1.判断下列一元二次方程能否用直接开平方法求解 并说明理由.
1) x2=2 2) p2 - 49=0 3) 6 x2=3
( √) (√ ) (√ )
4)(5x+9)2+x=0
(× )
5 ) 121-(y+3) 2 =0
(√ )
Excellent courseware
x1 2, x2 2 x 2 x1 2, x2 2
x 2 x1 2, x2 2
概括:一元二次方程ax2+b=0可以转化为x2=a的形 式,然后用直接开平方法解方程。
Excellent courseware
探究(三):如何解方程:(ax+b)2=c?
举一反三:如何解下列方程? (1)(x-3)2-4=0 (2)3(2x+1)2=12 (3)x2+4x+4=1
2、解下列方程:
(1)x2-9=0
(2)6t2-40=0
(3)16x2+45=0
(4)(2x-3)2=5
(5)(x-5)2+36=0
(6)(6x-1)2 -25(x+1)2=0
注意:解方程时, “左平方,右常数”,
应先把方程变形 常数为负,方程无解;
为:
或“左平方,右平方”。
Excellent courseware
(2)(2x+3)2 -5=0 (4)(x-3)2=(3x-2)2
Excellent courseware
Excellent courseware
若一元二次方程方 程有两根,则分别
记为χ1,χ2
探究新知:
探究(一):如何解方程: x2=a ?

九年级数学上册第1章第1课时用直接开平方法解一元二次方程pptx教学课件新版苏科版

九年级数学上册第1章第1课时用直接开平方法解一元二次方程pptx教学课件新版苏科版
第1章 一元二次方程
1.2 一元二次方程的解法
第1课时 用直接开平方法解 一元二次方程
新知导入 课程讲授
随堂练习 课堂小结
知识要点
1.一元二次方程的根 2.形如x2=p(p≥0)的方程的解法 3.形如(x+h)2=k(k≥0)的方程的解法
新知导入
试一试:根据所学知识,完成下面的问题.
1.如果 x2=a,则x叫做a的 平方根 .
随堂练习
1.若代数式3x2-6的值是21,则x的值是( B )
A.3
B.±3
C.-3
D.± 3
2.已知关于x的方程ax2=b的两根分别为m-1和2m+7,则方程的
两根为( B )
A.±2
B.±3
C.±4
D.±7
随堂练习
3.关于x的一元二次方程(k-2)x2+3x+k2-4=0有一根为0,则 k=___-_2____. 4.关于x的方程x2=a没有实数根,则实数a的取值范围是 __a_<_0____. 5.方程(2x-1)2+m=0有实数解,则m的取值范围是__m__≤_0___.
一般地,对于方程(x+h)2=k(k≥0): 根据平方根的意义,方程_有__两__个__不__等__的__实__数__根,

x1 k -h,x2 k -h
课程讲授
3 形如(x+h)2=k(k≥0)的方程的解法
例 解方程(x+1)2 = 2. 解:∵x+1是2的平方根,
∴x+1=± 2. 即x1=-1+ 2,x2=-1- 2.
பைடு நூலகம் 随堂练习
6.解下列方程: (1)x2-36=0; 解 x2-36=0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1x2 9 0; 3 16 x2 49 0; 5x 52 36 0;
2t2 45 0 42x 32 5;
6 6 x 12 25 ;
1144
课堂小结
Hale Waihona Puke 1.直接开平方法的依据是平方根的性质 2.用直接开平方法可解下列类型的一元二次方程:
x 2 p p 0 mx n2 p p 0
即x1=-1+ 2 ,x2=-1- 2
99
(1) (x-1)2-4 = 0 解:移项,得(x-1)2=4 ∵x-1是4的平方根 ∴x-1=±2
即x-1=+2 或x-1=-2 ∴ x1=3,x2=-1
1100
(2)12(3-2x)2-3 = 0
解:移项,得12(3-2x)2=3
两边都除以12,得(3-2x)2=0.25
∵3-2x是0.25的平方根
∴3-2x=±0.5 即3-2x=0.5或3-2x=-0.5
∴x1=
5 4
,x2=
7 4
1111
知 识 点 复 习:
判断下列一元二次方程能否用直接开平方法求解并说明理由.
1) x2=2
(√ )
2) p2 - 49=0
(√ )
3) 6 x2=3
(√ )
4) (5x+9)2+16=0
1155
课堂小结
3.根据平方根的定义,要特别注意:由于负数 没有平方根,所以,当p<0时,原方程无解
4.用直接开平方法解一元二次方程的一般步骤
首先将一元二次方程化为左边是含有未知数的一个完全平方 式,右边是非负数的形式,系数化1,然后用平方根的概念求解
1166
(× )
5) 121-(y+3) 2 =0
(√ )
1122
练一练
1、下列解方程的过程中,正确的是( D )
(A)x2=-2,解方程,得x=± 2
(B)(x-2)2=4,解方程,得x-2=2,x=4
(C)4(x-1)2=9,解方程,得4(x-1)= ±3,
x1=74
;x2=
1 4
1133
2、课后练习
若x2=a,则x= a
即x= a 或x= a
如:9的平方根是___±__3_,
4 25
的平方根是____52__
4.平方根有哪些性质?
(1)一个正数有两个平方根,这两个平方根互为相反数;
(2)零的平方根是零;
(3)负数没有平方根.
33
直接开平方法的两个类型:
1.x2 p p 0 2.mx n2 p p 0;
∴x=
4
1 2
即x1=
1 2
,x2=
1 2
77
1.x2 p p 0
2.mx n2 p p 0;
88
例2 解下列方程: (x+1)2= 2 分析:只要将(x+1)看成是一个整体,
就可以运用直接开平方法求解;
解:(1)∵x+1是2的平方根
∴x+1= 2 ∴x+1= 2 或x+1= - 2
44
1.x2 p p 0
例:解下列方程(1)x2=4,(2)x2-2=0 (1)分析:因为x是4的平方根,所以x= ±2
解:∵x2=4 ∴ x1=2,x2 =-2
用χ1、χ2来表示未知数为χ的一元二次方程的两个根
55
总结
1.利用平方根的定义直接开平方求一元二 次方程的解的方法叫直接开平方法。
2.我们常用χ1、χ2来表示未知数为x的 一元二次方程的两个根。
66
1、解下列方程(1)x2-1.21=0 (2)4x2-1=0
解:(1)移项,得x2=1.21
∵x是1.21的平方根
∴x=±1.1 即 x1=1.1,x2=-1.1
(2)移项,得4x2=1
1
两边都除以4,得
∵x是 1的平方根
x2=
4
21.2.1解一元二次方程
---直接开平方法
11
1、一元二次方程的概念
等号两边都是整式,只含有一个未知数(一元), 并且未知数的最高次数是2(二次)的方程,叫做一 元二次方程.
2、一元二次方程的一般形式
ax2 bx c 0 (a 0)
22
3.什么叫做平方根?
如果一个数的平方等于a,那么这个数就叫做a的平方根.
相关文档
最新文档