高中数学数列通项公式的求法详解

合集下载

高考数学构造法求数列通项的八种技巧(二)(解析版)

高考数学构造法求数列通项的八种技巧(二)(解析版)

构造法求数列通项的八种技巧(二)【必备知识点】◆构造四:同型构造法所谓同型构造法,就是将找因式中的因子和数列项数相同或者相近的部分通过同除或同乘化归成结构相同的形式,形成新的数列,如常数列,等差数列或等比数列.下面让我们来看看有哪些模型结构吧.模型一:a n +1=nn +1⋅a n 左右同乘n +1 (n +1)a n +1=n ⋅a n ,构造b n =n ⋅a n ,则b n +1=b n ,b n 为常数数列.模型二:a n +1=n +1n ⋅a n 左右同除n +1 a n +1n +1=a n n ,构造b n =a n n,则b n +1=b n ,b n 为常数数列.模型三:a n +1=n +2n ⋅a n 左右同除n +2 n +1 a n +1(n +1)(n +2)=a n n (n +1),构造b n =a n n (n +1),则b n +1=b n,b n 为常数数列.模型四:na n +1=2(n +1)a n 左右同除n n +1a n +1n +1=2a n n ,构造b n =an n,则b n +1=2b n ,b n 为等比数列.模型五:a n +1=n +2n ⋅S n ⇒S n +1-S n =n +2n ⋅S n ⇒S n +1=2n +2n ⋅S n 左右同除n +1 S n +1n +1=2S n n,构造b n =S nn ,则b n +1=2b n ,b n 为等比数列.模型六:a n +1=n +1n ⋅a n +n +1左右同除n +1 a n +1n +1=a n n +1,构造b n =a n n,则b n +1=b n +1,b n 为等差数列.模型七:a n +1=2a n +2n +1左右同除2n +1a n +12n +1=a n 2n +1,构造b n =a n 2n,则b n +1=b n +1,b n 为等差数列.模型八:a n -a n +1=a n a n +1左右同除a n a n +11a n +1-1a n =1,构造b n =1an ,则b n +1-b n =1,b n 为等差数列.看了这么多模型,是不是觉得很多,很难记住呢,其实向大家展示这么多,只是想向大家展示,当看到这类式子,尽量将n +1和a n +1,n 和a n 等因子和数列项数相同的部分划归成结构相同的形式,构造成新数列.【经典例题1】已知数列a n 满足a 1=23,a n +1=nn +1⋅a n,求a n . 【解析】因为a n +1=nn +1a n,所以(n +1)a n +1=na n .令b n =na n ,则b n =b n +1,即b n 是常数数列,所以b n=b 1,即na n =1×a n =23,a n =23n.【经典例题2】已知数列a n 中,a n +1=nn +2a n且a 1=2,求数列a n 的通项公式.【解析】因为a n +1=nn +2a n,所以(n +2)a n +1=na n ,(n +1)(n +2)a n +1=n (n +1)a n .令b n =n (n +1)a n ,则b n +1=b n ,即b n 是常数数列,所以b n =b 1.因此n (n +1)a n =1×2×2,a n =4n (n +1).【经典例题3】已知数列a n 中,na n +1=2(n +1)a n +n (n +1)且a 1=1,求数列a n 的通项公式.【解析】na n +1=2(n +1)a n +n (n +1),等式两侧同除n (n +1),形成a n +1n +1=2a n n +1,令b n =an n,则b n +1=2b n +1,这又回到了构造一的形式,所以b n +1+1=2(b n +1),b n +1 是以2为首项,2为公比的等差数列,即b n +1=2×2n -1=2n , b n =2n -1,所以a nn=2n -1,a n =n (2n -1).【经典例题4】已知a 1=1,且na n +1=(n +2)a n +n ,求数列a n 的通项公式.【解析】等式两侧同除n (n +1)(n +2),得a n +1(n +1)(n +2)=a n n (n +1)+1(n +1)(n +2),即a n +1(n +1)(n +2)-a n n (n +1)=1(n +1)(n +2),a n +1(n +1)(n +2)-a n n (n +1)=1(n +1)-1(n +2),另b n =a n n (n +1),所以b n +1-b n =1(n +1)-1(n +2),接下来就是叠加法发挥作用的时候了b 2-b 1=12-13b 3-b 2=13-14b 4-b 3=14-15⋯⋯b n -b n -1=1n -1(n +1)叠加得b n -b 1=12-1(n +1),b 1=a 12=12,所以b n =1-1(n +1)=n n +1,即a n n (n +1)=nn +1,a n =n 2.【练习1】已知数列a n 满足a 1=1,a n -a n +1=3a n a n +1,则a 10=()A.28B.128C.-28D.-128【答案】B【解析】数列a n 满足a 1=1,a n -a n +1=3a n a n +1,则:1a n +1-1a n=3(常数)则:数列1a n 是以1a 1=1为首项,3为公差的等差数列。

求数列通项公式的十种方法

求数列通项公式的十种方法

求数列通项公式的十种方法求解数列的通项公式是高中数学中的一个重要问题,通常需要运用数学分析方法、递推关系、差分方法等多种技巧。

下面将列举十种常见的方法来求解数列的通项公式。

方法一:等差数列的通项公式对于等差数列 an = a1 + (n - 1) * d,其中 a1 为首项,n 为项数,d 为公差。

通项公式可以直接通过公式计算得出。

方法二:等差数列的求和公式对于等差数列 S = (n / 2) * (a1 + an),其中 S 为前 n 项和,a1 为首项,an 为末项,n 为项数。

可以通过求和公式推导出等差数列的通项公式。

方法三:等比数列的通项公式对于等比数列 an = a1 * r^(n - 1),其中 a1 为首项,r 为公比,n 为项数。

通项公式可以直接通过公式计算得出。

方法四:等比数列的求和公式对于等比数列S=(a1*(r^n-1))/(r-1),其中a1为首项,r为公比,n为项数。

可以通过求和公式推导出等比数列的通项公式。

方法五:递推关系法对于一些递推关系的数列,可以通过寻找规律,构建递推关系来求解数列的通项公式。

例如斐波那契数列就可以通过递推关系f(n)=f(n-1)+f(n-2),其中f(1)=1,f(2)=1,来求解通项公式。

方法六:二项式展开法对于一些满足二项式展开的数列,可以通过展开得到二项式系数,然后通过系数的通项公式来求解数列的通项公式。

例如二项式数列(x+1)^n的展开系数就是通过n阶二项展开推导出来的。

方法七:差分法通过对数列进行差分操作,找到规律来求解数列的通项公式。

例如,如果差分的结果是一个等差数列,那么原数列就是一个二次或高次多项式。

方法八:线性递推法对于一些线性递推关系的数列,可以通过构建矩阵形式或特征方程的方法来求解数列的通项公式。

例如,对于一阶线性递推数列a(n)=p*a(n-1)+q,可以通过特征方程x-p*x-q=0来求解通项公式。

方法九:插值法通过给定数列中的若干项,利用 Lagrange 插值公式来推导数列的通项公式。

人教版高中数学选择性必修第二册4.3.2-专题1 数列通项的求法

人教版高中数学选择性必修第二册4.3.2-专题1 数列通项的求法

【 讲 评 】 已 知 an + 1 = g(n)·an , 通 常 利 用 an = aan-n 1·aann--12·…·aa21·a1,求出通项 an.
探究 2 累乘法就是利用以下变形来求通项 an 的方法,an= a1·aa12·aa32·…·aan-n 1.
例如,在等比数列{an}中,由于aa12=aa32=aa43=…=aan-n 1=q,所 以对 n≥2 且 n∈N*,有 an=a1·aa21·aa32·…·aan-n1=a1·q·q·…·q =a1qn-1,把 n=1 代入上式也成立,故 an=a1qn-1(n∈N*).
(1)设 bn=an+1-2an(n∈N*),求证:{bn}是等比数列; (2)设 cn=2ann(n∈N*),求证:{cn}是等差数列; (3)求数列{an}的通项公式及前 n 项和公式.
【解析】 (1)证明:∵Sn+1=4an+2,① ∴Sn+2=4an+1+2.② ②-①式,得 Sn+2-Sn+1=4an+1-4an(n∈N*),即 an+2=4an+1 -4an. an+2-2an+1=2(an+1-2an). ∵bn=an+1-2an(n∈N*),∴bn+1=2bn. 由此可知,数列{bn}是公比为 2 的等比数列. 由 S2=a1+a2=4a1+2,又 a1=1,得 a2=5. ∴b1=a2-2a1=3,∴bn=3·2n-1.
专题研究一 数列通项的求法
专题讲解
题型一 累加法
例 1 在数列{an}中,已知 a1=1,an+1=an+2n,求 an. 【解析】 ∵a2-a1=2×1,a3-a2=2×2,…,an-an-1=2×(n -1)(n≥2 且 n∈N*), ∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1) =1+(2×1)+(2×2)+…+[2×(n-1)] =1+2(1+2+…+n-1) =1+2·(n-21)·n=n2-n+1(n≥2 且 n∈N*),把 n=1 代入上 式也成立,故 an=n2-n+1(n∈N*).

高中数学数列通项公式的求法技巧大全

高中数学数列通项公式的求法技巧大全

数列通项公式的求法技巧大全一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。

四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。

2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。

例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。

高中数学中最常见的数列通项公式推导

高中数学中最常见的数列通项公式推导

高中数学中最常见的数列通项公式推导高中数学中数列是一个非常基础的概念,在化学、物理、计算机等多个领域中都有着广泛的应用。

在数列中,通项公式是最常用的概念之一,可以让我们通过一个公式来计算任意一个数列的第n项。

在本文中,我们将介绍一些高中数学中最常见的数列通项公式推导方法,希望能够帮助大家更好地理解数学中的这个概念。

一、等差数列通项公式推导等差数列是指一个数列中每一项与其前一项的差都相等的数列,其通项公式可以通过以下四种方法来推导:1.微积分法考虑等差数列的通项公式为an=a1+(n-1)d,其中a1为首项,n为项数,d为公差。

因此,我们可以在每一项上面加上一个微小的增量dx,这样我们可以得到如下的一元微积分式子:$$\lim_{dx \to 0} \frac{a_{n+dx}-a_n}{dx}=\lim_{dx \to 0}\frac{[a_1+(n+dx-1)d]-[a_1+(n-1)d]}{dx}$$$$\lim_{dx \to 0} \frac{[n+dx-1]d-dx}{dx}=\lim_{dx \to 0}\frac{nd-dx}{dx}+d$$当dx无限趋近于0时,上式等于d,因此这个数列的导数d。

因此,对于等差数列an=a1+(n-1)d,其中d为常数,我们可以将其看做一个一元函数,其导数为常数d。

根据微积分的基本定理,我们可以得到其积分形式为an(n)=a1+d×∫(n-1)dx,即an=a1+nd-n(n-1)d/2。

2.通项公式的递推公式考虑等差数列的递推公式an=an-1+d,我们可以将上式变形得到an-1=an-d。

我们将an替换成an-1中的值,得到an-1=a1+d(n-2)。

接着我们将an-2替换为an-1中的值,得到an-2=a1+d(n-3),以此类推,则得到an-k=a1+d(n-k-1),k=0,1,2,……,n-1。

因此,当k=0时,即n-k-1=0时,我们有an=a1+dn-d=n(a1+d)。

高考数学构造法求数列通项的八种技巧(三)(解析版)

高考数学构造法求数列通项的八种技巧(三)(解析版)

构造法求数列通项的八种技巧(三)【必备知识点】◆构造六:取对数构造法型如a n +1=ca n k ,a n =ca n -1k或者a n +b =c (a n -1+b )k ,b 为常数.针对出现这种数列,为方便计算,两边通常取以c 或首项为底的对数,就能找到突破口.什么情况取c 为底,什么情况取首项为底呢?我们来看两道例题.【经典例题1】数列a n 中, a 1=2,a n +1=a n 2,求数列a n 的通项公式.【解析】取以a 1=2为底的对数(不能取c 为底,因为c =1,不能作为对数的底数),得到log a n +12=log an22,log a n +12=2log a n2,设b n =log a n2,则有b n +1=2b n ,所以b n 是以b 1=log a 12=1为首项,2为公比的等比数列,所以b n =2n -1,所以log a n2=2n -1,a n =22n -1.【经典例题2】数列a n 中,a 1=1,a n +1=2a n 2,求数列a n 的通项公式.【解析】取以2为底的对数(这里知道为什么不能取a 1=1为底数的对数了吧),得到log a n +12=log 2a n22,log an +12=log 22+2log a n2,log a n +12=1+2log a n2设b n =log an2,则有b n +1=1+2b n ,这又回归到构造二的情况,接下来的步骤大家应该都记得吧,由于这道题较为简单,所以直接可看出b n +1+1=2(b n +1),所以b n +1 是以b 1+1=1为首项,2为公比的等比数列,所以b n +1=2n -1,所以b n =2n -1-1,log a n2=2n -1-1,a n =22n -1-1.【经典例题3】已知a 1=2,点a n ,a n +1 在函数f x =x 2+2x 的图像上,其中n ∈N *,求数列a n 的通项公式.【解析】将a n ,a n +1 代入函数得a n +1=a n 2+2a n ,a n +1+1=a n 2+2a n +1=a n +1 2,即a n +1+1=a n +1 2两边同时取以3为底的对数,得log a n +1+13=log a n+123⇒log a n +1+13=2log a n+13(为什么此题取以3为底的对数呢,大家思考下,新构造的数列首项为log a 1+13,a 1+1=3,所以应当取以3为底,这样计算会简单很多,当然如果你计算能力较强,也可以取其他数作为底数).所以log a n+1 3 是以1为首项,2为公比的等比数列,即log a n+1 3=1×2n -1,a n +1=32n -1,a n =32n -1-1.【经典例题4】在数列a n 中, a 1=1,当n ≥2时,有a n +1=a n 2+4a n +2,求数列a n 的通项公式.【解析】由a n +1=a n 2+4a n +2,得a n +1+2=a n 2+4a n +4,即a n +1+2=a n +2 2,两边同取以3为底的对数,得log a n +1+23=log a n+223,即log a n +1+23=2log a n+2 3,所以数列log a n+2 3是以1为首项,2为公比的等比数列,log a n+23=2n -1,a n +2=32n -1,即a n =32n -1-2.◆构造七:二阶整体构造等比简单的二阶整体等比:关于a n +1=Aa n +Ba n -1的模型,可通过构造二阶等比数列求解,大部分题型可转化为a n +1-a n =(A -1)a n -a n -1 ,利用a n +1-a n 成等比数列,以及叠加法求出a n .还有一小部分题型可转化为a n +1+a n =(A +1)a n +a n -1 ,利用a n +1+a n 成等比数列求出a n .【经典例题1】已知数列a n 满足a 1=1,a 2=3,a n +2=3a n +1-2a n n ∈N * ,求数列a n 的通项公式.【解析】由a n +1=3a n -2a n -1⇒a n +1-a n =2a n -a n -1 ,故a n +1-a n 是以a 2-a 1=2为首项,2为公比的等比数列,即a n +1-a n =a 2-a 1 2n -1=2n ,接下来就是叠加法啦,a n -a n -1=2n -1...a 2-a 1=2全部相加得:a n -a 1=2n-2,所以a n =2n -1.【经典例题2】已知数列a n 中,a 1=1,a 2=2,a n +2=23a n +1+13a n ,求数列a n 的通项公式。

高中数学-数列求通项公式方法汇总及经典练习(含答案)

高中数学-数列求通项公式方法汇总及经典练习(含答案)

高中数学-数列求通项公式方法汇总及经典练习(含答案)1、定义法:直接求首项和公差或公比。

2、公式法:1 (1) (2)n n nn S n a S S n -=⎧=⎨-≥⎩两种用途(列举),结果要验证能否写成统一的式子.例、数列{}n a 的各项都为正数,且满足()()2*14nna S n N +=∈,求数列的通项公式.解一:由()()2*14nna S n N +=∈得()()()221114411n n n n n aS S a a +++=-=---化简得()()1120n n n n a a a a +++--=,因为10,2n n n a a a +>∴-=,又()2111441S a a ==-得11a =,故{}n a 是以1为首项,2为公差的等差数列,所以21n a n =-.解二:由()()2*14nn a S n N +=∈,可得()11,12n n n a S S n -=-∴=--≥化简可得)211n S -=,即1=,又11S =,所以数列是首项为1,公差为1的等差数列,∴n =,从而2n S n =,所以121n n n a S S n -=-=-,又11a =也适合,故21n a n =-.练习:已知数列{a n }的前n 项和S n 满足120n n n a S S -+=(2n ≥),a 1=21,求n a . 答案:a n =⎪⎪⎩⎪⎪⎨⎧≥--=)2()1(21)1(21n n n n .扩展一:作差法例、在数列}{n a 中,11a =,212323(1)n a a a na n n ++++=-+,求n a .解:由212323(1)n a a a na n n ++++=-+,得2123123(1)(2)1n a a a n a n n -++++-=-+-,两式相减,得66n na n =-+,∴ 1 (=1)66 (2)n n a n n n⎧⎪=-⎨≥⎪⎩.练习(理):已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求n a .解:由123123(1)(2)n n a a a a n a n -=++++-≥,得1123123(1)n n n a a a a n a na +-=++++-+,两式相减,得1n n n a a na +-=,即11(2)n na n n a +=+≥,所以13222122![(1)43]2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=又由已知,得2122a a a =+,则211a a ==,代入上式,得!13452n n a n =⋅⋅⋅⋅⋅=, 所以,{}n a 的通项公式为 1 (1)! (2)2n n a n n =⎧⎪=⎨≥⎪⎩.扩展二、作商法例、在数列}{n a 中,11a =,对所有的2n ≥,都有2123n a a a a n ••••=,求n a .解:∵2123n a a a a n ••••=,∴21232(1)n a a a a n -••••=-,故当2n ≥时,两式相除,得22(1)n n a n =-, ∴221 (=1) (2)(1)n n a n n n ⎧⎪=⎨≥⎪-⎩.3、 叠加法:对于型如)(1n f a a n n =-+类的通项公式.例、在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .答案:na n 14-=. 例、已知数列{}n a 满足112231n n n n a a ++=++-(*n N ∈),352a =,求通项n a .解:由112231n nn n aa ++=++-,两边同除以12n +,得()111131112222n n n n n n n a a n ++++-=-+≥,列出相加得121212121332323212212121-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=---n a a n n n n又由已知求得16a =,∴()*231n n n n N a n ∈=•++.练习:已知数列}a {n 满足3a 132a a 1nn 1n =+⋅+=+,,求数列}a {n 的通项公式.答案:1n 32n 31332a n nn -+=++--⋅=.4、叠乘法:一般地,对于型如1+n a =f (n)·n a 的类型例(理)、已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅121[2(11)5][2(21)5][2(11)5]3n n n n --=-+-++⨯⨯(1)1(1)(2)21122[(1)32]53325!n n n n n n n n n ---+-+++-=-⋅⋅⨯⨯⨯=⨯⨯⨯,所以数列{}n a 的通项公式为(1)12325!n n n n a n --=⨯⨯⨯.练习:在数列{a n }中,112a =,11(1n n n a a a n --=⋅+≥2),求n a . 答案:)1(1+=n n a n . 5、构造法:型如a n+1=pa n +f(n) (p 为常数且p ≠0, p ≠1)的数列(1)f(n)= q (q 为常数) 一般地,递推关系式a +1=pa n +q (p 、q 为常数,且p ≠0,p ≠1)等价与)1(11pqa p p q a n n --=--+,则{p q a n --1}为等比数列,从而可求n a .例、已知数列{}n a 满足112a =,132n n a a --=(2n ≥),求通项n a . 解:由132n n a a --=,得111(1)2n n a a --=--,又11210a -=≠,所以数列{1}n a -是首项为12,公比为12-的等比数列,∴11111(1)()1()22n nn a a -=---=+-. 练习:已知数列}{n a 的递推关系为121+=+n n a a ,且11=a ,求通项n a . 答案:12-=n na .(2) f(n)为等比数列,如f(n)= q n (q 为常数) ,两边同除以q n ,得111+=++nn n n qa p q a q ,令nn n a b q =,则可转化为b n+1=pb n +q 的形式求解.例、已知数列{a n }中,a 1=65,1111()32n n n a a ++=+,求通项n a . 解:由条件,得2 n+1a n+1=32(2 n a n )+1,令b n =2 n a n ,则b n+1=32b n +1,b n+1-3=32(b n -3) 易得 b n =3)32(341+--n ,即2 n a n =3)32(341+--n , ∴ a n =n n 2332+-. 练习、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求通项n a .答案:31()222nn a n =-.(3) f(n)为等差数列,如1n n a Aa Bn C +=++型递推式,可构造等比数列.(选学,注重记忆方法)例、已知数列{}n a 满足11=a ,11212n n a a n -=+-(2n ≥),求.解:令n n b a An B =++,则n n a b An B =--,∴11(1)n n a b A n B --=---,代入已知条件, 得11[(1)]212n n b An B b A n B n ---=---+-,即11111(2)(1)2222n n b b A n A B -=++++-,令202A +=,1022A B +-=,解得A=-4,B=6,所以112n n b b -=,且46n n b a n =-+, ∴{}n b 是以3为首项、以12为公比的等比数列,故132n n b -=,故13462n n a n -=+-. 点拨:通过引入一些尚待确定的系数,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解. 练习:在数列{}a n 中,132a =,1263n n a a n --=-,求通项a n . 答案:a n nn -+=69912·().解:由1263n n a a n --=-,得111(63)22n n a a n -=+-,令11[(1)]2n n a An B a A n B -++=+-+,比较系数可得:A=-6,B=9,令n n b a An B =++,则有112n n b b -=,又1192b a A B ==++,∴{}n b 是首项为92,公比为12的等比数列,所以b n n =-92121(),故a n n n-+=69912·(). (4) f(n)为非等差数列,非等比数列法一、构造等差数列法例、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>,求数列{}n a 的通项公式.解:由条件可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,∴数列2n n n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为0,公差为1的等差数列,故21nnn a n λλ⎛⎫-=- ⎪⎝⎭,∴(1)2n n n a n λ=-+. 练习:在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项a n 。

高中数学必须掌握的十种数列通项公式的解题方法和典型例题

高中数学必须掌握的十种数列通项公式的解题方法和典型例题

高中数学必须掌握的十种数列通项公式的解题方法和典型例题
在高考中数列部分的考查既是重点又是难点,不论是选择题或填空题中对基础知识的考查,还是压轴题中与其他章节知识的综合,抓住数列的通项公式通常是解题的关键和解决数列难题的瓶颈。

求通项公式也是学习数列时的一个难点。

由于求通项公式时渗透多种数学思想方法,因此求解过程中往往显得方法多、灵活度大、技巧性强。

通项公式普通的求法:
(1)构造等比数列:凡是出现关于后项和前项的一次递推式都可以构造等比数列求通项公式;
(2)构造等差数列:递推式不能构造等比数列时,构造等差数列;
(3)递推:即按照后项和前项的对应规律,再往前项推写对应式。

已知递推公式求通项常见方法:
①已知a1=a,a n+1=qa n+b,求a n时,利用待定系数法求解,其关键是确定待定系数λ,使a n+1+λ=q(a n+λ)进而得到λ。

②已知a1=a,a n=a n-1+f(n)(n≥2),求a n时,利用累加法求解,即
a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)的方法。

③已知a1=a,a n=f(n)a n-1(n≥2),求a n时,利用累乘法求解。

非常实用的十大解题方法及典型例题
方法一数学归纳法
方法二 Sn 法
方法三累加法
方法四累乘法
方法五构造法一
方法六构造法二
方法七构造法三
方法八构造法四
方法九构造五
方法十构造六。

高中数学求解数列通项公式常用方法总结

高中数学求解数列通项公式常用方法总结

高中数学求解数列通项公式常用方法总结(共15种类型类型1(迭加法1112212212(212(log 1(n 1n nn n n n n n n a a f n n-++-⎧⎪⎪⎪-+⎪⎪--==⎨⎪⎪⎪⎪⎪+⎩,n a a求,11=以上6种情况都要试着做一遍例1:已知数列{}n a满足11211,2n n a a a n n+=-=+,求n a。

解:由条件知:121111(11n n a a n n n n n n+-===-+++分别令1,2,3,,(1n n=-,代入上式得(1n-个等式累加之,即21 32431((((n n a a a a a a a a--+-+-++-1111111(1(((223341n n=-+-+-++--所以111n a a n-=-111131, 1222n a a n n=∴=+-=-类型2(迭乘法11(=2n n n n a f n n a++⎧⎪=⎨⎪⎩,n a a求,11=例2:已知数列{}n a满足112,31n n n a a a n+==+,求n a。

解:由条件知11n n a n a n+=+,分别令1,2,3,,(1n n=-,代入上式得(1n-个等式累乘之,即3241231112311234n n n a a a a a n a a a a n a n--=⨯⨯⨯⨯⇒=又122,33n a a n=∴=∵类型3(退一相减法递推公式为S n与a n的关系式。

(或(n n S f a=解法:这种类型一般利用11(1(2n n n S n a S S n-=⎧=⎨-≥⎩与11((n n n n n a S S f a f a--=-=-消去n S(2n≥或与1 ((2n n n S f S S n-=-≥消去n a进行求解。

常见题型:1、12++=n n S n,n a求(关系与n S n2、n n n a a S求,23+=(关系与n n a S3、n n a a a a n 22223133221+⋅⋅⋅+++=+,求n a(n a n与例:已知数列{}n a前n项和214 2n n n S a-=--.(1求1n a+与n a的关系;(2求通项公式n a.解:(12142n n n S a-=--得:111142n n n S a++-=--于是112111((22n n n n n n S S a a++---=-+-所以1111111222n n n n n n n a a a a a+++-=-+⇒=+.类型3(构造法1 n 1n a pa q+=+(其中,p q均为常数,((10pq p-≠。

2024年高考数学专项突破构造法求数列通项的八种技巧(一)(解析版)

2024年高考数学专项突破构造法求数列通项的八种技巧(一)(解析版)

构造法求数列通项的八种技巧(一)【必备知识点】◆构造一:待定系数之a n +1=Aa n +B 型构造等比数列求关于a n +1=Aa n +B (其中A ,B 均为常数,AB (A -1)≠0)类型的通项公式时,先把原递推公式转化为a n +1+M =A a n +M ,再利用待定系数法求出M 的值,再用换元法转化为等比数列求解.其实对于这类式子,我们只需要记住在等式两侧加上一个常数M ,构造成等比数列.常数M 的值并不需要背诵,我们可以通过待定系数法推导出来.【经典例题1】已知a n 满足a 1=3,a n +1=2a n +1求数列a n 的通项公式.【经典例题2】已知数列a n 中,a 1=1,a n +1=2a n +3,求数列a n 的通项公式.【经典例题3】已知数列a n 中,a 1=1,a n +1=3a n +4,求数列a n 的通项公式.【练习1】数列a n 中,a n +1=2a n -1,a 3=2,设其前n 项和为S n ,则S 6=()A.874 B.634 C.15 D.27【练习2】已知数列a n 的前n 项和为S n ,若3S n =2a n -3n ,则a 2018=()A.22018-1B.22018-6C.12 2018-72D.13 2018-103【练习3】在数列a n 中,a 1=2,a n +1=2a n +1,则a 5=_______.【练习4】已知数列a n 满足a 1=3,a n +1=2a n +1,则数列a n 的通项公式a n =______.【练习5】已知数列a n 的首项a 1=2,且a n +1=12a n +12n ∈N * ,则数列1a n -1 的前10项的和为______.【练习6】已知数列a n 中,a 1=1,a n +1=3a n +2,则a n =_______.◆构造二:待定系数之a n +1=Aa n +Bn +C 型构造等比数列求关于a n +1=Aa n +Bn +C (A ≠1,C ≠0,B ≠0)类型的通项公式时,与上面讲述的构造一的方法很相似,只不过等式中多了一项Bn ,在构造时我们也保持跟题干一样的结构,加一项pn 再构造等比数列就可以,即令a n +1+p (n +1)+q =A a n +pn +q ,然后与已知递推式各项的系数对应相等,解p ,q ,从而得到a n +pn +q 是公比为A 的等比数列.2024年高考数学专项突破构造法求数列通项的八种技巧(一)(解析版)【经典例题1】设数列a n满足a1=4,a n=3a n-1+2n-1(n≥2),求数列a n的通项公式.【经典例题2】已知:a1=1,n≥2时,a n=12a n-1+2n-1,求a n的通项公式.【练习1】已知数列a n是首项为a1=2,a n+1=13a n+2n+53.(1)求a n通项公式;(2)求数列a n的前n项和S n.【练习2】已知数列a n和b n,a n的前n项和S n,对于任意的n∈N*,a n,S n是二次方程x2-3n2x+b n=0的两根.(1)求a n和b n通项公式;(2)a n的前n项和S n.【练习3】设数列a n是首项为a1=1,满足a n+1=2a n-n2+3n(n=1,2,⋯).问是否存在λ,μ,使得数列a n+λn2+μn成等比数列?若存在,求出λ,μ的值,若不存在,说明理由;◆构造三:待定系数之a n+1=pa n+q n型构造数列求关于a n+1=pa n+q n(其中p,q均为常数,pq(p-1)≠0)类型的通项公式时,共有3种方法.方法一:先用待定系数法把原递推公式转化为a n+1+λq n+1=p a n+λq n,根据对应项系数相等求出λ的值,再利用换元法转化为等比数列求解.方法二:先在递推公式两边同除以q n+1,得a n+1q n+1=pq⋅a nq n+1q,引入辅助数列b n(其中b n=a nq n),得b n+1=pq⋅b n+1q,再利用待定系数法解决;方法二:也可以在原递推公式两边同除以p n+1,得a n+1p n+1=a np n+1p⋅qpn,引入辅助数列b n (其中b n=a n p n ),得b n+1-b n=1p⋅q.pn,再利用叠加法(逐差相加法)求解.【经典例题1】已知数列a n中a1=56,a n+1=13a n+12n+1,求an的通项公式.【经典例题2】已知数列a n满足a n+1=2a n+4⋅3n-1,a1=-1,求数列a n的通项公式.【练习1】已知数列a n满足a1=1,a n+1=3a n+2n n∈N*,b n=a n+1a n.设t∈Z,若对于∀n∈N*,都有b n>t恒成立,则t的最大值为()A.3B.4C.7D.9【练习2】已知数列a n满足a1=2,a n+1=a n+2n+2n∈N*.(1)判断数列a n-2n是否为等差数列,并说明理由;(2)记S n为数列a n的前n项和,求S n.【过关检测】一、单选题1.已知S n为数列a n的前n项和,若a n+1=2a n-2,S2=10,则a n的通项公式为( )A.a n=3n-4B.a n=2n+2C.a n=n2+nD.a n=3n2-12.已知数列a n中,a1=1,a n+1=2a n+1,则数列a n的通项公式为( )A.a n=nB.a n=n+1C.a n=2nD.a n=2n-13.已知数列a n满足a1=3,a n+1=5a n-8,则a2022的值为( )A.52021-2B.52021+2C.52022+2D.52022-24.设数列a n的前n项和为S n,若S n=2a n-2n+1,则S10=( )A.211-23B.210-19C.3×210-23D.3×29-195.在数列a n中,a1=1,且a n+1=2a n+1,则a n的通项为( )A.a n=2n-1B.a n=2nC.a n=2n+1D.a n=2n+16.数列a n中,a n+1=2a n+1,a1=1,则a100=( )A.2100+1B.2101C.2100-1D.21007.数列a n满足12a n=a n+1-12n+1,且a1=12,若a n<13,则n的最小值为( )A.3B.4C.5D.68.已知数列a n中,a1=1,a n=3a n-1+4(n∈N∗且n≥2),则数列a n通项公式a n为( )A.3n-1B.3n+1-2C.3n-2D.3n9.数列a n满足a n=4a n-1+3n≥2且a1=0,则此数列第5项是( )A.15B.255C.16D.6310.在数列a n中,已知a1=1,a n+1=2a n+1,则a n=( )A.2n -1B.2n -1C.nD.2n -111.在数列a n 中,a 1=3,a n =2a n -1-n +2n ≥2,n ∈N + ,若a n >980,则n 的最小值是( )A.8B.9C.10D.1112.设数列{an }中,a 1=2,an +1=2an +3,则通项an 可能是()A.5-3nB.3·2n -1-1C.5-3n 2D.5·2n -1-313.在数列a n 中,若a 1=2,a n +1=3a n +2n +1,则a n =( )A.n ⋅2nB.52-12nC.2⋅3n -2n +1D.4⋅3n -1-2n +114.已知在数列a n 中,a 1=56,a n +1=13a n +12 n +1,则a n =( )A.32n -23n B.23n -32n C.12n -23n D.23n -12n 15.数列a n 满足a n +1=2a n +3,n ∈N *,若a 2017≥a 1,则a 1的取值范围为( )A.(-∞,-3]B.{-3}C.(-3,+∞)D.[-3,+∞)二、填空题16.设数列a n 满足a 1=1,且a n =3a n -1+4n ≥2 ,则数列a n 的通项公式为a n =___________.17.已知数列a n 中,a 1=1,a n +1=2a n +1,则a n 通项a n =______;18.数列{an }满足a 1=1,an +1=2an +1. (n ∈N *).数列{an }的通项公式为______.19.数列a n 满足a n =4a n -1+3,且a 1=0,则a 6=_________.20.已知数列a n 满足a n +1=2a n +12,且a n 前8项和为761,则a 1=______.三、解答题21.已知数列a n 满足a 1=1,a n +1=3a n +2.(1)证明1+a n 为等比数列,并求a n 的通项公式;(2)记数列11+a n 的前n 项和为S n ,证明S n <34.22.已知数列a n满足a1=3,a n+1=2a n-2.(1)求a n的通项公式;(2)求a n的前n项和S n.23.已知数列a n的首项a1=1,且1a n+1=2a n+1.(1)求数列a n的通项公式;(2)若数列b n满足a n⋅b n=n,求数列b n的前n项和S n.24.在数列a n中,a1=5,且a n+1=2a n-1n∈N*.(1)证明:a n-1为等比数列,并求a n的通项公式;(2)令b n=(-1)n⋅a n,求数列b n的前n项和S n.25.已知数列a n的前n项和为S n,a1=2,且a n+1=2a n+2.(1)求数列a n的通项公式;(2)令b n=2n+1a n+2,记数列b n的前n项和为T n,求证:T n<3.构造法求数列通项的八种技巧(一)【必备知识点】◆构造一:待定系数之a n +1=Aa n +B 型构造等比数列求关于a n +1=Aa n +B (其中A ,B 均为常数,AB (A -1)≠0)类型的通项公式时,先把原递推公式转化为a n +1+M =A a n +M ,再利用待定系数法求出M 的值,再用换元法转化为等比数列求解.其实对于这类式子,我们只需要记住在等式两侧加上一个常数M ,构造成等比数列.常数M 的值并不需要背诵,我们可以通过待定系数法推导出来.【经典例题1】已知a n 满足a 1=3,a n +1=2a n +1求数列a n 的通项公式.【解析】根据原式,设a n +1+m =2a n +m ,整理得a n +1=2a n +m ,题干中a n +1=2a n +1,根据对应项系数相等得m =1.∴a n +1+1=2a n +1 ,令b n =a n +1+1,b 1=a 1+1=3+1=4,所以a n +1 是4为首项,2为公比的等比数列.即a n +1=4⋅2n -1,a n =2n +1-1.【经典例题2】已知数列a n 中,a 1=1,a n +1=2a n +3,求数列a n 的通项公式.【解析】设a n +1+t =2a n +t ,整理得a n +1=2a n +t ,题干中a n +1=2a n +3,根据对应项系数相等,解得t =3,故a n +1+3=2a n +3 .令b n =a n +3,则b 1=a 1+3=4,且b n +1b n=a n +1+3a n +3=2.所以b n 是4为首项,2为公比的等比数列.所以b n =4×2n -1=2n +1,即a n =2n +1-3.【经典例题3】已知数列a n 中,a 1=1,a n +1=3a n +4,求数列a n 的通项公式.【解析】设a n +1+t =3(a n +t ),即a n +1=3a n +2t ,题干中a n +1=3a n +4,根据对应项系数相等,解得t =2,故a n +1+2=3a n +2 .令b n =a n +2,则b 1=a 1+2=3,且b n +1b n=a n +1+2a n +2=3.所以b n 是3为首项,3为公比的等比数列.所以b n =3×3n -1=3n ,即a n =3n -2.【练习1】数列a n 中,a n +1=2a n -1,a 3=2,设其前n 项和为S n ,则S 6=()A.874B.634C.15D.27【答案】A【解析】∵a n +1=2a n -1,a 3=2,可得2=2a 2-1,解得a 2=32,同理可得:a 1=54变形为a n +1-1=2a n -1 ,a 1-1=14. ∴数列a n -1 为等比数列,首项为14,公比为2.∴a n -1=14×2n -1,a n =2n -3+1.∴S 6=1426-1 2-1+6=874.故选:A .【练习2】已知数列a n 的前n 项和为S n ,若3S n =2a n -3n ,则a 2018=()A.22018-1B.22018-6C.12 2018-72D.13 2018-103【答案】A【解析】∵数列a n 的前n 项和为S n ,3S n =2a n -3n ,∴a 1=S 1=132a 1-3 ,解得a 1=-3,S n =132a n -3n ,(1),n ≥2,S n -1=132a n -1-3n +3 ,(2),(1)-(2),得a n =23a n -23a n -1-1,∴a n =-2a n -1-3,∴a n +1a n -1+1=-2,∵a 1+1=-2,∴a n +1 是以-2为首项,以-2为公比的等比数列,∴a n+1=(-2)n,∴a n=(-2)n-1,∴a2018=(-2)2018-1=22018-1.故选:A.【练习3】在数列a n中,a1=2,a n+1=2a n+1,则a5=_______.【答案】47【解析】数列 a n中, a1=2,a n+1=2a n+1,变形为:a n+1+1=2a n+1,a1+1=3,∴数列a n+1为等比数列,首项为3,公比为2,∴a n+1=3×2n-1,即a n=3×2n-1-1则a5=3×24-1=47.故答案为:47.【练习4】已知数列a n满足a1=3,a n+1=2a n+1,则数列a n的通项公式a n=______.【答案】a n=2n-1【解析】∵a n+1=2a n+1n∈N*,∴a n+1+1=2a n+1,∴a n+1是以a1+1=2为首项,2为公比的等比数列.∴a n+1=2n,故a n=2n-1.【练习5】已知数列a n的首项a1=2,且a n+1=12a n+12n∈N*,则数列1a n-1的前10项的和为______.【答案】1023【解析】数列a n的首项a1=2,且a n+1=12a n+12(n∈N*),则:a n+1-1=12a n-1 ,整理得:a n+1-1a n-1=12(常数) ,所以:数列a n-1是以a1-1=2-1=1为首项,12为公比的等比数列,所以:a n-1=1*12n-1,当n=1时,符合通项.故:1a n-1=2n-1,所以:S n=20+21+22+⋯+2n-1=2n-1所以:S10=210-1=1024-1=1023.【练习6】已知数列a n中,a1=1,a n+1=3a n+2,则a n=_______.【答案】a n=2×3n-1-1【解析】因为a n+1=3a n+2,所以a n+1+1=3a n+1,因为1+a1=2,所以数列1+a n是以2为首项,以3为公比的等比数列,所以1+a n=2×3n-1,故答案为:a n=2×3n-1-1.◆构造二:待定系数之a n+1=Aa n+Bn+C型构造等比数列求关于a n+1=Aa n+Bn+C(A≠1,C≠0,B≠0)类型的通项公式时,与上面讲述的构造一的方法很相似,只不过等式中多了一项Bn,在构造时我们也保持跟题干一样的结构,加一项pn再构造等比数列就可以,即令a n+1+p(n+1)+q=A a n+pn+q,然后与已知递推式各项的系数对应相等,解p,q,从而得到a n+pn+q是公比为A的等比数列.【经典例题1】设数列a n满足a1=4,a n=3a n-1+2n-1(n≥2),求数列a n的通项公式.【解析】将递推公式转化为a n+pn+q=3a n-1+p(n-1)+q,化简后得a n=3a n-1+2pn+2q-3p,与原递推式比较,对应项的系数相等,得2p=22q-3p=-1,解得p=1q=1,令bn=a n+n+1,则b n=3b n-1,又b1=6,故b n=6⋅3n-1=2⋅3n,b n=a n+n+1,得a n=2⋅3n-n-1.【经典例题2】已知:a 1=1,n ≥2时,a n =12a n -1+2n -1,求a n 的通项公式. 【解析】设a n +pn +q =12a n -1+p (n -1)+q ,a n =12a n -1-12pn -12p -12q .与题干原式比较,对应项系数相等得-12p =2-12p -12q =-1,解得p =-4q =6 ,首项a 1-4+6=3.所以a n -4n +6 是3为首项,12为公比的等比数列.所以a n -4n +6=3⋅12 n -1,即a n =32n -1+4n -6.【练习1】已知数列a n 是首项为a 1=2,a n +1=13a n +2n +53.(1)求a n 通项公式;(2)求数列a n 的前n 项和S n .【解析】因为a n +1-3(n +1)+2=13a n -3n + 2),且a 1-3+2=1,所以数列a n -3n +2 是以1为首项,13为公比的等比数列,则a n -3n +2=13n -1,即a n =13n -1+3n -2.【练习2】已知数列a n 和b n ,a n 的前n 项和S n ,对于任意的n ∈N *,a n ,S n 是二次方程x 2-3n 2x +b n =0的两根.(1)求a n 和b n 通项公式;(2)a n 的前n 项和S n .【解析】因为a n ,S n 是一元二次方程x 2-3n 2x +b n =0的两个根,所以a n +S n =3n 2a n S n =b n ,由 a n +S n =3n 2得a n +1+S n +1=3(n +1)2,两式相减得a n +1-a n +S n +1-S n =6n +3,所以a n +1=12a n +12(6n +3),令a n +1+A (n +1)+B =12a n +An +B ,则a n +1=12a n -12An -12B -A ,比较 以上两式的系数,得-12A =3-12B -A =32 ,解得A =-6B =9 .所以a n +1-6(n +1)+9=12a n -6n +9 .又 a 1+S 1=3,a 1=32,所以数列a n -6n +9 是以92为首项、12为公比的等比数列.所以 a n -6n +9=9212 n -1,a n =6n +92n +9,S n =3n 2-a n =3n 2-6n -92n +9,所以 b n =6n +92n -9 3n 2-6n -92n +9 【练习3】设数列a n 是首项为a 1=1,满足a n +1=2a n -n 2+3n (n =1,2,⋯).问是否存在λ,μ,使得数列a n +λn 2+μn 成等比数列?若存在,求出λ,μ的值,若不存在,说明理由;【解析】依题意,令a n +1+λ(n +1)2+μ(n +1)+γ=2a n +λn 2+μn +γ 所以a n +1=2a n +λn 2+μn -2λn +γ-λ-μ,即λ=-1μ-2λ=3γ-λ-μ=0, 解得λ=-1μ=1γ=0.所以数列a n -n 2+n 是以2为公比、a 1-1+1=1为首项等比数列.所以a n -n 2+n =2n -1,a n =n 2+2n -1-n ,即存在λ=-1,μ=1,使得数列a n -n 2+n 成等比数列.◆构造三:待定系数之a n+1=pa n+q n型构造数列求关于a n+1=pa n+q n(其中p,q均为常数,pq(p-1)≠0)类型的通项公式时,共有3种方法.方法一:先用待定系数法把原递推公式转化为a n+1+λq n+1=p a n+λq n,根据对应项系数相等求出λ的值,再利用换元法转化为等比数列求解.方法二:先在递推公式两边同除以q n+1,得a n+1q n+1=pq⋅a nq n+1q,引入辅助数列b n(其中b n=a nq n),得b n+1=pq⋅b n+1q,再利用待定系数法解决;方法二:也可以在原递推公式两边同除以p n+1,得a n+1p n+1=a np n+1p⋅qpn,引入辅助数列b n (其中b n=a n p n ),得b n+1-b n=1p⋅q.pn,再利用叠加法(逐差相加法)求解.【经典例题1】已知数列a n中a1=56,a n+1=13a n+12n+1,求an的通项公式.【解析】解法一:构造数列a n+1+λ12n+1=13a n+λ12n,化简成题干结构得a n+1=13a n-13λ12n+1,对应项系数相等得λ=-3,设b n=a n-312n,b1=a1-312 1=-23,所以数列b n 是以-23为首项,13为公比的等比数列,b n=-2313n-1,所以an=32n-23n.解法二:将a n+1=13a n+12n+1两边分别除12n+1,也就是乘2n+1,为方便计算,我们等式两边同乘2n+1,得2n+1⋅a n+1=232n⋅a n+1.令b n=2n⋅a n,则b n+1=23b n+1,这又回到了构造一的方法,根据待定系数法,得b n+1-3=23b n-3,所以数列b n-3是首项为b1-3=2×56-3=-43,公比为23的等比数列.所以b n-3=-43⋅23n-1即b n=3-2⋅23 n.所以a n=b n2n=32n-23n.解法三:将a n+1=13a n+12n+1两边分别除13n+1,也就是乘3n+1,得3n+1an+1=3n a n+32 n+1⋅令b n=3n⋅a n,则b n+1=b n+32 n+1,所以b n-b n-1=32 n,b n-1-b n-2=32 n-1,...,b2-b1=32 2⋅将以上各式叠加,得b n-b1=32 2+⋯+32 n-1+32 n,又b1=3a1=3×56=52=1+32,所以b n=1+32+32 2+⋯+32 n-1+32 n=1⋅1-32 n+11-32=2⋅32 n+1-2,即b n=2⋅32n+1-2.所以an=b n3n=32n-23n.【经典例题2】已知数列a n满足a n+1=2a n+4⋅3n-1,a1=-1,求数列a n的通项公式.【解析】解法一:设a n+1+λ⋅3n=2a n+λ⋅3n-1,待定系数法得λ=-4,则数列a n-4⋅3n-1是首项为a1-4⋅31-1 =-5,公比为2的等比数列,所以a n-4⋅3n-1=-5⋅2n-1,即a n=4⋅3n-1-5⋅2n-1.解法二:(两边同除以 q n+1) 两边同时除以3n+1得:a n+13n+1=23⋅a n3n+432,下面解法略.解法三:(两边同除以p n +1)两边同时除以2n +1得:a n +12n +1=a n 2n +32n -1,下面解法略.【练习1】已知数列a n 满足a 1=1,a n +1=3a n +2n n ∈N * ,b n =a n +1a n.设t ∈Z ,若对于∀n ∈N *,都有b n >t 恒成立,则t 的最大值为()A.3B.4C.7D.9【答案】A【解析】解法一:因为a n +1=3a n +2n ,所以a n +12n =3a n 2n +1,所以a n +12n +1=32⋅a n 2n +12,所以a n +12n +1+1=32a n 2n +1 ,因为a 1=1,所以a 121+1=32,所以数列a n 2n +1 是以32为首相以32为公比的等比数列,所以a n 2n+1=32 n ,所以a n =3n -2n,故选A .解法二:令a n +1+A ⋅2n +1=3a n +A ⋅2n ,因为a n +1=3a n +2n ,对比系数得:A =1,所以数列 a n +2n 是以3为首项,3为公比的等比数列,所以a n +2n =3n ,所以a n =3n -2n,所以 b n =a n +1a n =3n +1-2n +13n -2n=3⋅32 n-232 n -1n =3+132 n -1,因为∀n ∈N *,所以32 n -1≥12.所以0<132 n -1≤2,所以3<b n ≤5,对于∀n ∈N *,都有b n >t 恒成立,所以t ≥3,所以t 的最大值为3,故选 A .【练习2】已知数列a n 满足a 1=2,a n +1=a n +2n +2n ∈N * .(1)判断数列a n -2n 是否为等差数列,并说明理由;(2)记S n 为数列a n 的前n 项和,求S n .【解析】(1)数列a n 满足a 1=2,a n +1=a n +2n +2n ∈N * ,所以a n +1-2n +1 -a n -2n =2. a 1-2=0,所以数列a n -2n 为等差数列,首项为0,公差为2.(2)由(1)可得:a n -2n=0+2(n -1),可得:a n =2n+2(n -1),所以S n =22n -1 2-1+2×n (0+n -1)2=2n +1-2+n 2-n【过关检测】一、单选题1.已知S n 为数列a n 的前n 项和,若a n +1=2a n -2,S 2=10,则a n 的通项公式为( )A.a n =3n -4B.a n =2n +2C.a n =n 2+nD.a n =3n 2-1【答案】B 【解析】令n =1可得a 2=2a 1-2,又S 2=a 1+a 2=10,解得a 1=4,又a n +1-2=2a n -4=2(a n -2),则a 1-2=2,a n +1-2a n -2=2,即a n -2 是以2为首项,2为公比的等比数列,则a n -2=2⋅2n -1,a n =2n +2.故选:B .2.已知数列a n 中,a 1=1,a n +1=2a n +1,则数列a n 的通项公式为( )A.a n =n B.a n =n +1C.a n =2nD.a n =2n -1【答案】D 【解析】∵a n +1=2a n +1,∴a n +1+1=2(a n +1),又a 1=1,a 1+1=2,所以数列a n +1 是首项为2,公比为2 的等比数列,所以a n +1=2×2n -1,∴a n =2n -1.故选:D .3.已知数列a n 满足a 1=3,a n +1=5a n -8,则a 2022的值为( )A.52021-2 B.52021+2C.52022+2D.52022-2【答案】B 【解析】因为a n +1=5a n -8,所以a n +1-2=5(a n -2),又a 1-2=1,所以{a n -2}是等比数列,公比为5,首项是1,所以a n -2=5n -1,a n =5n -1+2,所以a 2022=52021+2.故选:B .4.设数列a n 的前n 项和为S n ,若S n =2a n -2n +1,则S 10=( )A.211-23 B.210-19C.3×210-23D.3×29-19【答案】C 【解析】当n =1时,S 1=a 1=2a 1-2+1,解得a 1=1.当n ≥2时,S n -1=2a n -1-2n +3,所a n =S n -S n -1=2a n -2n +1-2a n -1-2n +3 ,即a n =2a n -1+2,所以a n +2=2a n -1+2 ,即a n +2a n -1+2=2,所以数列a n +2 是首项为3,公比为2的等比数列,则a n +2=3×2n -1,从而S n =3×2n -2n -3,故S 10=3×210-23.故选:C5.在数列a n 中,a 1=1,且a n +1=2a n +1,则a n 的通项为( )A.a n =2n -1 B.a n =2nC.a n =2n +1D.a n =2n +1【答案】A 【解析】解:∵a n +1=2a n +1,∴a n +1+1=2a n +1 ,由a 1=1,得a 1+1=2,∴数列a n +1 是以2为首项,2为公比的等比数列,∴a n +1=2⋅2n -1=2n ,即a n =2n -1.故选:A6.数列a n 中,a n +1=2a n +1,a 1=1,则a 100=( )A.2100+1B.2101C.2100-1D.2100【答案】C 【解析】数列a n 中,a n +1=2a n +1,故a n +1+1=2a n +1 ,故a n +1≠0,所以a n +1+1a n +1=2,因为a 1=1,所以a 1+1=2≠0,所以a n +1 是首项为2,公比为2的等比数列,所以a n +1=2n ,即a n =2n -1,故a 100=2100-1,故选:C .7.数列a n 满足12a n =a n +1-12n +1,且a 1=12,若a n <13,则n 的最小值为( )A.3B.4C.5D.6【答案】B【解析】因为12a n =a n +1-12 n +1,等式两边同时乘以2n +1可得2n a n =2n +1a n +1-1,所以,2n +1a n +1-2n a n =1且2a 1=1,所以,数列2n a n 是等差数列,且首项和公差都为1,则2n a n =1+n -1=n ,所以,a n =n2n,因为a n +1-a n =n +12n +1-n 2n =n +1-2n 2n +1=1-n2n +1.当n =1时,a 1=a 2=12;当n ≥2时,a n +1<a n ,即数列a n 从第二项开始单调递减,因为a 3=38>13,a 4=14<13,故当n ≤3时,a n >13;当n ≥4时,a n <13.所以,a n <13,则n 的最小值为4.故选:B .8.已知数列a n 中,a 1=1,a n =3a n -1+4(n ∈N ∗且n ≥2),则数列a n 通项公式a n 为( )A.3n -1 B.3n +1-2C.3n -2D.3n【答案】C 【解析】由已知得a 2=7,a n +2a n -1+2=3进而确定数列{a n +2}的通项公式,即可求a n .由a 1=1,a n =3a n -1+4知:a 2=7且a n +2a n -1+2=3(n ≥2),而a 1+2=3,a 2+2=9,∴{a n +2}是首项、公比都为3的等比数列,即a n =3n -2,故选:C 9.数列a n 满足a n =4a n -1+3n ≥2 且a 1=0,则此数列第5项是( )A.15 B.255C.16D.63【答案】B 【解析】∵a n=4a n-1+3n≥2,∴a n+1=4a n-1+1n≥2,∴a n+1是以1为首项,4为公比的等比数列,则a n+1=4n-1.∴a n=4n-1-1,∴a5=44-1=255.故选:B.10.在数列a n中,已知a1=1,a n+1=2a n+1,则a n=( )A.2n-1B.2n-1C.nD.2n-1【答案】B【解析】由a n+1=2a n+1,得a n+1+1=2a n+2=2a n+1,故数列a n+1为等比数列,首项为a1+1=2,公比为2,所以a n+1=2n,a n=2n-1,故选:B.11.在数列a n中,a1=3,a n=2a n-1-n+2n≥2,n∈N+,若a n>980,则n的最小值是( )A.8B.9C.10D.11【答案】C【解析】因为a n=2a n-1-n+2n≥2,n∈N+,所以a n-n=2a n-1-n-1.n≥2,n∈N+因为a1=3,所以a1-1=2,所以数列a n-n是首项和公比都是2的等比数列,则a n-n=2n,即a n=2n+n,因为a n-a n-1=2n-1+1>0,所以数列a n是递增数列,因为a9=521<980,a10=1034>980,所以满足a n>980的n的最小值是10,故选:C12.设数列{an}中,a1=2,an+1=2an+3,则通项an可能是()A.5-3nB.3·2n-1-1C.5-3n2D.5·2n-1-3【答案】D【解析】设a n+1+x=2a n+x,则a n+1=2a n+x,因为an+1=2an+3,所以x=3,所以a n+3是以a1+3为首项,2为公比的等比数列,a n+3=5×2n-1,所以a n=5⋅2n-1-3故选:D13.在数列a n中,若a1=2,a n+1=3a n+2n+1,则a n=( )A.n ⋅2nB.52-12n C.2⋅3n -2n +1 D.4⋅3n -1-2n +1【答案】C 【解析】令b n =a n 2n +2,则b n +1b n =a n +12n +1+2a n 2n +2=3a n +2n +12n +1+2a n 2n +2=32,又b 1=a 12+2=3,所以b n 是以3为首项,32为公比的等比数列,所以b n =a n 2n +2=3×32 n -1,得a n =2⋅3n -2n +1.故选:C .14.已知在数列a n 中,a 1=56,a n +1=13a n +12n +1,则a n =( )A.32n -23n B.23n -32nC.12n -23n D.23n -12n 【答案】A【解析】解:因为a 1=56,a n +1=13a n +12n +1,所以2n +1⋅a n +1=23⋅2n a n +1,整理得2n +1⋅a n +1-3=23⋅2na n -3 ,所以数列2n a n -3 是以2a 1-3=-43为首项,23为公比的等比数列.所以2n a n -3=-4323 n -1,解得a n =32n -23n .故选:A 15.数列a n 满足a n +1=2a n +3,n ∈N *,若a 2017≥a 1,则a 1的取值范围为( )A.(-∞,-3]B.{-3}C.(-3,+∞)D.[-3,+∞)【答案】D【解析】由a n +1=2a n +3可得a n +1+3=2a n +3 ,所以a n +3=a 1+3 ×2n -1所以a n =a 1+3 ×2n -1-3,所以a 2017=a 1+3 ×22016-3≥a 1所以a 1+3 ×22016≥a 1+3,所以a 1+3≥0,所以a 1≥-3故选:D二、填空题16.设数列a n 满足a 1=1,且a n =3a n -1+4n ≥2 ,则数列a n 的通项公式为a n =___________.【答案】3n -2##-2+3n 【解析】解:因为a n =3a n -1+4n ≥2 ,∴a n +2=3a n -1+2 ,∴a n +2a n -1+2=3,∵a 1=1,则a 1+2=3,∴数列a n +2 是以3为首项,3为公比的等比数列.∴a n +2=3⋅3n -1=3n ,所以a n =3n -2,故答案为:3n -217.已知数列a n 中,a 1=1,a n +1=2a n +1,则a n 通项a n =______;【答案】2n -1【解析】因为a n +1=2a n +1,所以a n +1+1=2(a n +1),∴a n +1+1a n +1=2,所以a n +1 是一个以a 1+1=2为首项,以2为公比的等比数列,所以a n +1=2×2n -1=2n ,∴a n =2n -1.故答案为:2n -118.数列{an }满足a 1=1,an +1=2an +1. (n ∈N *).数列{an }的通项公式为______.【答案】a n =2n -1n ∈N * .【解析】∵a n +1=2a n +1(n ∈N *),∴a n +1+1=2(a n +1),又a 1+1=2∴a n +1 是以2为首项,2为公比的等比数列.∴a n +1=2n .即a n =2n -1(n ∈N *).故答案为:a n =2n -1n ∈N * .19.数列a n 满足a n =4a n -1+3,且a 1=0,则a 6=_________.【答案】1023【解析】由题意知:a n +1=4a n -1+4=4(a n -1+1),又a 1+1=1,故a n +1 是1为首项,4为公比的等比数列,故a 6+1=a 1+1 ×45=1024,故a 6=1023.故答案为:1023.20.已知数列a n 满足a n +1=2a n +12,且a n 前8项和为761,则a 1=______.【答案】52##2.5【解析】解:数列{a n }满足a n +1=2a n +12,整理得a n +1+12=2a n +12 ,若a 1=-12,则a n =-12,显然不符合题意,所以a n ≠-12,则a n +1+12a n +12=2(常数);所以数列a n +12 是以a 1+12为首项,2为公比的等比数列;所以a n +12=a 1+12 ⋅2n -1,整理得a n =a 1+12 ⋅2n -1-12;由于前8项和为761,所以S 8=a 1+12 ⋅(1+2+...+27)-8×12=a 1+12 ×1-281-2-4=255a 1+12 -4=761,解得a 1=52.故答案为:52.三、解答题21.已知数列a n 满足a 1=1,a n +1=3a n +2.(1)证明1+a n 为等比数列,并求a n 的通项公式;(2)记数列11+a n 的前n 项和为S n ,证明S n <34.【答案】(1)证明见解析,a n =2⋅3n -1-1(2)见解析【解析】(1)证明:因为a n +1=3a n +2,所以a n +1+1=3a n +1 ,又a 1+1=2,所以数列1+a n 是以2为首项,3为公比的等比数列,则a n +1=2⋅3n -1,所以a n =2⋅3n -1-1;(2)证明:由(1)得1a n +1=12⋅3n -1,因为1a n +1+11a n +1=12⋅3n12⋅3n -1=13,1a 1+1=12,所以数列11+a n 是以12为首项,13为公比的等比数列,则S n =12×1-13n 1-13=341-13n ,因为1-13n <1,所以S n <34.22.已知数列a n 满足a 1=3,a n +1=2a n -2.(1)求a n 的通项公式;(2)求a n 的前n 项和S n .【答案】(1)a n =2n -1+2;(2)S n =2n +2n -1.【解析】(1)∵a n +1=2a n -2,∴a n +1-2=2a n -2 即∴a n +1-2a n -2=2∴数列a n -2 是以首相为1,公比为2的等比数列,∴a n -2=2n -1∴a n =2n -1+2(2)由(1)知a n =2n -1+2∴S n =a 1+a 2+a 3+⋯+a n=20+2 +21+2 +22+2 +⋯+2n -1+2 =20+21+22+⋯+2n -1 +2n =1×1-2n 1-2+2n=2n +2n -123.已知数列a n 的首项a 1=1,且1a n +1=2a n+1.(1)求数列a n 的通项公式;(2)若数列b n满足a n⋅b n=n,求数列b n的前n项和S n.【答案】(1)a n=12n-1(2)S n=n-12n+1+2-n n+12【解析】(1)∵1an+1=2an+1,等式两边同时加1整理得1an+1+1=21an+1又∵a1=1,∴1a1+1=2∴1an +1是首项为2,公比为2的等比数列.∴1an +1=2n, ∴a n=12n-1(2)∵a n⋅b n=n,∴b n=n an=n⋅2n-n.记n⋅2n的前n项和为T n则T n=1⋅21+2⋅22+3⋅23+⋅⋅⋅⋅⋅⋅+n-1⋅2n-1+n⋅2n所以2T n=1⋅22+2⋅23+3⋅24+⋅⋅⋅⋅⋅⋅+n-1⋅2n+n⋅2n+1相减得-T n=21+22+23+24+⋅⋅⋅⋅⋅⋅+2n-n⋅2n+1整理得T n=n-12n+1+2.所以S n=n-12n+1+2-n n+1224.在数列a n中,a1=5,且a n+1=2a n-1n∈N*.(1)证明:a n-1为等比数列,并求a n的通项公式;(2)令b n=(-1)n⋅a n,求数列b n的前n项和S n.【答案】(1)证明见解析,a n=2n+1+1(2)S n=432n-1,n=2k,k∈N*,-2n+2+73,n=2k-1,k∈N*.【解析】(1)解:因为a n+1=2a n-1,所以a n+1-1=2a n-1,又a1-1=4,所以a n+1-1a n-1=2,所以a n-1是以4为首项,2为公比的等比数列.故a n-1=4×2n-1,即a n=2n+1+1.(2)解:由(1)得b n=(-1)n⋅2n+1+1,则b n=2n+1+1,n=2k,k∈N*-2n+1+1,n=2k-1,k∈N* ,①当n=2k,k∈N*时,S n=-22-1+23+1-24+1+⋯+-2n-1+2n+1+1=-22+23-24+25+⋯-2n+2n+1=22+24+⋯+2n=432n-1;②当n=2k-1,k∈N*时,S n=S n+1-b n+1=432n+1-1-2n+2+1=-2n+2+73,综上所述,S n=432n-1,n=2k,k∈N*-2n+2+73,n=2k-1,k∈N*25.已知数列a n的前n项和为S n,a1=2,且a n+1=2a n+2.(1)求数列a n的通项公式;(2)令b n=2n+1a n+2,记数列b n的前n项和为T n,求证:T n<3.【答案】(1)a n=2n+1-2(2)证明见解析【解析】(1)解:因为a1=2,a n+1=2a n+2,所以a n+1+2=2a n+2,所以a n+2是以4为首项,2为公比的等比数列,所以a n+2=4×2n-1=2n+1,所以a n=2n+1-2;(2)解:由(1)可知b n=2n+1a n+2=2n+12n+1=n+12n,所以T n=221+322+423+⋯+n+12n①,所以12T n=2 22+323+424+⋯+n+12n+1②;①-②得12T n=1+122+123+⋯+12n-n+12n+1=1+1221-12n-11-12-n+12n+1=32-n+32n+1所以T n=3-n+32n<3;。

数列求通项的6种常用方法 高考数学

数列求通项的6种常用方法 高考数学
,因此,,则 ,显然,所以,D正确.故选:
【点睛】易错点睛:裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.
5.若数列满足,,则满足不等式的最大正整数为( )
A.28 B.29 C.30 D.31

【详解】数列中,,当时,,则,整理得,即,而,即,因此数列是以为首项,公比为的等比数列,,则,由,知为奇数,此时是递增的,而,,所以正整数的最小值为13. 故选:
7.已知数列满足,(),则满足的 的最小取值为( )
A.5 B.6 C.7 D.8
【分析】由题意可得,即可得数列 是以4为首项,2为公比的等比数列,即可计算出数列 的通项公式,再解出不等式即可得解.

【详解】因为,所以,所以,又,所以数列 是以4为首项,2为公比的等比数列,所以,所以 由,得,即,解得 因为为正整数,所以的最小值为7.故选:
8.已知正项数列满足,则 ( )
A. B. C. D.
【分析】根据给定的递推公式,利用构造法探讨数列 的特性即可得解.
【详解】依题意,,则数列是以为公比的等比数列,因此,所以 故选:
2.已知数列的前项和为,,,,下列说法不正确的是( )
A. B. 为常数列C. D.
【分析】对条件进行转化得出 是常数列,进而解出 的通项公式,对选项逐一判断得出答案.

【详解】解:因为,所以,整理得,故,所以 是常数列,所以,即,故D选项正确.当时,,经检验时满足,故,对于A选项,由,知,故A选项正确,对于B选项,由,知,所以 为常数列,故B选项正确,对于C选项,由,知,故C选项错误,故选:

高中数学解题方法系列:数列中求通项的10种方法

高中数学解题方法系列:数列中求通项的10种方法

高中数学解题方法系列:数列中求通项的10种方法一、公式法例1 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。

解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n na 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。

二、累加法 )(1n f a a n n =--例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2n a n =。

例3已知数列{}n a 满足1132313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+ 三、累乘法 )(1n f a a n n =- 例4 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。

数列通项公式—常见9种求法

数列通项公式—常见9种求法

数列通项公式—常见9种求法数列通项公式是指能够直接给出数列中任意一项的公式。

找到数列通项公式可以帮助我们快速计算数列中的任意项,同时也能更好地理解数列的性质和规律。

在数学中,有多种方法可以求解数列通项公式,下面我们将介绍其中的9种常见方法。

1.递推关系法递推关系法是求解数列通项公式最常见的方法之一、当我们可以找到数列中每一项与前几项之间的关系时,可以利用递推关系求出通项公式。

例如,斐波那契数列中每一项都等于前两项的和,可以用递推关系f(n)=f(n-1)+f(n-2)来求解。

2.等差数列通项公式等差数列是指数列中每一项与前一项之差都相等的数列。

等差数列通项公式为an = a1 + (n-1)d,其中an表示第n项,a1表示第一项,d表示公差。

3.等比数列通项公式等比数列是指数列中每一项与前一项的比都相等的数列。

等比数列通项公式为an = a1 * r^(n-1),其中an表示第n项,a1表示第一项,r 表示公比。

4.幂数列通项公式幂数列是指数列中每一项都是一个幂函数的形式。

幂数列通项公式为an = ar^(n-1),其中an表示第n项,a表示一些常数,r表示递增的比值。

5.组合数列通项公式组合数列是指数列中每一项都是由组合数形成的数列。

组合数列通项公式可以通过求解组合数来获得。

6.一元多项式数列通项公式一元多项式数列是指数列中的每一项都是由一元多项式形成的数列。

可以利用多项式的相关性质和求解方法获得数列通项公式。

7.递推与线性常系数齐次差分方程法递推与线性常系数齐次差分方程法是利用递推关系和差分方程的性质求解数列通项公式的方法。

8.高阶递推关系法当数列中每一项与前面多个项之间有复杂的关系时,可以利用高阶递推关系进行求解。

9.查找数列在数学常数表中的表达式有些数列的通项公式可以在数学常数表中找到,例如斐波那契数列中的通项公式可以在黄金分割数相关的公式中找到。

以上是数列通项公式的9种常见求法,每种方法都可以根据不同的数列规律和特点进行选择和运用。

史上最全的数列通项公式的求法15种

史上最全的数列通项公式的求法15种

史上最全的数列通项公式的求法15种一、等差数列(Arithmetic sequence)1.基本公式:一个等差数列的通项公式为:an = a1 + (n-1)d其中an代表数列的第n项,a1代表数列的首项,d代表数列的公差。

2.另一种形式:等差数列的通项公式还可以表示为:an = a + (n-1) * (a2-a1)/2其中an代表数列的第n项,a代表数列的首项,a1代表数列的第二项,a2代表数列的前两项。

二、等比数列(Geometric sequence)1.基本公式:一个等比数列的通项公式为:an = a1 * r^(n-1)其中an代表数列的第n项,a1代表数列的首项,r代表数列的公比。

2.另一种形式:等比数列的通项公式也可以表示为:an = a * q^n其中an代表数列的第n项,a代表数列的首项,q代表数列的公比。

三、斐波那契数列(Fibonacci sequence)1.基本公式:一个斐波那契数列的通项公式为:Fn=(φ^n-(1-φ)^n)/√5其中Fn代表数列的第n项,φ代表黄金分割比(约1.618)。

2.矩阵法:斐波那契数列的通项公式还可以通过矩阵的形式表示:Fn=(A^n*F0),其中An是一个特定的矩阵,F0是初始向量。

四、调和数列(Harmonic sequence)1.基本公式:一个调和数列的通项公式为:an = 1/n其中an代表数列的第n项。

五、多项式数列(Polynomial sequence)一个多项式数列的通项公式为:an = an-1 + an-2 + ... + an-m其中an代表数列的第n项,an-1为前一项,an-2为前两项,an-m为前m项。

六、余弦数列(Cosine sequence)1.基本公式:一个余弦数列的通项公式为:an = a + b * cos(cn)其中an代表数列的第n项,a、b为常数,c为常数。

2.幂函数法:余弦数列的通项公式还可以表示为:an = a + b * cos(nθ)其中an代表数列的第n项,a、b为常数,θ为角度。

数列通项公式的五种求法

数列通项公式的五种求法

(n≥2),求 {an}的 通 项 公 式 。
解:因为 an=a1+2a2+3a3+……+(n-1)an-1(n≥2)

所以 an+1=a1+2a2+3a3+……+(n-1)an-1+nan

用②式-①式得 an+1-an=nan。

an+1=(n+1)an(n≥2)故
an+1 an

2.在应用性质时要注意 性 质 的 前 提 条 件 ,有 时 需 要 进 行 适 当变形。
2a2,则
a2=a1, 又 知
a1=1,则
a2=1, 代 入 ③得
an=
n! 2
(n≥2)。
≥1
综上,an 的通项公式为 an= n! 2
n=1 n≥2 本题解题的关键是
把递推关系式
an+1=(n+1)an(n≥2)转 化 为
an+1 an
=n+1 (n ≥2), 进
而求出
an an-1
·an-1 an-2
∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈∈
撼,难道他们不应该好好地了解这段历史吗? 总之,历史情境的 设计必须切合教材和学生的实际,才能达到预期的目的,提高 学生对历史的兴趣。
四、用通俗生动的语言导入新课 语言的魅力无穷,教师通过对文字的艺术加工,用喜闻乐 见的形式生动地展示出来,学生乐于接受。 如讲初一历史《南宋 与金对峙时的中国》,我编了一段导言:“话说南宋高宗年间,天 下实不太平,战乱频起,这情形造就个英雄岳飞,他从小受母训 导,精忠报国,尽心尽力。 堰城大战,杀得那金人哭爹叫娘、溃不 成军,差点儿把金的头目兀术送上了黄泉路。 这兀术不甘心,巧

高中数学人教A版必修5第二章 求数列通项公式的方法总结

高中数学人教A版必修5第二章 求数列通项公式的方法总结

n ( n −1)
所以数列{an}的通项公式为 an = 3 2n−1 5 2 n!.
三、待定系数法 适用于 an+1 = qan + f (n)
分析:通过凑配可转化为 an+1 + 1 f (n) = 2[an + 1 f (n)] ;
解题基本步骤:
1、确定 f (n)
2、设等比数列an + 1 f (n) ,公比为 2
n
两边分别相加得 an+1 − a1 = f (n) k =1
例 1 已知数列{an}满足 an+1 = an + 2n +1,a1 = 1,求数列{an}的通项公式。
解:由 an+1 = an + 2n +1得 an+1 − an = 2n +1 则
an = (an − an−1) + (an−1 − an−2 ) + + (a3 − a2 ) + (a2 − a1) + a1 = [2(n −1) +1] + [2(n − 2) +1] + + (2 2 +1) + (21+1) +1 = 2[(n −1) + (n − 2) + + 2 +1] + (n −1) +1 = 2 (n −1)n + (n −1) +1 2 = (n −1)(n +1) +1 = n2
3、列出关系式 an+1 + 1 f (n) = 2[an + 1 f (n)] 4、比较系数求 1 , 2
5、解得数列an + 1 f (n) 的通项公式 6、解得数列an 的通项公式 例 4 已知数列{an}中, a1 = 1, an = 2an−1 +1(n 2) ,求数列an 的通项公式。

专题13 数列通项公式的四种常见求法(解析版)

专题13 数列通项公式的四种常见求法(解析版)

专题13 数列通项公式的四种常见求法目录类型一:累加法..........................................................................................................................................................1类型二:累乘法..........................................................................................................................................................2类型三:已知S n 求a n .................................................................................................................................................3类型四:构造法求通项. (4)类型一:累加法题型专练:1.(2023·河北石家庄·统考一模)中国古代许多著名数学家对推导高阶等差数列的求和公式很感兴趣,创造并发展了名为“垛积术”的算法,展现了聪明才智.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,所讨论的二阶等差数列与一般等差数列不同,前后两项之差并不相等,但是后项减前项之差组成的新数列是等差数列.现有一个“堆垛”,共50层,第一层2个小球,第二层5个小球,第三层10个小球,第四层17个小球,...,按此规律,则第50层小球的个数为( )A .2400B .2401C .2500D .2501【答案】D【分析】依据等差数列的定义与求和公式,累加法计算即可.【详解】不妨设第n 层小球个数为a n ,由题意,a 2−a 1=3, a 3−a 2=5……,即各层小球之差成以3为首项,类型二:累乘法满分策略:当出现a na n−1=f(n)时,一般用累乘法求通项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列通项公式的求法及数列求和方法详解
专题一:数列通项公式的求法
关键是找出各项与项数n 的关系.) 例1:根据数列的前4项,写出它的一个通项公式:
(1)9,99,999,9999,…(2) ,17
16
4,1093,542,211(3) ,5
2
,21,32
,
1(4) ,5
4
,43,3
2
,21-- 答案:(1)110-=n
n a (2);122++=n n n a n (3);12+=n a n (4)1
)1(1+⋅-=+n n
a n n .
公式法1:特殊数列
例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),(1)求数列{ a n }和 { b n }的通项公式;
答案:a n =a 1+(n -1)d = 2(n -1); b n =b ·q n -1=4·(-2)n -1
例3. 等差数列{}n a 是递减数列,且432a a a ⋅⋅=48,432a a a ++=12,则数列的通项公式是( )
(A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n (D)
例4. 已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n n a a b ,求数列{}n b 的通项公式.
简析:由题意,321++++=n n n a a b ,又{}n a 是等比数列,公比为q ∴
q a a a a b b n n n n n n =++=+++++2
13
21,故数列{}n b 是等比数列,易得)1()1(1+=⋅+=-q q q q q b n n n .点评:当数列为等差或等比数列时,可直接利用等差或等比数列的通项公式,只需求首项及公差公比.
公式法2: 知n s 利用公式 ⎩⎨⎧≥-==-2,1
,11n S S n s a n n
n .
例5:已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式.(1)13-+=n n S n . (2)
12-=n s n
答案:(1)n a =3232
+-n n ,(2)⎩
⎨⎧≥-==)2(12)1(0
n n n a n 点评:先分n=1和2≥n 两种情况,然
后验证能否统一.
【型如)(1n f a a n n +=+的递推关系】
简析:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次、指数函数、分式函数,求通项n a .
①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ② 若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;③若f(n)是关于n 的分式函数,累加后可裂项求和各式相加得
例6、已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则2≥n 时
11232211
2
()()()()[2(1)1][2(2)1](221)(211)1
2[(1)(2)21](1)1
(1)2(1)1
2
(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-++
+⨯++⨯++=-+-++++-+-=+-+=-++=
1=n 时,上式也成立.所以数列{}n a 的通项公式为2n a n =。

评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出
11232211()()()()n n n n n a a a a a a a a a a ---=-+-+
+-+-+,即得数列{}n a 的通项公式。

例7、已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则2≥n 时
11232211122112211()()()()(231)(231)(231)(231)3
2(3333)(1)3
3(13)2(1)3
13
331331
n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-
1=n 时,上式也成立.所以3 1.n n a n =+-
评注:本题解题的关键是把递推关系式1231n n n a a +=+⨯+转化为1231n n n a a +-=⨯+,进而求出
11232211()()()()n n n n n a a a a a a a a a a ---=-+-+
+-+-+,即得数列{}n a 的通项公式。

练习1:已知数列6,9,14,21,30,…求此数列的一个通项. .答案:
)
(52N n n a n ∈+=
练习2:若在数列{}n a 中,31=a ,n n n a a 21+=+,求通项n a .答案:n a =12+n 练习3:已知数列}{n a 满足31=a ,)2()
1(1
1≥-+
=-n n n a a n n ,求此数列的通项公式. 答案:
a n 1
4-=
【 形如1+n a =f (n)·n a 型】
(1)当f(n)为常数,即:
q a a n
n =+1
(其中q 是不为0的常数),此时数列为等比数列,n a =11-⋅n q a .
(2)当f(n)为n 的函数时,用累乘法.
例7、已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。

解:因为112(1)53n n n a n a a +=+⨯=,,所以0n a ≠,则
1
2(1)5n n n
a n a +=+,故。

相关文档
最新文档