实验六 动态规划算法

合集下载

动态规划算法难点详解及应用技巧介绍

动态规划算法难点详解及应用技巧介绍

动态规划算法难点详解及应用技巧介绍动态规划算法(Dynamic Programming)是一种常用的算法思想,主要用于解决具有重叠子问题和最优子结构性质的问题。

在解决一些复杂的问题时,动态规划算法可以将问题分解成若干个子问题,并通过求解子问题的最优解来求解原始问题的最优解。

本文将详细介绍动态规划算法的难点以及应用技巧。

一、动态规划算法的难点1. 难点一:状态的定义在动态规划算法中,首先需要明确问题的状态。

状态是指问题在某一阶段的具体表现形式。

在进行状态定义时,需要考虑到问题的最优子结构性质。

状态的定义直接影响到问题的子问题划分和状态转移方程的建立。

2. 难点二:状态转移方程的建立动态规划算法是基于状态转移的思想,即通过求解子问题的最优解来求解原始问题的最优解。

因此,建立合理的状态转移方程是动态规划算法的关键。

在进行状态转移方程的建立时,需要考虑问题的最优子结构性质和状态之间的关系。

3. 难点三:边界条件的处理在动态规划算法中,边界条件是指问题的最简单情况,用于终止递归过程并给出递归基。

边界条件的处理需要考虑问题的具体要求和实际情况,确保问题能够得到正确的解。

二、动态规划算法的应用技巧1. 应用技巧一:最长递增子序列最长递增子序列是一类经典的动态规划问题。

其求解思路是通过定义状态和建立状态转移方程,找到问题的最优解。

在应用最长递增子序列问题时,可以使用一维数组来存储状态和记录中间结果,通过迭代计算来求解最优解。

2. 应用技巧二:背包问题背包问题是另一类常见的动态规划问题。

其求解思路是通过定义状态和建立状态转移方程,将问题转化为子问题的最优解。

在应用背包问题时,可以使用二维数组来存储状态和记录中间结果,通过迭代计算来求解最优解。

3. 应用技巧三:最短路径问题最短路径问题是动态规划算法的经典应用之一。

其求解思路是通过定义状态和建立状态转移方程,利用动态规划的思想来求解最优解。

在应用最短路径问题时,可以使用二维数组来存储状态和记录中间结果,通过迭代计算来求解最优解。

实验6 动态规划

实验6 动态规划
3.1.2程序源码
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
3.1.3实验结论
要有截图,验证最后结果(图片分布要合理)。
输入/输出应与TEST文件夹测试用例一致。
3.1.4心得体会
xxxxxxxxxxxxxxxxxxxxxxxx
输入/输出应与TEST文件夹测试用例一致。
3.2.4心得体会
xxxxxxxxxxxxxxxx
4.教师批改意见
签字:
日期:
成绩
3.2最少硬币问题
3.2.1算法设计思想
可文字描述,适当添加一些伪代码,或者流程图来进行补充说明
3.2.2程序源码
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
3.2.3实验结论
要有截图,验证最后结果(图片分布要合理)。
算法设计与分析实验报告
学号
姓名
班级
上课地点
教师
庄蔚蔚
上课时间
实验6动态规划
1.实验目的
1.1.理解动态规划算法的主要设计思想;
1.2.掌握用动态VC6.0
2.2 Window XP
3.实验内容
3.1石子合并问题
3.1.1算法设计思想
可文字描述,适当添加一些伪代码,或者流程图来进行补充说明

动态规划算法及其应用案例解析

动态规划算法及其应用案例解析

动态规划算法及其应用案例解析动态规划算法是计算机科学中一种非常重要的算法,它在许多领域都有大量的应用。

在本文中,我们将介绍动态规划算法的基本思想和特点,并通过一些常见的应用案例来深入理解这个算法。

1. 动态规划算法的基本思想动态规划算法是一种算法设计技术,用于在多阶段决策过程中寻找最优解。

它的基本思想是将一个大问题分解成较小的子问题来解决,然后将这些子问题的解组合起来得到原问题的解。

它与分治算法很类似,但是动态规划算法通常是针对问题的重复性结构进行优化的。

动态规划算法通常适用于满足以下几个条件的问题:(1)问题具有重叠子问题的特点,即一个大问题可以分解为多个子问题,且这些子问题存在相同的子结构;(2)问题具有最优子结构的特点,即一个问题的最优解包含其子问题的最优解。

通过以上两个条件,在通过子问题的最优解推导出大问题的最优解时,我们可以避免重复计算并且保证得到的结果是最优的。

2. 动态规划算法的特点动态规划算法的主要特点包括以下几个方面:(1)动态规划算法使用一个递推公式来计算问题的解,这个递推公式通常是由原问题和子问题之间的关系建立而来的。

(2)动态规划算法使用一个表格来存储子问题的解,这个表格通常称为动态规划表或者状态转移表。

(3)动态规划算法通常需要进行一些预处理操作,例如初始化表格的值,以及确定递推公式的边界条件。

(4)动态规划算法的时间复杂度通常是由子问题的个数和计算每个子问题的时间复杂度来决定的。

3. 应用案例解析下面我们将通过一些常见的应用案例来更好地理解动态规划算法。

(1)背包问题背包问题是指给定一组物品和一个容量为W的背包,选择一些物品放入背包中,使得放入背包的物品的总价值最大。

这个问题可以通过动态规划算法来解决。

我们可以定义一个二维数组f[i][j],表示前i个物品放进容量为j的背包所得到的最大价值。

递推公式可以定义为:f[i][j] = max(f[i-1][j], f[i-1][j-w[i]] + v[i]),其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。

动态规划算法原理和实现

动态规划算法原理和实现

动态规划算法原理和实现动态规划是解决某些优化问题的一种算法思想,它主要针对的是那些可以分解成子问题的大问题,因此也被称作分治法。

动态规划算法的核心思想是将大问题分解成一个个小问题,然后逐步求解这些小问题并将它们组合成原问题的解。

本文将简单介绍动态规划算法的原理和实现。

一、动态规划算法的原理为了更好地理解动态规划算法的原理,我们可以以一个实例为例:假设有一个背包,它最多能装W重量的物品,现在有n种不同的物品,每种物品都有自己的重量w和价值v。

我们需要选择哪些物品放入背包中,以使得背包中物品的总价值最大。

这是一个典型的动态规划问题。

首先,我们可以把问题分解成子问题:设f(i,j)表示前i种物品放入一个容量为j的背包可以获得的最大价值。

因此,我们可以得到以下状态方程式:f(i,j) = max{f(i-1,j), f(i-1,j-w[i])+v[i]} (1≤i≤n,1≤j≤W)其中,f(i-1,j)表示不放第i种物品的最大价值,f(i-1,j-w[i])+v[i]表示放入第i种物品的最大价值。

因此,当我们计算出f(i,j)时,我们就得到了「前i种物品放入容量为j的背包的最大价值」,这也就是原问题的解。

这样,我们就可以使用动态规划算法来计算出最优解。

具体来说,我们从0开始,逐个计算出f(i,j)的值,直到计算出f(n,W)为止。

此外,我们还需要注意以下几点:1. 在计算f(i,j)的时候,我们需要使用到f(i-1,j)和f(i-1,j-w[i])这两个状态,因此我们需要先计算出f(1,j),在此基础上计算f(2,j),以此类推。

2. 对于一些特殊的情况,我们需要单独处理。

比如当背包容量小于某种物品重量时,我们就无法放入该物品。

3. 我们在计算f(i,j)时,有许多状态是可以复用的。

比如,当我们计算出f(i-1,j)后,我们就可以直接使用这个值来计算f(i,j),而无需重新计算。

二、动态规划算法的实现上面我们已经介绍了动态规划算法的核心思想和实现原理,下面我们来看看具体的实现过程。

动态规划算法原理及应用

动态规划算法原理及应用

动态规划算法原理及应用动态规划算法(Dynamic Programming,DP)是一种通过将问题分解为子问题来解决复杂问题的方法。

其核心思想就是将原问题分解为若干个子问题,先求解子问题,然后再根据子问题的解得出原问题的解。

1.定义子问题:将原问题分解为若干个子问题,每个子问题都是原问题的一个子集。

2.构建状态转移方程:根据子问题的关系,建立状态转移方程来描述问题的解。

3.确定边界条件:确定问题的边界条件,即当问题规模很小的时候可以直接求解的情况。

4.自底向上求解:根据状态转移方程,自底向上地求解子问题,最终得到原问题的解。

1.背包问题:给定一个背包的容量和一系列物品的重量和价值,选择若干个物品放入背包中,使得背包的总重量不超过容量,同时总价值最大化。

2.最长公共子序列(LCS)问题:给定两个字符串,求它们的最长公共子序列,即两个字符串中都出现的最长的子序列。

3.最短路径问题:给定一个有向带权图和两个顶点,求两个顶点之间的最短路径。

4.最大连续子序列和问题:给定一个整数数组,找到一个具有最大和的连续子序列。

5.斐波那契数列:求解斐波那契数列中第n个数的值。

其中,斐波那契数列的定义为:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2),n>11.避免了重复计算:动态规划算法使用备忘录或者数组来存储中间计算结果,避免了重复计算,提高了效率。

2.自底向上求解:动态规划算法从最小的子问题开始求解,逐步拓展到原问题,保证了每个子问题都是已经求解过的。

3.可通过状态压缩进行优化:动态规划算法中,可以根据具体问题的特点,通过状态压缩来减少空间复杂度。

然而,动态规划算法也有一些限制:1.无法应用于所有问题:动态规划算法要求问题满足最优子结构的性质,因此不是所有问题都可以使用动态规划算法来解决。

2.有时需要额外的空间和时间:动态规划算法可能需要使用额外的空间来存储中间结果,同时也需要额外的时间来计算和存储中间结果。

动态规划算法详解及经典例题

动态规划算法详解及经典例题

动态规划算法详解及经典例题⼀、基本概念(1)⼀种使⽤多阶段决策过程最优的通⽤⽅法。

(2)动态规划过程是:每次决策依赖于当前状态,⼜随即引起状态的转移。

⼀个决策序列就是在变化的状态中产⽣出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。

假设问题是由交叠的⼦问题所构成,我们就能够⽤动态规划技术来解决它。

⼀般来说,这种⼦问题出⾃对给定问题求解的递推关系中,这个递推关系包括了同样问题的更⼩⼦问题的解。

动态规划法建议,与其对交叠⼦问题⼀次重新的求解,不如把每⼀个较⼩⼦问题仅仅求解⼀次并把结果记录在表中(动态规划也是空间换时间的)。

这样就能够从表中得到原始问题的解。

(3)动态规划经常常使⽤于解决最优化问题,这些问题多表现为多阶段决策。

关于多阶段决策:在实际中,⼈们经常遇到这样⼀类决策问题,即因为过程的特殊性,能够将决策的全过程根据时间或空间划分若⼲个联系的阶段。

⽽在各阶段中。

⼈们都须要作出⽅案的选择。

我们称之为决策。

⽽且当⼀个阶段的决策之后,经常影响到下⼀个阶段的决策,从⽽影响整个过程的活动。

这样,各个阶段所确定的决策就构成⼀个决策序列,常称之为策略。

因为各个阶段可供选择的决策往往不⽌⼀个。

因⽽就可能有很多决策以供选择,这些可供选择的策略构成⼀个集合,我们称之为同意策略集合(简称策略集合)。

每⼀个策略都对应地确定⼀种活动的效果。

我们假定这个效果能够⽤数量来衡量。

因为不同的策略经常导致不同的效果,因此,怎样在同意策略集合中选择⼀个策略,使其在预定的标准下达到最好的效果。

经常是⼈们所关⼼的问题。

我们称这种策略为最优策略,这类问题就称为多阶段决策问题。

(4)多阶段决策问题举例:机器负荷分配问题某种机器能够在⾼低两种不同的负荷下进⾏⽣产。

在⾼负荷下⽣产时。

产品的年产量g和投⼊⽣产的机器数量x的关系为g=g(x),这时的年完善率为a,即假设年初完善机器数为x,到年终时完善的机器数为a*x(0<a<1);在低负荷下⽣产时,产品的年产量h和投⼊⽣产的机器数量y 的关系为h=h(y)。

动态规划算法—租用游艇问题

动态规划算法—租用游艇问题

动态规划算法——租用游艇问题(一)实验目的:理解动态规划思想,掌握用动态规划设计算法的方法来解决游艇租用问题。

(二)实验内容:长江游艇俱乐部在长江上设置了n个游艇出租站1,2,…,n。

游客可在这些游艇出租站租用游艇,并在下游的任何一个游艇出租站归还游艇。

游艇出租站i到游艇出租站j之间的租金为r(i,j).设计一个算法,计算出从游艇出租站1到游艇出租站n所需要的最少租金。

(三)实验要求:对于给定的游艇出租站i到游艇出租站j之间的租金为r(i,j),编程计算从游艇出租站1到游艇出租站n所需要的最少租金。

上机调试并测试,记录调试和测试的情况,结合程序进行分析。

(四)实验环境:Vc++编译环境(五)实验主要源代码:(1)用dyna()函数计算最少租金void dyna(int &n,int f[N][N]){for(int k=2;k<n;k++)for(int i=0;i<n-k;i++){int j=i+k;for(int p=i+1;p<j;p++){int tmp=f[i][p]+f[p][j];if(f[i][j]>tmp)f[i][j]=tmp;}}}(2)在主函数中实现输出结果。

int main(){ifstream fin("050501103in.txt");ofstream fout("050501103out.txt");if (fin.fail()) {cout<<"fin(\"050501103in.txt\")文件出错!请先建立050501103in文本!"<<endl;return 1;}if (fout.fail()) {cout<<"fout(\"050501103out.txt\")文件出错!";return 2;}int f[N][N];int n;int i,j;fin>>n;if(n<=0){ cout<<"请在050501103in文本的第一行中输入游艇出租站的个数:"<<endl;cout<<"请在050501103in文本的第二行开始输入n(n-1)/2个站与站之间的租金数:"<<endl;}else if(n>N){cout<<"请修改N的值,使N大于n:"<<endl;}else {for(i=0;i<n;i++)for(j=0;j<n;j++)if(j>i)fin>>f[i][j];cout<<"请在050501103out文本中看输出结果(从出租站1到n的最少租金):"<<endl;dyna(n,f);fout<<f[0][n-1]<<endl;}}(六)实验结果:050501103in.txt 050501103out.txt3 125 157(七)实验总结:此程序的设计思想:利用dyna()函数计算最少租金。

动态规划算法实验报告

动态规划算法实验报告

南京信息工程大学滨江学院实验(实习)报告1.实验目的动态规划通常用来求解最优化问题。

通过本次实验掌握动态规划算法。

通过矩阵连乘问题和0-1背包问题实现动态规划算法。

学会刻画问题的最优结构特征,并利用最优化问题具有的重叠子问题性质,对每个子问题求解一次,将解存入表中,当再次需要这个子问题时直接查表,每次查表的代价为常量时间。

2.实验内容及分析设计过程1.矩阵链乘法问题矩阵链乘法问题可描述如下:给定个矩阵的链,矩阵的规模为,求完全括号方案,使得计算乘积所需的标量乘法次数最少。

令m[i,j]表示计算矩阵所需标量乘法次数的最小值,那么,原问题的最优解计是m[1,n]。

最小代价括号化方案的递归求解公式为采用自底向上表格法代替上述递归算法来计算最优代价。

为了实现自底向上方法,我们必须确定计算m[i,j]时需要访问哪些其他表项。

上述公式显示,j-i+l 个矩阵链相乘的最优计算代价m[i,j] 只依赖于那些少于j-i+l 个矩阵链相乘的最优计算代价。

因此,算法应该按长度递增的顺序求解矩阵链括号化问题,并按对应的顺序填写表m。

对如下输入A1 A2 A3 A4 A5 A630⨯35 35⨯15 15⨯5 5⨯10 10⨯20 20⨯25程序运行结果为2.背包问题给定n 个重量为价值为的物品和一个承重为W 的背包。

求这些物品中最有价值的一个子集,并且要能装到背包中。

设V[i,j]是能够放进承重量为j 的背包的前i 个物品中最有价值子集的总价值。

则递推关系为初始条件V[0,j]=0(j>=0),V[i,0]=0(i>=0) 我们的目标是求V[n ,W]。

递归式给出了V[i,j]的计算顺序,V[i,j]只依赖与前一行的那些项。

故可以逐行计算V[i,j].对于物品数量n=5,w[n]={2,2,6,5,4},v[n]={6,3,5,4,6},背包总重量c=10 程序运行结果为3. 实验小结通过本次实验加深了我对动态规划算法的理解。

动态规划算法

动态规划算法

动态规划算法
动态规划算法(Dynamic Programming)是一种解决多阶段最优化决策问题的算法。

它将问题分为若干个阶段,并按照顺序从第一阶段开始逐步求解,通过每一阶段的最优解得到下一阶段的最优解,直到求解出整个问题的最优解。

动态规划算法的核心思想是将问题划分为子问题,并保存已经解决过的子问题的解,以便在求解其他子问题时不需要重新计算,而是直接使用已有的计算结果。

即动态规划算法采用自底向上的递推方式进行求解,通过计算并保存子问题的最优解,最终得到整个问题的最优解。

动态规划算法的主要步骤如下:
1. 划分子问题:将原问题划分为若干个子问题,并找到问题之间的递推关系。

2. 初始化:根据问题的特点和递推关系,初始化子问题的初始解。

3. 递推求解:按照子问题的递推关系,从初始解逐步求解子问题的最优解,直到求解出整个问题的最优解。

4. 得到最优解:根据子问题的最优解,逐步推导出整个问题的最优解。

5. 保存中间结果:为了避免重复计算,动态规划算法通常会使
用一个数组或表格来保存已经求解过的子问题的解。

动态规划算法常用于解决最优化问题,例如背包问题、最长公共子序列问题、最短路径问题等。

它能够通过将问题划分为若干个子问题,并通过保存已经解决过的子问题的解,从而大大减少计算量,提高算法的效率。

总之,动态规划算法是一种解决多阶段最优化决策问题的算法,它通过将问题划分为子问题,并保存已经解决过的子问题的解,以便在求解其他子问题时不需要重新计算,从而得到整个问题的最优解。

动态规划算法能够提高算法的效率,是解决最优化问题的重要方法。

动态规划实验报告

动态规划实验报告

动态规划实验报告《动态规划实验报告》动态规划是一种重要的算法设计技术,它在解决许多实际问题中具有广泛的应用。

本实验报告将介绍动态规划算法的基本原理,并通过一个实际问题的求解过程来展示其应用效果。

首先,我们来了解一下动态规划的基本原理。

动态规划是一种将原问题分解为子问题来求解的方法,它通常用于求解最优化问题。

动态规划算法的核心思想是将原问题分解为若干个子问题,然后通过求解子问题的最优解来得到原问题的最优解。

为了避免重复计算子问题,动态规划算法通常采用记忆化搜索或者自底向上的方式来进行计算。

接下来,我们将通过一个实际问题来展示动态规划算法的应用效果。

假设我们有一组数字,我们希望找到其中的一个子序列,使得这个子序列的和最大。

这个问题可以通过动态规划算法来求解,具体的求解过程如下:1. 定义状态:我们定义一个状态数组dp,其中dp[i]表示以第i个数字结尾的子序列的最大和。

2. 状态转移方程:我们可以通过以下状态转移方程来求解dp数组:dp[i] = max(dp[i-1] + nums[i], nums[i]),其中nums[i]表示第i个数字。

3. 初始状态:我们将dp数组的初始状态设为dp[0] = nums[0]。

4. 求解最优解:最终的最优解即为dp数组中的最大值。

通过以上求解过程,我们可以得到原问题的最优解,即最大子序列的和。

这个实例展示了动态规划算法在实际问题中的应用效果,通过合理的状态定义和状态转移方程,我们可以高效地求解复杂的最优化问题。

综上所述,动态规划算法是一种重要的算法设计技术,它在解决最优化问题中具有广泛的应用。

通过合理的状态定义和状态转移方程,我们可以高效地求解复杂的实际问题。

希望本实验报告能够帮助读者更好地理解动态规划算法的基本原理和应用方法。

动态规划算法的实施步骤

动态规划算法的实施步骤

动态规划算法的实施步骤1. 算法介绍动态规划是一种常用的求解最优化问题的方法,它适用于求解具有重叠子问题特性的问题。

动态规划算法通过将问题拆分成小问题,并保存这些小问题的解来减少重复计算,从而提高求解效率。

2. 实施步骤步骤一:定义问题的状态在动态规划算法中,第一步是定义问题的状态。

问题的状态是指问题的子问题中需要求解的变量或指标。

这些状态一般可以用一个或多个变量来表示。

步骤二:确定状态转移方程确定状态转移方程是动态规划算法的核心步骤。

状态转移方程可以根据问题的特点和定义的状态来确定。

状态转移方程描述了问题的当前状态和下一个状态之间的关系。

步骤三:确定初始状态初始状态是指问题的最小规模的子问题的解,也就是边界条件。

初始状态的确定需要根据具体问题来定义。

步骤四:计算最优解根据定义的状态转移方程和初始状态,可以通过自底向上(bottom-up)或自顶向下(top-down)的方式,计算出问题的最优解。

步骤五:返回最优解最后一步是返回计算得到的最优解。

根据问题的特点和需求,最优解可以是一个值,也可以是一组值。

3. 实施示例为了更好地理解动态规划算法的实施步骤,下面以求解斐波那契数列为例进行说明。

步骤一:定义问题的状态在求解斐波那契数列的问题中,状态可以定义为第n个斐波那契数F(n)。

步骤二:确定状态转移方程斐波那契数列的状态转移方程为F(n) = F(n-1) + F(n-2)。

步骤三:确定初始状态斐波那契数列的初始状态可以定义为F(0) = 0,F(1) = 1。

步骤四:计算最优解根据状态转移方程和初始状态,可以通过自底向上的方式计算斐波那契数列的最优解。

def fibonacci(n):if n ==0:return0elif n ==1:return1else:dp = [0] * (n+1)dp[0] =0dp[1] =1for i in range(2, n+1):dp[i] = dp[i-1] + dp[i-2]return dp[n]步骤五:返回最优解在上述示例中,最优解为fibonacci(n),即第n个斐波那契数。

实验六 动态规划

实验六  动态规划

实验六动态规划一、实验目的熟悉WinQSB软件DP子系统界面内容,掌握操作命令。

用WinQSB软件求解动态规划问题。

二、实验平台和环境Windows9X/ME/NT/2000/XP平台下,WinQSB V1.0版本已经安装在D:\WinQSB中。

三、实验内容和要求建立动态规划新问题,使用WinQSB软件输入模型,求解模型,并对问题的结果进行简单分析。

四、实验操作步骤6.4.1 求解整数规划。

启动程序,点击开始→程序→WinQSB→Dynamic Programming。

6.4.2 分析例题。

点击File→Load Problem打开磁盘中的数据文件,DP程序自带后缀“.Dpp”的3个典型例题,供学习参考。

它们分别是STAGE.DPP(最短路问题)、KNAPSACK.DPP(背包问题)和PRODINVT.DPP(生产和存储问题)。

如打开STAGE.DPP文件,系统显示如图6-1所示的界面。

点击菜单栏Solve andAnalyze→Solve and Display Steps或点击工具栏中的图标可以求解此最短路问题并显示软件求解该DP问题的迭代步骤。

图6-1在点击后,首先会弹出一个选择菜单,如图6-2所示。

可以任意选择一个开始节点和一个结束节点。

图6-2然后点击Solve and Display Steps按钮,即可得到计算结果与详细步骤。

如表6-1所示。

表6-1如果在图6-2中点击Solve,则可得到如表6-2的计算结果。

表6-2此时该问题已得到最优解,从节点1到节点10的最短路长度为19,具体路线为:①③⑤⑧⑩。

→→→→6.4.3 实例操作。

例6.1 求节点1到节点16的最短路。

Array1. 启动程序,点击开始→程序→WinQSB→Dynamic Programming,屏幕显示如图6-4所示的动态规划的工作界面。

图6-4 动态规划的工作界面2. 建立新问题或打开磁盘中已有的文件,或点击File→New Problem建立新问题,屏幕上出现如图6-5所示的问题选项输入界面。

《动态规划算法实验》实验报告

《动态规划算法实验》实验报告

实验3、《动态规划算法实验》一、实验目的1. 掌握动态规划方法贪心算法思想2. 掌握最优子结构原理3. 了解动态规划一般问题二、实验内容1. 编写一个简单的程序,解决0-1背包问题。

设N=5,C=10,w={2,2,6,5,4},v={6,3,5,4,6}2. 合唱队形安排问题【问题描述】N位同学站成一排,音乐老师要请其中的(N-K)位同学出列,使得剩下的K 位同学排成合唱队形。

合唱队形是指这样的一种队形:设K位同学从左到右依次编号为1,2…,K,他们的身高分别为T1,T2,…,TK,则他们的身高满足T1<...<Ti>Ti+1>…>TK(1<=i<=K)。

已知所有N位同学的身高,计算最少需要几位同学出列,可以使得剩下的同学排成合唱队形。

三、算法思想分析1.0-1背包采用动规算法主要是动规方程的思考,之后就是确定边界条件即可。

2.合唱队形问题应用了分治与动态规划的算法,先将所有队员依次做中间最高的同学,将问题分为左右来做,接下来只需要求得左边的最长上升子序列数、右边的最长下降子序列数即可。

四、实验过程分析1.0-1背包问题是背包问题的进一步条件限制,考虑清楚动规方程就不难,编程中对于m(i,j)的含义要清楚,搞混了就容易出错。

2.合唱队形问题的思想并不复杂,特别是如果已经掌握了最长上升子序列数的算法,在分别处理左右最长子序列时需要特别注意数组下标,一开始我用是i,j直接从0到左右的数据长度,但是一直出错,后来发现队员身高数组并不能完全用这些下标,特别是右边的函数,数组起始下标不是0,需要利用函数传递起始下标才能调用对应的数据段。

五、算法源代码及用户屏幕1.(1)算法源码/********************************0-1背包问题。

codeblocks C++2018.11.2********************************/#include <iostream>#include <iomanip>using namespace std;void knapSnack(int v[], int w[], int c, int n, int m[][11]);int main(){int v[] = {6, 3, 5, 4, 6};int w[] = {2, 2 ,6, 5, 4};int c = 10;int n = 5;int m[5][11];//初始化数组for(int i=0; i<5; i++){for(int j=0; j<11; j++){m[i][j] = 0;}}knapSnack(v, w, c, n, m);//输出结果cout<<setw(3)<<" ";for(int i=0; i<11; i++){cout<<setw(3)<<i;}cout<<endl;for(int i=0; i<5; i++){//输出行号cout<<setw(3)<<i+1;for(int j=0; j<11; j++){cout<<setw(3)<<m[i][j];}cout<<endl;}return 0;}void knapSnack(int v[], int w[], int c, int n, int m[][11]){ for(int i=0; i<n; i++){for(int j=0; j<11; j++){//边界条件if(i == 0){if(w[i] > j)m[i][j] = 0;elsem[i][j] = v[i];}/*动规方程j>w[i]m(i,j) = max{m(i-1,j), m(i-1,j-w[i])+v[i]}0<=j<w[i]m(i,j) = m(i-1,j)*/else{if(w[i] > j)m[i][j] = m[i-1][j];else{if(m[i-1][j] > (m[i-1][j-w[i]]+v[i]))m[i][j] = m[i-1][j];elsem[i][j] = m[i-1][j-w[i]]+v[i];}}}//控制列数的for循环}//控制行数的for循环}(2)用户屏幕2.(1)算法源码/***************************************************合唱队形问题codeblocks C++2018.11.2***************************************************/#include <iostream>#include <string.h>using namespace std;//计算左端合唱队人数int leftQueue(int a[], int _start, int _end);//计算右端合唱队人数int rightQueue(int a[], int _start2, int _end2);int main(){cout<<"Please enter total number:";int number;cin>>number;cout<<"Please input the height of each person (cm):"<<endl;int a[number]; //记录每个人身高//b数组分别记录当第n个人为合唱队中间人时,合唱队的总人数int b[number];int rightNumber[number]; //记录左端合唱队人数int leftNumber[number]; //记录右端合唱队人数for(int i=0; i<number; i++)b[i] = 0;for(int i=0; i<number; i++)cin>>a[i];int mostQueueNumber = b[0];for(int i=0; i<number; i++){//设置a[i]为最高的同学leftNumber[i] = leftQueue(a,0,i);rightNumber[i] = rightQueue(a,i,number-1);//计算合唱队总人数b[i] = leftNumber[i] + rightNumber[i] - 1;//计算合唱队最多的总人数if(mostQueueNumber < b[i])mostQueueNumber = b[i];}//计算最少出队人数int leastDequeueNumber = number - mostQueueNumber;cout<<"Minimum number of people out: "<<leastDequeueNumber<<endl;return 0;}int leftQueue(int a[], int _start, int _end){int leftMostNumber = 0;int n = _end-_start+1;//c数组记录i时的最长上升子序列数int c[n];int maxN;//初始化最长上升子序列数为1for(int i=0; i<n; i++){c[i] = 1;}for(int i=_start; i<_end+1; i++){maxN = 0;for(int j=i-1; j>=_start; j--){if(a[j]<a[i] && c[j]>maxN)maxN = c[j];c[i] = maxN + 1;}}leftMostNumber = c[n-1];return leftMostNumber;}int rightQueue(int a[], int _start2, int _end2){ int rightMostNumber = 0;int n2 = _end2-_start2+1;//c2数组记录i时的最长下降子序列数int c2[n2];int maxN2;//初始化最长下降子序列数为1for(int i=0; i<n2; i++){c2[i] = 1;}for(int i=_end2; i>=_start2; i--){maxN2 = 0;for(int j=i+1; j<=_end2; j++){if(a[j]<a[i] && c2[j-_start2]>maxN2)maxN2 = c2[j-_start2];c2[i-_start2] = maxN2 + 1;}}rightMostNumber = c2[0];return rightMostNumber; }(2)用户屏幕。

动态规划算法详解及应用实例

动态规划算法详解及应用实例

动态规划算法详解及应用实例动态规划算法是一种常见的解决各种最优化问题的算法。

它适用于很多复杂的问题,如图形分析、路线规划、搜索引擎等等。

本文将详细讲解动态规划算法的基本原理、特点和应用实例,供大家学习和借鉴。

一、动态规划算法基本原理动态规划,简称DP,是一种递推式算法,通过将问题分解成一系列子问题,并按照一定的顺序对子问题进行求解,最终得到问题的最优解。

其主要思想是:当我们在解题时遇到一个问题时,如果能将这个问题划分成若干个与原问题相似但规模更小的子问题,而这些子问题又可以逐一求解,最终将所有子问题的结果汇总起来得到原问题的解,那么这个问题就可以使用动态规划算法解决。

由于动态规划算法中有“最优解”的要求,所以在求解过程中需要涉及到状态转移方程的设计。

状态转移方程是一个数学公式,它描述了一个状态如何从前一个状态转移而来,以及在当前状态下所做的某些决策对下一个状态的影响。

通过不断迭代求解状态转移方程,我们可以得到最优解。

二、动态规划算法的特点1、动态规划是一种自底向上的策略,通常需要维护一个状态表格,记录下每个阶段的最优解,最后汇总起来得到问题的最终解。

2、动态规划通常具有“无后效性”的特点,即求解某个决策问题时,当前状态之后的决策不会影响之前的决策。

因此,在涉及到状态转移时,只需考虑当前状态和以前的状态即可。

3、动态规划通常包含两个要素:最优子结构和重叠子问题。

最优子结构是指一个问题的最优解由其子问题的最优解递推而来,而重叠子问题则是指在递归求解的过程中,同一问题会被反复求解多次,因此需要使用记忆化搜索等技巧,避免重复计算。

4、动态规划算法的时间复杂度通常是O(n^2)或O(n^3),空间复杂度通常也会比较高。

三、应用实例:0-1背包问题0-1背包问题是指在背包容量固定的情况下,如何选择物品才能使得背包装载的价值最大,其中每个物品只能选择一次。

对于此类问题,可以采用动态规划算法进行求解。

首先需要确定问题的状态转移方程,具体如下:设f(i,j)表示在前i个物品中,当背包的容量为j时,能够装载的最大价值,那么状态转移方程为:f(i,j)=max{f(i-1,j), f(i-1,j-wi)+vi}其中,wi表示第i个物品的重量,vi表示第i个物品的价值。

《动态规划算法》课件

《动态规划算法》课件
总结词
多阶段决策优化
详细描述
背包问题是一个经典的动态规划问题,通过将问题分解 为多个阶段,并为每个阶段定义状态和状态转移方程, 我们可以找到最优解。在背包问题中,我们使用一个二 维数组来存储每个状态的最优解,并逐步更新状态以找 到最终的最优解。
最长公共子序列求解
总结词
字符串匹配优化
详细描述
最长公共子序列问题是一个经典的动态规划问题,用 于找到两个序列的最长公共子序列。通过动态规划, 我们可以避免在寻找公共子序列时进行冗余比较,从 而提高算法效率。在动态规划中,我们使用一个二维 数组来存储子问题的最优解,并逐步构建最终的最长 公共子序列。
动态规划的基本思想
01
将问题分解为子问 题
将原始问题分解为若干个子问题 ,子问题的解可以构成原问题的 解。
02
保存已解决的子问 题
将已解决的子问题的解保存起来 ,以便在求解其他子问题时重复 使用。
03
递推求解
从子问题的解逐步推导出原问题 的解,通常采用自底向上的方式 求解。
02
动态规划算法的步骤
可并行化
动态规划算法可以并行化执行,以提高计算效率,这对于 大规模问题的求解非常有利。
缺点
• 空间复杂度高:动态规划算法需要存储大量的中间状态,因此其空间复杂度通常较高,有时甚至会超过问题规 模的一个指数倍。
• 问题规模限制:由于动态规划算法的空间复杂度较高,因此对于大规模问题的求解可能会遇到困难。 • 可能产生大量重复计算:在动态规划算法中,对于每个子问题,可能会被多次计算和存储,这会导致大量的重复计算和存储空间浪费。 • 不易发现:动态规划算法的应用范围有限,对于一些非最优子结构问题或没有重叠子问题的优化问题,动态规划算法可能不适用。因此,在解决问题时需要仔细分析问题特性,判断是

动态规划算法分析

动态规划算法分析

动态规划算法分析
1.定义状态:将原问题分解为多个子问题,并定义子问题的状态。


态一般是原问题的一些维度,例如,问题规模、位置等等。

2.设计状态转移方程:通过观察子问题之间的关系,设计出状态之间
的转移方程。

状态转移方程可以描述子问题之间的依赖关系,并且可以通
过子问题的解来求解当前问题。

3.初始化边界条件:确定初始状态和边界条件,并将其存储在备忘录
或者递推式中。

边界条件是指最简单的子问题的解,其它子问题将通过边
界条件和状态转移方程来求解。

4.使用递推或者递归方式求解子问题:根据状态转移方程和边界条件,采用递推或者递归的方式求解子问题。

递归方式可以通过备忘录记录已经
求解的子问题的解来避免重复计算。

5.求解原问题:通过求解子问题,根据状态转移方程和边界条件,得
到原问题的解。

总结来说,动态规划算法是一种非常有效的算法思想,能够在优化问
题中快速求解最优解。

通过定义状态、设计状态转移方程、初始化边界条件、递推求解子问题的方式,可以高效地求解原问题。

动态规划算法详解和应用

动态规划算法详解和应用

动态规划算法详解和应用动态规划(Dynamic Programming)算法是从多个阶段中逐步逼近最优解的一种算法。

它的主要思想是将原问题拆分成若干个子问题,并使用已解决的子问题的解来推导还未解决的子问题。

在处理每个子问题时,都会保存之前已经部分解决过的子问题的结果。

借助这些结果来解决更复杂的问题。

动态规划算法因此得名。

本文将详细介绍动态规划算法的基本思想、步骤和应用。

动态规划算法的基本思想:当解决一个问题时,将其分解成若干个子问题并求解。

每个子问题的解只会记录一次,以避免重复求解。

因此,动态规划算法重复使用以前的子问题的解来解决当前的子问题。

在计算机编程中,动态规划通常需要做出一种递归解法,以解决问题的所有可能情况。

如果递归解法的效率太低,可以让它转化为带有动态规划思想的算法,其根据已经解决的子问题计算其它子问题。

动态规划算法的基本步骤:1. 定义状态: 状态是决定某个时刻或某个条件的变量(或变量集合)。

它反映了解决一个问题需要的参数信息。

例如,对于求解最长公共子序列问题来说,状态就是两个字符串的下标。

2. 定义转移:对于当前状态,转移就是从上一状态到达当前状态所要执行的操作(比如以左上角有没有两个字符为例,若匹配则加上当前结果,否则不加)3. 初始化状态:通常在定义状态时,会初始化状态。

在问题开始时,只需要初始化状态就可以得出问题的部分或全部答案。

4. 通常使用一维或多维数组存储状态。

状态也可以是其他容器,如哈希表、树和堆等。

5. 最后得到问题的最终答案。

动态规划算法的应用:1. 寻找最长/最短路径问题(例如:Dijkstra算法和Floyd算法);2. 寻找最优二叉树(例如:Huffman编码算法);3. 求解最大子数列问题(例如:Kadane算法);4. 求解最长公共子序列问题(例如:LCS算法);5. 求解最长回文子串(例如:Manacher算法);6. 求解背包问题(例如:01背包、完全背包)。

动态规划 算法

动态规划 算法

动态规划算法
动态规划是一种用于解决最优子结构问题的算法思想。

它将原问题分解为若干个子问题,并通过求解子问题的最优解来求解原问题的最优解。

动态规划的核心思想是通过保存子问题的解来避免重复计算,从而提高算法的效率。

动态规划算法通常包含以下几个步骤:
1. 定义状态:将原问题划分为若干个子问题,并定义状态,状态一般用一个或多个变量表示。

状态的选择要满足最优子结构的要求,即原问题的最优解可以通过求解子问题的最优解得到。

2. 定义状态转移方程:根据子问题之间的关系,定义状态转移方程。

状态转移方程表示子问题的最优解与其他子问题的最优解之间的关系。

通过求解状态转移方程,可以得到所有子问题的最优解。

3. 初始化:确定初始状态的值,一般通过给定的条件来确定。

4. 递推求解:根据状态转移方程,从初始状态开始逐步求解更大规模的子问题,直到求解出原问题的最优解。

5. 返回最优解:根据最终的子问题的最优解,可以逆推得到原问题的最优解。

动态规划算法的时间复杂度和空间复杂度往往比较高,但通过合理选择状态和状态转移方程,可以有效地优化算法的效率。

动态规划算法可以应用于各种问题,例如最短路径问题、背包问题、序列比对等。

总结起来,动态规划算法是一种分阶段求解最优问题的算法思想,通过保存子问题的解,避免了重复计算,提高了算法的效率。

它通常包括定义状态、定义状态转移方程、初始化、递推求解和返回最优解等步骤。

动态规划算法可以应用于各种问题,是一种非常重要和实用的算法思想。

《动态规划算法》

《动态规划算法》
对于给定的一对索引i和j, 1i<jn, Mi,j可用如 下方法计算:
编辑ppt
7
二项式系数的计算
1
n k
n k
1 1
n k
1
n k
n! k!(n
k )!
由 Stirling 等式,有
if k 0 or k n if 0 k n
n k
n! (( n / 2 )! ) 2
2nn n / en n(n / 2)n / en
2n n
有效计算上式的方法是按行构造帕斯卡三角形
19.08.2021
编辑ppt
20
19.08.2021
编辑ppt
21
算法的改进
在算法lcs和print-LCS中, 可进一步将数组b省 去. 事实上, 数组元素L[i][j]的值仅由L[i-1][j-1], L[i-1][j]和L[i][j-1]这3个数组元素的值所确定. 对于给定的数组元素L[i][j], 可以不借助于数组 b而仅借助于L本身确定L[i][j]的值是由L[i1][j-1], L[i-1][j]和L[i][j-1]中哪一个值所确定的.
对于Fibonacci序列, 一个明显的方法是从f(1)开 始自底向上地计算到f(n), 只需要(n)时间和(1) 空间.
和前面的方法相比, 可以很大程度降低时间复杂 度.
19.08.2021
编辑ppt
9
The longest common subsequence problem最长公共子序列问题
19.08.2021
编辑ppt
8
What is dynamic programming
什么是动态规划?
当子问题发生重叠时, 分治法做了很多不必要的 工作——重复对重叠的子问题进行求解.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
}
cout<<"请输入序列Y的大小:";
cin>>n;
y=new char[n+1];
cout<<"请输入序列Y的各个元素:";
for(i=1;i<n+1;i++)
{
cin>>y[i];
}
c=new int *[m+1]; //b,c申请内存
b[i][j]=2;
}
else
{ c[i][j]=c[i][j-1];
b[i][j]=3;
}
}
}
void LCS(int i ,int j, char *x ,int **b) //根据数组b构造最优解
}
int main()
{
char *x,*y;
int m,n,**c,**b;
cout<<"请输入序列X的大小:";
cin>>m;
x=new char[m+1];
cout<<"请输入序列X的各个元素:";
for(int i=1;i<m+1;i++)
{
cin>>x[i];
for(i=0;i<n+1;i++)
c[i]=new int;
c[0][0]=0;
b=new int *[m+1];
for(i=0;i<n+1;i++)
b[i]=new int;
LCSLength(x,y,m,n,c,b);
cout<<"最长公共子序列为:";
LCS(m,n,x,b);
b[i][j]=1;
}
else if (c[i-1][j]>=c[i][j-1])
{
c[i][j]=c[i-1][j];
b[i][j]=2;
{
if (i ==0 || j==0) return;
if (b[i][j]==1)
{
LCS(i-1,j-1,x,b);
cout<<x[i];
}
else if (b[i][j]== 2)
LCS(i-1,j,x,b);
else LCS(i,j-1,x,b);
{
if (i ==0 || j==0) return;
if (b[i][j]== 1)
{
LCS(i-1,j-1,x,b);
printf("%c",x[i]);
}
else if (b[i][j]== 2)
{
int i ,j;
for (i = 1; i <= m; i++) c[i][0] = 0;
for (i = 1; i <= n; i++) c[0][i] = 0;
for (i = 1; i <= m; i++)
for (j = 1; j <= n; j++)
{
if (x[i]==y[j])
cout<<endl;
return 0;
}
运行结果:
请输入序列X的大小:4
请输入序列X的各个元素:3,5,6,7
请输入序列Y的大小:7
请输入序列Y的各个元素:3,5,7,8,6,5,9
最长公共子序列为:3,5
给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。
给定2个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y的最长公共子序列。
三、实验提示
include "stdlib.h"
#include "string.h"
{
c[i][j]=c[i-1][j-1]+1;
b[i][j]=1;
}
else if (c[i-1][j]>=c[i][j-1])
{
c[i][j]=c[i-1][j];
LCS(i-1,j,x,b);
else LCS(i,j-1,x,b);
}
正确程序为
#include "stdlib.h"
#include "string.h"
#include <iostream.h>
void LCSLength(char *x ,char *y,int m,int n, int **c, int **b) //计算数组c和数组b用于记录,x,y,b从1开始,c从0开始
void LCSLength(char *x ,char *y,int m,int n, int **c, int **b)
{
int i ,j;
for (i = 1; i <= m; i++) c[i][0] = 0;
for (i = 1; i <= n; i++) c[0][i] = 0;
}
else
{ c[i][j]=c[i][j-1];
b[i][j]=3;
}
}
}
void LCS(int i ,int j, char *x ,int **b)
实验六 动态规划算法(4学时)
一、实验目的与要求
1、熟悉最长公共子序列问题的算法;
2、初步掌握动态规划算法;
二、实验题
若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X的子序列是指存在一个严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。例如,序列Z={B,C,D,B}是序列X={A,B,C,B,D,A,B}的子序列,相应的递增下标序列为{2,3,5,7}。
for (i = 1; i <= m; i++)
for (j = 1; j <= n; j++)
{
if (x[i]==y[j])
{
c[i][j]=c[i-1][j-1]+1;
相关文档
最新文档