二叉树的结点定义概论
计算机专业基础知识要点及习题
计算机专业基础知识要点及习题第一章概论数据就是指能够被计算机识别、存储和加工处理的信息的载体。
数据元素是数据的基本单位,可以由若干个数据项组成。
数据项是具有独立含义的最小标识单位。
数据结构的定义:·逻辑结构:从逻辑结构上描述数据,独立于计算机。
·线性结构:一对一关系。
·线性结构:多对多关系。
·存储结构:是逻辑结构用计算机语言的实现。
·顺序存储结构:如数组。
·链式存储结构:如链表。
·索引存储结构:·稠密索引:每个结点都有索引项。
·稀疏索引:每组结点都有索引项。
·散列存储结构:如散列表。
·数据运算。
·对数据的操作。
定义在逻辑结构上,每种逻辑结构都有一个运算集合。
·常用的有:检索、插入、删除、更新、排序。
数据类型:是一个值的集合以及在这些值上定义的一组操作的总称。
·原子类型:由语言提供。
·结构类型:由用户借助于描述机制定义,是导出类型。
抽象数据类型ADT:·是抽象数据的组织和与之的操作。
相当于在概念层上描述问题。
·优点是将数据和操作封装在一起实现了信息隐藏。
程序设计的实质是对实际问题选择一种好的数据结构,设计一个好的算法。
算法取决于数据结构。
算法是一个良定义的计算过程,以一个或多个值输入,并以一个或多个值输出。
评价算法的好坏的因素:·算法是正确的;·执行算法的时间;·执行算法的存储空间(主要是辅助存储空间);·算法易于理解、编码、调试。
时间复杂度:是某个算法的时间耗费,它是该算法所求解问题规模n的函数。
渐近时间复杂度:是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。
空间复杂度:是某个算法的空间耗费,它是该算法所求解问题规模n的函数。
算法的时间复杂度和空间复杂度合称算法复杂度。
第二章线性表线性表是由n≥0个数据元素组成的有限序列。
二叉树知识点总结
二叉树知识点总结1. 二叉树的性质1.1 二叉树的性质一:二叉树的深度二叉树的深度是指从根节点到叶子节点的最长路径长度。
对于一个空树而言,它的深度为0;对于只有一个根节点的树而言,它的深度为1。
根据定义可知,深度为k的二叉树中,叶子节点的深度值为k。
由此可知,二叉树的深度为所有叶子节点深度的最大值。
1.2 二叉树的性质二:二叉树的高度二叉树的高度是指从根节点到叶子节点的最短路径长度。
对于一个空树而言,它的高度为0;对于只有一个根节点的树而言,它的高度为1。
由此可知,二叉树的高度总是比深度大一。
1.3 二叉树的性质三:二叉树的节点数量对于一个深度为k的二叉树而言,它最多包含2^k - 1个节点。
而对于一个拥有n个节点的二叉树而言,它的深度最多为log2(n+1)。
1.4 二叉树的性质四:满二叉树满二叉树是一种特殊类型的二叉树,它的每个节点要么是叶子节点,要么拥有两个子节点。
满二叉树的性质是:对于深度为k的满二叉树而言,它的节点数量一定是2^k - 1。
1.5 二叉树的性质五:完全二叉树完全二叉树是一种特殊类型的二叉树,它的所有叶子节点都集中在树的最低两层,并且最后一层的叶子节点从左到右依次排列。
对于一个深度为k的完全二叉树而言,它的节点数量一定在2^(k-1)和2^k之间。
2. 二叉树的遍历二叉树的遍历是指按照一定的顺序访问二叉树的所有节点。
二叉树的遍历主要包括前序遍历、中序遍历和后序遍历三种。
2.1 前序遍历(Pre-order traversal)前序遍历的顺序是:根节点 -> 左子树 -> 右子树。
对于一个二叉树而言,前序遍历的结果就是按照“根-左-右”的顺序访问所有节点。
2.2 中序遍历(In-order traversal)中序遍历的顺序是:左子树 -> 根节点 -> 右子树。
对于一个二叉树而言,中序遍历的结果就是按照“左-根-右”的顺序访问所有节点。
2.3 后序遍历(Post-order traversal)后序遍历的顺序是:左子树 -> 右子树 -> 根节点。
考研《数据结构》复习知识点归纳
《数据结构》复习重点知识点归纳一.数据结构的章节结构及重点构成数据结构学科的章节划分基本上为:概论,线性表,栈和队列,串,多维数组和广义表,树和二叉树,图,查找,内排,外排,文件,动态存储分配。
对于绝大多数的学校而言,“外排,文件,动态存储分配”三章基本上是不考的,在大多数高校的计算机本科教学过程中,这三章也是基本上不作讲授的。
所以,大家在这三章上可以不必花费过多的精力,只要知道基本的概念即可。
但是,对于报考名校特别是该校又有在试卷中对这三章进行过考核的历史,那么这部分朋友就要留意这三章了。
按照以上我们给出的章节以及对后三章的介绍,数据结构的章节比重大致为:·概论:内容很少,概念简单,分数大多只有几分,有的学校甚至不考。
·线性表:基础章节,必考内容之一。
考题多数为基本概念题,名校考题中,鲜有大型算法设计题,如果有,也是与其它章节内容相结合。
·栈和队列:基础章节,容易出基本概念题,必考内容之一。
而栈常与其它章节配合考查,也常与递归等概念相联系进行考查。
·串:基础章节,概念较为简单。
专门针对于此章的大型算法设计题很少,较常见的是根据KMP进行算法分析。
·多维数组及广义表:基础章节,基于数组的算法题也是常见的,分数比例波动较大,是出题的“可选单元”或“侯补单元”。
一般如果要出题,多数不会作为大题出。
数组常与“查找,排序”等章节结合来作为大题考查。
·树和二叉树:重点难点章节,各校必考章节。
各校在此章出题的不同之处在于,是否在本章中出一到两道大的算法设计题。
通过对多所学校的试卷分析,绝大多数学校在本章都曾有过出大型算法设计题的历史。
·图:重点难点章节,名校尤爱考。
如果作为重点来考,则多出现于分析与设计题型当中,可与树一章共同构成算法设计大题的题型设计。
·查找:重点难点章节,概念较多,联系较为紧密,容易混淆。
出题时可以作为分析型题目给出,在基本概念型题目中也较为常见。
基本二叉树知识讲解
基本二叉树知识讲解一、有关二叉树的学习性质1:二叉树上叶子结点数等于度为2的结点数加1。
性质2:二叉树的第i层上至多有2的i次方减1个结点(i>=1)。
性质3:深度为h的二叉树至多有2的h次方减1个结点。
满二叉树:在一棵二叉树中,当第i层的结点树为2的i次方减1个时,称此层的结点数是满的。
当一棵二叉树中的每一层都满时,称此树为满二叉树。
特性:除叶子结点以外的其他的结点的度皆为2,且叶子结点在同一层上。
深度为h的满二叉树中的结点数为2的h次方减1。
性质4:设含有n个结点的完全二叉树的深度为k,则k=(int)(log2n)+1,即深度k等于log2n的整数部分再加1。
二叉树的存储结构1:顺序存储结构二叉树的顺序存储结构类型定义如下:#define TREEMINSIZE 10typedef struct{BTreeDT(数据类型) *base;int spacesize;BTreeDT nullvalue;}SeqTree;2:链式存储结构(一般的二叉树主要采用链式存储结构通常有二叉链表和三叉链表两种形式)1>二叉链表存储结构二叉链表中的每个结点由data,lchild和rchild三个域组成,定义如下:typedef struct bkbtnode{BTreeDT data;struct bkbtnode *lchild;struct bkbtnode *rchild;}BTNode,*BKBTree;在二叉链表中,查找某结点的孩子很容易实现,但查找某结点的双亲不方便。
一棵喊有n个结点的二叉树采用二叉链表存储时,将有2n-(n-1)=n+1个指针域是空的。
2>三叉链表存储结构typedef struct tkbtnode{BTreeDT data;struct tkbtnode *lchild;struct tkbtnode *rchild;struct tkbtnode *parent;}TKBTNode,*TKBTree;其中,parent域存放该结点双亲的指针。
二叉树
我们也可以把递归过程改成用栈实现的非递归过程,下面给出先序 遍历的非递归过程: procedure inorder(bt:tree); var stack:array[1..n] of tree; {栈} top:integer; {栈顶指针} p:tree; begin top:=0; while not ((bt=nil)and(top=0)) do begin
• ⑴如果i=1,则结点i为根,无父结点;如果i>1,则其 父结点编号为trunc(i/2)。 • ⑵如果2*i>n,则结点i为叶结点;否则左孩子编号为 2*i。 • ⑶如果2*i+1>n,则结点i无右孩子;否则右孩子编号 为2*i+1。
存储结构
• 二叉树的存储结构和普通树的存储结构基本相同,有链 式和顺序存储两种方法。 • ⑴链式存储结构:有单链表结构或双链表结构,基本数 据结构定义如下: type tree=^node;{单链表结构} node=record data:char;{数据域} lchild,rchild:tree;{指针域:分别指向左、右孩子} end; var bt:tree;
• 输入: • 其中第一行一个整数n,表示树的结点数。接下来的n行 每行描述了一个结点的状况,包含了三个整数,整数之 间用空格分隔,其中:第一个数为居民人口数;第二个 数为左链接,为0表示无链接;第三个数为右链接。 • 输出: • 只有一个整数,表示最小距离和。
• • • • • • • •
样例 输入: 5 13 2 3 4 0 0 12 4 5 20 0 0 40 0 0
2、删除二叉树 procedure dis(var bt:tree); begin if bt<>nil then begin dis(bt^.lchild); dis(bt^.rchild); dispose(bt); end; end;
《二叉树的概念》课件
05
二叉树的应用
Chapter
在数据结构中的应用
二叉搜索树
二叉搜索树是一种特殊的二叉树,它的每个节点的左子树上的所有元素都小于 该节点,右子树上的所有元素都大于该节点。这种数据结构可以用于快速查找 、插入和删除操作。
AVL树和红黑树
这两种二叉树都是自平衡二叉搜索树,它们通过调整节点的左右子树的高度来 保持树的平衡,从而在插入、删除等操作时具有较好的性能。
VS
详细描述
平衡二叉树的特点是,它的左右子树的高 度差不会超过1,且左右子树都是平衡二 叉树。平衡二叉树的性质还包括,它的所 有叶节点的层数相等,且所有非叶节点的 左右子树的高度差不超过1。平衡二叉树 的查找、插入和删除操作的时间复杂度为 O(log n),其中n为节点数。
04
二叉树的遍历
Chapter
决策树
在机器学习和人工智能领域,决策树 是一种重要的分类和回归方法。其基 础结构就是二叉树,通过构建决策树 ,可以解决分类和回归问题。
THANKS
感谢观看
代码表示法
总结词:严谨规范
详细描述:使用编程语言的语法结构来表示二叉树,每个节点用对象或结构体表示,节点间的关系通 过指针或引用表示,严谨规范,易于编写和调试。
03
二叉树的性质
Chapter
深度最大的二叉树
总结词
深度最大的二叉树是指具有最大 可能深度的二叉树。
详细描述
在二叉树中,深度最大的二叉树 是满二叉树,即每个层级都完全 填满,没有空缺的节点。满二叉 树的深度等于其节点总数减一。
02
二叉树的表示方法
Chapter
图形表示法
总结词:直观明了
详细描述:通过图形的方式展示二叉树的结构,每个节点用圆圈或方框表示,节 点间的关系用线段表示,直观易懂,易于理解。
计算机二级公共基础专题探究——二叉树
公共基础专题探究——二叉树1.6 树与二叉树树是一种简单的非线性结构,所有元素之间具有明显的层次特性。
在树结构中,没有前件的结点只有一个,称为树的根结点,简称树的根。
每一个结点可以有多个后件,称为该结点的子结点。
没有后件的结点称为叶子结点。
在树结构中,一个结点所拥有的后件的个数称为该结点的度,所有结点中最大的度称为树的度。
为该结点的左子树与右子树。
二叉树的基本性质:必考的题目(1)在二叉树的第k层上,最多有2k-1(k≥1)个结点;(2)深度为m的二叉树最多有2m-1个结点;(3)度为0的结点(即叶子结点)总是比度为2的结点多一个;(4)二叉树中 n = n0 +n1 +n2k层上有2k-1个结点深度为m的满二叉树有2m-1个结点。
若干结点。
二叉树的遍历:(一般画个图要你把顺序写出来)后序遍历(访问根结点在访问左子树和访问右子树之后)重点题型:二叉树的遍历例1:某二叉树的前序序列为ABCD,中序序列为DCBA,则后序序列为(DCBA )。
【解析】前序序列为ABCD,可知A为根结点。
根据中序序列为DCBA可知DCB是A的左子树。
根据前序序列可知B是CD的根结点。
再根据中序序列可知DC是结点B的左子树。
根据前序序列可知,C是D的根结点,故后序序列为DCBA例2:对下列二叉树进行前序遍历的结果为 ABDYECFXZ例3:设二叉树如下,则后序序列为 DGEBHFCA【解析】本题中前序遍历为ABDEGCFH,中序遍历为DBGEAFHC,后序遍历为DGEBHFCA完全二叉树指除最后一层外,每一层上的结点数均达到最大值,在最后堆排序问题:例1:已知前序序列与中序序列均为ABCDEFGH,求后序序列【解析】设根节点为D≠0,左子树为L,右子树为R,有遍历顺序为:前:D-L-R 已知ABCDEFGH中:L-D-R 已知ABCDEFGH后:L-R-D 待求由此可知,L=0,D-R= ABCDEFGH故R-D=HGFEDCBA,即后序序列= HGFEDCBA变式训练1:已知后序序列与中序序列均为ABCDEFGH,求前序序列答案:HGFEDCBA,(这次R=0)结论:若前序序列与中序序列均为某序列,则后序序列为该序列的倒序,且为折线;同样地,若后序序列与中序序列均为某序列,则前序序列为该序列的倒序,且为折线例2:已知前序序列=ABCD,中序序列=DCBA,求后序序列【解析】设根节点为D≠0,左子树为L,右子树为R,有遍历顺序为:前:D-L-R 已知ABCD中:L-D-R 已知DCBA后:L-R-D 待求因为ABCD与DCBA正好相反,由此可知,R=0所以D-L=ABCD,即L-D=DCBA所以后序序列= DCBA变式训练2-1:中序序列=BDCA,后序序列=DCBA,求前序序列【解析】设根节点为D≠0,左子树为L,右子树为R,有遍历顺序为:前:D-L-R 待求中:L-D-R 已知BDC,A后:L-R-D 已知DCB,A通过观察可知,R=0,L={B,D,C},D=A中、后变换时,{B,D,C}发生了变化,说明左子树结构特殊,进一步令中’:L’-D’-R’已知B,DC后’:L’-R’-D’已知DC,B可知L’=0,即D’=B,R’= DC可以画出二叉树示意图为:Array所以前序序列= ABCD变式训练2-2:中序序列=ABC,后序序列=CBA,求前序序列【解析】设根节点为D≠0,左子树为L,右子树为R,有遍历顺序为:前:D-L-R 待求中:L-D-R 已知ABC后:L-R-D 已知通过观察可知,L=0,D-R=ABC,R-D=CBA所以前序序列=D-L-R= D-R=ABC变式训练2-3:前序序列=ABC,中序序列=CBA,求后序序列【解析】设根节点为D≠0,左子树为L,右子树为R,有遍历顺序为:前:D-L-R 已知A,BC中:L-D-R 已知CB,A后:L-R-D 待求通过观察可知,D=A ,L={B,C},R=0所以后序序列=CBA (一边偏)题型二:求二叉树的深度。
二叉树的基本性质
二叉树的基本性质(1)在二叉树的第k层上,最多有2k-1(k≥1)个结点;解释:最多的时候是满二叉树,它的第1层有21-1=1个结点;第2层有22-1=2个结点;第3层23-1=4个结点;第4层有24-1=8个结点;……(2)深度为m的二叉树最多有2m-1个结点,最少有m个结点;(3)对于任意一棵二叉树,度为0的结点(即叶子结点)总是比度为2的结点多一个;即如果其叶子结点数为N0,而度数为2的结点总数为N2,则N0=N2+1;(4)具有n个结点的二叉树,其深度至少为[log2n]+1,其中[log2n]+1表示取log2n的整数部分;(5)给定N个节点,能构成h(N)种不同的二叉树;h(N)为卡特兰数的第N项。
h(n)=C(n,2*n)/(n+1)。
(6)具有n个结点的完全二叉树的深度为[log2n]+1;(7)设完全二叉树共有n个结点。
如果从根结点开始,按层序(每一层从左到右)用自然数1,2,….n给结点进行编号(k=1,2….n),有以下结论:①若k=1,则该结点为根结点,它没有父结点;若k>1,则该结点的父结点编号为INT(k/2);②若2k≤n,则编号为k的结点的左子结点编号为2k;否则该结点无左子结点(也无右子结点);③若2k+1≤n,则编号为k的结点的右子结点编号为2k+1;否则该结点无右子结点。
性质1 在二叉树的第i层上至多有2i-1个结点(i>=1)。
证明采用归纳法证明此性质。
当i=1时,只有一个根结点,2i-1=20 =1,命题成立。
现在假定对所有的j,1<=j<i,命题成立,即第j层上至多有2j-2个结点,那么可以证明j=i时命题也成立。
由归纳假设可知,第i-1层上至多有2i-2个结点。
由于二叉树每个结点的度最大为2,故在第i层上最大结点数为第i-1层上最大结点数的二倍,即2×(2i-2)=2i-1。
性质2 深度为k的二叉树至多有2k-1个结点(k>=1)。
说明二叉树的特点
说明二叉树的特点二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树有以下几个特点:1. 二叉树的节点最多只能有两个子节点。
每个节点要么没有子节点,要么有一个左子节点和一个右子节点。
2. 二叉树的子节点有顺序之分。
左子节点总是位于父节点的左侧,右子节点总是位于父节点的右侧。
3. 二叉树的节点可以为空。
如果一个节点没有子节点,那么它就是一个叶子节点。
4. 二叉树的节点可以有多个子节点。
虽然称为二叉树,但节点的子节点个数可以少于或多于两个。
下面我们来详细解释一下这几个特点。
二叉树的节点最多只能有两个子节点。
这是二叉树与其他树结构的主要区别之一。
在一棵普通的树中,一个节点可以有任意多个子节点,而在二叉树中,一个节点最多只能有两个子节点。
这个特点使得二叉树在实际应用中具有很大的灵活性。
二叉树的子节点有顺序之分。
左子节点总是位于父节点的左侧,右子节点总是位于父节点的右侧。
这个顺序是固定的,不可改变的。
通过这个顺序,我们可以方便地对二叉树进行遍历和搜索。
例如,前序遍历是先访问根节点,再访问左子节点,最后访问右子节点;中序遍历是先访问左子节点,再访问根节点,最后访问右子节点;后序遍历是先访问左子节点,再访问右子节点,最后访问根节点。
第三,二叉树的节点可以为空。
如果一个节点没有子节点,那么它就是一个叶子节点。
叶子节点是二叉树中最底层的节点,没有子节点。
叶子节点在二叉树的遍历和搜索中起到了重要的作用,因为它们是二叉树的最终结果。
二叉树的节点可以有多个子节点。
虽然称为二叉树,但节点的子节点个数可以少于或多于两个。
这个特点使得二叉树可以表示更加复杂的数据结构。
例如,二叉搜索树是一种特殊的二叉树,它的左子节点的值小于根节点的值,右子节点的值大于根节点的值。
二叉搜索树可以用来实现快速的搜索和排序算法。
总结起来,二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点,分别称为左子节点和右子节点。
简述二叉树的五种形态
简述二叉树的五种形态二叉树是一种常用的数据结构,它由节点组成,每个节点最多有两个子节点。
根据节点的分布情况,二叉树可以分为五种形态,分别是满二叉树、完全二叉树、平衡二叉树、搜索二叉树和线索二叉树。
一、满二叉树满二叉树是指除了叶子节点外,每个节点都有两个子节点的二叉树。
也就是说,满二叉树的所有层都是满的,并且最后一层的叶子节点都靠左排列。
满二叉树的节点数可以通过公式计算得到,假设树的高度为h,则节点数为2^h - 1。
满二叉树的特点是结构简单,查找速度快。
在满二叉树中,任意两个节点的路径长度都相同。
二、完全二叉树完全二叉树是指除了最后一层之外,其他层都是满的,并且最后一层的叶子节点都靠左排列的二叉树。
完全二叉树的特点是节点数较少,结构相对简单。
完全二叉树通常用数组来表示,因为它的节点之间的关系可以通过数组的下标来表示。
在完全二叉树中,任意一个节点的左子节点的下标为2i,右子节点的下标为2i+1。
三、平衡二叉树平衡二叉树是指左右子树的高度差不超过1的二叉树。
平衡二叉树的特点是查找、插入和删除的时间复杂度都为O(logn),其中n是节点的数量。
平衡二叉树的高度可以通过节点的平衡因子来计算,平衡因子定义为左子树的高度减去右子树的高度。
平衡因子的取值范围为-1、0和1,当平衡因子的绝对值大于1时,需要通过旋转操作来调整树的平衡性。
四、搜索二叉树搜索二叉树,也称为二叉搜索树或排序二叉树,是一种特殊的二叉树。
它的特点是对于树中的任意一个节点,其左子树中的所有节点都小于它,右子树中的所有节点都大于它。
搜索二叉树的中序遍历结果是一个递增的有序序列。
搜索二叉树的特点是可以快速地查找某个节点,时间复杂度为O(logn),其中n是节点的数量。
但是,如果搜索二叉树不平衡,即左子树或右子树过深,则会导致查找的时间复杂度退化为O(n)。
五、线索二叉树线索二叉树是对二叉树进行了优化的数据结构,它通过添加指向前驱和后继节点的线索,使得遍历操作更加高效。
叶子结点与节点数的计算公式
叶子结点与节点数的计算公式叶子节点与节点数的计算公式是计算树的节点数量和叶子节点数量的关系的公式。
在计算树的节点数量和叶子节点数量时可以使用不同的公式,具体使用哪一个公式取决于树的特性和问题的需求。
一、叶子节点与节点数的计算公式(一):二叉树的叶子节点与节点数的关系对于二叉树,叶子节点与节点数的关系可以通过以下公式计算:叶子节点数=节点数+1该公式的含义是对于任意一个二叉树,叶子节点的数量等于节点数量加1、这个公式可以通过数学归纳法来证明。
首先,我们来看二叉树的定义。
对于一个二叉树,它有一个根节点,每个节点最多有两个子节点。
如果一个节点没有子节点,那么它被称为叶子节点。
1.当二叉树只有一个节点时,它既是根节点,也是叶子节点。
叶子节点数为1,节点数为1、根据公式左边等于右边,公式成立。
2.假设当二叉树节点数为n时,公式成立。
即对于具有n个节点的二叉树,它的叶子节点数等于节点数加13.现在我们来考虑n+1个节点的二叉树。
我们可以用一个具有n个节点的二叉树和一个节点作为子树来构造一个二叉树。
a.当这个节点没有子节点时,它是叶子节点,叶子节点数加1变。
c.当这个节点有两个子节点时,它不是叶子节点,叶子节点数保持不变。
因此,对于一个具有n+1个节点的二叉树,它的叶子节点数等于节点数加1通过数学归纳法,我们证明了对于任意二叉树,叶子节点的数量等于节点数量加1二、叶子节点与节点数的计算公式(二):树的叶子节点与节点数的关系对于一般的树,可以使用以下公式计算叶子节点与节点数的关系:叶子节点数=节点数-分支节点数+1该公式的含义是对于任意一个树,叶子节点的数量等于节点数量减去分支节点的数量再加1树的定义是一个节点可能有多个子节点的结构。
一个树的叶子节点是没有子节点的节点,而分支节点是有子节点的节点。
1.当树只有一个节点时,它既是根节点,也是叶子节点,叶子节点数为1,节点数为1,分支节点数为0。
根据公式左边等于右边,公式成立。
02331《数据结构》自考——各章要点
自考《数据结构》各章要点一第一章概论数据就是指能够被计算机识别、存储和加工处理的信息的载体。
数据元素是数据的基本单位,可以由若干个数据项组成。
数据项是具有独立含义的最小标识单位。
数据结构的定义:·逻辑结构:从逻辑结构上描述数据,独立于计算机。
·线性结构:一对一关系。
·线性结构:多对多关系。
·存储结构:是逻辑结构用计算机语言的实现。
·顺序存储结构:如数组。
·链式存储结构:如链表。
·稠密索引:每个结点都有索引项。
·稀疏索引:每组结点都有索引项。
·散列存储结构:如散列表。
·对数据的操作:定义在逻辑结构上,每种逻辑结构都有一个运算集合。
·常用的有:检索、插入、删除、更新、排序。
·数据类型:是一个值的集合以及在这些值上定义的一组操作的总称。
·原子类型:由语言提供。
·结构类型:由用户借助于描述机制定义,是导出类型。
抽象数据类型ADT:·是抽象数据的组织和与之的操作。
相当于在概念层上描述问题。
·优点是将数据和操作封装在一起实现了信息隐藏。
程序设计的实质是对实际问题选择一种好的数据结构,设计一个好的算法。
算法取决于数据结构。
算法是一个良定义的计算过程,以一个或多个值输入,并以一个或多个值输出。
评价算法的好坏的因素:·算法是正确的;·执行算法的时间;·执行算法的存储空间(主要是辅助存储空间);·算法易于理解、编码、调试。
时间复杂度:是某个算法的时间耗费,它是该算法所求解问题规模n的函数。
渐近时间复杂度:是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。
评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度。
算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。
时间复杂度按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、……k次方阶O(n^k)、指数阶O(2^n)。
二叉树
6-2-2 二叉树的基本操作与存储实现
1、二叉树的基本操作 Initiate(bt)
Create(x, lbt, rbt)
InsertL(bt, x, parent) InsertR(bt, x, parent) DeleteL(bt,parent) DeleteR(bt,parent)
Search(bt,x)
BiTree DeleteL(BiTree bt, BiTree parent){ BiTree p; if(parent==NULL||parent->lchild==NULL){ cout<<“删除出错”<<endl; return NULL; } p=parent->lchild; parent->lchild =NULL; delete p; return bt ; }
a b c e 0 1 2 3 4 5 a b c d e ^ 6 7 8 9 10 ^ ^ ^ f g
d
f
g
特点:结点间关系蕴含在其存储位置中。浪费空间, 适于存满二叉树和完全二叉树。
二、链式存储结构 1、二叉链表存储法
A
B C E G D B A ^
lchild data rchild
F
^ C ^ typedef struct BiTNode { DataType data; struct BiTNode *lchild, *rchild; }BiTNode, *BiTree; ^ E
二叉树的五种基本形态
A
A
A B
A
B 空二叉树
B
C 左、右子树 均非空
只有根结点 的二叉树
右子树为空
左子树为空
二叉树
7.1.2
二叉树的五种基本形态
Ф
左子树
(a) (b) (c)
右子树
(d)
左子树
(e)
右子树
7.1.3
两种特殊形态的二叉树
结点拥有的子树数称为该结点的度(degree)。度为零的结点称 为叶子(leaf),其余结点称为分支结点(branch)。树中结点的最大的 度称为树的度。显然,二叉树结点的度可能为0、1或2。 根结点的层次(level)为1,其余结点的层次等于该结点的双亲结 点的层次加1。树中结点的最大层次称为该树的高度或深度。 1.满二叉树 2.完全二叉树
7.6
本章小结
本章讨论了二叉树数据类型的定义以及实现方法。二叉树是 以两个分支关系定义的层次结构,结构中的数据元素之间存在着一 对多的关系,因此它为计算机应用中出现的具有层次关系或分支关 系的数据,提供了一种自然的表示方法。 二叉树是有明确的左子树和右子树的树形结构,因此当用二 叉树来描述层次关系时,其左孩子表示下属关系,而右孩子表示的 是同一层次的关系。 二叉树的遍历算法是实现各种操作的基础。遍历的实质是按 某种规则将二叉树中的数据元素排列成一个线性序列,二叉树的线 索链表便可看成是二叉树的一种线性存储结构,在线索链表上可对 二叉树进行线性化的遍历,即不需要递归,而是从第一个元素起, 逐个访问后继元素直至后继为空止。因此,线索链表是通过遍历生 成的,即在遍历过程中保存结点之间的前驱和后继的关系。
7.1.4
二叉树的几个特性
由二叉树的定义、形态,我们很容易的得出下面二叉树的 一些特性。 性质1 在二叉树的第i 层上至多有 2i-1 个结点(i≥1)。 性质2 深度为k的二叉树中至多含有2k-1 个结点(k≥1)。 性质3 对任何一棵二叉树 T,如果其终端结点数为,度为 2的结点数为,则。 性质4 具有n个结点的完全二叉树的深度为 log2n+1。 性质5 如果对一棵有 n 个结点的完全二叉树(其深度为 log2n+1)的结点按层序(从第1层到第 log2n+1 层,每层从左到 右)从1起开始编号。
树的基本术语
树的基本术语一、树的定义树(Tree)是一种非线性的数据结构,它由n(n>=1)个节点组成的有限集合。
其中,有且只有一个节点被称为根节点,其余节点被分为若干互不相交的、且看作一个整体(子树)来处理的、有限集合。
二、树的基本术语为了更好地理解树的概念,我们需要了解一些树的基本术语:1. 节点(Node)节点是树的基本构成单元,每个节点包含数据和指向其他节点的指针或引用。
节点可以有零个或多个子节点。
2. 根节点(Root)根节点是树的顶端节点,它是树中唯一一个没有父节点的节点。
根节点用于标识树的起点。
3. 父节点(Parent)一个节点的直接上层节点称为其父节点。
一个节点可以有零个或一个父节点。
4. 子节点(Child)一个节点的直接下层节点称为其子节点。
一个节点可以有零个或多个子节点。
5. 兄弟节点(Sibling)拥有共同父节点的节点称为兄弟节点。
兄弟节点之间的关系是平等的。
6. 叶节点(Leaf)没有子节点的节点称为叶节点,也可以叫做终端节点。
7. 子树(Subtree)子树是由一个节点及其所有子孙节点组成的树。
每个子节点可以看作是该子树的根节点。
8. 深度(Depth)节点的深度是指从根节点到该节点的唯一路径上的边的数量。
根节点的深度为0。
9. 高度(Height)节点的高度是指从该节点到最深叶节点的路径上的边的数量。
叶节点的高度为0。
整棵树的高度是指根节点的高度。
10. 祖先节点(Ancestor)一个节点的祖先节点是从根节点到该节点的路径上的所有节点。
11. 后代节点(Descendant)一个节点的后代节点是从该节点到叶节点的所有节点。
三、树的分类树可以分为多种不同的类型,常见的树包括二叉树、二叉搜索树、平衡二叉树等。
1. 二叉树(Binary Tree)二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树可以是空树,也可以是非空树。
2. 二叉搜索树(Binary Search Tree)二叉搜索树是一种特殊的二叉树,其中任意节点的左子树中的值都小于该节点的值,任意节点的右子树中的值都大于该节点的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
/*若当前结点curr为空,在curr的左子树插入元素值为x的新结点*/ /*原curr所指结点的左子树成为新插入结点的左子树*/ /*若插入成功则返回新插入结点的指针,否则返回空指针*/
curr->righttChild=NULL; return curr; }
释放内存空间 BiTreeNode *DeleteRightTree(BiTreeNode *curr) {
if(curr==NULL||curr->rightChild==NULL) return NULL;
curr->rightChild=NULL; return curr; }
curr->leftChild=NULL; return curr; }
/*若curr非空,删除curr所指结点的右子树*/ /*若删除成功返回删除结点的双亲结点指针,否则返回空指针*/
BiTreeNode *DeleteRightTree(BiTreeNode *curr)
{
if(curr==NULL||curr->rightChild==NULL) return NULL;
/*若curr非空,删除curr所指结点的左子树*/
/*若删除成功返回删除结点的双亲结点指针,否则返回空 指针*/
BiTreeNode *DeleteLeftTree(BiTreeNode *curr)
{
if(curr==NULL||curr->leftChild==NULL) return NULL;
typedef struct Node
二叉树的结点定义数据域 */
struct Node *leftChild;/*左子树指针*/
struct Node *rightChild;/*右子树指针*/
}BiTreeNode;/*结点的结构体定义*/
初始化操作
void Initiate(BiTreeNode **root) {
s->leftChild=t;/*新插入结点的左子树为原curr的左子树*/ s->rightChild=NULL;
curr->leftChild=s;/*新结点成为curr的左子树*/ return curr->leftChild;/*返回新插入结点的指针*/ }
/*若当前结点curr非空,在curr的右子树插入元素值为x的新结点*/ /*原curr所指结点的右子树成为新插入结点的右子树*/ /*若插入成功返回新插入结点的指针,否则返回空指针*/
BiTreeNode *InsertLeftNode(BiTreeNode *curr,DataType x) {
BiTreeNode *s,*t;
if(curr==NULL) return NULL;
t=curr->leftChild;/*保存原curr所指结点的左子树指针*/ s=(BiTreeNode *)malloc(sizeof(BiTreeNode)); s->data=x;
BiTreeNode *InsertRightNode(BiTreeNode *curr,DataType x) {
BiTreeNode *s,*t; if(curr==NULL) return NULL; t=curr->rightChild;/*保存原curr所指结点的右子树指针*/ s=(BiTreeNode *)malloc(sizeof(BiTreeNode)); s->data=x; s->rightChild=t;/*新插入结点的左子树为原curr的右子树*/ s->leftChild=NULL; curr->rightChild=s;/*新结点成为curr的右子树*/ return curr->rightChild;/*返回新插入结点的指针*/ }