2018高考数学模拟试卷(衡水中学理科)PDF.pdf

合集下载

2018年高考数学模拟试卷(衡水中学理科)

2018年高考数学模拟试卷(衡水中学理科)

2018年衡水中学高考数学全真模拟试卷(理科)第1卷一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2018?衡中模拟)已知集合A={x|x 2<1},B={y|y=|x|},则A∩B=()A.?B.(0,1)C.[0,1)D.[0,1]2.(5分)(2018?衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0.2,则P(3<ξ≤4)=()A.0.8B.0.4C.0.3D.0.23.(5分)(2018?衡中模拟)已知复数z=(i为虚数单位),则3=()A.1B.﹣1C.D.4.(5分)(2018?衡中模拟)过双曲线﹣=1(a>0,b>0)的一个焦点F作两渐近线的垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线的渐近线方程为()A.y=±xB.y=±xC.y=±xD.y=±x5.(5分)(2018?衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为()A.B.2C.D.16.(5分)(2018?衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是()A.2B.3C.4D.57.(5分)(2018?衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}的前8项和为()A.B.C.D.8.(5分)(2018?衡中模拟)已知(x﹣3)0+a1(x+1)+a2(x+1)10=a10=a 2+⋯+a1010(x+1),2+⋯+a10则a8=()A.45B.180C.﹣180D.720积为()A BC的三视图,其表面锥S﹣9.(5分)(2018?衡中模拟)如图为三棱A.16B.8+6C.16D.16+610.(5分)(2018?衡中模拟)已知椭圆E:+=1(a>b>0)的左焦点F(﹣3,0),为P F+PM的最大值为17,则椭圆的离心率部点M(﹣1,3)满足P为椭圆上一动点,椭圆内()A.B.C.D.11.(5分)(2018?衡中模拟)已知f(x)=,若函数y=f(x)﹣k x恒有一个零点,则k的取值范围为()A.k≤0B.k≤0或k≥1C.k≤0或k≥eD.k≤0或k≥2n+p,数列{bn}的通项公式12.(5分)(2018?衡中模拟)已知数列{an}的通项公式为an=﹣n﹣4*为b n=2,设c n=,若在数列{c n}中c6<c n(n∈N,n≠6),则p的取值范围()A.(11,25)B.(12,22)C.(12,17)D.(14,20)第2卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)||=2||=2,|﹣|=,则在上13.(5分)(2018?衡中模拟)若平面向量、满足的投影为.a1=a2=1,an+2=,14.(5分)(2018?衡中模拟)若数列{an}满足S2n=.则数列{a n}前2n项和a=0把区域分成面2)y+4﹣15.(5分)(2018?衡中模拟)若直线ax+(a﹣积相等的两部分,则的最大值为.2 16.(5分)(2018?衡中模拟)已知函数f(x)=(a+1)lnx+x(a<﹣1)对.x2|,则a的取值范围为f(x2)|≥4|x1﹣任意的x1、x2>0,恒有|f(x1)﹣.)三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤c=1,17.(12分)(2018?衡中模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,满足且cosBsinC+(a﹣s inB)cos(A+B)=0(1)求C的大小;2+b2(2)求a的最大值,并求取得最大值时角A,B的值.A BCD中,侧棱PA⊥底面ABCD,AD∥BC,P﹣18.(12分)(2018?衡中模拟)如图,在四棱锥∠ABC=90°,PA=AB=BC=,2AD=1,M是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N是线段C D上一动点,且=λ,当直线MN与平面PAB所成的角最大时,求λ的值.19.(12分)(2018?衡中模拟)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区时转动两个域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同无效,重新开下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动转盘待指针停域为y,x、y∈{1,2,3},域为x,转盘(B)指针所对的区始),记转盘(A)指针所对的区设x+y的值为ξ.(Ⅰ)求x<2且y>1的概率;(Ⅱ)求随机变量ξ的分布列与数学期望.20.(12分)(2018?衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°的直线1,).过椭圆E内一点P(1,)的与椭圆相交于M、N两点,且线段M N的中点为(﹣两条直线分别与椭圆交于点A、C和B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应的λ=.(Ⅰ)求椭圆E的方程;.(Ⅱ)当λ变化时,kAB是否为定值?若是,请求出此定值;若不是,请说明理由2 21.(12分)(2018?衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e 处的切线与直线x﹣2y+e=0平行.(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若函数F(x)=f(x)﹣无零点,求k的取值范围.[选修4-1:几何证明选讲]22.(10分)(2018?衡中模拟)如图所示,AC为⊙O的直径,D为的中点,E为BC的中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:AC?BC=2AD?CD.[选修4-4:坐标系与参数方程]23.(2018?衡中模拟)在平面直角坐标系中,直线l的参数方程为(t为参数),C的极坐标方程在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线为ρ=C的直角坐标方程和直线l的普通方程;(1)求曲线l与曲线C相交于A,B两点,求△AOB的面积.(2)若直线4-5:不等式选讲][选修3|.l|+|x﹣24.(2018?衡中模拟)已知函数f(x)=|x﹣(I)解不等式f(x)≤6;x∈R恒成立,求实数a的取值范围.(Ⅱ)若不等式f(x)≥ax﹣1对任意参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只 有一项是符合题目要求的.)1.(5分)(2018?衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A ∩B=()A .?B .(0,1)C .[0,1)D .[0,1]【解答】解:A={x|x 2 <1}={x|﹣1<x <1},B={y|y=|x|≥0}, 则A ∩B=[0,1), 故选:C .2.(5分)(2018?衡中模拟)设随机变量ξ~N (3,σ2),若P (ξ>4)=0.2,则P (3<ξ≤4)=()A .0.8B .0.4C .0.3D .0.2【解答】解:∵随机变量X 服从正态分布N (3,σ 2 ),∴μ=3,得对称轴是x=3. ∵P (ξ>4)=0.2∴P (3<ξ≤4)=0.5﹣0.2=0.3. 故选:C3.(5分)(2018?衡中模拟)已知复数z=(i 为虚数单位),则 3=()A .1B .﹣1C .D . 【解答】解:复数z=, 可得=﹣=cos+isin . 则 3=cos4π+isin4π=1. 故选:A .4.(5分)(2018?衡中模拟)过双曲线﹣=1(a >0,b >0)的一个焦点F 作两渐近线的垂线,垂足分别为P 、Q ,若∠PFQ=π,则双曲线的渐近线方程为() A .y=±xB .y=±xC .y=±xD .y=±x 【解答】解:如图若∠PFQ=π, 则由对称性得∠QFO=, 则∠QOx=,即OQ的斜率k==tan=,则双曲线渐近线的方程为y=±x,故选:B5.(5分)(2018?衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为()A.B.2C.D.1【解答】解:∵2πr1=,∴r1=,同理,∴r1+r2+r3=1,故选:D.6.(5分)(2018?衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是()A.2B.3C.4D.5【解答】解:第一次循环,sin>sin0,即1>0成立,a=1,T=1,k=2,k<6成立,第二次循环,sinπ>sin,即0>1不成立,a=0,T=1,k=3,k<6成立,第三次循环,sin>sinπ,即﹣1>0不成立,a=0,T=1,k=4,k<6成立,第四次循环,sin2π>sin,即0>﹣1成立,a=1,T=1+1=2,k=5,k<6成立,第五次循环,sin>sin2π,即1>0成立,a=1,T=2+1=3,k=6,k<6不成立,输出T=3,故选:B7.(5分)(2018?衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}的前8项和为()A.B.C.D.【解答】解:设等差数列{a n}的公差为d,a3=7,a5=11,∴,解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1,∴,∴b8=(1﹣+﹣+⋯+﹣)=(1﹣)=故选B.8.(5分)(2018?衡中模拟)已知(x﹣3)0+a1(x+1)+a2(x+1)10=a10=a 2+⋯+a1010(x+1),2+⋯+a10则a8=()A.45B.180C.﹣180D.720【解答】解:(x﹣3)10=[(x+1)﹣4]10,∴,故选:D.9.(5分)(2018?衡中模拟)如图为三棱锥S﹣A BC的三视图,其表面积为()A.16B.8+6C.16D.16+6【解答】解:由三视图可知该三棱锥为边长为2,4,4的长方体切去四个小棱锥得到的几何体.word完美格式∴表面积为4×=16.故选:C.10.(5分)(2018?衡中模拟)已知椭圆E:+=1(a>b>0)的左焦点F(﹣3,0),P F+PM的最大值为17,则椭圆的离心率为部点M(﹣1,3)满足P为椭圆上一动点,椭圆内()A.B.C.D.【解答】解:设右焦点为Q,由F(﹣3,0),可得Q(3,0),由椭圆的定义可得|PF|+|PQ|=2a,即|PF|=2a﹣|PQ|,则|PM|+|PF|=2a+(|PM|﹣|PQ|)≤2a+|MQ|,当P,M,Q共线时,取得等号,即最大值2a+|MQ|,由|MQ|==5,可得2a+5=17,所以a=6,则e===,故选:A.11.(5分)(2018?衡中模拟)已知f(x)=,若函数y=f(x)﹣k x恒有一个零点,则k的取值范围为()A.k≤0B.k≤0或k≥1C.k≤0或k≥eD.k≤0或k≥【解答】解:由y=f(x)﹣k x=0得f(x)=kx,作出函数f(x)和y=kx的图象如图,由图象知当k≤0时,函数f(x)和y=kx恒有一个交点,当x≥0时,函数f(x)=ln(x+1)的导数f′(x)=,则f′(0)=1,xx0=1,当x<0时,函数f(x)=e﹣1的导数f′(x)=e,则f′(0)=e即当k=1时,y=x是函数f(x)的切线,则当0<k<1时,函数f(x)和y=kx有3个交点,不满足条件.当k≥1时,函数f(x)和y=kx有1个交点,满足条件.k≤0或k≥1,围为综上k的取值范故选:B.2n+p,数列{bn}的通项公式12.(5分)(2018?衡中模拟)已知数列{an}的通项公式为a n=﹣n﹣4*围为b n=2,设c n=,若在数列{c n}中c6<c n(n∈N,n≠6),则p的取值范()A.(11,25)B.(12,22)C.(12,17)D.(14,20)n﹣42【解答】解:∵an﹣b n=﹣2n+p﹣,∴a n﹣b n随着n变大而变小,又∵a n=﹣2n+p随着n变大而变小,n﹣4bn=2随着n变大而变大,∴,(1)当(2)当,综上p∈(14,20),故选D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)|=,则在上13.(5分)(2018?衡中模拟)若平面向量、满足||=2||=2,|﹣的投影为﹣1.【解答】解:根据条件,=word完美格式=7;∴;∴在上的投影为.故答案为:﹣1.14.(5分)(2018?衡中模拟)若数列{an}满足a1=a2=1,an+2=,则数列{a n}前2n项和S2n=2﹣1.n+n2【解答】解:∵数列{an}满足a1=a2=1,an+2=,∴n=2k﹣1时,a2k+1﹣a2k﹣1=2,为等差数列;n=2k时,a2k+2=2a2k,为等比数列.∴.n2故答案为:2+n﹣1.15.(5分)(2018?衡中模拟)若直线ax+(a﹣2)y+4﹣a=0把区域分成面积相等的两部分,则的最大值为2.【解答】解:由ax+(a﹣2)y+4﹣a=0得a(x+y﹣1)+4﹣2y=0,则得,即直线恒过C(﹣1,2),若将区域分成面积相等的两部分,则直线过AB的中点D,由得,即A(1,6),∵B(3,0),∴中点D(2,3),代入a(x+y﹣1)+4﹣2y=0,得4a﹣2=0,则,则的几何意义是区域内的点到点(﹣2,0)的斜率,由图象过AC的斜率最大,此时最大值为2.故答案为:2.216.(5分)(2018?衡中模拟)已知函数f (x )=(a+1)lnx+x (a <﹣1)对 任意的x 1、x 2>0,恒有|f (x 1)﹣f (x 2)|≥4|x 1﹣x 2|,则a 的取值范围为(﹣∞,﹣2]. 【解答】解:由f ′(x )=+x ,得f ′(1)=3a+1,所以f (x )=(a+1)lnx+ax 2,(a <﹣1)在(0,+∞)单调递减,不妨设0<x1<x2, 则f (x 1)﹣f (x 2)≥4x 2﹣4x 1,即f (x 1)+4x 1≥f (x 2)+4x 2, 令F (x )=f (x )+4x ,F ′(x )=f ′(x )+4=+2ax+4, 等价于F (x )在(0,+∞)上单调递减, 故F'(x )≤0恒成立,即+2ax+4≤0, 所以恒成立, 得a ≤﹣2.故答案为:(﹣∞,﹣2].三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2018?衡中模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足c =1, 且cosBsinC+(a ﹣sinB )cos (A+B )=0 (1)求C 的大小;(2)求a 的最大值,并求取得最大值时角A ,B 的值.2+b 2 【解答】解:(1)cosBsinC+(a ﹣sinB )cos (A+B )=0 可得:cosBsinC ﹣(a ﹣sinB )cosC=0 即:sinA ﹣acosC=0. 由正弦定理可知:, ∴,c=1,word完美格式∴asinC﹣acosC=0,sinC﹣cosC=0,可得sin(C﹣)=0,C是三角形内角,∴C=.(2)由余弦定理可知:c﹣2abcosC,2=a2+b2得1=a﹣ab2+b2又,∴,即:.当时,a2+b取到最大值为2+.2+b218.(12分)(2018?衡中模拟)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=,2AD=1,M是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N是线段CD上一动点,且=λ,当直线MN与平面PAB所成的角最大时,求λ的值.【解答】证明:(1)取PC的中点E,则连接DE,∵ME是△PBC的中位线,∴ME,又AD,∴MEAD,∴四边形AMED是平行四边形,∴AM∥DE.∵PA=AB,M是PB的中点,∴AM⊥PB,∵PA⊥平面ABCD,BC?平面ABCD,∴PA⊥BC,又BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,∵AM?平面PAB,∴BC⊥AM,又PB?平面PBC,BC?平面PBC,PB∩BC=B,∴AM⊥平面PBC,∵AM∥DE,∴DE⊥平面PBC,又DE?平面PCD,∴平面PBC⊥平面PCD.(2)以A为原点,以AD,AB,AP为坐标轴建立空间直角坐标系,如图所示:则A(0,0,0),B(0,2,0),M(0,1,1),P(0,0,2),C(2,2,0),D(1,0,0).∴=(1,2,0),=(0,1,1),=(1,0,0),∴=λ=(λ,2λ,0),=(λ+1,2λ,0),1).==(λ+1,2λ﹣1,﹣∵AD⊥平面PAB,∴为平面PAB的一个法向量,∴cos<>=====设MN与平面PAB所成的角为θ,则sinθ=.∴当即时,sinθ取得最大值,∴MN与平面PAB所成的角最大时.19.(12分)(2018?衡中模拟)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区两个域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同时转动,重新开转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效域为y,x、y∈{1,2,3},始),记转盘(A)指针所对的区域为x,转盘(B)指针所对的区设x+y的值为ξ.(Ⅰ)求x<2且y>1的概率;(Ⅱ)求随机变量ξ的分布列与数学期望.【解答】解:(1)记A指针指向1,2,3区域的事件为A1,A2,A3,转盘1,2,3区域的事件为B1,B2,B3,同理转盘B指针指向∴P(A1)=,P(A2)=,P(A3)=,P(B1)=,P(B2)=,P(B3)=,P=P(A1)P(1﹣P(B1))=×(1﹣)==.⋯(5分)(2)由已知得ξ的可能取值为2,3,4,5,6,P(ξ=2)=P(A1)P(B1)===,P(ξ=3)=P(A1)P(B2)+P(A2)P(B1)==,P(ξ=4)=P(A1)P(B3)+P(A2)P(B2)+P(A3)P(B1)==,P(ξ=5)=P(A2)P(B3)+P(A3)P(B2)=+=,P(ξ=6)=P(A3)P(B3)==,∴ξ的分布列为:ξ23456PEξ==.⋯(12分)20.(12分)(2018?衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°的直线与椭圆相交于M、N两点,且线段1,).过椭圆E内一点P(1,)的M N的中点为(﹣两条直线分别与椭圆交于点A、C和B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应的λ=.(Ⅰ)求椭圆E的方程;(Ⅱ)当λ变化时,kAB是否为定值?若是,请求出此定值;若不是,请说明理由.,【解答】解:(Ⅰ)设M(m1,n1)、N(m2,n2),则两式相减,故a⋯(2分)2=3b2A P平行于x轴时,设|AC|=2d,当直线∵,,则,解得,故点A(或C)的坐标为.代入椭圆方程,得⋯4分22a=3,b=1,所以方程为⋯(6分)(Ⅱ)设A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4)由于,可得A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),⋯①同理可得⋯②⋯(8分)由①②得:⋯③得,程将点A、B的坐标代入椭圆方两式相减得(x1+x2)(x1﹣x2)+3(y1+y2)(y1﹣y2)=0,于是3(y1+y2)k AB=﹣(x1+x2)⋯④同理可得:3(y3+y4)k CD=﹣(x3+x4),⋯(10分)于是3(y3+y4)k AB=﹣(x3+x4)(∵AB∥CD,∴k AB=k CD)所以3λ(y3+y4)kAB=﹣λ(x3+x4)⋯⑤由④⑤两式相加得到:3[y1+y2+λ(y3+y4)]k AB=﹣[(x1+x2)+λ(x3+x4)]把③代入上式得3(1+λ)k AB=﹣2(1+λ),解得:,当λ变化时,k AB为定值,.⋯(12分)2 21.(12分)(2018?衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e 处的切线x﹣2y+e=0平行.与直线(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上是减函数,求实数a的最小值;.(Ⅱ)若函数F(x)=f(x)﹣无零点,求k的取值范围【解答】解:(Ⅰ)由,得,解得m=2,,函数g(x)的定义域为(0,1)∪(1,+∞),故,则而,又函数g(x)在(1,+∞)上是减函数,∴在(1,+∞)上恒成立,∴当x∈(1,+∞)时,的最大值.而,即右边的最大值为,∴,故实数a的最小值;(Ⅱ)由题可得,且定义域为(0,1)∪(1,+∞),word完美格式要使函数F(x)无零点,即在(0,1)∪(1,+∞)内无解,亦即在(0,1)∪(1,+∞)内无解.构造函数,则,(1)当k≤0时,h'(x)<0在(0,1)∪(1,+∞)内恒成立,∴函数h(x)在(0,1)内单调递减,在(1,+∞)内也单调递减.又h(1)=0,∴当x∈(0,1)时,h(x)>0,即函数h(x)在(0,1)内无零点,同理,当x∈(1,+∞)时,h(x)<0,即函数h(x)在(1,+∞)内无零点,故k≤0满足条件;(2)当k>0时,.①若0<k<2,则函数h(x)在(0,1)内单调递减,在内也单调递减,在内单调递增.又h(1)=0,∴h(x)在(0,1)内无零点;又,而,故在内有一个零点,∴0<k<2不满足条件;②若k=2,则函数h(x)在(0,1)内单调递减,在(1,+∞)内单调递增.又h(1)=0,∴当x∈(0,1)∪(1,+∞)时,h(x)>0恒成立,故无零点.∴k=2满足条件;③若k>2,则函数h(x)在内单调递减,在内单调递增,在(1,+∞)内也单调递增.又h(1)=0,∴在及(1,+∞)内均无零点.﹣kk=2e k22=?(k),k﹣k)﹣2+2e﹣易知,又h(e)=k×(﹣k26>则?'(k)=2(e﹣k)>0,则?(k)在k>2为增函数,∴?(k)>?(2)=2e﹣0.故函数h(x)在内有一零点,k>2不满足.综上:k≤0或k=2.4-1:几何证明选讲][选修22.(10分)(2018?衡中模拟)如图所示,AC为⊙O的直径,D为的中点,E为BC的中点.word完美格式..(Ⅰ)求证:DE ∥AB ;(Ⅱ)求证:AC?BC=2AD?CD .【解答】证明:(Ⅰ)连接B D ,因为D 为的中点,所以BD=DC .因为E 为BC 的中点,所以DE ⊥BC .因为AC 为圆的直径,所以∠ABC=90°,所以AB ∥DE .⋯(5分)(Ⅱ)因为D 为的中点,所以∠BAD=∠DAC ,又∠BAD=∠DCB ,则∠DAC=∠DCB .又因为AD ⊥DC ,DE ⊥CE ,所以△DAC ∽△ECD .所以=,AD?CD=AC?CE ,2AD?CD=AC?2CE ,因此2AD?CD=AC?BC .⋯(10分)[选修4-4:坐标系与参数方程]23.(2018?衡中模拟)在平面直角坐标系中,直线l 的参数方程为(t 为参数),在以直角坐标系的原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ=(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)若直线l 与曲线C 相交于A ,B 两点,求△AOB 的面积.【解答】解:(1)由曲线C 的极坐标方程为ρ=得ρ2sin 2 θ=2ρcos θ. 2∴由曲线C 的直角坐标方程是:y=2x .由直线l 的参数方程为(t 为参数),得t=3+y 代入x=1+t 中消去t 得:x ﹣y ﹣4=0,所以直线l 的普通方程为:x ﹣y ﹣4=0⋯(5分)(2)将直线l 的参数方程代入曲线C 的普通方程y 2=2x ,得t 2=2x ,得t 2 ﹣8t+7=0, 设A ,B 两点对应的参数分别为t 1,t 2,word完美格式..所以|AB|===,y﹣4=0的距离d=,因为原点到直线x﹣所以△AOB的面积是|AB|d==12.⋯(10分)[选修4-5:不等式选讲]3|.l|+|x﹣24.(2018?衡中模拟)已知函数f(x)=|x﹣(I)解不等式f(x)≤6;(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,求实数a的取值范围.l|+|x﹣3|=的图象如图所示,【解答】解:函数f(x)=|x﹣(I)不等式f(x)≤6,即①或②,或③.解①求得x∈?,解②求得3<x≤5,解③求得﹣1≤x≤3.1,5].综上可得,原不等式的解集为[﹣(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,则函数f(x)的图象不能在y=ax﹣1的图象的下方.如图所示:由于图中两题射线的斜率分别为﹣2,2,点B(3,2),∴3a﹣1≤2,且a≥﹣2,求得﹣2≤a≤1.欢迎您的光临,Word文档下载后可修改编辑双击可删除页眉页脚谢谢!希望您提出您宝贵的意见,你的意见是我进步的动力。

2018高考数学模拟试卷(衡水中学理科)

2018高考数学模拟试卷(衡水中学理科)

2018年衡水中学高考数学全真模拟试卷(理科)第1卷一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2018•衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A∩B=()A.∅B.(0,1)C.[0,1)D.[0,1]2.(5分)(2018•衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0.2,则P(3<ξ≤4)=()A.0.8 B.0.4 C.0.3 D.0.23.(5分)(2018•衡中模拟)已知复数z=(i为虚数单位),则3=()A.1 B.﹣1 C.D.4.(5分)(2018•衡中模拟)过双曲线﹣=1(a>0,b>0)的一个焦点F作两渐近线的垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x5.(5分)(2018•衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为()A.B.2 C.D.16.(5分)(2018•衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是()A.2 B.3 C.4 D.57.(5分)(2018•衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}的前8项和为()A.B.C.D.8.(5分)(2018•衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=()A.45 B.180 C.﹣180 D.7209.(5分)(2018•衡中模拟)如图为三棱锥S﹣ABC的三视图,其表面积为()A.16 B.8+6C.16D.16+610.(5分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0)的左焦点F(﹣3,0),P为椭圆上一动点,椭圆内部点M(﹣1,3)满足PF+PM的最大值为17,则椭圆的离心率为()A.B.C.D.11.(5分)(2018•衡中模拟)已知f(x)=,若函数y=f(x)﹣kx恒有一个零点,则k的取值范围为()A.k≤0 B.k≤0或k≥1 C.k≤0或k≥e D.k≤0或k≥12.(5分)(2018•衡中模拟)已知数列{a n}的通项公式为a n=﹣2n+p,数列{b n}的通项公式为b n=2n﹣4,设c n=,若在数列{c n}中c6<c n(n∈N*,n≠6),则p的取值范围()A.(11,25)B.(12,22)C.(12,17)D.(14,20)第2卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.(5分)(2018•衡中模拟)若平面向量、满足||=2||=2,|﹣|=,则在上的投影为.14.(5分)(2018•衡中模拟)若数列{a n}满足a1=a2=1,a n+2=,则数列{a n}前2n项和S2n=.15.(5分)(2018•衡中模拟)若直线ax+(a﹣2)y+4﹣a=0把区域分成面积相等的两部分,则的最大值为.16.(5分)(2018•衡中模拟)已知函数f(x)=(a+1)lnx+x2(a<﹣1)对任意的x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,则a的取值范围为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2018•衡中模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0(1)求C的大小;(2)求a2+b2的最大值,并求取得最大值时角A,B的值.18.(12分)(2018•衡中模拟)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD ∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N是线段CD上一动点,且=λ,当直线MN与平面PAB所成的角最大时,求λ的值.19.(12分)(2018•衡中模拟)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对的区域为x,转盘(B)指针所对的区域为y,x、y∈{1,2,3},设x+y的值为ξ.(Ⅰ)求x<2且y>1的概率;(Ⅱ)求随机变量ξ的分布列与数学期望.20.(12分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°的直线与椭圆相交于M、N两点,且线段MN的中点为(﹣1,).过椭圆E内一点P(1,)的两条直线分别与椭圆交于点A、C和B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应的λ=.(Ⅰ)求椭圆E的方程;(Ⅱ)当λ变化时,k AB是否为定值?若是,请求出此定值;若不是,请说明理由.21.(12分)(2018•衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e2处的切线与直线x﹣2y+e=0平行.(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若函数F(x)=f(x)﹣无零点,求k的取值范围.[选修4-1:几何证明选讲]22.(10分)(2018•衡中模拟)如图所示,AC为⊙O的直径,D为的中点,E为BC的中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:AC•BC=2AD•CD.[选修4-4:坐标系与参数方程]23.(2018•衡中模拟)在平面直角坐标系中,直线l的参数方程为(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若直线l与曲线C相交于A,B两点,求△AOB的面积.[选修4-5:不等式选讲]24.(2018•衡中模拟)已知函数f(x)=|x﹣l|+|x﹣3|.(I)解不等式f(x)≤6;(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,求实数a的取值范围.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2018•衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A∩B=()A.∅B.(0,1)C.[0,1)D.[0,1]【解答】解:A={x|x2<1}={x|﹣1<x<1},B={y|y=|x|≥0},则A∩B=[0,1),故选:C.2.(5分)(2018•衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0.2,则P(3<ξ≤4)=()A.0.8 B.0.4 C.0.3 D.0.2【解答】解:∵随机变量X服从正态分布N(3,σ2),∴μ=3,得对称轴是x=3.∵P(ξ>4)=0.2∴P(3<ξ≤4)=0.5﹣0.2=0.3.故选:C3.(5分)(2018•衡中模拟)已知复数z=(i为虚数单位),则3=()A.1 B.﹣1 C.D.【解答】解:复数z=,可得=﹣=cos+isin.则3=cos4π+isin4π=1.故选:A.4.(5分)(2018•衡中模拟)过双曲线﹣=1(a>0,b>0)的一个焦点F作两渐近线的垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x【解答】解:如图若∠PFQ=π,则由对称性得∠QFO=,则∠QOx=,即OQ的斜率k==tan=,则双曲线渐近线的方程为y=±x,故选:B5.(5分)(2018•衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为()A.B.2 C.D.1【解答】解:∵2πr1=,∴r1=,同理,∴r1+r2+r3=1,故选:D.6.(5分)(2018•衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是()A.2 B.3 C.4 D.5【解答】解:第一次循环,sin>sin0,即1>0成立,a=1,T=1,k=2,k<6成立,第二次循环,sinπ>sin,即0>1不成立,a=0,T=1,k=3,k<6成立,第三次循环,sin>sinπ,即﹣1>0不成立,a=0,T=1,k=4,k<6成立,第四次循环,sin2π>sin,即0>﹣1成立,a=1,T=1+1=2,k=5,k<6成立,第五次循环,sin>sin2π,即1>0成立,a=1,T=2+1=3,k=6,k<6不成立,输出T=3,故选:B7.(5分)(2018•衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}的前8项和为()A.B.C.D.【解答】解:设等差数列{a n}的公差为d,a3=7,a5=11,∴,解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1,∴,∴b8=(1﹣+﹣+…+﹣)=(1﹣)=故选B.8.(5分)(2018•衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=()A.45 B.180 C.﹣180 D.720【解答】解:(x﹣3)10=[(x+1)﹣4]10,∴,故选:D.9.(5分)(2018•衡中模拟)如图为三棱锥S﹣ABC的三视图,其表面积为()A.16 B.8+6C.16D.16+6【解答】解:由三视图可知该三棱锥为边长为2,4,4的长方体切去四个小棱锥得到的几何体.三棱锥的三条边长分别为,∴表面积为4×=16.故选:C.10.(5分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0)的左焦点F(﹣3,0),P为椭圆上一动点,椭圆内部点M(﹣1,3)满足PF+PM的最大值为17,则椭圆的离心率为()A.B.C.D.【解答】解:设右焦点为Q,由F(﹣3,0),可得Q(3,0),由椭圆的定义可得|PF|+|PQ|=2a,即|PF|=2a﹣|PQ|,则|PM|+|PF|=2a+(|PM|﹣|PQ|)≤2a+|MQ|,当P,M,Q共线时,取得等号,即最大值2a+|MQ|,由|MQ|==5,可得2a+5=17,所以a=6,则e===,故选:A.11.(5分)(2018•衡中模拟)已知f(x)=,若函数y=f(x)﹣kx恒有一个零点,则k的取值范围为()A.k≤0 B.k≤0或k≥1 C.k≤0或k≥e D.k≤0或k≥【解答】解:由y=f(x)﹣kx=0得f(x)=kx,作出函数f(x)和y=kx的图象如图,由图象知当k≤0时,函数f(x)和y=kx恒有一个交点,当x≥0时,函数f(x)=ln(x+1)的导数f′(x)=,则f′(0)=1,当x<0时,函数f(x)=e x﹣1的导数f′(x)=e x,则f′(0)=e0=1,即当k=1时,y=x是函数f(x)的切线,则当0<k<1时,函数f(x)和y=kx有3个交点,不满足条件.当k≥1时,函数f(x)和y=kx有1个交点,满足条件.综上k的取值范围为k≤0或k≥1,故选:B.12.(5分)(2018•衡中模拟)已知数列{a n}的通项公式为a n=﹣2n+p,数列{b n}的通项公式为b n=2n﹣4,设c n=,若在数列{c n}中c6<c n(n∈N*,n≠6),则p的取值范围()A.(11,25)B.(12,22)C.(12,17)D.(14,20)【解答】解:∵a n﹣b n=﹣2n+p﹣2n﹣4,∴a n﹣b n随着n变大而变小,又∵a n=﹣2n+p随着n变大而变小,b n=2n﹣4随着n变大而变大,∴,(1)当(2)当,综上p∈(14,20),故选D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.(5分)(2018•衡中模拟)若平面向量、满足||=2||=2,|﹣|=,则在上的投影为﹣1.【解答】解:根据条件,==7;∴;∴在上的投影为.故答案为:﹣1.14.(5分)(2018•衡中模拟)若数列{a n}满足a1=a2=1,a n+2=,则数列{a n}前2n项和S2n=2n+n2﹣1.【解答】解:∵数列{a n}满足a1=a2=1,a n+2=,∴n=2k﹣1时,a2k+1﹣a2k﹣1=2,为等差数列;n=2k时,a2k+2=2a2k,为等比数列.∴.故答案为:2n+n2﹣1.15.(5分)(2018•衡中模拟)若直线ax+(a﹣2)y+4﹣a=0把区域分成面积相等的两部分,则的最大值为2.【解答】解:由ax+(a﹣2)y+4﹣a=0得a(x+y﹣1)+4﹣2y=0,则得,即直线恒过C(﹣1,2),若将区域分成面积相等的两部分,则直线过AB的中点D,由得,即A(1,6),∵B(3,0),∴中点D(2,3),代入a(x+y﹣1)+4﹣2y=0,得4a﹣2=0,则,则的几何意义是区域内的点到点(﹣2,0)的斜率,由图象过AC的斜率最大,此时最大值为2.故答案为:2.16.(5分)(2018•衡中模拟)已知函数f(x)=(a+1)lnx+x2(a<﹣1)对任意的x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,则a的取值范围为(﹣∞,﹣2] .【解答】解:由f′(x)=+x,得f′(1)=3a+1,所以f(x)=(a+1)lnx+ax2,(a<﹣1)在(0,+∞)单调递减,不妨设0<x1<x2,则f(x1)﹣f(x2)≥4x2﹣4x1,即f(x1)+4x1≥f(x2)+4x2,令F(x)=f(x)+4x,F′(x)=f′(x)+4=+2ax+4,等价于F(x)在(0,+∞)上单调递减,故F'(x)≤0恒成立,即+2ax+4≤0,所以恒成立,得a≤﹣2.故答案为:(﹣∞,﹣2].三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2018•衡中模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0(1)求C的大小;(2)求a2+b2的最大值,并求取得最大值时角A,B的值.【解答】解:(1)cosBsinC+(a﹣sinB)cos(A+B)=0可得:cosBsinC﹣(a﹣sinB)cosC=0即:sinA﹣acosC=0.由正弦定理可知:,∴,c=1,∴asinC﹣acosC=0,sinC﹣cosC=0,可得sin(C﹣)=0,C是三角形内角,∴C=.(2)由余弦定理可知:c2=a2+b2﹣2abcosC,得1=a2+b2﹣ab又,∴,即:.当时,a2+b2取到最大值为2+.18.(12分)(2018•衡中模拟)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD ∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N是线段CD上一动点,且=λ,当直线MN与平面PAB所成的角最大时,求λ的值.【解答】证明:(1)取PC的中点E,则连接DE,∵ME是△PBC的中位线,∴ME,又AD,∴ME AD,∴四边形AMED是平行四边形,∴AM∥DE.∵PA=AB,M是PB的中点,∴AM⊥PB,∵PA⊥平面ABCD,BC⊂平面ABCD,∴PA⊥BC,又BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,∵AM⊂平面PAB,∴BC⊥AM,又PB⊂平面PBC,BC⊂平面PBC,PB∩BC=B,∴AM⊥平面PBC,∵AM∥DE,∴DE⊥平面PBC,又DE⊂平面PCD,∴平面PBC⊥平面PCD.(2)以A为原点,以AD,AB,AP为坐标轴建立空间直角坐标系,如图所示:则A(0,0,0),B(0,2,0),M(0,1,1),P(0,0,2),C(2,2,0),D(1,0,0).∴=(1,2,0),=(0,1,1),=(1,0,0),∴=λ=(λ,2λ,0),=(λ+1,2λ,0),==(λ+1,2λ﹣1,﹣1).∵AD⊥平面PAB,∴为平面PAB的一个法向量,∴cos<>=====设MN与平面PAB所成的角为θ,则sinθ=.∴当即时,sinθ取得最大值,∴MN与平面PAB所成的角最大时.19.(12分)(2018•衡中模拟)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对的区域为x,转盘(B)指针所对的区域为y,x、y∈{1,2,3},设x+y的值为ξ.(Ⅰ)求x<2且y>1的概率;(Ⅱ)求随机变量ξ的分布列与数学期望.【解答】解:(1)记转盘A指针指向1,2,3区域的事件为A1,A2,A3,同理转盘B指针指向1,2,3区域的事件为B1,B2,B3,∴P(A1)=,P(A2)=,P(A3)=,P(B1)=,P(B2)=,P(B3)=,P=P(A1)P(1﹣P(B1))=×(1﹣)==.…(5分)(2)由已知得ξ的可能取值为2,3,4,5,6,P(ξ=2)=P(A1)P(B1)===,P(ξ=3)=P(A1)P(B2)+P(A2)P(B1)==,P(ξ=4)=P(A1)P(B3)+P(A2)P(B2)+P(A3)P(B1)==,P(ξ=5)=P(A2)P(B3)+P(A3)P(B2)=+=,P(ξ=6)=P(A3)P(B3)==,∴ξ的分布列为:ξ 2 3 4 5 6PEξ==.…(12分)20.(12分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°的直线与椭圆相交于M、N两点,且线段MN的中点为(﹣1,).过椭圆E内一点P(1,)的两条直线分别与椭圆交于点A、C和B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应的λ=.(Ⅰ)求椭圆E的方程;(Ⅱ)当λ变化时,k AB是否为定值?若是,请求出此定值;若不是,请说明理由.【解答】解:(Ⅰ)设M(m1,n1)、N(m2,n2),则,两式相减,故a2=3b2…(2分)当直线AP平行于x轴时,设|AC|=2d,∵,,则,解得,故点A(或C)的坐标为.代入椭圆方程,得…4分a2=3,b2=1,所以方程为…(6分)(Ⅱ)设A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4)由于,可得A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),…①同理可得…②…(8分)由①②得:…③将点A、B的坐标代入椭圆方程得,两式相减得(x1+x2)(x1﹣x2)+3(y1+y2)(y1﹣y2)=0,于是3(y1+y2)k AB=﹣(x1+x2)…④同理可得:3(y3+y4)k CD=﹣(x3+x4),…(10分)于是3(y3+y4)k AB=﹣(x3+x4)(∵AB∥CD,∴k AB=k CD)所以3λ(y3+y4)k AB=﹣λ(x3+x4)…⑤由④⑤两式相加得到:3[y1+y2+λ(y3+y4)]k AB=﹣[(x1+x2)+λ(x3+x4)]把③代入上式得3(1+λ)k AB=﹣2(1+λ),解得:,当λ变化时,k AB为定值,.…(12分)21.(12分)(2018•衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e2处的切线与直线x﹣2y+e=0平行.(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若函数F(x)=f(x)﹣无零点,求k的取值范围.【解答】解:(Ⅰ)由,得,解得m=2,故,则,函数g(x)的定义域为(0,1)∪(1,+∞),而,又函数g(x)在(1,+∞)上是减函数,∴在(1,+∞)上恒成立,∴当x∈(1,+∞)时,的最大值.而,即右边的最大值为,∴,故实数a的最小值;(Ⅱ)由题可得,且定义域为(0,1)∪(1,+∞),要使函数F(x)无零点,即在(0,1)∪(1,+∞)内无解,亦即在(0,1)∪(1,+∞)内无解.构造函数,则,(1)当k≤0时,h'(x)<0在(0,1)∪(1,+∞)内恒成立,∴函数h(x)在(0,1)内单调递减,在(1,+∞)内也单调递减.又h(1)=0,∴当x∈(0,1)时,h(x)>0,即函数h(x)在(0,1)内无零点,同理,当x∈(1,+∞)时,h(x)<0,即函数h(x)在(1,+∞)内无零点,故k≤0满足条件;(2)当k>0时,.①若0<k<2,则函数h(x)在(0,1)内单调递减,在内也单调递减,在内单调递增.又h(1)=0,∴h(x)在(0,1)内无零点;又,而,故在内有一个零点,∴0<k<2不满足条件;②若k=2,则函数h(x)在(0,1)内单调递减,在(1,+∞)内单调递增.又h(1)=0,∴当x∈(0,1)∪(1,+∞)时,h(x)>0恒成立,故无零点.∴k=2满足条件;③若k>2,则函数h(x)在内单调递减,在内单调递增,在(1,+∞)内也单调递增.又h(1)=0,∴在及(1,+∞)内均无零点.易知,又h(e﹣k)=k×(﹣k)﹣2+2e k=2e k﹣k2﹣2=ϕ(k),则ϕ'(k)=2(e k﹣k)>0,则ϕ(k)在k>2为增函数,∴ϕ(k)>ϕ(2)=2e2﹣6>0.故函数h(x)在内有一零点,k>2不满足.综上:k≤0或k=2.[选修4-1:几何证明选讲]22.(10分)(2018•衡中模拟)如图所示,AC为⊙O的直径,D为的中点,E为BC的中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:AC•BC=2AD•CD.【解答】证明:(Ⅰ)连接BD,因为D为的中点,所以BD=DC.因为E为BC的中点,所以DE⊥BC.因为AC为圆的直径,所以∠ABC=90°,所以AB∥DE.…(5分)(Ⅱ)因为D为的中点,所以∠BAD=∠DAC,又∠BAD=∠DCB,则∠DAC=∠DCB.又因为AD⊥DC,DE⊥CE,所以△DAC∽△ECD.所以=,AD•CD=AC•CE,2AD•CD=AC•2CE,因此2AD•CD=AC•BC.…(10分)[选修4-4:坐标系与参数方程]23.(2018•衡中模拟)在平面直角坐标系中,直线l的参数方程为(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若直线l与曲线C相交于A,B两点,求△AOB的面积.【解答】解:(1)由曲线C的极坐标方程为ρ=得ρ2sin2θ=2ρcosθ.∴由曲线C的直角坐标方程是:y2=2x.由直线l的参数方程为(t为参数),得t=3+y代入x=1+t中消去t得:x﹣y﹣4=0,所以直线l的普通方程为:x﹣y﹣4=0…(5分)(2)将直线l的参数方程代入曲线C的普通方程y2=2x,得t2﹣8t+7=0,设A,B两点对应的参数分别为t1,t2,所以|AB|===,. . . .. . ..s . .. 因为原点到直线x ﹣y ﹣4=0的距离d=, 所以△AOB 的面积是|AB |d==12.…(10分)[选修4-5:不等式选讲]24.(2018•衡中模拟)已知函数f (x )=|x ﹣l |+|x ﹣3|.(I )解不等式f (x )≤6;(Ⅱ)若不等式f (x )≥ax ﹣1对任意x ∈R恒成立,求实数a 的取值范围.【解答】解:函数f (x )=|x ﹣l |+|x ﹣3|= 的图象如图所示,(I )不等式f (x )≤6,即①或②,或③. 解①求得x ∈∅,解②求得3<x ≤5,解③求得﹣1≤x ≤3.综上可得,原不等式的解集为[﹣1,5].(Ⅱ)若不等式f (x )≥ax ﹣1对任意x ∈R 恒成立,则函数f (x )的图象不能在y=ax ﹣1的图象的下方.如图所示:由于图中两题射线的斜率分别为﹣2,2,点B (3,2),∴3a ﹣1≤2,且 a ≥﹣2,求得﹣2≤a ≤1.。

2018高考数学模拟试卷(衡水中学理科)

2018高考数学模拟试卷(衡水中学理科)

2018年衡水中学高考数学全真模拟试卷(理科)第1卷一、选择题(本大题共12小题,每小题5分,共60分、在每个小题给出得四个选项中,只有一项就是符合题目要求得、)1.(5分)(2018•衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A∩B=()A.∅B.(0,1)C.[0,1)D.[0,1]2.(5分)(2018•衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0、2,则P(3<ξ≤4)=()A.0、8B.0、4C.0、3D.0、23.(5分)(2018•衡中模拟)已知复数z=(i为虚数单位),则3=()A.1B.﹣1C.D.4.(5分)(2018•衡中模拟)过双曲线﹣=1(a>0,b>0)得一个焦点F作两渐近线得垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线得渐近线方程为()A.y=±xB.y=±xC.y=±xD.y=±x5.(5分)(2018•衡中模拟)将半径为1得圆分割成面积之比为1:2:3得三个扇形作为三个圆锥得侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3得值为()A. B.2 C. D.16.(5分)(2018•衡中模拟)如图就是某算法得程序框图,则程序运行后输出得结果就是()A.2B.3C.4D.57.(5分)(2018•衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}得前8项与为()A. B. C. D.8.(5分)(2018•衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=()A.45B.180C.﹣180D.7209.(5分)(2018•衡中模拟)如图为三棱锥S﹣ABC得三视图,其表面积为()A.16B.8+6C.16D.16+610.(5分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0)得左焦点F(﹣3,0),P为椭圆上一动点,椭圆内部点M(﹣1,3)满足PF+PM得最大值为17,则椭圆得离心率为()A. B. C. D.11.(5分)(2018•衡中模拟)已知f(x)=,若函数y=f(x)﹣kx恒有一个零点,则k得取值范围为()A.k≤0B.k≤0或k≥1C.k≤0或k≥eD.k≤0或k≥12.(5分)(2018•衡中模拟)已知数列{a n}得通项公式为a n=﹣2n+p,数列{b n}得通项公式为b n=2n﹣4,设c n=,若在数列{c n}中c6<c n(n∈N*,n≠6),则p得取值范围()A.(11,25)B.(12,22)C.(12,17)D.(14,20)第2卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中得横线上.)13.(5分)(2018•衡中模拟)若平面向量、满足||=2||=2,|﹣|=,则在上得投影为.14.(5分)(2018•衡中模拟)若数列{a n}满足a1=a2=1,a n+2=,则数列{a n}前2n项与S2n=.15.(5分)(2018•衡中模拟)若直线ax+(a﹣2)y+4﹣a=0把区域分成面积相等得两部分,则得最大值为.16.(5分)(2018•衡中模拟)已知函数f(x)=(a+1)lnx+x2(a<﹣1)对任意得x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,则a得取值范围为.三、解答题(本大题共5小题,共70分、解答应写出文字说明、证明过程或演算步骤、)17.(12分)(2018•衡中模拟)在△ABC中,角A,B,C所对得边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0(1)求C得大小;(2)求a2+b2得最大值,并求取得最大值时角A,B得值.18.(12分)(2018•衡中模拟)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M就是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N就是线段CD上一动点,且=λ,当直线MN与平面PAB所成得角最大时,求λ得值.19.(12分)(2018•衡中模拟)如图就是两个独立得转盘(A)、(B),在两个图中三个扇形区域得圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则就是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对得区域为x,转盘(B)指针所对得区域为y,x、y∈{1,2,3},设x+y得值为ξ.(Ⅰ)求x<2且y>1得概率;(Ⅱ)求随机变量ξ得分布列与数学期望.20.(12分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°得直线与椭圆相交于M、N 两点,且线段MN得中点为(﹣1,).过椭圆E内一点P(1,)得两条直线分别与椭圆交于点A、C 与B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应得λ=.(Ⅰ)求椭圆E得方程;(Ⅱ)当λ变化时,k AB就是否为定值?若就是,请求出此定值;若不就是,请说明理由.21.(12分)(2018•衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e2处得切线与直线x﹣2y+e=0平行.(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上就是减函数,求实数a得最小值;(Ⅱ)若函数F(x)=f(x)﹣无零点,求k得取值范围.[选修41:几何证明选讲]22.(10分)(2018•衡中模拟)如图所示,AC为⊙O得直径,D为得中点,E为BC得中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:AC•BC=2AD•CD.[选修44:坐标系与参数方程]23.(2018•衡中模拟)在平面直角坐标系中,直线l得参数方程为(t为参数),在以直角坐标系得原点O为极点,x轴得正半轴为极轴得极坐标系中,曲线C得极坐标方程为ρ=(1)求曲线C得直角坐标方程与直线l得普通方程;(2)若直线l与曲线C相交于A,B两点,求△AOB得面积.[选修45:不等式选讲]24.(2018•衡中模拟)已知函数f(x)=|x﹣l|+|x﹣3|.(I)解不等式f(x)≤6;(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,求实数a得取值范围.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分、在每个小题给出得四个选项中,只有一项就是符合题目要求得、)1.(5分)(2018•衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A∩B=()A.∅B.(0,1)C.[0,1)D.[0,1]【解答】解:A={x|x2<1}={x|﹣1<x<1},B={y|y=|x|≥0},则A∩B=[0,1),故选:C.2.(5分)(2018•衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0、2,则P(3<ξ≤4)=()A.0、8B.0、4C.0、3D.0、2【解答】解:∵随机变量X服从正态分布N(3,σ2),∴μ=3,得对称轴就是x=3.∵P(ξ>4)=0、2∴P(3<ξ≤4)=0、5﹣0、2=0、3.故选:C3.(5分)(2018•衡中模拟)已知复数z=(i为虚数单位),则3=()A.1B.﹣1C.D.【解答】解:复数z=,可得=﹣=cos+isin.则3=cos4π+isin4π=1.故选:A.4.(5分)(2018•衡中模拟)过双曲线﹣=1(a>0,b>0)得一个焦点F作两渐近线得垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线得渐近线方程为()A.y=±xB.y=±xC.y=±xD.y=±x【解答】解:如图若∠PFQ=π,则由对称性得∠QFO=,则∠QOx=,即OQ得斜率k==tan=,则双曲线渐近线得方程为y=±x,故选:B5.(5分)(2018•衡中模拟)将半径为1得圆分割成面积之比为1:2:3得三个扇形作为三个圆锥得侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3得值为()A. B.2 C. D.1【解答】解:∵2πr1=,∴r1=,同理,∴r1+r2+r3=1,故选:D.6.(5分)(2018•衡中模拟)如图就是某算法得程序框图,则程序运行后输出得结果就是()A.2B.3C.4D.5【解答】解:第一次循环,sin>sin0,即1>0成立,a=1,T=1,k=2,k<6成立,第二次循环,sinπ>sin,即0>1不成立,a=0,T=1,k=3,k<6成立,第三次循环,sin>sinπ,即﹣1>0不成立,a=0,T=1,k=4,k<6成立,第四次循环,sin2π>sin,即0>﹣1成立,a=1,T=1+1=2,k=5,k<6成立,第五次循环,sin>sin2π,即1>0成立,a=1,T=2+1=3,k=6,k<6不成立,输出T=3,故选:B7.(5分)(2018•衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}得前8项与为()A. B. C. D.【解答】解:设等差数列{a n}得公差为d,a3=7,a5=11,∴,解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1,∴,∴b8=(1﹣+﹣+…+﹣)=(1﹣)=故选B.8.(5分)(2018•衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=()A.45B.180C.﹣180D.720【解答】解:(x﹣3)10=[(x+1)﹣4]10,∴,故选:D.9.(5分)(2018•衡中模拟)如图为三棱锥S﹣ABC得三视图,其表面积为()A.16B.8+6C.16D.16+6【解答】解:由三视图可知该三棱锥为边长为2,4,4得长方体切去四个小棱锥得到得几何体. 三棱锥得三条边长分别为,∴表面积为4×=16.故选:C.10.(5分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0)得左焦点F(﹣3,0),P为椭圆上一动点,椭圆内部点M(﹣1,3)满足PF+PM得最大值为17,则椭圆得离心率为()A. B. C. D.【解答】解:设右焦点为Q,由F(﹣3,0),可得Q(3,0),由椭圆得定义可得|PF|+|PQ|=2a,即|PF|=2a﹣|PQ|,则|PM|+|PF|=2a+(|PM|﹣|PQ|)≤2a+|MQ|,当P,M,Q共线时,取得等号,即最大值2a+|MQ|,由|MQ|==5,可得2a+5=17,所以a=6,则e===,故选:A.11.(5分)(2018•衡中模拟)已知f(x)=,若函数y=f(x)﹣kx恒有一个零点,则k得取值范围为()A.k≤0B.k≤0或k≥1C.k≤0或k≥eD.k≤0或k≥【解答】解:由y=f(x)﹣kx=0得f(x)=kx,作出函数f(x)与y=kx得图象如图,由图象知当k≤0时,函数f(x)与y=kx恒有一个交点,当x≥0时,函数f(x)=ln(x+1)得导数f′(x)=,则f′(0)=1,当x<0时,函数f(x)=e x﹣1得导数f′(x)=e x,则f′(0)=e0=1,即当k=1时,y=x就是函数f(x)得切线,则当0<k<1时,函数f(x)与y=kx有3个交点,不满足条件.当k≥1时,函数f(x)与y=kx有1个交点,满足条件.综上k得取值范围为k≤0或k≥1,故选:B.12.(5分)(2018•衡中模拟)已知数列{a n}得通项公式为a n=﹣2n+p,数列{b n}得通项公式为b n=2n﹣4,设c n=,若在数列{c n}中c6<c n(n∈N*,n≠6),则p得取值范围()A.(11,25)B.(12,22)C.(12,17)D.(14,20)【解答】解:∵a n﹣b n=﹣2n+p﹣2n﹣4,∴a n﹣b n随着n变大而变小,又∵a n=﹣2n+p随着n变大而变小,b n=2n﹣4随着n变大而变大,∴,(1)当(2)当,综上p∈(14,20),故选D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中得横线上.)13.(5分)(2018•衡中模拟)若平面向量、满足||=2||=2,|﹣|=,则在上得投影为﹣1. 【解答】解:根据条件,==7;∴;∴在上得投影为.故答案为:﹣1.14.(5分)(2018•衡中模拟)若数列{a n}满足a1=a2=1,a n+2=,则数列{a n}前2n项与S2n=2n+n2﹣1.【解答】解:∵数列{a n}满足a1=a2=1,a n+2=,∴n=2k﹣1时,a2k+1﹣a2k﹣1=2,为等差数列;n=2k时,a2k+2=2a2k,为等比数列.∴.故答案为:2n+n2﹣1.15.(5分)(2018•衡中模拟)若直线ax+(a﹣2)y+4﹣a=0把区域分成面积相等得两部分,则得最大值为2.【解答】解:由ax+(a﹣2)y+4﹣a=0得a(x+y﹣1)+4﹣2y=0,则得,即直线恒过C(﹣1,2),若将区域分成面积相等得两部分,则直线过AB得中点D,由得,即A(1,6),∵B(3,0),∴中点D(2,3),代入a(x+y﹣1)+4﹣2y=0,得4a﹣2=0,则,则得几何意义就是区域内得点到点(﹣2,0)得斜率,由图象过AC得斜率最大,此时最大值为2.故答案为:2.16.(5分)(2018•衡中模拟)已知函数f(x)=(a+1)lnx+x2(a<﹣1)对任意得x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,则a得取值范围为(﹣∞,﹣2] .【解答】解:由f′(x)=+x,得f′(1)=3a+1,所以f(x)=(a+1)lnx+ax2,(a<﹣1)在(0,+∞)单调递减,不妨设0<x1<x2,则f(x1)﹣f(x2)≥4x2﹣4x1,即f(x1)+4x1≥f(x2)+4x2,令F(x)=f(x)+4x,F′(x)=f′(x)+4=+2ax+4,等价于F(x)在(0,+∞)上单调递减,故F'(x)≤0恒成立,即+2ax+4≤0,所以恒成立,得a≤﹣2.故答案为:(﹣∞,﹣2].三、解答题(本大题共5小题,共70分、解答应写出文字说明、证明过程或演算步骤、)17.(12分)(2018•衡中模拟)在△ABC中,角A,B,C所对得边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0(1)求C得大小;(2)求a2+b2得最大值,并求取得最大值时角A,B得值.【解答】解:(1)cosBsinC+(a﹣sinB)cos(A+B)=0可得:cosBsinC﹣(a﹣sinB)cosC=0即:sinA﹣acosC=0.由正弦定理可知:,∴,c=1,∴asinC﹣acosC=0,sinC﹣cosC=0,可得sin(C﹣)=0,C就是三角形内角,∴C=.(2)由余弦定理可知:c2=a2+b2﹣2abcosC,得1=a2+b2﹣ab又,∴,即:.当时,a2+b2取到最大值为2+.18.(12分)(2018•衡中模拟)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M就是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N就是线段CD上一动点,且=λ,当直线MN与平面PAB所成得角最大时,求λ得值.【解答】证明:(1)取PC得中点E,则连接DE,∵ME就是△PBC得中位线,∴ME,又AD,∴MEAD,∴四边形AMED就是平行四边形,∴AM∥DE.∵PA=AB,M就是PB得中点,∴AM⊥PB,∵PA⊥平面ABCD,BC⊂平面ABCD,∴PA⊥BC,又BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,∵AM⊂平面PAB,∴BC⊥AM,又PB⊂平面PBC,BC⊂平面PBC,PB∩BC=B,∴AM⊥平面PBC,∵AM∥DE,∴DE⊥平面PBC,又DE⊂平面PCD,∴平面PBC⊥平面PCD.(2)以A为原点,以AD,AB,AP为坐标轴建立空间直角坐标系,如图所示:则A(0,0,0),B(0,2,0),M(0,1,1),P(0,0,2),C(2,2,0),D(1,0,0).∴=(1,2,0),=(0,1,1),=(1,0,0),∴=λ=(λ,2λ,0),=(λ+1,2λ,0),==(λ+1,2λ﹣1,﹣1).∵AD⊥平面PAB,∴为平面PAB得一个法向量,∴cos<>=====设MN与平面PAB所成得角为θ,则sinθ=.∴当即时,sinθ取得最大值,∴MN与平面PAB所成得角最大时.19.(12分)(2018•衡中模拟)如图就是两个独立得转盘(A)、(B),在两个图中三个扇形区域得圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则就是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对得区域为x,转盘(B)指针所对得区域为y,x、y∈{1,2,3},设x+y得值为ξ.(Ⅰ)求x<2且y>1得概率;(Ⅱ)求随机变量ξ得分布列与数学期望.【解答】解:(1)记转盘A指针指向1,2,3区域得事件为A1,A2,A3,同理转盘B指针指向1,2,3区域得事件为B1,B2,B3,∴P(A1)=,P(A2)=,P(A3)=,P(B1)=,P(B2)=,P(B3)=,P=P(A1)P(1﹣P(B1))=×(1﹣)==.…(5分)(2)由已知得ξ得可能取值为2,3,4,5,6,P( ξ=2)=P(A1)P(B1)===,P(ξ=3)=P(A1)P(B2)+P(A2)P(B1)==,P(ξ=4)=P(A1)P(B3)+P(A2)P(B2)+P(A3)P(B1)==,P( ξ=5)=P(A2)P(B3)+P(A3)P(B2)=+=,P(ξ=6)=P(A3)P(B3)==,∴ξ得分布列为:ξ 2 3 4 5 6PEξ==.…(12分)20.(12分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°得直线与椭圆相交于M、N 两点,且线段MN得中点为(﹣1,).过椭圆E内一点P(1,)得两条直线分别与椭圆交于点A、C 与B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应得λ=.(Ⅰ)求椭圆E得方程;(Ⅱ)当λ变化时,k AB就是否为定值?若就是,请求出此定值;若不就是,请说明理由.【解答】解:(Ⅰ)设M(m1,n1)、N(m2,n2),则,两式相减,故a2=3b2…(2分)当直线AP平行于x轴时,设|AC|=2d,∵,,则,解得,故点A(或C)得坐标为.代入椭圆方程,得…4分a2=3,b2=1,所以方程为…(6分)(Ⅱ)设A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4)由于,可得A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),…①同理可得…②…(8分)由①②得:…③将点A、B得坐标代入椭圆方程得,两式相减得(x1+x2)(x1﹣x2)+3(y1+y2)(y1﹣y2)=0,于就是3(y1+y2)k AB=﹣(x1+x2)…④同理可得:3(y3+y4)k CD=﹣(x3+x4),…(10分)于就是3(y3+y4)k AB=﹣(x3+x4)(∵AB∥CD,∴k AB=k CD)所以3λ(y3+y4)k AB=﹣λ(x3+x4)…⑤由④⑤两式相加得到:3[y1+y2+λ(y3+y4)]k AB=﹣[(x1+x2)+λ(x3+x4)]把③代入上式得3(1+λ)k AB=﹣2(1+λ),解得:,当λ变化时,k AB为定值,.…(12分)21.(12分)(2018•衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e2处得切线与直线x﹣2y+e=0平行.(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上就是减函数,求实数a得最小值;(Ⅱ)若函数F(x)=f(x)﹣无零点,求k得取值范围.【解答】解:(Ⅰ) 由,得,解得m=2,故,则,函数g(x)得定义域为(0,1)∪(1,+∞),而,又函数g(x)在(1,+∞)上就是减函数,∴在(1,+∞)上恒成立,∴当x∈(1,+∞)时,得最大值.而,即右边得最大值为,∴,故实数a得最小值;(Ⅱ) 由题可得,且定义域为(0,1)∪(1,+∞),要使函数F(x)无零点,即在(0,1)∪(1,+∞)内无解,亦即在(0,1)∪(1,+∞)内无解.构造函数,则,(1)当k≤0时,h'(x)<0在(0,1)∪(1,+∞)内恒成立,∴函数h(x)在(0,1)内单调递减,在(1,+∞)内也单调递减.又h(1)=0,∴当x∈(0,1)时,h(x)>0,即函数h(x)在(0,1)内无零点,同理,当x∈(1,+∞)时,h(x)<0,即函数h(x)在(1,+∞)内无零点,故k≤0满足条件;(2)当k>0时,.①若0<k<2,则函数h(x)在(0,1)内单调递减,在内也单调递减,在内单调递增.又h(1)=0,∴h(x)在(0,1)内无零点;又,而,故在内有一个零点,∴0<k<2不满足条件;②若k=2,则函数h(x)在(0,1)内单调递减,在(1,+∞)内单调递增.又h(1)=0,∴当x∈(0,1)∪(1,+∞)时,h(x)>0恒成立,故无零点.∴k=2满足条件;③若k>2,则函数h(x)在内单调递减,在内单调递增,在(1,+∞)内也单调递增.又h(1)=0,∴在及(1,+∞)内均无零点.易知,又h(e﹣k)=k×(﹣k)﹣2+2e k=2e k﹣k2﹣2=ϕ(k),则ϕ'(k)=2(e k﹣k)>0,则ϕ(k)在k>2为增函数,∴ϕ(k)>ϕ(2)=2e2﹣6>0.故函数h(x)在内有一零点,k>2不满足.综上:k≤0或k=2.[选修41:几何证明选讲]22.(10分)(2018•衡中模拟)如图所示,AC为⊙O得直径,D为得中点,E为BC得中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:AC•BC=2AD•CD.【解答】证明:(Ⅰ)连接BD,因为D为得中点,所以BD=DC.因为E为BC得中点,所以DE⊥BC.因为AC为圆得直径,所以∠ABC=90°,所以AB∥DE.…(5分)(Ⅱ)因为D为得中点,所以∠BAD=∠DAC,又∠BAD=∠DCB,则∠DAC=∠DCB.又因为AD⊥DC,DE⊥CE,所以△DAC∽△ECD.所以=,AD•CD=AC•CE,2AD•CD=AC•2CE,因此2AD•CD=AC•BC.…(10分)[选修44:坐标系与参数方程]23.(2018•衡中模拟)在平面直角坐标系中,直线l得参数方程为(t为参数),在以直角坐标系得原点O为极点,x轴得正半轴为极轴得极坐标系中,曲线C得极坐标方程为ρ=(1)求曲线C得直角坐标方程与直线l得普通方程;(2)若直线l与曲线C相交于A,B两点,求△AOB得面积.【解答】解:(1)由曲线C得极坐标方程为ρ=得ρ2sin2θ=2ρcosθ.∴由曲线C得直角坐标方程就是:y2=2x.由直线l得参数方程为(t为参数),得t=3+y代入x=1+t中消去t得:x﹣y﹣4=0,所以直线l得普通方程为:x﹣y﹣4=0…(5分)(2)将直线l得参数方程代入曲线C得普通方程y2=2x,得t2﹣8t+7=0,设A,B两点对应得参数分别为t1,t2,所以|AB|===,因为原点到直线x﹣y﹣4=0得距离d=,所以△AOB得面积就是|AB|d==12.…(10分)[选修45:不等式选讲]24.(2018•衡中模拟)已知函数f(x)=|x﹣l|+|x﹣3|.(I)解不等式f(x)≤6;(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,求实数a得取值范围.【解答】解:函数f(x)=|x﹣l|+|x﹣3|= 得图象如图所示,(I)不等式f(x)≤6,即①或②,或③.解①求得x∈∅,解②求得3<x≤5,解③求得﹣1≤x≤3.综上可得,原不等式得解集为[﹣1,5].(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,则函数f(x)得图象不能在y=ax﹣1得图象得下方.如图所示:由于图中两题射线得斜率分别为﹣2,2,点B(3,2), ∴3a﹣1≤2,且a≥﹣2,求得﹣2≤a≤1.。

河北省衡水中学2018届高三高考押题(二)理数试题

河北省衡水中学2018届高三高考押题(二)理数试题

河北衡水中学2018年高考押题试卷理数试卷(二)第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|60,}A x x x x Z =--<∈,{|||,,}B z z x y x A y A ==-∈∈,则集合A B =( ) A .{0,1} B .{0,1,2} C .{0,1,2,3} D .{1,0,1,2}-2.设复数z 满足121z i i +=-+,则1||z=( )A .15 C .5 D .25 3.若1cos()43πα+=,(0,)2πα∈,则sin α的值为( )A.46- B .46+ C.718D .3 4.已知直角坐标原点O 为椭圆:C 22221(0)x y a b a b+=>>的中心,1F ,2F 为左、右焦点,在区间(0,2)任取一个数e ,则事件“以e 为离心率的椭圆C 与圆O :2222x y a b +=-没有交点”的概率为( )A.4 B .44 C.2 D .225.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90︒的正角.已知双曲线E :22221(0,0)x y a b a b-=>>,当其离心率2]e ∈时,对应双曲线的渐近线的夹角的取值范围为( ) A .[0,]6π B .[,]63ππ C.[,]43ππ D .[,]32ππ6.某几何体的三视图如图所示,若该几何体的体积为32π+,则它的表面积是( )A.3)2π+ B .3)22π++C.2+ D .4+7.函数sin ln ||y x x =+在区间[3,3]-的图象大致为( )A .B .C .D .8.二项式1()(0,0)n ax a b bx+>>的展开式中只有第6项的二项式系数最大,且展开式中的第3项的系数是第4项的系数的3倍,则ab 的值为( )A .4B .8 C.12 D .169.执行下图的程序框图,若输入的0x =,1y =,1n =,则输出的p 的值为( )A.81 B .812 C.814 D .81810.已知数列11a =,22a =,且222(1)n n n a a +-=--,*n N ∈,则2017S 的值为( )A .201610101⨯-B .10092017⨯ C.201710101⨯- D .10092016⨯11.已知函数()sin()f x A x ωϕ=+(0,0,||)2A πωϕ>><的图象如图所示,令()()'()g x f x f x =+,则下列关于函数()g x 的说法中不正确的是( )A. 函数()g x 图象的对称轴方程为()12x k k Z ππ=-∈ B .函数()g x的最大值为C. 函数()g x 的图象上存在点P ,使得在P 点处的切线与直线:31l y x =-平行D .方程()2g x =的两个不同的解分别为1x ,2x ,则12||x x -最小值为2π 12.已知函数32()31f x ax x =-+,若()f x 存在三个零点,则a 的取值范围是( )A .(,2)-∞-B .(2,2)- C.(2,)+∞ D .(2,0)(0,2)-第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分13.向量(,)a m n =,(1,2)b =-,若向量a ,b 共线,且||2||a b =,则mn 的值为 .14.设点M 是椭圆22221(0)x y a b a b+=>>上的点,以点M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M 与y 轴相交于不同的两点P 、Q ,若PMQ ∆为锐角三角形,则椭圆的离心率的取值范围为 .15.设x ,y 满足约束条件230,220,220,x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩则y x 的取值范围为 .16.在平面五边形ABCDE 中,已知120A ∠=︒,90B ∠=︒,120C ∠=︒,90E ∠=︒,3AB =,3AE =,当五边形ABCDE的面积S ∈时,则BC 的取值范围为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 的前n 项和为n S ,112a =,121n n S S -=+*(2,)n n N ≥∈. (1)求数列{}n a 的通项公式;(2)记12log n n b a =*()n N ∈求11{}n n b b +的前n 项和n T . 18.如图所示的几何体ABCDEF 中,底面ABCD 为菱形,2AB a =,120ABC ∠=︒,AC 与BD 相交于O 点,四边形BDEF 为直角梯形,//DE BF ,BD DE ⊥,2DE BF ==,平面BDEF ⊥底面ABCD .(1)证明:平面AEF ⊥平面AFC ;(2)求二面角E AC F --的余弦值.19.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A 、B 、C 、D 、E 五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:(1)试估算该校高三年级学生获得成绩为B 的人数;(2)若等级A 、B 、C 、D 、E 分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?(3)为了解心理健康状态稳定学生的特点,现从A 、B 两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为A 级的个数ξ的分布列与数学期望.20. 已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,且过点22P ,动直线l :y kx m -+交椭圆C 于不同的两点A ,B ,且0OA OB ⋅=(O 为坐标原点)(1)求椭圆C 的方程.(2)讨论2232m k -是否为定值?若为定值,求出该定值,若不是请说明理由.21. 设函数22()ln f x a x x ax =-+-()a R ∈.(1)试讨论函数()f x 的单调性;(2)设2()2()ln x x a a x ϕ=+-,记()()()h x f x x ϕ=+,当0a >时,若方程()()h x m m R =∈有两个不相等的实根1x ,2x ,证明12'()02x x h +>. 请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C :3cos ,2sin x t y tαα=+⎧⎨=+⎩(t 为参数,0a >),在以坐标原点为极点,x 轴的非负半轴为极轴的极坐标系中,曲线2C :4sin ρθ=.(1)试将曲线1C 与2C 化为直角坐标系xOy 中的普通方程,并指出两曲线有公共点时a 的取值范围;(2)当3a =时,两曲线相交于A ,B 两点,求||AB .23. 选修4-5:不等式选讲.已知函数()|21||1|f x x x =-++.(1)在下面给出的直角坐标系中作出函数()y f x =的图象,并由图象找出满足不等式()3f x ≤的解集;(2)若函数()y f x =的最小值记为m ,设,a b R ∈,且有22a b m +=,试证明:221418117a b +≥++. 参考答案及解析理科数学(Ⅱ)一、选择题1-5:BCAAD 6-10:AABCC 11、12:CD二、填空题13.-8 14.122e << 15.27[,]5416. 三、解答题17.解:(1)当2n =时,由121n n S S -=+及112a =, 得2121S S =+,即121221a a a +=+,解得214a =. 又由121n n S S -=+,①可知121n n S S +=+,②②-①得12n n a a +=,即11(2)2n n a n a +=≥. 且1n =时,2112a a =适合上式,因此数列{}n a 是以12为首项,12为公比的等比数列,故12n n a =*()n N ∈ (2)由(1)及12log n n b a =*()n N ∈, 可知121log ()2nn b n ==, 所以11111(1)1n n b b n n n n +==-++, 故2231111n n n n T b b b b b b +=+++=11111[(1)()()]2231n n -+-++-=+1111n n n -=++. 18.解:(1)因为底面ABCD 为菱形,所以AC BD ⊥,又平面BDEF ⊥底面ABCD ,平面BDEF平面ABCD BD =,因此AC ⊥平面BDEF ,从而AC EF ⊥.又BD DE ⊥,所以DE ⊥平面ABCD ,由2AB a =,2DEBF ==,120ABC ∠=︒,可知AF=,2BD a =,EF ==,AE ==,从而222AF FE AE +=,故EF AF ⊥.又AF AC A =,所以EF ⊥平面AFC .又EF ⊂平面AEF ,所以平面AEF ⊥平面AFC .(2)取EF 中点G ,由题可知//OG DE ,所以OG ⊥平面ABCD ,又在菱形ABCD 中,OA OB ⊥,所以分别以OA ,OB ,OG 的方向为x ,y ,z 轴正方向建立空间直角坐标系O xyz -(如图示), 则(0,0,0)O,,0,0)A,(,0,0)C,(0,,)E a -,(0,)F a ,所以(0,,),0,0)AE a =--=(,,)a -,(,0,0),0,0)AC =-=(,0,0)-,(0,)(0,,)EF a a =--(0,2,)a =. 由(1)可知EF ⊥平面AFC ,所以平面AFC的法向量可取为(0,2,)EF a =.设平面AEC 的法向量为(,,)n x y z =,则0,0,n AE n AC ⎧⋅=⎪⎨⋅=⎪⎩即0,0,y x ⎧-+=⎪⎨=⎪⎩即,0,y x ⎧=⎪⎨=⎪⎩令z =,得4y =,所以(0,n =.从而cos ,n EF <>=3||||63n EF n EF⋅==⋅. 故所求的二面角E AC F --的余弦值为3.19.解:(1)从条形图中可知这100人中,有56名学生成绩等级为B ,所以可以估计该校学生获得成绩等级为B 的概率为561410025=, 则该校高三年级学生获得成绩为B 的人数约有1480044825⨯=.(2)这100名学生成绩的平均分为1(321005690780370260)100⨯+⨯+⨯+⨯+⨯91.3=, 因为91.390>,所以该校高三年级目前学生的“考前心理稳定整体”已过关.(3)由题可知用分层抽样的方法抽取11个学生样本,其中A 级4个,B 级7个,从而任意选取3个,这3个为A 级的个数ξ的可能值为0,1,2,3. 则03473117(0)33C C P C ξ===,124731128(1)55C C P C ξ===, 214731114(2)55C C P C ξ===,30473114(3)165C C P C ξ===. 因此可得ξ的分布列为:则728144()0123335555165E ξ=⨯+⨯+⨯+⨯1211=. 20.解:(1)由题意可知2c a =,所以222222()a c a b ==-,即222a b =,①又点,22P 在椭圆上,所以有2223144a b+=,② 由①②联立,解得21b =,22a =, 故所求的椭圆方程为2212x y +=. (2)设1122(,),(,)A x y B x y ,由0OA OB ⋅=,可知12120x x y y +=. 联立方程组22,1,2y kx m x y =+⎧⎪⎨+=⎪⎩ 消去y 化简整理得222(12)4220k x kmx m +++-=, 由2222168(1)(12)0k m m k ∆=--+>,得2212k m +>,所以122412km x x k +=-+,21222212m x x k -=+,③又由题知12120x x y y +=,即1212()()0x x kx m kx m +++=,整理为221212(1)()0k x x km x x m ++++=. 将③代入上式,得22222224(1)01212m km k km m k k -+-⋅+=++. 化简整理得222322012m k k--=+,从而得到22322m k -=. 21. 解:(1)由22()ln f x a x x ax =-+-,可知2'()2a f x x a x =-+-=222(2)()x ax a x a x a x x --+-=. 因为函数()f x 的定义域为(0,)+∞,所以,①若0a >时,当(0,)x a ∈时,'()0f x <,函数()f x 单调递减,当(,)x a ∈+∞时,'()0f x >,函数()f x 单调递增;②若0a =时,当'()20f x x =>在(0,)x ∈+∞内恒成立,函数()f x 单调递增;③若0a <时,当(0,)2a x ∈-时,'()0f x <,函数()f x 单调递减,当(,)2a x ∈-+∞时,'()0f x >,函数()f x 单调递增.(2)证明:由题可知()()()h x f x x ϕ=+=2(2)ln x a x a x +--(0)x >, 所以'()2(2)a h x x a x=+--=22(2)(2)(1)x a x a x a x x x +---+=. 所以当(0,)2a x ∈时,'()0h x <;当(,)2a x ∈+∞时,'()0h x >;当2a x =时,'()02a h =. 欲证12'()02x x h +>,只需证12'()'()22x x a h h +>,又2'()20a h x x=+>,即'()h x 单调递增,故只需证明1222x x a +>. 设1x ,2x 是方程()h x m =的两个不相等的实根,不妨设为120x x <<,则21112222(2)ln ,(2)ln ,x a x a x m x a x a x m ⎧+--=⎨+--=⎩ 两式相减并整理得1212(ln ln )a x x x x -+-=22121222x x x x -+-,从而221212121222ln ln x x x x a x x x x -+-=-+-, 故只需证明2212121212122222(ln ln )x x x x x x x x x x +-+->-+-, 即22121212121222ln ln x x x x x x x x x x -+-+=-+-. 因为1212ln ln 0x x x x -+-<,所以(*)式可化为12121222ln ln x x x x x x --<+, 即11212222ln 1x x x x x x -<+. 因为120x x <<,所以1201x x <<, 不妨令12x t x =,所以得到22ln 1t t t -<+,(0,1)t ∈. 记22()ln 1t R t t t -=-+,(0,1)t ∈,所以22214(1)'()0(1)(1)t R t t t t t -=-=≥++,当且仅当1t =时,等号成立,因此()R t 在(0,1)单调递增.又(1)0R =,因此()0R t <,(0,1)t ∈, 故22ln 1t t t -<+,(0,1)t ∈得证, 从而12'()02x x h +>得证. 22.解:(1)曲线1C :3cos ,2sin ,x t y t αα=+⎧⎨=+⎩消去参数t 可得普通方程为222(3)(2)x y a -+-=. 曲线2C :4sin ρθ=,两边同乘ρ.可得普通方程为22(2)4x y +-=.把22(2)4y x -=-代入曲线1C 的普通方程得:222(3)4136a x x x =-+-=-,而对2C 有222(2)4x x y ≤+-=,即22x -≤≤,所以2125a ≤≤故当两曲线有公共点时,a 的取值范围为[1,5].(2)当3a =时,曲线1C :22(3)(2)9x y -+-=, 两曲线交点A ,B 所在直线方程为23x =. 曲线22(2)4x y +-=的圆心到直线23x =的距离为23d =,所以||3AB ==. 23. 解:(1)因为()|21||1|f x x x =-++=3,1,12,1,213,.2x x x x x x ⎧⎪-<-⎪⎪-+-≤≤⎨⎪⎪>⎪⎩ 所以作出图象如图所示,并从图可知满足不等式()3f x ≤的解集为[1,1]-.(2)证明:由图可知函数()y f x =的最小值为32,即32m =. 所以2232a b +=,从而227112a b +++=, 从而221411a b +=++2222214[(1)(1)]()71a b a a b ++++=++2222214(1)[5()]711b a a b ++++≥++218[577+=.当且仅当222214(1)11b a a b ++=++时,等号成立, 即216a =,243b =时,有最小值, 所以221418117a b +≥++得证.领红包:支付宝首页搜索“528697796”即可领取支付宝红包哟领下面余额宝红包才是大红包,一般都是5-20元?支付的时候把支付方式转为余额宝就行呢? 每天都可以领取哟! 记不住领红包的号码 可以截个图保存到手机相册。

河北省衡水中学2018年高考押题(三)理科数学 (PDF)理数(三)试卷

河北省衡水中学2018年高考押题(三)理科数学 (PDF)理数(三)试卷
2 2x
3 , ] 时,不等式 2 2
18.如图所示,四棱锥 A BCDE ,已知平面 BCDE 平面 ABC , BE EC , BC 6 ,
AB 4 3 , ABC 30 .
C. (0,
) 3
D. (
, ) 3 3
) D. 2e 0 ln x0 0 (1)求证: AC BE ; (2)若二面角 B AC E 为 45 ,求直线 AB 与平面 ACE 所成角的正弦值. 19.某中学为了解高一年级学生身高发育情况,对全校 700 名高一年级学生按性别进行分层抽样检查,测得 身高(单位: cm )频数分布表如表 1、表 2. . 表 1:男生身高频数分布表
x
ln x 0 的实根,则关于实数 x0 的判断正确的是(
B. x0
1 e
C. 2 x0 ln x0 0
第Ⅱ卷 本卷包括必考题和选考题两部分,第 13 题~第 21 题为必考题,每个试题考生都必须作答.第 22 题和第 23 题为选考题,考生根据要求作答. 二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.
11.若定义在 R 上的可导函数 f ( x ) 满足 f (1) 1 ,且 2 f '( x) 1 ,则当 x [
3 x ) 2sin 2 的解集为( 2 2 4 4 A. ( , B. ( , ) ) 3 3 3 3 f (2 cos x )
12.已知 x0 是方程 2 x e A. x0 ln 2
x2 y2 15.已知双曲线 2 2 1( a 0, b 0) 的左、右顶点分别为 A , B 两点,点 C (0, 2b) ,若线段 AC 的垂 a b
直平分线过点 B ,则双曲线的离心率为 16.已知下列命题: ①命题“ x R , x 3 5 x ”的否定是“ x R , x 3 5 x ”; ②已知 p , q 为两个命题,若“ p q ”为假命题,则“ (p) (q) 为真命题”; ③“ a 2015 ”是“ a 2017 ”的充分不必要条件; ④“若 xy 0 ,则 x 0 且 y 0 ”的逆否命题为真命题 其中,所有真命题的序号是 .

高考数学模拟试卷衡水中学理科

高考数学模拟试卷衡水中学理科

高考数学模拟试卷衡水中学理科IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】2018年衡水中学高考数学全真模拟试卷(理科)第1卷一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2018?衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A∩B=()A.B.(0,1) C.[0,1)D.[0,1]2.(5分)(2018?衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=,则P (3<ξ≤4)=()A.B.C.D.3.(5分)(2018?衡中模拟)已知复数z=(i为虚数单位),则3=()A.1 B.﹣1 C.D.4.(5分)(2018?衡中模拟)过双曲线﹣=1(a>0,b>0)的一个焦点F作两渐近线的垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x5.(5分)(2018?衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为()A.B.2 C.D.16.(5分)(2018?衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是()A.2 B.3 C.4 D.57.(5分)(2018?衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}的前8项和为()A.B.C.D.8.(5分)(2018?衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=()A.45 B.180 C.﹣180 D.7209.(5分)(2018?衡中模拟)如图为三棱锥S﹣ABC的三视图,其表面积为()A.16 B.8+6 C.16D.16+610.(5分)(2018?衡中模拟)已知椭圆E:+=1(a>b>0)的左焦点F(﹣3,0),P为椭圆上一动点,椭圆内部点M(﹣1,3)满足PF+PM的最大值为17,则椭圆的离心率为()A.B.C.D.11.(5分)(2018?衡中模拟)已知f(x)=,若函数y=f(x)﹣kx恒有一个零点,则k的取值范围为()A.k≤0 B.k≤0或k≥1 C.k≤0或k≥e D.k≤0或k≥12.(5分)(2018?衡中模拟)已知数列{a n}的通项公式为a n=﹣2n+p,数列{b n}的通项公式为b n=2n﹣4,设c n=,若在数列{c n}中c6<c n(n∈N*,n≠6),则p的取值范围()A.(11,25)B.(12,22)C.(12,17)D.(14,20)第2卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.(5分)(2018?衡中模拟)若平面向量、满足||=2||=2,|﹣|=,则在上的投影为.14.(5分)(2018?衡中模拟)若数列{a n}满足a1=a2=1,a n+2=,则数列{a n}前2n项和S2n=.15.(5分)(2018?衡中模拟)若直线ax+(a﹣2)y+4﹣a=0把区域分成面积相等的两部分,则的最大值为.16.(5分)(2018?衡中模拟)已知函数f(x)=(a+1)lnx+x2(a<﹣1)对任意的x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,则a的取值范围为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2018?衡中模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0(1)求C的大小;(2)求a2+b2的最大值,并求取得最大值时角A,B的值.18.(12分)(2018?衡中模拟)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N是线段CD上一动点,且=λ,当直线MN与平面PAB所成的角最大时,求λ的值.19.(12分)(2018?衡中模拟)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对的区域为x,转盘(B)指针所对的区域为y,x、y∈{1,2,3},设x+y的值为ξ.(Ⅰ)求x<2且y>1的概率;(Ⅱ)求随机变量ξ的分布列与数学期望.20.(12分)(2018?衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°的直线与椭圆相交于M、N两点,且线段MN的中点为(﹣1,).过椭圆E 内一点P(1,)的两条直线分别与椭圆交于点A、C和B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应的λ=.(Ⅰ)求椭圆E的方程;(Ⅱ)当λ变化时,k AB是否为定值?若是,请求出此定值;若不是,请说明理由.21.(12分)(2018?衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e2处的切线与直线x﹣2y+e=0平行.(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若函数F(x)=f(x)﹣无零点,求k的取值范围.[选修4-1:几何证明选讲]22.(10分)(2018?衡中模拟)如图所示,AC为⊙O的直径,D为的中点,E 为BC的中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:ACBC=2ADCD.[选修4-4:坐标系与参数方程]23.(2018?衡中模拟)在平面直角坐标系中,直线l的参数方程为(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若直线l与曲线C相交于A,B两点,求△AOB的面积.[选修4-5:不等式选讲]24.(2018?衡中模拟)已知函数f(x)=|x﹣l|+|x﹣3|.(I)解不等式f(x)≤6;(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,求实数a的取值范围.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2018?衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A∩B=()A.B.(0,1) C.[0,1)D.[0,1]【解答】解:A={x|x2<1}={x|﹣1<x<1},B={y|y=|x|≥0},则A∩B=[0,1),故选:C.2.(5分)(2018?衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=,则P (3<ξ≤4)=()A.B.C.D.【解答】解:∵随机变量X服从正态分布N(3,σ2),∴μ=3,得对称轴是x=3.∵P(ξ>4)=∴P(3<ξ≤4)=﹣=.故选:C3.(5分)(2018?衡中模拟)已知复数z=(i为虚数单位),则3=()A.1 B.﹣1 C.D.【解答】解:复数z=,可得=﹣=cos+isin.则3=cos4π+isin4π=1.故选:A.4.(5分)(2018?衡中模拟)过双曲线﹣=1(a>0,b>0)的一个焦点F作两渐近线的垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x【解答】解:如图若∠PFQ=π,则由对称性得∠QFO=,则∠QOx=,即OQ的斜率k==tan=,则双曲线渐近线的方程为y=±x,故选:B5.(5分)(2018?衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为()A.B.2 C.D.1【解答】解:∵2πr1=,∴r1=,同理,∴r1+r2+r3=1,故选:D.6.(5分)(2018?衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是()A.2 B.3 C.4 D.5【解答】解:第一次循环,sin>sin0,即1>0成立,a=1,T=1,k=2,k<6成立,第二次循环,sinπ>sin,即0>1不成立,a=0,T=1,k=3,k<6成立,第三次循环,sin>sinπ,即﹣1>0不成立,a=0,T=1,k=4,k<6成立,第四次循环,sin2π>sin,即0>﹣1成立,a=1,T=1+1=2,k=5,k<6成立,第五次循环,sin>sin2π,即1>0成立,a=1,T=2+1=3,k=6,k<6不成立,输出T=3,故选:B7.(5分)(2018?衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}的前8项和为()A.B.C.D.【解答】解:设等差数列{a n}的公差为d,a3=7,a5=11,∴,解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1,∴,∴b8=(1﹣+﹣+…+﹣)=(1﹣)=故选B.8.(5分)(2018?衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=()A.45 B.180 C.﹣180 D.720【解答】解:(x﹣3)10=[(x+1)﹣4]10,∴,故选:D.9.(5分)(2018?衡中模拟)如图为三棱锥S﹣ABC的三视图,其表面积为()A.16 B.8+6 C.16D.16+6【解答】解:由三视图可知该三棱锥为边长为2,4,4的长方体切去四个小棱锥得到的几何体.三棱锥的三条边长分别为,∴表面积为4×=16.故选:C.10.(5分)(2018?衡中模拟)已知椭圆E:+=1(a>b>0)的左焦点F(﹣3,0),P为椭圆上一动点,椭圆内部点M(﹣1,3)满足PF+PM的最大值为17,则椭圆的离心率为()A.B.C.D.【解答】解:设右焦点为Q,由F(﹣3,0),可得Q(3,0),由椭圆的定义可得|PF|+|PQ|=2a,即|PF|=2a﹣|PQ|,则|PM|+|PF|=2a+(|PM|﹣|PQ|)≤2a+|MQ|,当P,M,Q共线时,取得等号,即最大值2a+|MQ|,由|MQ|==5,可得2a+5=17,所以a=6,则e===,故选:A.11.(5分)(2018?衡中模拟)已知f(x)=,若函数y=f(x)﹣kx恒有一个零点,则k的取值范围为()A.k≤0 B.k≤0或k≥1 C.k≤0或k≥e D.k≤0或k≥【解答】解:由y=f(x)﹣kx=0得f(x)=kx,作出函数f(x)和y=kx的图象如图,由图象知当k≤0时,函数f(x)和y=kx恒有一个交点,当x≥0时,函数f(x)=ln(x+1)的导数f′(x)=,则f′(0)=1,当x<0时,函数f(x)=e x﹣1的导数f′(x)=e x,则f′(0)=e0=1,即当k=1时,y=x是函数f(x)的切线,则当0<k<1时,函数f(x)和y=kx有3个交点,不满足条件.当k≥1时,函数f(x)和y=kx有1个交点,满足条件.综上k的取值范围为k≤0或k≥1,故选:B.12.(5分)(2018?衡中模拟)已知数列{a n}的通项公式为a n=﹣2n+p,数列{b n}的通项公式为b n=2n﹣4,设c n=,若在数列{c n}中c6<c n(n∈N*,n≠6),则p的取值范围()A.(11,25)B.(12,22)C.(12,17)D.(14,20)【解答】解:∵a n﹣b n=﹣2n+p﹣2n﹣4,∴a n﹣b n随着n变大而变小,又∵a n=﹣2n+p随着n变大而变小,b n=2n﹣4随着n变大而变大,∴,(1)当(2)当,综上p∈(14,20),故选D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.(5分)(2018?衡中模拟)若平面向量、满足||=2||=2,|﹣|=,则在上的投影为﹣1.【解答】解:根据条件,==7;∴;∴在上的投影为.故答案为:﹣1.14.(5分)(2018?衡中模拟)若数列{a n}满足a1=a2=1,a n+2=,则数列{a n}前2n项和S2n=2n+n2﹣1.【解答】解:∵数列{a n}满足a1=a2=1,a n+2=,∴n=2k﹣1时,a2k+1﹣a2k﹣1=2,为等差数列;n=2k时,a2k+2=2a2k,为等比数列.∴.故答案为:2n+n2﹣1.15.(5分)(2018?衡中模拟)若直线ax+(a﹣2)y+4﹣a=0把区域分成面积相等的两部分,则的最大值为2.【解答】解:由ax+(a﹣2)y+4﹣a=0得a(x+y﹣1)+4﹣2y=0,则得,即直线恒过C(﹣1,2),若将区域分成面积相等的两部分,则直线过AB的中点D,由得,即A(1,6),∵B(3,0),∴中点D(2,3),代入a(x+y﹣1)+4﹣2y=0,得4a﹣2=0,则,则的几何意义是区域内的点到点(﹣2,0)的斜率,由图象过AC的斜率最大,此时最大值为2.故答案为:2.16.(5分)(2018?衡中模拟)已知函数f(x)=(a+1)lnx+x2(a<﹣1)对任意的x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,则a的取值范围为(﹣∞,﹣2].【解答】解:由f′(x)=+x,得f′(1)=3a+1,所以f(x)=(a+1)lnx+ax2,(a<﹣1)在(0,+∞)单调递减,不妨设0<x1<x2,则f(x1)﹣f(x2)≥4x2﹣4x1,即f(x1)+4x1≥f(x2)+4x2,令F(x)=f(x)+4x,F′(x)=f′(x)+4=+2ax+4,等价于F(x)在(0,+∞)上单调递减,故F'(x)≤0恒成立,即+2ax+4≤0,所以恒成立,得a≤﹣2.故答案为:(﹣∞,﹣2].三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2018?衡中模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0(1)求C的大小;(2)求a2+b2的最大值,并求取得最大值时角A,B的值.【解答】解:(1)cosBsinC+(a﹣sinB)cos(A+B)=0可得:cosBsinC﹣(a﹣sinB)cosC=0即:sinA﹣acosC=0.由正弦定理可知:,∴,c=1,∴asinC﹣acosC=0,sinC﹣cosC=0,可得sin(C﹣)=0,C是三角形内角,∴C=.(2)由余弦定理可知:c2=a2+b2﹣2abcosC,得1=a2+b2﹣ab又,∴,即:.当时,a2+b2取到最大值为2+.18.(12分)(2018?衡中模拟)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N是线段CD上一动点,且=λ,当直线MN与平面PAB所成的角最大时,求λ的值.【解答】证明:(1)取PC的中点E,则连接DE,∵ME是△PBC的中位线,∴ME,又AD,∴ME AD,∴四边形AMED是平行四边形,∴AM∥DE.∵PA=AB,M是PB的中点,∴AM⊥PB,∵PA⊥平面ABCD,BC平面ABCD,∴PA⊥BC,又BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,∵AM平面PAB,∴BC⊥AM,又PB平面PBC,BC平面PBC,PB∩BC=B,∴AM⊥平面PBC,∵AM∥DE,∴DE⊥平面PBC,又DE平面PCD,∴平面PBC⊥平面PCD.(2)以A为原点,以AD,AB,AP为坐标轴建立空间直角坐标系,如图所示:则A(0,0,0),B(0,2,0),M(0,1,1),P(0,0,2),C(2,2,0),D(1,0,0).∴=(1,2,0),=(0,1,1),=(1,0,0),∴=λ=(λ,2λ,0),=(λ+1,2λ,0),==(λ+1,2λ﹣1,﹣1).∵AD⊥平面PAB,∴为平面PAB的一个法向量,∴cos<>=====设MN与平面PAB所成的角为θ,则sinθ=.∴当即时,sinθ取得最大值,∴MN与平面PAB所成的角最大时.19.(12分)(2018?衡中模拟)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对的区域为x,转盘(B)指针所对的区域为y,x、y∈{1,2,3},设x+y的值为ξ.(Ⅰ)求x<2且y>1的概率;(Ⅱ)求随机变量ξ的分布列与数学期望.【解答】解:(1)记转盘A指针指向1,2,3区域的事件为A1,A2,A3,同理转盘B指针指向1,2,3区域的事件为B1,B2,B3,∴P(A1)=,P(A2)=,P(A3)=,P(B1)=,P(B2)=,P(B3)=,P=P(A1)P(1﹣P(B1))=×(1﹣)==.…(5分)(2)由已知得ξ的可能取值为2,3,4,5,6,P(ξ=2)=P(A1)P(B1)===,P(ξ=3)=P(A1)P(B2)+P(A2)P(B1)==,P(ξ=4)=P(A1)P(B3)+P(A2)P(B2)+P(A3)P(B1)==,P(ξ=5)=P(A2)P(B3)+P(A3)P(B2)=+=,P(ξ=6)=P(A3)P(B3)==,∴ξ的分布列为:ξ 2 3 4 5 6PEξ==.…(12分)20.(12分)(2018?衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°的直线与椭圆相交于M、N两点,且线段MN的中点为(﹣1,).过椭圆E 内一点P(1,)的两条直线分别与椭圆交于点A、C和B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应的λ=.(Ⅰ)求椭圆E的方程;(Ⅱ)当λ变化时,k AB是否为定值?若是,请求出此定值;若不是,请说明理由.【解答】解:(Ⅰ)设M(m1,n1)、N(m2,n2),则,两式相减,故a2=3b2…(2分)当直线AP平行于x轴时,设|AC|=2d,∵,,则,解得,故点A(或C)的坐标为.代入椭圆方程,得…4分a2=3,b2=1,所以方程为…(6分)(Ⅱ)设A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4)由于,可得A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),…①同理可得…②…(8分)由①②得:…③将点A、B的坐标代入椭圆方程得,两式相减得(x1+x2)(x1﹣x2)+3(y1+y2)(y1﹣y2)=0,于是3(y1+y2)k AB=﹣(x1+x2)…④同理可得:3(y3+y4)k CD=﹣(x3+x4),…(10分)于是3(y3+y4)k AB=﹣(x3+x4)(∵AB∥CD,∴k AB=k CD)所以3λ(y3+y4)k AB=﹣λ(x3+x4)…⑤由④⑤两式相加得到:3[y1+y2+λ(y3+y4)]k AB=﹣[(x1+x2)+λ(x3+x4)]把③代入上式得3(1+λ)k AB=﹣2(1+λ),解得:,当λ变化时,k AB为定值,.…(12分)21.(12分)(2018?衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e2处的切线与直线x﹣2y+e=0平行.(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若函数F(x)=f(x)﹣无零点,求k的取值范围.【解答】解:(Ⅰ)由,得,解得m=2,故,则,函数g(x)的定义域为(0,1)∪(1,+∞),而,又函数g(x)在(1,+∞)上是减函数,∴在(1,+∞)上恒成立,∴当x∈(1,+∞)时,的最大值.而,即右边的最大值为,∴,故实数a的最小值;(Ⅱ)由题可得,且定义域为(0,1)∪(1,+∞),要使函数F(x)无零点,即在(0,1)∪(1,+∞)内无解,亦即在(0,1)∪(1,+∞)内无解.构造函数,则,(1)当k≤0时,h'(x)<0在(0,1)∪(1,+∞)内恒成立,∴函数h(x)在(0,1)内单调递减,在(1,+∞)内也单调递减.又h(1)=0,∴当x∈(0,1)时,h(x)>0,即函数h(x)在(0,1)内无零点,同理,当x∈(1,+∞)时,h(x)<0,即函数h(x)在(1,+∞)内无零点,故k≤0满足条件;(2)当k>0时,.①若0<k<2,则函数h(x)在(0,1)内单调递减,在内也单调递减,在内单调递增.又h(1)=0,∴h(x)在(0,1)内无零点;又,而,故在内有一个零点,∴0<k<2不满足条件;②若k=2,则函数h(x)在(0,1)内单调递减,在(1,+∞)内单调递增.又h(1)=0,∴当x∈(0,1)∪(1,+∞)时,h(x)>0恒成立,故无零点.∴k=2满足条件;③若k>2,则函数h(x)在内单调递减,在内单调递增,在(1,+∞)内也单调递增.又h(1)=0,∴在及(1,+∞)内均无零点.易知,又h(e﹣k)=k×(﹣k)﹣2+2e k=2e k﹣k2﹣2=(k),则'(k)=2(e k﹣k)>0,则(k)在k>2为增函数,∴(k)>(2)=2e2﹣6>0.故函数h(x)在内有一零点,k>2不满足.综上:k≤0或k=2.[选修4-1:几何证明选讲]22.(10分)(2018?衡中模拟)如图所示,AC为⊙O的直径,D为的中点,E 为BC的中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:ACBC=2ADCD.【解答】证明:(Ⅰ)连接BD,因为D为的中点,所以BD=DC.因为E为BC的中点,所以DE⊥BC.因为AC为圆的直径,所以∠ABC=90°,所以AB∥DE.…(5分)(Ⅱ)因为D为的中点,所以∠BAD=∠DAC,又∠BAD=∠DCB,则∠DAC=∠DCB.又因为AD⊥DC,DE⊥CE,所以△DAC∽△ECD.所以=,ADCD=ACCE,2ADCD=AC2CE,因此2ADCD=ACBC.…(10分)[选修4-4:坐标系与参数方程]23.(2018?衡中模拟)在平面直角坐标系中,直线l的参数方程为(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若直线l与曲线C相交于A,B两点,求△AOB的面积.【解答】解:(1)由曲线C的极坐标方程为ρ=得ρ2sin2θ=2ρcosθ.∴由曲线C的直角坐标方程是:y2=2x.由直线l的参数方程为(t为参数),得t=3+y代入x=1+t中消去t得:x﹣y ﹣4=0,所以直线l的普通方程为:x﹣y﹣4=0…(5分)(2)将直线l的参数方程代入曲线C的普通方程y2=2x,得t2﹣8t+7=0,设A,B两点对应的参数分别为t1,t2,所以|AB|===,因为原点到直线x﹣y﹣4=0的距离d=,所以△AOB的面积是|AB|d==12.…(10分)[选修4-5:不等式选讲]24.(2018?衡中模拟)已知函数f(x)=|x﹣l|+|x﹣3|.(I)解不等式f(x)≤6;(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,求实数a的取值范围.【解答】解:函数f(x)=|x﹣l|+|x﹣3|=的图象如图所示,(I)不等式f(x)≤6,即①或②,或③.解①求得x∈,解②求得3<x≤5,解③求得﹣1≤x≤3.综上可得,原不等式的解集为[﹣1,5].(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,则函数f(x)的图象不能在y=ax﹣1的图象的下方.如图所示:由于图中两题射线的斜率分别为﹣2,2,点B(3,2),∴3a﹣1≤2,且a≥﹣2,求得﹣2≤a≤1.。

河北省衡水中学2018年高考押题(二)理科数学(含答案)

河北省衡水中学2018年高考押题(二)理科数学(含答案)

河北衡水中学2018年高考押题试卷理数试卷(二)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|60,}A x x x x Z =--<∈,{|,,}B z z x y x A y A ==-∈∈,则AB =( ) A .{0,1} B .{0,1,2}C .{0,1,2,3}D .{1,0,1,2}-2.设复数z 满足121z i i +=-+,则1||z=( ) A .5 B .15 C .55 D .525 3.若1cos()43πα+=,(0,)2πα∈,则sin α的值为( ) A .426- B .426+ C .718D .23 4.已知直角坐标原点O 为椭圆C :22221(0)x y a b a b+=>>的中心,1F ,2F 为左、右焦点,在区间(0,2)任取一个数e ,则事件“以e 为离心率的椭圆C 与圆O :2222x y a b +=-没有交点”的概率为( ) A .24 B .424- C .22D .222- 5.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90的正角.已知双曲线E :22221(0,0)x y a b a b -=>>,当其离心率[2,2]e ∈时,对应双曲线的渐近线的夹角的取值范围为( ) A .[0,]6π B .[,]63ππ C .[,]43ππ D .[,]32ππ6.某几何体的三视图如图所示,若该几何体的体积为32π+,则它的表面积是( )A .313(3)2222π+++B .3133()22242π+++ C .13222π+ D .13224π+ 7.函数sin ln y x x =+在区间[3,3]-的图象大致为( )A .B .C .D .8.二项式1()(0,0)n ax a b bx+>>的展开式中只有第6项的二项式系数最大,且展开式中的第3项的系数是第4项的系数的3倍,则ab 的值为( )A .4B .8C .12D .169.执行如图的程序框图,若输入的0x =,1y =,1n =,则输出的p 的值为( )A .81B .812C .814D .81810.已知数列11a =,22a =,且222(1)n n n a a +-=--,*n N ∈,则2017S 的值为( )A .201610101⨯-B .10092017⨯C .201710101⨯-D .10092016⨯11.已知函数()sin()f x A x ωϕ=+(0,0,)2A πωϕ>><的图象如图所示,令()()'()g x f x f x =+,则下列关于函数()g x 的说法中不正确的是( )A .函数()g x 图象的对称轴方程为()12x k k Z ππ=-∈ B .函数()g x 的最大值为22C .函数()g x 的图象上存在点P ,使得在P 点处的切线与直线l :31y x =-平行D .方程()2g x =的两个不同的解分别为1x ,2x ,则12x x -最小值为2π 12.已知函数32()31f x ax x =-+,若()f x 存在三个零点,则a 的取值范围是( )A .(,2)-∞-B .(2,2)-C .(2,)+∞D .(2,0)(0,2)-第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13.向量(,)a m n =,(1,2)b =-,若向量a ,b 共线,且2a b =,则mn 的值为 . 14.设点M 是椭圆22221(0)x y a b a b+=>>上的点,以点M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M 与y 轴相交于不同的两点P 、Q ,若PMQ ∆为锐角三角形,则椭圆的离心率的取值范围为 .15.设x ,y 满足约束条件230220220x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则y x 的取值范围为 . 16.在平面五边形ABCDE 中,已知120A ∠=,90B ∠=,120C ∠=,90E ∠=,3AB =,3AE =,当五边形ABCDE 的面积[63,93)S ∈时,则BC 的取值范围为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 的前n 项和为n S ,112a =,*121(2,)n n S S n n N -=+≥∈. (1)求数列{}n a 的通项公式;(2)记*12log ()n n b a n N =∈,求11{}n n b b +的前n 项和n T .18.如图所示的几何体ABCDEF 中,底面ABCD 为菱形,2AB a =,120ABC ∠=,AC 与BD 相交于O 点,四边形BDEF 为直角梯形,//DE BF ,BD DE ⊥,222DE BF a ==,平面BDEF ⊥底面ABCD .(1)证明:平面AEF ⊥平面AFC ;(2)求二面角E AC F --的余弦值.19.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A 、B 、C 、D 、E 五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:(1)试估算该校高三年级学生获得成绩为B 的人数;(2)若等级A 、B 、C 、D 、E 分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?(3)为了解心理健康状态稳定学生的特点,现从A 、B 两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为A 级的个数ξ的分布列与数学期望.20.已知椭圆C :22221(0)x y a b a b+=>>的离心率为22,且过点23(,)22P ,动直线l :y kx m -+交椭圆C 于不同的两点A ,B ,且0OA OB ⋅=(O 为坐标原点).(1)求椭圆C 的方程.(2)讨论2232m k -是否为定值?若为定值,求出该定值,若不是请说明理由.21.设函数22()ln ()f x a x x ax a R =-+-∈.(1)试讨论函数()f x 的单调性;(2)设2()2()ln x x a a x ϕ=+-,记()()()h x f x x ϕ=+,当0a >时,若方程()()h x m m R =∈有两个不相等的实根1x ,2x ,证明12'()02x x h +>. 请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C :3cos 2sin x t y t αα=+⎧⎨=+⎩(t 为参数,0a >),在以坐标原点为极点,x 轴的非负半轴为极轴的极坐标系中,曲线2C :4sin ρθ=.(1)试将曲线1C 与2C 化为直角坐标系xOy 中的普通方程,并指出两曲线有公共点时a 的取值范围;(2)当3a =时,两曲线相交于A ,B 两点,求AB .23.选修4-5:不等式选讲 已知函数()211f x x x =-++.(1)在下面给出的直角坐标系中作出函数()y f x =的图象,并由图象找出满足不等式()3f x ≤的解集;(2)若函数()y f x =的最小值记为m ,设,a b R ∈,且有22a b m +=,试证明:221418117a b +≥++.参考答案及解析理科数学(Ⅱ)一、选择题1-5: BCAAD 6-10: AABCC 11、12:CD二、填空题13. 8- 14. 625122e --<< 15. 27[,]54 16. [3,33) 三、解答题17.解:(1)当2n =时,由121n n S S -=+及112a =, 得2121S S =+,即121221a a a +=+,解得214a =. 又由121n n S S -=+,①可知121n n S S +=+,②②-①得12n n a a +=,即11(2)2n n a n a +=≥. 且1n =时,2112a a =适合上式,因此数列{}n a 是以12为首项,12为公比的等比数列,故*1()2n n a n N =∈. (2)由(1)及*12log ()n n b a n N =∈, 可知121log ()2nn b n ==, 所以11111(1)1n n b b n n n n +==-++, 故2231111n n n n T b b b b b b +=++⋅⋅⋅11111[(1)()()]2231n n =-+-+⋅⋅⋅+-+1111n n n =-=++. 18.解:(1)因为底面ABCD 为菱形,所以AC BD ⊥,又平面BDEF ⊥底面ABCD ,平面BDEF平面ABCD BD =,因此AC ⊥平面BDEF ,从而AC EF ⊥.又BD DE ⊥,所以DE ⊥平面ABCD ,由2AB a =,222DE BF a ==,120ABC ∠=,可知22426AF a a a =+=,2BD a =,22426EF a a a =+=,224823AE a a a =+=,从而222AF FE AE +=,故EF AF ⊥.又AF AC A =,所以EF ⊥平面AFC .又EF ⊂平面AEF ,所以平面AEF ⊥平面AFC .(2)取EF 中点G ,由题可知//OG DE ,所以OG ⊥平面ABCD ,又在菱形ABCD 中,OA OB ⊥,所以分别以OA ,OB ,OG 的方向为x ,y ,z 轴正方向建立空间直角坐标系O xyz -(如图示),则(0,0,0)O ,(3,0,0)A a ,(3,0,0)C a -,(0,,22)E a a -,(0,,2)F a a , 所以(0,,22)(3,0,0)AE a a a =--(3,,22)a a a =--,(3,0,0)(3,0,0)AC a a =--(23,0,0)a =-,(0,,2)(0,,22)EF a a a a =--(0,2,2)a a =-.由(1)可知EF ⊥平面AFC ,所以平面AFC 的法向量可取为(0,2,2)EF a a =-.设平面AEC 的法向量为(,,)n x y z =,则00n AE n AC ⎧⋅=⎪⎨⋅=⎪⎩,即32200x y z x ⎧--+=⎪⎨=⎪⎩,即220y z x ⎧=⎪⎨=⎪⎩,令2z =,得4y =, 所以(0,4,2)n =. 从而cos ,n EFn EF n EF ⋅<>=⋅63363a a==. 故所求的二面角E AC F--的余弦值为33.19.解:(1)从条形图中可知这100人中,有56名学生成绩等级为B ,所以可以估计该校学生获得成绩等级为B 的概率为561410025=,则该校高三年级学生获得成绩为B 的人数约有1480044825⨯=. (2)这100名学生成绩的平均分为1(321005690780100⨯+⨯+⨯370260)91.3+⨯+⨯=, 因为91.390>,所以该校高三年级目前学生的“考前心理稳定整体”已过关.(3)由题可知用分层抽样的方法抽取11个学生样本,其中A 级4个,B 级7个,从而任意选取3个,这3个为A 级的个数ξ的可能值为0,1,2,3. 则03473117(0)33C C P C ξ===,124731128(1)55C C P C ξ===, 214731114(2)55C C P C ξ===,30473114(3)165C C P C ξ===. 因此可得ξ的分布列为: ξ 0 1 2 3 P 733 28551455 4165 则72814()012335555E ξ=⨯+⨯+⨯412316511+⨯=. 20.解:(1)由题意可知22c a =,所以222222()a c a b ==-,即222a b =,① 又点23(,)22P 在椭圆上,所以有2223144a b+=,② 由①②联立,解得21b =,22a =,故所求的椭圆方程为2212x y +=. (2)设11(,)A x y ,22(,)B x y ,由0OA OB ⋅=,可知12120x x y y +=.联立方程组2212y kx m x y =+⎧⎪⎨+=⎪⎩, 消去y 化简整理得222(12)4220k x kmx m +++-=,由2222168(1)(12)0k m m k ∆=--+>,得2212k m +>,所以122412km x x k +=-+,21222212m x x k -=+,③ 又由题知12120x x y y +=,即1212()()0x x kx m kx m +++=,整理为221212(1)()0k x x km x x m ++++=. 将③代入上式,得22222224(1)01212m km k km m k k -+-⋅+=++. 化简整理得222322012m k k--=+,从而得到22322m k -=. 21.解:(1)由22()ln f x a x x ax =-+-,可知2'()2a f x x a x =-+-222(2)()x ax a x a x a x x --+-==. 因为函数()f x 的定义域为(0,)+∞,所以,①若0a >时,当(0,)x a ∈时,'()0f x <,函数()f x 单调递减,当(,)x a ∈+∞时,'()0f x >,函数()f x 单调递增;②若0a =时,当'()20f x x =>在(0,)x ∈+∞内恒成立,函数()f x 单调递增;③若0a <时,当(0,)2a x ∈-时,'()0f x <,函数()f x 单调递减,当(,)2a x ∈-+∞时,'()0f x >,函数()f x 单调递增.(2)证明:由题可知()()()h x f x x ϕ=+2(2)ln (0)x a x a x x =+-->, 所以'()2(2)a h x x a x=+--22(2)(2)(1)x a x a x a x x x +---+==. 所以当(0,)2a x ∈-时,'()0h x <;当(,)2a x ∈-+∞时,'()0h x >;当2a x =时,'()02a h =. 欲证12'()02x x h +>,只需证12'()'()22x x a h h +>,又2''()20a h x x=+>,即'()h x 单调递增,故只需证明1222x x a +>. 设1x ,2x 是方程()h x m =的两个不相等的实根,不妨设为120x x <<,则21112222(2)ln (2)ln x a x a x m x a x a x m ⎧+--=⎪⎨+--=⎪⎩,两式相减并整理得1212(ln ln )a x x x x -+-22121222x x x x =-+-, 从而221212121222ln ln x x x x a x x x x -+-=-+-, 故只需证明2212121212122222(ln ln )x x x x x x x x x x +-+->-+-, 即22121212121222ln ln x x x x x x x x x x -+-+=-+-. 因为1212ln ln 0x x x x -+-<,所以(*)式可化为12121222ln ln x x x x x x --<+, 即11212222ln 1x x x x x x -<+. 因为120x x <<,所以1201x x <<, 不妨令12x t x =,所以得到22ln 1t t t -<+,(0,1)t ∈. 设22()ln 1t R t t t -=-+,(0,1)t ∈,所以22214(1)'()0(1)(1)t R t t t t t -=-=≥++,当且仅当1t =时,等号成立,因此()R t 在(0,1)单调递增.又(1)0R =,因此()0R t <,(0,1)t ∈, 故22ln 1t t t -<+,(0,1)t ∈得证, 从而12'()02x x h +>得证. 22.解:(1)曲线1C :3cos 2sin x t y tαα=+⎧⎨=+⎩,消去参数t 可得普通方程为222(3)(2)x y a -+-=. 曲线2C :4sin ρθ=,两边同乘ρ.可得普通方程为22(2)4x y +-=.把22(2)4y x -=-代入曲线1C 的普通方程得:222(3)4136a x x x =-+-=-,而对2C 有222(2)4x x y ≤+-=,即22x -≤≤,所以2125a ≤≤故当两曲线有公共点时,a 的取值范围为[1,5]. (2)当3a =时,曲线1C :22(3)(2)9x y -+-=, 两曲线交点A ,B 所在直线方程为23x =. 曲线22(2)4x y +-=的圆心到直线23x =的距离为23d =, 所以4822493AB =-=. 23.解:(1)因为()211f x x x =-++3,112,1213,2x x x x x x ⎧⎪-<-⎪⎪=-+-≤≤⎨⎪⎪>⎪⎩, 所以作出图象如图所示,并从图可知满足不等式()3f x ≤的解集为[1,1]-.(2)证明:由图可知函数()y f x =的最小值为32,即32m =. 所以2232a b +=,从而227112a b +++=, 从而 2222142[(1)(1)]117a b a b +=+++++22222214214(1)()[5()]1711b a a a b a b +++=++≥++++ 2222214(1)18[52]7117b a a b ++=+⋅=++. 当且仅当222214(1)11b a a b ++=++时,等号成立,即216a =,243b =时,有最小值, 所以221418117a b +≥++得证.。

2018高考数学模拟试卷(衡水中学理科)

2018高考数学模拟试卷(衡水中学理科)

2018年衡水中学高考数学全真模拟试卷(理科)第1卷一、选择题(本大题共 小题,每小题 分,共 分 在每个小题给出的四个选项中,只有一项是符合题目要求的 ).( 分)( •衡中模拟)已知集合 < , ,则 ( ).∅ .( , ). , ) . ,.( 分)( •衡中模拟)设随机变量 ~ ( , ),若 ( > ) ,则 ( < ≤ ) ( )... ..( 分)( •衡中模拟)已知复数 ( 为虚数单位),则( )..﹣ ...( 分)( •衡中模拟)过双曲线﹣ ( > , > )的一个焦点 作两渐近线的垂线,垂足分别为 、 ,若∠ ,则双曲线的渐近线方程为( ). ±. ±. ± . ±.( 分)( •衡中模拟)将半径为 的圆分割成面积之比为 : : 的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为 , , ,那么 的值为( ).....( 分)( •衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是( ). . . ..( 分)( •衡中模拟)等差数列 中, , ,若,则数列 的前 项和为(). . . ..( 分)( •衡中模拟)已知( ﹣ ) ( ) ( )( ) ,则(). . .﹣ ..( 分)( •衡中模拟)如图为三棱锥 ﹣ 的三视图,其表面积为(). . . ..( 分)( •衡中模拟)已知椭圆 : ( > > )的左焦点 (﹣ , ), 为椭圆上一动点,椭圆内部点 (﹣ , )满足 的最大值为 ,则椭圆的离心率为(). . . ..( 分)( •衡中模拟)已知 ( ) ,若函数 ( )﹣ 恒有一个零点,则 的取值范围为(). ≤ . ≤ 或 ≥ . ≤ 或 ≥ . ≤ 或 ≥.( 分)( •衡中模拟)已知数列 的通项公式为 ﹣ ,数 的通项公式为 ﹣ ,设 ,若在数列 中 < (列∈ , ≠ ),则 的取值范围().( , ) .( , ) .( , ) .( , )第 卷二、填空题(本大题共 小题,每小题 分,共 分.把答案填在题中的横线上.).( 分)( •衡中模拟)若平面向量、满足 , ﹣ ,则在上的投影为..( 分)( •衡中模拟)若数列 满足 ,,则数列 前 项和 ..( 分)( •衡中模拟)若直线 ( ﹣ ) ﹣ 把区域分成面积相等的两部分,则的最大值为 ..( 分)( •衡中模拟)已知函数 ( ) ( )( <﹣ )对任意的 、 > ,恒有 ( )﹣ ( ) ≥ ﹣ ,则 的取值范围为 .三、解答题(本大题共 小题,共 分 解答应写出文字说明、证明过程或演算步骤 ).( 分)( •衡中模拟)在△ 中,角 , , 所对的边分别为 , , ,满足 ,且 ( ﹣ ) ( )( )求 的大小;( )求 的最大值,并求取得最大值时角 , 的值..( 分)( •衡中模拟)如图,在四棱锥 ﹣ 中,侧棱 ⊥底面 , ∥ ,∠ , , , 是棱 中点.( )求证:平面 ⊥平面 ; ( )设点 是线段 上一动点,且,当直线 与平面 所成的角最大时,求 的值..( 分)( •衡中模拟)如图是两个独立的转盘( )、( ),在两个图中三个扇形区域的圆心角分别为 、 、 .用这两个转盘进行游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘( )指针所对的区域为 ,转盘( )指针所对的区域为 , 、 ∈ , , ,设 的值为 .( )求 < 且 > 的概率;( )求随机变量 的分布列与数学期望..( 分)( •衡中模拟)已知椭圆 : ( > > ),倾斜角为 的直线与椭圆相交于 、 两点,且线段 的中点为(﹣ ,).过椭圆 内一点 ( ,)的两条直线分别与椭圆交于点 、 和 、 ,且满足 , ,其中 为实数.当直线 平行于 轴时,对应的 .( )求椭圆 的方程;( )当 变化时,是否为定值?若是,请求出此定值;若不是,请说明理由..( 分)( •衡中模拟)已知函数 ( ) ,曲线 ( )在点 处的切线与直线 ﹣ 平行.( )若函数 ( ) ( )﹣ 在( , )上是减函数,求实数 的最小值;( )若函数 ( ) ( )﹣无零点,求 的取值范围.选修 :几何证明选讲.( 分)( •衡中模拟)如图所示, 为⊙ 的直径, 为的中点, 为 的中点.( )求证: ∥ ;( )求证: .选修 :坐标系与参数方程.( •衡中模拟)在平面直角坐标系中,直线 的参数方程为( 为参数),在以直角坐标系的原点 为极点, 轴的正半轴为极轴的极坐标系中,曲线 的极坐标方程为( )求曲线 的直角坐标方程和直线 的普通方程;( )若直线 与曲线 相交于 , 两点,求△ 的面积.选修 :不等式选讲.( •衡中模拟)已知函数 ( ) ﹣ ﹣ .( )解不等式 ( )≤ ;( )若不等式 ( )≥ ﹣ 对任意 ∈ 恒成立,求实数 的取值范围.参考答案与试题解析一、选择题(本大题共 小题,每小题 分,共 分 在每个小题给出的四个选项中,只有一项是符合题目要求的 ).( 分)( •衡中模拟)已知集合 < , ,则 ().∅ .( , ) . , ) . ,【解答】解: < ﹣ < < , ≥ ,则 , ),故选: ..( 分)( •衡中模拟)设随机变量 ~ ( , ),若 ( > ) ,则 ( < ≤ ) (). . . .【解答】解:∵随机变量 服从正态分布 ( , ),∴ ,得对称轴是 .∵ ( > )∴ ( < ≤ ) ﹣ .故选:.( 分)( •衡中模拟)已知复数 ( 为虚数单位),则 () . .﹣ . .【解答】解:复数 ,可得 ﹣ .则.故选: ..( 分)( •衡中模拟)过双曲线﹣( > , > )的一个焦点 作两渐近线的垂线,垂足分别为 、 ,若∠ ,则双曲线的渐近线方程为( ). ±. ±. ± . ±【解答】解:如图若∠ , 则由对称性得∠ ,则∠,即 的斜率, 则双曲线渐近线的方程为 ± ,故选:.( 分)( •衡中模拟)将半径为 的圆分割成面积之比为 : : 的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为 , , ,那么 的值为( ),∴ ,同理,【解答】解:∵,∴故选: ..( 分)( •衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是(). . . .【解答】解:第一次循环, > ,即 > 成立, , , , < 成立,第二次循环, > ,即 > 不成立, , , , < 成立,第三次循环, > ,即﹣ > 不成立, , , , < 成立,第四次循环, > ,即 >﹣ 成立, , , , < 成立,第五次循环, > ,即 > 成立, , , , < 不成立,输出 ,故选:.( 分)( •衡中模拟)等差数列 中, , ,若,则数列 的前 项和为()【解答】解:设等差数列的公差为 , , ,∴,解得, ,∴( ﹣ ) ,∴,∴( ﹣ ﹣ ﹣) ( ﹣)故选 ..( 分)( •衡中模拟)已知( ﹣ ) ( ) ( )( ) ,则(). . .﹣ .【解答】解:( ﹣ ) ( )﹣ ,∴,故选: ..( 分)( •衡中模拟)如图为三棱锥 ﹣ 的三视图,其表面积为(). . . .【解答】解:由三视图可知该三棱锥为边长为 , , 的长方体切去四个小棱锥得到的几何体.三棱锥的三条边长分别为,∴表面积为 × .故选: ..( 分)( •衡中模拟)已知椭圆 : ( > > )的左焦点 (﹣ , ), 为椭圆上一动点,椭圆内部点 (﹣ , )满足 的最大值为 ,则椭圆的离心率为(). . . .【解答】解:设右焦点为 ,由 (﹣ , ),可得 ( , ),由椭圆的定义可得 ,即 ﹣ ,则 ( ﹣ )≤ ,当 , , 共线时,取得等号,即最大值 ,由 ,可得 ,所以 ,则 ,故选: ..( 分)( •衡中模拟)已知 ( ) ,若函数 ( )﹣ 恒有一个零点,则 的取值范围为(). ≤ . ≤ 或 ≥ . ≤ 或 ≥ . ≤ 或 ≥【解答】解:由 ( )﹣ 得 ( ) ,作出函数 ( )和 的图象如图,由图象知当 ≤ 时,函数 ( )和 恒有一个交点,当 ≥ 时,函数 ( ) ( )的导数 ( ) ,则 ( ) ,当 < 时,函数 ( ) ﹣ 的导数 ( ) ,则 ( ) ,即当 时, 是函数 ( )的切线,则当 < < 时,函数 ( )和 有 个交点,不满足条件.当 ≥ 时,函数 ( )和 有 个交点,满足条件.综上 的取值范围为 ≤ 或 ≥ ,故选: ..( 分)( •衡中模拟)已知数列 的通项公式为 ﹣ ,数 的通项公式为 ﹣ ,设 ,若在数列 中 < (列∈ , ≠ ),则 的取值范围().( , ) .( , ) .( , ).( , ) 【解答】解:∵ ﹣ ﹣ ﹣﹣ , ∴ ﹣ 随着 变大而变小,又∵ ﹣ 随着 变大而变小,﹣ 随着 变大而变大, ∴,( )当( )当,综上 ∈( , ),故选 .二、填空题(本大题共 小题,每小题 分,共 分.把答案填在题中的横线上.) .( 分)( •衡中模拟)若平面向量、满足 , ﹣ ,则在上的投影为 ﹣ .【解答】解:根据条件,;∴; ∴在上的投影为.故答案为:﹣ ..( 分)( •衡中模拟)若数列 满足 ,,则数列 前 项和 ﹣. 【解答】解:∵数列 满足 , , ∴ ﹣ 时, ﹣ ﹣ ,为等差数列;时, ,为等比数列.∴.故答案为: ﹣ ..( 分)( •衡中模拟)若直线 ( ﹣ ) ﹣ 把区域分成面积相等的两部分,则的最大值为 .【解答】解:由 ( ﹣ ) ﹣ 得 ( ﹣ ) ﹣ , 则得,即直线恒过 (﹣ , ),若将区域分成面积相等的两部分,则直线过 的中点 ,由得,即 ( , ),∵ ( , ),∴中点 ( , ),代入 ( ﹣ ) ﹣ ,得 ﹣ ,则,则的几何意义是区域内的点到点(﹣ , )的斜率,由图象过 的斜率最大,此时最大值为 .故答案为: ..( 分)( •衡中模拟)已知函数 ( ) ( ) ( <﹣ )对任意的 、 > ,恒有 ( )﹣ ( ) ≥ ﹣ ,则 的取值范围为 (﹣ ,﹣ .【解答】解:由 ( ) ,得 ( ) ,所以 ( ) ( ) ,( <﹣ )在( , )单调递减,不妨设 < < , 则 ( )﹣ ( )≥ ﹣ ,即 ( ) ≥ ( ) ,令 ( ) ( ) , ( ) ( ),等价于 ( )在( , )上单调递减,故 ( )≤ 恒成立,即≤ , 所以恒成立, 得 ≤﹣ .故答案为:(﹣ ,﹣ .三、解答题(本大题共 小题,共 分 解答应写出文字说明、证明过程或演算步骤 ).( 分)( •衡中模拟)在△ 中,角 , , 所对的边分别为 , , ,满足 ,且 ( ﹣ ) ( )( )求 的大小;( )求 的最大值,并求取得最大值时角 , 的值.【解答】解:( ) ( ﹣ ) ( )可得: ﹣( ﹣ )即: ﹣ .由正弦定理可知:,∴, ,∴ ﹣ ,﹣ ,可得 ( ﹣) , 是三角形内角,∴ .( )由余弦定理可知: ﹣ ,得 ﹣又,∴,即:.当时, 取到最大值为 ..( 分)( •衡中模拟)如图,在四棱锥 ﹣ 中,侧棱 ⊥底面 , ∥ ,∠ , , , 是棱 中点.( )求证:平面 ⊥平面 ;( )设点 是线段 上一动点,且 ,当直线 与平面 所成的角最大时,求 的值.【解答】证明:( )取 的中点 ,则连接 ,∵ 是△ 的中位线,∴ ,又 ,∴ ,∴四边形 是平行四边形,∴ ∥ .∵ , 是 的中点,∴ ⊥ ,∵ ⊥平面 , ⊂平面 ,∴ ⊥ ,又 ⊥ , ,∴ ⊥平面 ,∵ ⊂平面 ,∴ ⊥ ,又 ⊂平面 , ⊂平面 , ,∴ ⊥平面 ,∵ ∥ ,∴ ⊥平面 ,又 ⊂平面 ,∴平面 ⊥平面 .( )以 为原点,以 , , 为坐标轴建立空间直角坐标系,如图所示:则 ( , , ), ( , , ), ( , , ), ( , , ), ( , , ), ( , , ).∴ ( , , ), ( , , ), ( , , ),∴ ( , , ), ( , , ),( , ﹣ ,﹣ ).∵ ⊥平面 ,∴为平面 的一个法向量,∴ <>设 与平面 所成的角为 ,则 .∴当 即时, 取得最大值,∴ 与平面 所成的角最大时..( 分)( •衡中模拟)如图是两个独立的转盘( )、( ),在两个图中三个扇形区域的圆心角分别为 、 、 .用这两个转盘进行游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘( )指针所对的区域为 ,转盘( )指针所对的区域为 , 、 ∈ , , ,设 的值为 .( )求 < 且 > 的概率;( )求随机变量 的分布列与数学期望.【解答】解:( )记转盘 指针指向 , , 区域的事件为 , , ,同理转盘 指针指向 , , 区域的事件为 , , ,∴ ( ) , ( ) , ( ) , ( ) , ( ) , ( ) ,( ) ( ﹣ ( )) ×( ﹣) . ( 分)( )由已知得 的可能取值为 , , , , , ( ) ( ) ( ) ,( ) ( ) ( ) ( ) ( ) ,( ) ( ) ( ) ( ) ( ) ( ) ( ) , ( ) ( ) ( ) ( ) ( ), ( ) ( ) ( ),∴ 的分布列为:. ( 分) .( 分)( •衡中模拟)已知椭圆 : ( > > ),倾斜角为 的直线与椭圆相交于 、 两点,且线段 的中点为(﹣ ,).过椭圆 内一点 ( ,)的两条直线分别与椭圆交于点 、 和 、 ,且满足, ,其中 为实数.当直线 平行于 轴时,对应的 .( )求椭圆 的方程;( )当 变化时, 是否为定值?若是,请求出此定值;若不是,请说明理由.【解答】解:( )设 ( , )、 ( , ),则,两式相减,故 ( 分)当直线 平行于 轴时,设 ,∵,,则,解得, 故点 (或 )的坐标为. 代入椭圆方程,得 分, ,所以方程为 ( 分)( )设 ( , )、 ( , )、 ( , )、 ( , )由于,可得 ( , )、 ( , )、 ( , )、 ( , ),同理可得 ( 分)由 得:将点 、 的坐标代入椭圆方程得,两式相减得( )( ﹣ ) ( )( ﹣ ) ,于是 ( ) ﹣( )同理可得: ( ) ﹣( ), ( 分)于是 ( ) ﹣( )(∵ ∥ ,∴ )所以 ( ) ﹣ ( )由 两式相加得到: ( ) ﹣ ( )( )把 代入上式得 ( ) ﹣ ( ),解得:,当 变化时, 为定值,. ( 分).( 分)( •衡中模拟)已知函数 ( ) ,曲线 ( )在点 处的切线与直线 ﹣ 平行.( )若函数 ( ) ( )﹣ 在( , )上是减函数,求实数 的最小值;( )若函数 ( ) ( )﹣无零点,求 的取值范围.【解答】解:( ) 由,得,解得 ,故,则,函数 ( )的定义域为( , ) ( , ),而,又函数 ( )在( , )上是减函数,∴在( , )上恒成立,∴当 ∈( , )时,的最大值.而,即右边的最大值为,∴,故实数 的最小值;( ) 由题可得,且定义域为( , ) ( , ),要使函数 ( )无零点,即在( , ) ( , )内无解,亦即在( , ) ( , )内无解.构造函数,则,( )当 ≤ 时, ( )< 在( , ) ( , )内恒成立,∴函数 ( )在( , )内单调递减,在( , )内也单调递减.又 ( ) ,∴当 ∈( , )时, ( )> ,即函数 ( )在( , )内无零点,同理,当 ∈( , )时, ( )< ,即函数 ( )在( , )内无零点,故 ≤ 满足条件;( )当 > 时,.若 < < ,则函数 ( )在( , )内单调递减,在内也单调递减,在内单调递增.又 ( ) ,∴ ( )在( , )内无零点;又,而,故在内有一个零点,∴ < < 不满足条件;若 ,则函数 ( )在( , )内单调递减,在( , )内单调递增.又 ( ) ,∴当 ∈( , ) ( , )时, ( )> 恒成立,故无零点.∴ 满足条件;若 > ,则函数 ( )在内单调递减,在内单调递增,在( , )内也单调递增.又 ( ) ,∴在及( , )内均无零点.易知,又 ( ﹣ ) ×(﹣ )﹣ ﹣ ﹣ ( ),则 ( ) ( ﹣ )> ,则 ( )在 > 为增函数,∴ ( )> ( ) ﹣ > .故函数 ( )在内有一零点, > 不满足.综上: ≤ 或 .选修 :几何证明选讲.( 分)( •衡中模拟)如图所示, 为⊙ 的直径, 为的中点, 为 的中点.( )求证: ∥ ;( )求证: .【解答】证明:( )连接 ,因为 为的中点,所以 .因为 为 的中点,所以 ⊥ .因为 为圆的直径,所以∠ ,所以 ∥ . ( 分)( )因为 为的中点,所以∠ ∠ ,又∠ ∠ ,则∠ ∠ .又因为 ⊥ , ⊥ ,所以△ ∽△ .所以 , , ,因此 . ( 分)选修 :坐标系与参数方程.( •衡中模拟)在平面直角坐标系中,直线 的参数方程为( 为参数),在以直角坐标系的原点 为极点, 轴的正半轴为极轴的极坐标系中,曲线 的极坐标方程为( )求曲线 的直角坐标方程和直线 的普通方程;( )若直线 与曲线 相交于 , 两点,求△ 的面积.【解答】解:( )由曲线 的极坐标方程为得 .∴由曲线 的直角坐标方程是: . 由直线 的参数方程为( 为参数),得 代入 中消去 得: ﹣ ﹣ ,所以直线 的普通方程为: ﹣ ﹣ ( 分)( )将直线 的参数方程代入曲线 的普通方程 ,得 ﹣ ,设 , 两点对应的参数分别为 , ,所以 , 因为原点到直线 ﹣ ﹣ 的距离 ,所以△ 的面积是. ( 分)选修 :不等式选讲 .( •衡中模拟)已知函数 ( ) ﹣ ﹣ .( )解不等式 ( )≤ ;( )若不等式 ( )≥ ﹣ 对任意 ∈ 恒成立,求实数 的取值范围.【解答】解:函数 ( ) ﹣ ﹣ 的图象如图所示,( )不等式 ( )≤ ,即 或 ,或 .解 求得 ∈∅,解 求得 < ≤ ,解 求得﹣ ≤ ≤ .综上可得,原不等式的解集为 ﹣ , .( )若不等式 ( )≥ ﹣ 对任意 ∈ 恒成立,则函数 ( )的图象不能在 ﹣ 的图象的下方.如图所示:由于图中两题射线的斜率分别为﹣ , ,点 ( , ),∴ ﹣ ≤ ,且 ≥﹣ ,求得﹣ ≤ ≤ .。

河北省衡水中学2018届高三高考押题(一)理数试题(含答案)

河北省衡水中学2018届高三高考押题(一)理数试题(含答案)

河北衡水中学2018年高考押题试卷理数试卷(一)第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合4{|0}2x A x Z x -=∈≥+,1{|24}4x B x =≤≤,则A B =( ) A .{|12}x x -≤≤ B .{1,0,1,2}- C .{2,1,0,1,2}-- D .{0,1,2} 2.已知i 为虚数单位,若复数11tiz i-=+在复平面内对应的点在第四象限,则t 的取值范围为( ) A .[1,1]- B .(1,1)- C .(,1)-∞-D .(1,)+∞3.下列函数中,既是偶函数,又在(,0)-∞内单调递增的为( )A.42y x x =+ B .||2x y = C.22x xy -=- D .12log ||1y x =-4.已知双曲线1C :2212x y -=与双曲线2C :2212x y -=-,给出下列说法,其中错误的是( ) A.它们的焦距相等 B .它们的焦点在同一个圆上 C.它们的渐近线方程相同 D .它们的离心率相等5.在等比数列{}n a 中,“4a ,12a 是方程2310x x ++=的两根”是“81a =±”的( )A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件 6.执行如图的程序框图,则输出的S 值为( )A.1009 B .-1009 C.-1007 D .1008 7.已知一几何体的三视图如图所示,则该几何体的体积为( )A .163π+ B .112π+ C .1123π+ D .143π+ 8.已知函数()sin()f x A x ωϕ=+(0,0,||)A ωϕπ>><的部分图象如图所示,则函数()cos()g x A x ϕω=+图象的一个对称中心可能为( )A .5(,0)2-B .1(,0)6 C.1(,0)2- D .11(,0)6-9.《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF AB ⊥,设A C a =,BC b =,则该图形可以完成的无字证明为( )A.2a b+≥(0,0)a b >> B .222a b ab +≥(0,0)a b >>C.2ab a b≤+(0,0)a b >> D .2a b +≤(0,0)a b >> 10.为迎接中国共产党的十九大的到来,某校举办了“祖国,你好”的诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的7名学生中选派4名学生参加,要求甲、乙、丙这3名同学中至少有1人参加,且当这3名同学都参加时,甲和乙的朗诵顺序不能相邻,那么选派的4名学生不同的朗诵顺序的种数为( ) A .720 B .768 C.810 D .81611.焦点为F 的抛物线C :28y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当||||MA MF 取得最大值时,直线MA 的方程为( )A .2y x =+或2y x =--B .2y x =+ C.22y x =+或22y x =-+D .22y x =-+12.定义在R 上的函数()f x 满足(2)2()f x f x +=,且当[2,4]x ∈时,224,23,()2,34,x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩()1g x ax =+,对1[2,0]x ∀∈-,2[2,1]x ∃∈-,使得21()()g x f x =,则实数a 的取值范围为( ) A .11(,)[,)88-∞-+∞ B .11[,0)(0,]48-C.(0,8]D .11(,][,)48-∞-+∞第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.已知(1,)a λ=,(2,1)b =,若向量2a b +与(8,6)c =共线,则a 和b 方向上的投影为 .14.已知实数x ,y 满足不等式组20,250,20,x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩且2z x y =-的最大值为a ,则20cos 2x a dx π⎰= . 15.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,tan tan 2tan b B b A c B +=-,且8a =,ABC ∆的面积为b c +的值为 .16.已知球O是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A BCD -的外接球,3BC =,AB =E 在线段BD 上,且3BD BE =,过点E 作圆O 的截面,则所得截面圆面积的取值范围是 .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知23(1)(1)(1)(1)n x x x x ++++++++的展开式中x 的系数恰好是数列{}n a 的前n 项和n S .(1)求数列{}n a 的通项公式;(2)数列{}n b 满足12(21)(21)nn n a n a a b +=--,记数列{}n b 的前n 项和为n T ,求证:1n T <.18.如图,点C 在以AB 为直径的圆O 上,PA 垂直与圆O 所在平面,G 为AOC ∆的垂心.(1)求证:平面OPG ⊥平面PAC ;(2)若22PA AB AC ===,求二面角A OP G --的余弦值.19.2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率; (2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?20. 已知椭圆C :22221(0)x y a b a b +=>>的长轴长为6,且椭圆C 与圆M :2240(2)9x y -+=的公共弦长为. (1)求椭圆C 的方程.(2)过点(0,2)P 作斜率为(0)k k ≠的直线l 与椭圆C 交于两点A ,B ,试判断在x 轴上是否存在点D ,使得ADB ∆为以AB 为底边的等腰三角形.若存在,求出点D 的横坐标的取值范围,若不存在,请说明理由.21. 已知函数2()2ln 2(0)f x x mx x m =-+>. (1)讨论函数()f x 的单调性;(2)当2m ≥时,若函数()f x 的导函数'()f x 的图象与x 轴交于A ,B 两点,其横坐标分别为1x ,2x 12()x x <,线段AB 的中点的横坐标为0x ,且1x ,2x 恰为函数2()ln h x x cx bx =--的零点,求证:1202()'()ln 23x x h x -≥-+.请考生在第22、23题中任选一题作答.并用2B 铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分. 22.选修4-4:坐标系与参数方程已知直线l的参数方程为4,2x y ⎧=⎪⎪⎨⎪=⎪⎩(t为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为4cos ρθ=,直线l 与圆C 交于A ,B 两点. (1)求圆C 的直角坐标方程及弦AB 的长;(2)动点P 在圆C 上(不与A ,B 重合),试求ABP ∆的面积的最大值. 23. 选修4-5:不等式选讲. 已知函数()|21||1|f x x x =-++. (1)求函数()f x 的值域M ;(2)若a M ∈,试比较|1||1|a a -++,32a ,722a -的大小.参考答案及解析 理科数学(Ⅰ)一、选择题1-5:BBDDA 6-10:BCCDB 11、12:AD二、填空题(本大题共4小题,每小题5分,共20分)13.514.3π15.[2,4]ππ 三、解答题17.解:(1)23(1)(1)(1)(1)n x x x x ++++++++的展开式中x 的系数为1111123n C C C C ++++=2111223n C C C C ++++=2211122n C n n +=+, 即21122n S n n =+, 所以当2n ≥时,1n n n a S S n -=-=; 当1n =时,11a =也适合上式, 所以数列{}n a 的通项公式为n a n =.(2)证明:12(21)(21)n n n n b +==--1112121n n +---, 所以11111113372121n n n T +=-+-++---11121n +=--, 所以1n T <.18.解:(1)如图,延长OG 交AC 于点M . 因为G 为AOC ∆的重心,所以M 为AC 的中点. 因为O 为AB 的中点,所以//OM BC .因为AB 是圆O 的直径,所以BC AC ⊥,所以OM AC ⊥. 因为PA ⊥平面ABC ,OM ⊂平面ABC ,所以PA OM ⊥. 又PA ⊂平面PAC ,AC ⊂平面PAC ,PA AC A =,所以OM ⊥平面PAC .即OG ⊥平面PAC ,又OG ⊂平面OPG , 所以平面OPG ⊥平面PAC .(2)以点C 为原点,CB ,CA ,AP 方向分别为x ,y ,z 轴正方向建立空间直角坐标系C xyz -,则(0,0,0)C ,(0,1,0)A ,B ,1,0)2O ,(0,1,2)P ,1(0,,0)2M ,则(,0)OM =-,1(,2)2OP =-.平面OPG 即为平面OPM ,设平面OPM 的一个法向量为(,,)n x y z =,则30,3120,2n OM x n OP x y z ⎧⋅=-=⎪⎪⎨⎪⋅=-++=⎪⎩令1z =,得(0,4,1)n =-.过点C 作CH AB ⊥于点H ,由PA ⊥平面ABC ,易得CH PA ⊥,又P A A B A =,所以CH ⊥平面PAB ,即CH 为平面PAO 的一个法向量.在Rt ABC ∆中,由2AB AC =,得30ABC ∠=︒,则60HCB ∠=︒,12CH CB ==. 所以cos H x CH HCB =∠=,3sin 4H y CH HCB =∠=. 所以33(,0)44CH =.设二面角A OP G --的大小为θ,则||cos ||||CHn CH n θ⋅==⋅3|0410|4417-⨯+⨯=. 19.解:(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件A ,则333101()120C P A C ==, 所以两位顾客均享受到免单的概率为1()()14400P P A P A =⋅=.(2)若选择方案一,设付款金额为X 元,则X 可能的取值为0,600,700,1000.333101(0)120C P X C ===,21373107(600)40C C P X C ===, 123731021(700)40C C P X C ===,373107(1000)24C P X C ===, 故X 的分布列为,所以17217()06007001000120404024E X =⨯+⨯+⨯+⨯17646=(元).若选择方案二,设摸到红球的个数为Y ,付款金额为Z ,则1000200Z Y =-, 由已知可得3~(3,)10Y B ,故39()31010E Y =⨯=, 所以()(1000200)E Z E Y =-=1000200()820E Y -=(元). 因为()()E X E Z <,所以该顾客选择第一种抽奖方案更合算. 20.解:(1)由题意可得26a =,所以3a =. 由椭圆C 与圆M :2240(2)9x y -+=,恰为圆M 的直径,可得椭圆C经过点(2,±, 所以2440199b+=,解得28b =. 所以椭圆C 的方程为22198x y +=. (2)直线l 的解析式为2y kx =+,设1122(,),(,)A x y B x y ,AB 的中点为00(,)E x y .假设存在点(,0)D m ,使得ADB ∆为以AB 为底边的等腰三角形,则DE AB ⊥.由222,1,98y kx x y =+⎧⎪⎨+=⎪⎩得22(89)36360k x kx ++-=,故1223698kx x k +=-+, 所以021898k x k -=+,00216298y kx k =+=+. 因为DE AB ⊥,所以1DE k k=-,即221601981898k k k m k -+=---+,所以2228989k m k k k --==++. 当0k >时,89k k +≥=所以012m -≤<; 当0k <时,89k k+≤-012m <≤.综上所述,在x 轴上存在满足题目条件的点E ,且点D的横坐标的取值范围为2[,0)(0,]1212-. 21. 解:(1)由于2()2ln 2f x x mx x =-+的定义域为(0,)+∞,则22(1)'()x mx f x x-+=.对于方程210x mx -+=,其判别式24m ∆=-.当240m -≤,即02m <≤时,'()0f x ≥恒成立,故()f x 在(0,)+∞内单调递增.当240m ->,即2m >,方程210xmx -+=恰有两个不相等是实根x =,令'()0f x >,得02m x<<或2m x +>,此时()f x 单调递增;令'()0f x <,得22m m x +<<,此时()f x 单调递减.综上所述,当02m <≤时,()f x 在(0,)+∞内单调递增;当2m >时,()f x在(22m m +内单调递减,在24m m --,24()m m +-+∞内单调递增. (2)由(1)知,22(1)'()x mx f x x -+=,所以'()f x 的两根1x ,2x 即为方程210x mx-+=的两根.因为2m ≥,所以240m ∆=->,12x x m +=,121x x =. 又因为1x ,2x 为2()ln h x x cx bx =--的零点,所以2111ln 0x cx bx --=,2222ln 0x c bx --=,两式相减得11212122ln()()()0x c x x x x b x x x --+--=,得121212ln()x x b c x x x x ==+-.而1'()2h x cx b x=--,所以120()'()x x h x -=12001()(2)x x cx b x ---=121212121212ln2()[()()]x x x x c x x c x x x x x x --+-+++-1211222()ln x x x x x x -=-=+12112212ln 1x x x x x x -⋅-+. 令12(01)x t t x =<<,由2212()x x m +=得22212122x x x x m ++=, 因为121x x =,两边同时除以12x x ,得212t m t++=,因为2m ≥,故152t t +≥,解得102t <≤或2t ≥,所以102t <≤. 设1()2ln 1t G t t t -=⋅-+,所以22(1)'()0(1)t G t t t --=<+, 则()y G t =在1(0,]2上是减函数,所以min 12()()ln 223G t G ==-+,即120()'()y x x h x =-的最小值为2ln 23-+.所以1202()'()ln 23x x h x -≥-+.22.解:(1)由4cos ρθ=得24cos ρρθ=,所以2240x y x +-=,所以圆C 的直角坐标方程为22(2)4x y -+=.将直线l 的参数方程代入圆:C 22(2)4x y -+=,并整理得20t +=,解得10t =,2t =-所以直线l 被圆C截得的弦长为12||t t -=(2)直线l 的普通方程为40x y --=.圆C 的参数方程为22cos ,2sin ,x y θθ=+⎧⎨=⎩(θ为参数),可设曲线C 上的动点(22cos ,2sin )P θθ+,则点P 到直线l的距离d=|2cos()4πθ=+,当cos()14πθ+=-时,d 取最大值,且d的最大值为2所以1(222ABP S ∆≤⨯=+ 即ABP ∆的面积的最大值为223. 解:(1)3,1,1()2,1,213,.2x x f x x x x x ⎧⎪-<-⎪⎪=--≤≤⎨⎪⎪>⎪⎩ 根据函数()f x 的单调性可知,当12x =时,min 13()()22f x f ==. 所以函数()f x 的值域3[,)2M =+∞.(2)因为a M ∈,所以32a ≥,所以3012a <≤. 又|1||1|1123a a a a a -++=-++=≥, 所以32a ≥,知10a ->,430a ->, 所以(1)(43)02a a a -->,所以37222a a >-, 所以37|1||1|222a a a a -++>>-.。

(完整word)2018高考数学模拟试卷(衡水中学理科)

(完整word)2018高考数学模拟试卷(衡水中学理科)

2018年衡水中学高考数学全真模拟试卷(理科)第1卷一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2018•衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A∩B=()A.∅B.(0,1)C.[0,1)D.[0,1]2.(5分)(2018•衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0.2,则P(3<ξ≤4)=()A.0.8 B.0.4 C.0.3 D.0.23.(5分)(2018•衡中模拟)已知复数z=(i为虚数单位),则3=()A.1 B.﹣1 C.D.4.(5分)(2018•衡中模拟)过双曲线﹣=1(a>0,b>0)的一个焦点F作两渐近线的垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x5.(5分)(2018•衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为()A.B.2 C.D.16.(5分)(2018•衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是()A.2 B.3 C.4 D.57.(5分)(2018•衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}的前8项和为()A.B.C.D.8.(5分)(2018•衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=()A.45 B.180 C.﹣180 D.7209.(5分)(2018•衡中模拟)如图为三棱锥S﹣ABC的三视图,其表面积为()A.16 B.8+6C.16D.16+610.(5分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0)的左焦点F(﹣3,0),P为椭圆上一动点,椭圆内部点M(﹣1,3)满足PF+PM的最大值为17,则椭圆的离心率为()A.B.C.D.11.(5分)(2018•衡中模拟)已知f(x)=,若函数y=f(x)﹣kx恒有一个零点,则k的取值范围为()A.k≤0 B.k≤0或k≥1 C.k≤0或k≥e D.k≤0或k≥12.(5分)(2018•衡中模拟)已知数列{a n}的通项公式为a n=﹣2n+p,数列{b n}的通项公式为b n=2n﹣4,设c n=,若在数列{c n}中c6<c n(n∈N*,n≠6),则p的取值范围()A.(11,25)B.(12,22)C.(12,17)D.(14,20)第2卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.(5分)(2018•衡中模拟)若平面向量、满足||=2||=2,|﹣|=,则在上的投影为.14.(5分)(2018•衡中模拟)若数列{a n}满足a1=a2=1,a n+2=,则数列{a n}前2n项和S2n=.15.(5分)(2018•衡中模拟)若直线ax+(a﹣2)y+4﹣a=0把区域分成面积相等的两部分,则的最大值为.16.(5分)(2018•衡中模拟)已知函数f(x)=(a+1)lnx+x2(a<﹣1)对任意的x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,则a的取值范围为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2018•衡中模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0(1)求C的大小;(2)求a2+b2的最大值,并求取得最大值时角A,B的值.18.(12分)(2018•衡中模拟)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD ∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N是线段CD上一动点,且=λ,当直线MN与平面PAB所成的角最大时,求λ的值.19.(12分)(2018•衡中模拟)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对的区域为x,转盘(B)指针所对的区域为y,x、y∈{1,2,3},设x+y的值为ξ.(Ⅰ)求x<2且y>1的概率;(Ⅱ)求随机变量ξ的分布列与数学期望.20.(12分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°的直线与椭圆相交于M、N两点,且线段MN的中点为(﹣1,).过椭圆E内一点P(1,)的两条直线分别与椭圆交于点A、C和B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应的λ=.(Ⅰ)求椭圆E的方程;(Ⅱ)当λ变化时,k AB是否为定值?若是,请求出此定值;若不是,请说明理由.21.(12分)(2018•衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e2处的切线与直线x﹣2y+e=0平行.(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若函数F(x)=f(x)﹣无零点,求k的取值范围.[选修4-1:几何证明选讲]22.(10分)(2018•衡中模拟)如图所示,AC为⊙O的直径,D为的中点,E为BC的中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:AC•BC=2AD•CD.[选修4-4:坐标系与参数方程]23.(2018•衡中模拟)在平面直角坐标系中,直线l的参数方程为(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若直线l与曲线C相交于A,B两点,求△AOB的面积.[选修4-5:不等式选讲]24.(2018•衡中模拟)已知函数f(x)=|x﹣l|+|x﹣3|.(I)解不等式f(x)≤6;(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,求实数a的取值范围.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2018•衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A∩B=()A.∅B.(0,1)C.[0,1)D.[0,1]【解答】解:A={x|x2<1}={x|﹣1<x<1},B={y|y=|x|≥0},则A∩B=[0,1),故选:C.2.(5分)(2018•衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0.2,则P(3<ξ≤4)=()A.0.8 B.0.4 C.0.3 D.0.2【解答】解:∵随机变量X服从正态分布N(3,σ2),∴μ=3,得对称轴是x=3.∵P(ξ>4)=0.2∴P(3<ξ≤4)=0.5﹣0.2=0.3.故选:C3.(5分)(2018•衡中模拟)已知复数z=(i为虚数单位),则3=()A.1 B.﹣1 C.D.【解答】解:复数z=,可得=﹣=cos+isin.则3=cos4π+isin4π=1.故选:A.4.(5分)(2018•衡中模拟)过双曲线﹣=1(a>0,b>0)的一个焦点F作两渐近线的垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x【解答】解:如图若∠PFQ=π,则由对称性得∠QFO=,则∠QOx=,即OQ的斜率k==tan=,则双曲线渐近线的方程为y=±x,故选:B5.(5分)(2018•衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为()A.B.2 C.D.1【解答】解:∵2πr1=,∴r1=,同理,∴r1+r2+r3=1,故选:D.6.(5分)(2018•衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是()A.2 B.3 C.4 D.5【解答】解:第一次循环,sin>sin0,即1>0成立,a=1,T=1,k=2,k<6成立,第二次循环,sinπ>sin,即0>1不成立,a=0,T=1,k=3,k<6成立,第三次循环,sin>sinπ,即﹣1>0不成立,a=0,T=1,k=4,k<6成立,第四次循环,sin2π>sin,即0>﹣1成立,a=1,T=1+1=2,k=5,k<6成立,第五次循环,sin>sin2π,即1>0成立,a=1,T=2+1=3,k=6,k<6不成立,输出T=3,故选:B7.(5分)(2018•衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}的前8项和为()A.B.C.D.【解答】解:设等差数列{a n}的公差为d,a3=7,a5=11,∴,解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1,∴,∴b8=(1﹣+﹣+…+﹣)=(1﹣)=故选B.8.(5分)(2018•衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=()A.45 B.180 C.﹣180 D.720【解答】解:(x﹣3)10=[(x+1)﹣4]10,∴,故选:D.9.(5分)(2018•衡中模拟)如图为三棱锥S﹣ABC的三视图,其表面积为()A.16 B.8+6C.16D.16+6【解答】解:由三视图可知该三棱锥为边长为2,4,4的长方体切去四个小棱锥得到的几何体.三棱锥的三条边长分别为,∴表面积为4×=16.故选:C.10.(5分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0)的左焦点F(﹣3,0),P为椭圆上一动点,椭圆内部点M(﹣1,3)满足PF+PM的最大值为17,则椭圆的离心率为()A.B.C.D.【解答】解:设右焦点为Q,由F(﹣3,0),可得Q(3,0),由椭圆的定义可得|PF|+|PQ|=2a,即|PF|=2a﹣|PQ|,则|PM|+|PF|=2a+(|PM|﹣|PQ|)≤2a+|MQ|,当P,M,Q共线时,取得等号,即最大值2a+|MQ|,由|MQ|==5,可得2a+5=17,所以a=6,则e===,故选:A.11.(5分)(2018•衡中模拟)已知f(x)=,若函数y=f(x)﹣kx恒有一个零点,则k的取值范围为()A.k≤0 B.k≤0或k≥1 C.k≤0或k≥e D.k≤0或k≥【解答】解:由y=f(x)﹣kx=0得f(x)=kx,作出函数f(x)和y=kx的图象如图,由图象知当k≤0时,函数f(x)和y=kx恒有一个交点,当x≥0时,函数f(x)=ln(x+1)的导数f′(x)=,则f′(0)=1,当x<0时,函数f(x)=e x﹣1的导数f′(x)=e x,则f′(0)=e0=1,即当k=1时,y=x是函数f(x)的切线,则当0<k<1时,函数f(x)和y=kx有3个交点,不满足条件.当k≥1时,函数f(x)和y=kx有1个交点,满足条件.综上k的取值范围为k≤0或k≥1,故选:B.12.(5分)(2018•衡中模拟)已知数列{a n}的通项公式为a n=﹣2n+p,数列{b n}的通项公式为b n=2n﹣4,设c n=,若在数列{c n}中c6<c n(n∈N*,n≠6),则p的取值范围()A.(11,25)B.(12,22)C.(12,17)D.(14,20)【解答】解:∵a n﹣b n=﹣2n+p﹣2n﹣4,∴a n﹣b n随着n变大而变小,又∵a n=﹣2n+p随着n变大而变小,b n=2n﹣4随着n变大而变大,∴,(1)当(2)当,综上p∈(14,20),故选D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.(5分)(2018•衡中模拟)若平面向量、满足||=2||=2,|﹣|=,则在上的投影为﹣1.【解答】解:根据条件,==7;∴;∴在上的投影为.故答案为:﹣1.14.(5分)(2018•衡中模拟)若数列{a n}满足a1=a2=1,a n+2=,则数列{a n}前2n项和S2n=2n+n2﹣1.【解答】解:∵数列{a n}满足a1=a2=1,a n+2=,∴n=2k﹣1时,a2k+1﹣a2k﹣1=2,为等差数列;n=2k时,a2k+2=2a2k,为等比数列.∴.故答案为:2n+n2﹣1.15.(5分)(2018•衡中模拟)若直线ax+(a﹣2)y+4﹣a=0把区域分成面积相等的两部分,则的最大值为2.【解答】解:由ax+(a﹣2)y+4﹣a=0得a(x+y﹣1)+4﹣2y=0,则得,即直线恒过C(﹣1,2),若将区域分成面积相等的两部分,则直线过AB的中点D,由得,即A(1,6),∵B(3,0),∴中点D(2,3),代入a(x+y﹣1)+4﹣2y=0,得4a﹣2=0,则,则的几何意义是区域内的点到点(﹣2,0)的斜率,由图象过AC的斜率最大,此时最大值为2.故答案为:2.16.(5分)(2018•衡中模拟)已知函数f(x)=(a+1)lnx+x2(a<﹣1)对任意的x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,则a的取值范围为(﹣∞,﹣2] .【解答】解:由f′(x)=+x,得f′(1)=3a+1,所以f(x)=(a+1)lnx+ax2,(a<﹣1)在(0,+∞)单调递减,不妨设0<x1<x2,则f(x1)﹣f(x2)≥4x2﹣4x1,即f(x1)+4x1≥f(x2)+4x2,令F(x)=f(x)+4x,F′(x)=f′(x)+4=+2ax+4,等价于F(x)在(0,+∞)上单调递减,故F'(x)≤0恒成立,即+2ax+4≤0,所以恒成立,得a≤﹣2.故答案为:(﹣∞,﹣2].三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2018•衡中模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0(1)求C的大小;(2)求a2+b2的最大值,并求取得最大值时角A,B的值.【解答】解:(1)cosBsinC+(a﹣sinB)cos(A+B)=0可得:cosBsinC﹣(a﹣sinB)cosC=0即:sinA﹣acosC=0.由正弦定理可知:,∴,c=1,∴asinC﹣acosC=0,sinC﹣cosC=0,可得sin(C﹣)=0,C是三角形内角,∴C=.(2)由余弦定理可知:c2=a2+b2﹣2abcosC,得1=a2+b2﹣ab又,∴,即:.当时,a2+b2取到最大值为2+.18.(12分)(2018•衡中模拟)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD ∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N是线段CD上一动点,且=λ,当直线MN与平面PAB所成的角最大时,求λ的值.【解答】证明:(1)取PC的中点E,则连接DE,∵ME是△PBC的中位线,∴ME,又AD,∴ME AD,∴四边形AMED是平行四边形,∴AM∥DE.∵PA=AB,M是PB的中点,∴AM⊥PB,∵PA⊥平面ABCD,BC⊂平面ABCD,∴PA⊥BC,又BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,∵AM⊂平面PAB,∴BC⊥AM,又PB⊂平面PBC,BC⊂平面PBC,PB∩BC=B,∴AM⊥平面PBC,∵AM∥DE,∴DE⊥平面PBC,又DE⊂平面PCD,∴平面PBC⊥平面PCD.(2)以A为原点,以AD,AB,AP为坐标轴建立空间直角坐标系,如图所示:则A(0,0,0),B(0,2,0),M(0,1,1),P(0,0,2),C(2,2,0),D(1,0,0).∴=(1,2,0),=(0,1,1),=(1,0,0),∴=λ=(λ,2λ,0),=(λ+1,2λ,0),==(λ+1,2λ﹣1,﹣1).∵AD⊥平面PAB,∴为平面PAB的一个法向量,∴cos<>=====设MN与平面PAB所成的角为θ,则sinθ=.∴当即时,sinθ取得最大值,∴MN与平面PAB所成的角最大时.19.(12分)(2018•衡中模拟)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对的区域为x,转盘(B)指针所对的区域为y,x、y∈{1,2,3},设x+y的值为ξ.(Ⅰ)求x<2且y>1的概率;(Ⅱ)求随机变量ξ的分布列与数学期望.【解答】解:(1)记转盘A指针指向1,2,3区域的事件为A1,A2,A3,同理转盘B指针指向1,2,3区域的事件为B1,B2,B3,∴P(A1)=,P(A2)=,P(A3)=,P(B1)=,P(B2)=,P(B3)=,P=P(A1)P(1﹣P(B1))=×(1﹣)==.…(5分)(2)由已知得ξ的可能取值为2,3,4,5,6,P(ξ=2)=P(A1)P(B1)===,P(ξ=3)=P(A1)P(B2)+P(A2)P(B1)==,P(ξ=4)=P(A1)P(B3)+P(A2)P(B2)+P(A3)P(B1)==,P(ξ=5)=P(A2)P(B3)+P(A3)P(B2)=+=,P(ξ=6)=P(A3)P(B3)==,∴ξ的分布列为:ξ 2 3 4 5 6PEξ==.…(12分)20.(12分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°的直线与椭圆相交于M、N两点,且线段MN的中点为(﹣1,).过椭圆E内一点P(1,)的两条直线分别与椭圆交于点A、C和B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应的λ=.(Ⅰ)求椭圆E的方程;(Ⅱ)当λ变化时,k AB是否为定值?若是,请求出此定值;若不是,请说明理由.【解答】解:(Ⅰ)设M(m1,n1)、N(m2,n2),则,两式相减,故a2=3b2…(2分)当直线AP平行于x轴时,设|AC|=2d,∵,,则,解得,故点A(或C)的坐标为.代入椭圆方程,得…4分a2=3,b2=1,所以方程为…(6分)(Ⅱ)设A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4)由于,可得A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),…①同理可得…②…(8分)由①②得:…③将点A、B的坐标代入椭圆方程得,两式相减得(x1+x2)(x1﹣x2)+3(y1+y2)(y1﹣y2)=0,于是3(y1+y2)k AB=﹣(x1+x2)…④同理可得:3(y3+y4)k CD=﹣(x3+x4),…(10分)于是3(y3+y4)k AB=﹣(x3+x4)(∵AB∥CD,∴k AB=k CD)所以3λ(y3+y4)k AB=﹣λ(x3+x4)…⑤由④⑤两式相加得到:3[y1+y2+λ(y3+y4)]k AB=﹣[(x1+x2)+λ(x3+x4)]把③代入上式得3(1+λ)k AB=﹣2(1+λ),解得:,当λ变化时,k AB为定值,.…(12分)21.(12分)(2018•衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e2处的切线与直线x﹣2y+e=0平行.(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若函数F(x)=f(x)﹣无零点,求k的取值范围.【解答】解:(Ⅰ)由,得,解得m=2,故,则,函数g(x)的定义域为(0,1)∪(1,+∞),而,又函数g(x)在(1,+∞)上是减函数,∴在(1,+∞)上恒成立,∴当x∈(1,+∞)时,的最大值.而,即右边的最大值为,∴,故实数a的最小值;(Ⅱ)由题可得,且定义域为(0,1)∪(1,+∞),要使函数F(x)无零点,即在(0,1)∪(1,+∞)内无解,亦即在(0,1)∪(1,+∞)内无解.构造函数,则,(1)当k≤0时,h'(x)<0在(0,1)∪(1,+∞)内恒成立,∴函数h(x)在(0,1)内单调递减,在(1,+∞)内也单调递减.又h(1)=0,∴当x∈(0,1)时,h(x)>0,即函数h(x)在(0,1)内无零点,同理,当x∈(1,+∞)时,h(x)<0,即函数h(x)在(1,+∞)内无零点,故k≤0满足条件;(2)当k>0时,.①若0<k<2,则函数h(x)在(0,1)内单调递减,在内也单调递减,在内单调递增.又h(1)=0,∴h(x)在(0,1)内无零点;又,而,故在内有一个零点,∴0<k<2不满足条件;②若k=2,则函数h(x)在(0,1)内单调递减,在(1,+∞)内单调递增.又h(1)=0,∴当x∈(0,1)∪(1,+∞)时,h(x)>0恒成立,故无零点.∴k=2满足条件;③若k>2,则函数h(x)在内单调递减,在内单调递增,在(1,+∞)内也单调递增.又h(1)=0,∴在及(1,+∞)内均无零点.易知,又h(e﹣k)=k×(﹣k)﹣2+2e k=2e k﹣k2﹣2=ϕ(k),则ϕ'(k)=2(e k﹣k)>0,则ϕ(k)在k>2为增函数,∴ϕ(k)>ϕ(2)=2e2﹣6>0.故函数h(x)在内有一零点,k>2不满足.综上:k≤0或k=2.[选修4-1:几何证明选讲]22.(10分)(2018•衡中模拟)如图所示,AC为⊙O的直径,D为的中点,E为BC的中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:AC•BC=2AD•CD.【解答】证明:(Ⅰ)连接BD,因为D为的中点,所以BD=DC.因为E为BC的中点,所以DE⊥BC.因为AC为圆的直径,所以∠ABC=90°,所以AB∥DE.…(5分)(Ⅱ)因为D为的中点,所以∠BAD=∠DAC,又∠BAD=∠DCB,则∠DAC=∠DCB.又因为AD⊥DC,DE⊥CE,所以△DAC∽△ECD.所以=,AD•CD=AC•CE,2AD•CD=AC•2CE,因此2AD•CD=AC•BC.…(10分)[选修4-4:坐标系与参数方程]23.(2018•衡中模拟)在平面直角坐标系中,直线l的参数方程为(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若直线l与曲线C相交于A,B两点,求△AOB的面积.【解答】解:(1)由曲线C的极坐标方程为ρ=得ρ2sin2θ=2ρcosθ.∴由曲线C的直角坐标方程是:y2=2x.由直线l的参数方程为(t为参数),得t=3+y代入x=1+t中消去t得:x﹣y﹣4=0,所以直线l的普通方程为:x﹣y﹣4=0…(5分)(2)将直线l的参数方程代入曲线C的普通方程y2=2x,得t2﹣8t+7=0,设A,B两点对应的参数分别为t1,t2,所以|AB|===,因为原点到直线x﹣y﹣4=0的距离d=,所以△AOB 的面积是|AB|d==12.…(10分)[选修4-5:不等式选讲]24.(2018•衡中模拟)已知函数f(x)=|x﹣l|+|x﹣3|.(I)解不等式f(x)≤6;(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,求实数a的取值范围.【解答】解:函数f(x)=|x﹣l|+|x﹣3|=的图象如图所示,(I)不等式f(x)≤6,即①或②,或③.解①求得x∈∅,解②求得3<x≤5,解③求得﹣1≤x≤3.综上可得,原不等式的解集为[﹣1,5].(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,则函数f(x)的图象不能在y=ax﹣1的图象的下方.如图所示:由于图中两题射线的斜率分别为﹣2,2,点B(3,2),∴3a﹣1≤2,且a≥﹣2,求得﹣2≤a≤1.第21页(共21页)。

【衡水金卷】河北省衡水中学2018届高三毕业班模拟演练一理科数学试题(精编含解析)

【衡水金卷】河北省衡水中学2018届高三毕业班模拟演练一理科数学试题(精编含解析)

2018届高三毕业班模拟演练理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】A【解析】集合集合,则,故选A. 点睛: (1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关A∩B=∅,A⊆B等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.2. 已知,为虚数单位,若复数为纯虚数,则的值为()A. B. 2 C. -2 D. 0【答案】B【解析】复数为纯虚数,则,解得x=2,故选B.3. 已知等比数列中,,,则()A. B. -8 C. 8 D. 16【答案】C【解析】由题意可得, ,又同号,所以,则,故选C.4. 如图的折线图是某公司2017年1月至12月份的收入与支出数据.若从这12个月份中任意选3个月的数据进行分析,则这3个月中至少有一个月利润(利润=收入-支出)不低于40万的概率为()A. B. C. D.【答案】D【解析】由图知,7月,8月,11月的利润不低于40万元,故所求概率为,故选D.5. 我国古代《九章算术》里,记载了一个“商功”的例子:今有刍童,下广二丈,袤三丈,上广三丈,袤四丈,高三丈.问积几何?其意思是:今有上下底面皆为长方形的草垛(如图所示),下底宽2丈,长3丈;上底宽3丈,长4丈;高3丈.问它的体积是多少?该书提供的算法是:上底长的2倍与下底长的和与上底宽相乘,同样下底长的2倍与上底长的和与下底宽相乘,将两次运算结果相加,再乘以高,最后除以6.则这个问题中的刍童的体积为()A. 13.25立方丈B. 26.5立方丈C. 53立方丈D. 106立方丈【答案】B【解析】分析:根据题意,把有关数据代入公式,即可求出刍童的体积.详解:由算法可知,刍童的体积,立方长,\故选:B点睛:本题解题的关键是理解题意,利用题目提供的各个数据代入公式即可.6. 已知偶函数在区间上单调递增,且,,,则满足()A. B.C. D.【答案】D【解析】,故, 又,故,故选D.7. 某几何体的正视图与侧视图如图所示,则它的俯视图不可能是()A. B. C. D.【答案】C【解析】若几何体为两个圆锥体的组合体,则俯视图为A;若几何体为四棱锥与圆锥的组合体,则俯视图为B;若几何体为两个四棱锥的组合体,则俯视图为D;不可能为C,故选C.8. 若运行如图所示的程序框图,输出的的值为127,则输入的正整数的所有可能取值的个数为()A. 8B. 3C. 2D. 1【答案】B点睛:本题考查程序框图的应用,属于中档题.算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.9. 已知点分别在正方形的边上运动,且,设,,若,则的最大值为()A. 2B. 4C.D.【答案】C【解析】,又因为,,当且仅当x=y时取等号, ,即的最大值为,故选C.10. 已知函数,将的图象向右平移个单位,所得函数的部分图象如图所示,则的值为()A. B. C. D.【答案】A【解析】由题意得=,则,由图知,则,由,得,解得的值为,故选A.11. 若函数满足:①的图象是中心对称图形;②若时,图象上的点到其对称中心的距离不超过一个正数,则称是区间上的“对称函数”.若函数是区间上的“对称函数”,则实数的取值范围是()A. B. C. D.【答案】A【解析】函数的图象可由的图象向左平移1个单位,再向上平移m个单位得到,故函数f(x)的图象关于点A(-1,m)对称,如图所示,由图可知,当时,点A到函数f(x)图象上的点(-4,m-27)或(2,m+27)的距离最大,最大距离为,根据条件只需,故,应选A.12. 已知双曲线的左、右焦点分别为,点是双曲线上的任意一点,过点作双曲线的两条渐近线的平行线,分别与两条渐近线交于两点,若四边形(为坐标原点)的面积为,且,则点的横坐标的取值范围为()A. B.C. D.【答案】A【解析】由题易知四边形PAOB 为平行四边形,且不妨设双曲线C 的渐近线,设点P(m,n),则直线PB 的方程为y-n=b(x-m),且点P 到OB 的距离为,由,解得,又 ,又,,双曲线C 的方程为,即,又,解得或,所以点P 的横坐标m 的取值范围为,故选A.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知,则__________.【答案】【解析】=,故填.14. 已知抛物线的焦点坐标为,则抛物线与直线所围成的封闭图形的面积为__________. 【答案】【解析】抛物线的标准方程为,由得或,图形面积,故填.15. 已知实数满足不等式组则目标函数的最大值与最小值之和为__________.【答案】【解析】令t=2x,则x=,原可行域等价于,作出可行域如图所示,经计算得的几何意义是点P(t,y)到原点O的距离d的平方,由图可知,当点P与点C重合时,d取最大值;d的最小值为点O到直线AB:t-y-1=0的距离,故,所以的最大值与最小值之和为,故填.点睛: 应用利用线性规划求最值,一般用图解法求解,其步骤是:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.16. 在中,为的中点,与互为余角,,,则的值为__________.【答案】或【解析】设,则由+可知,为的中点,,即,由正弦定理得或,当A=B时,AC=BC,,当时, ,在△ACD中,,综上可得,的值为或.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列的前项和恰好与的展开式中含项的系数相等.(1)求数列的通项公式;(2)记,数列的前项和为,求.【答案】(1) (2)【解析】试题分析:(1)根据数列的前项和等于展开式中含项的系数,以及的关系,求出数列的通项公式;(2)由(1)求出,根据裂项相消法得出结果.试题解析:(1)依题意得,故当时,,又当时,,也适合上式,故.(2)由(1)得,故.18. 在矩形中,,,点是线段上靠近点的一个三等分点,点是线段上的一个动点,且.如图,将沿折起至,使得平面平面.(1)当时,求证:;(2)是否存在,使得与平面所成的角的正弦值为?若存在,求出的值;若不存在,请说明理由.【答案】(1)见解析(2)【解析】试题分析: (1) 当时,点是的中点,由已知证出,根据面面垂直的性质定理证得平面,进而证得结论;(2) 以为原点,的方向为轴,轴的正方向建立如图所示空间直角坐标系.写出各点坐标,求出平面的法向量,根据线面角的公式求出结果.试题解析:(1)当时,点是的中点.∴,.∵,∴.∵,,,∴.∴.又平面平面,平面平面,平面,∴平面.∵平面,∴.(2)以为原点,的方向为轴,轴的正方向建立如图所示空间直角坐标系.则,,.取的中点,∵,∴,∴ 易证得平面,∵,∴,∴.∴,,.设平面的一个法向量为,则令,则.设与平面所成的角为,则,解得或(舍去)∴存在实数,使得与平面所成的角的正弦值为,此时.19. 春节过后,某市教育局从全市高中生中抽去了100人,调查了他们的压岁钱收入情况,按照金额(单位:百元)分成了以下几组:,,,,,.统计结果如下表所示:该市高中生压岁钱收入可以认为服从正态分布,用样本平均数(每组数据取区间的中点值)作为的估计值.(1)求样本平均数;(2)求;(3)某文化公司赞助了市教育局的这次社会调查活动,并针对该市的高中生制定了赠送“读书卡”的活动,赠送方式为:压岁钱低于的获赠两次读书卡,压岁钱不低于的获赠一次读书卡.已知每次赠送的读书卡张数及对应的概率如下表所示:现从该市高中生中随机抽取一人,记(单位:张)为该名高中生获赠的读书卡的张数,求的分布列及数学期望.参考数据:若,则,.【答案】(1)68.5(2)0.8185(3)【解析】试题分析:(1)根据表中数据以及平均数公式代入计算即可;(2) 由(1)得的值,根据概率的计算公式计算即可;(3) 的所有可能取值为1,2,3,4,分别求出概率写出分布列,并求出期望即可. 试题解析:(1),(2)由(1)得,.∴.(3)易知.∴的所有可能取值为1,2,3,4.;;;.∴的分布列为∴.20. 已知椭圆的上顶点为点,右焦点为.延长交椭圆于点,且满足.(1)试求椭圆的标准方程;(2)过点作与轴不重合的直线和椭圆交于两点,设椭圆的左顶点为点,且直线分别与直线交于两点,记直线的斜率分别为,则与之积是否为定值?若是,求出该定值;若不是,试说明理由.【答案】(1) (2) 与之积为定值,且该定值是【解析】试题分析:(1),可得,将坐标代入求出点E,代入椭圆方程,结合焦点坐标可得椭圆方程;(2) 设,,设出直线AB的方程,与椭圆方程联立,消去y得到关于x的一元二次方程并写出韦达定理,根据三点共线得出M,N的坐标,求出与之积得出定值.试题解析:(1)椭圆的上顶点为,右焦点,点的坐标为.∵,可得,又,,∴代入可得,又,解得,,即椭圆的标准方程为.(2)设,,,,.由题意可设直线的方程为,联立消去,得,∴根据三点共线,可得,∴.同理可得,∴的坐标分别为,,∴.∴与之积为定值,且该定值是.点睛: 本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.21. 已知函数.(1)若函数恰有一个零点,求实数的取值范围;(2)设关于的方程的两个不等实根,求证:(其中为自然对数的底数).【答案】(1) (2)见解析【解析】试题分析:(1)求出函数的定义域和导函数,对参数m进行讨论得出函数的单调性,根据零点存在性定理判断零点的个数,求出m的取值范围;(2) 记函数,,则函数的两个相异零点为,将零点代入写出方程,并对两式相加和相减,再利用分析法以及变量集中构造新函数,并利用导数求最值的方法证得命题成立.试题解析:(1)由题意知的定义域为,且.①当时,,在区间上单调递增,又,,∴,即函数在区间有唯一零点;②当时,,令,得.又易知函数在区间上单调递增,∴恰有一个零点.③当时,令,得,在区间上,,函数单调递增;在区间上,,函数单调递减,故当时,取得极大值,且极大值为,无极小值.若恰有一个零点,则,解得,综上所述,实数的取值范围为.(2)记函数,,则函数的两个相异零点为不妨设,∵,,∴,,两式相减得,两式相加得.∵,∴要证,即证,只需证,只需证,即证,设,则上式转化为,设,,∴在区间上单调递增,∴,∴,即,即.点睛:本题考查函数的应用,利用导数解决函数的零点以及函数的单调性,最值和不等式的证明等问题.本题也考查了零点存在性定理的应用,如果函数在区间[a,b]上的图象是连续不断的一条曲线,并且有,那么函数在区间[a,b]内有零点,即存在,使得,这个c也就是方程的实数根.但是反之不一定成立.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在平面直角坐标系中,已知圆的参数方程为(为参数,).以原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程是.(1)若直线与圆有公共点,试求实数的取值范围;(2)当时,过点且与直线平行的直线交圆于两点,求的值.【答案】(1) (2)【解析】试题分析:(1)根据极坐标与普通方程的互化公式求出直线的直角坐标方程,消参得出圆的普通方程, 直线与圆有公共点,则圆心到直线的距离,即可求出范围;(2)将直线的参数方程代入曲线方程,根据t的几何意义求值即可.试题解析:(1)由,得,即,故直线的直角坐标方程为.由得所以圆的普通方程为.若直线与圆有公共点,则圆心到直线的距离,即,故实数的取值范围为.(2)因为直线的倾斜角为,且过点,所以直线的参数方程为(为参数),①圆的方程为,②联立①②,得,设两点对应的参数分别为,则,,故.23. 选修4-5:不等式选讲已知函数.(1)解不等式;(2)若函数,若对于任意的,都存在,使得成立,求实数的取值范围.【答案】(1) (2)【解析】分析:(1)讨论x的取值范围,把不等式转化为三个不等式组,分别求解集,最后取并集;(2)对于任意的,都存在,使得成立即的值域为值域的子集.详解:(1)依题意,得由,得或或解得.即不等式的解集为.(2)由(1)知,,,则,解得,即实数的取值范围为.点睛:|x-a|+|x-b|≥c(或≤c)(c>0),|x-a|-|x-b|≤c(或≤c)(c>0)型不等式的解法可通过零点分区间法或利用绝对值的几何意义进行求解.(1)零点分区间法的一般步骤①令每个绝对值符号的代数式为零,并求出相应的根;②将这些根按从小到大排列,把实数集分为若干个区间;③由所分区间去掉绝对值符号得若干个不等式,解这些不等式,求出解集;④取各个不等式解集的并集就是原不等式的解集.(2)利用绝对值的几何意义由于|x-a|+|x-b|与|x-a|-|x-b|分别表示数轴上与x对应的点到a,b对应的点的距离之和与距离之差,因此对形如|x-a|+|x-b|≤c(c>0)或|x-a|-|x-b|≥c(c>0)的不等式,利用绝对值的几何意义求解更直观.。

衡水中学2018年高考理数押题试卷

衡水中学2018年高考理数押题试卷

衡水中学2018年高考理数押题试卷D 5.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90的正角.已知双曲线E :22221(0,0)x y a b a b-=>>,当其离心率2,2]e ∈时,对应双曲线的渐近线的夹角的取值范围为( )A .[0,]6πB .[,]63ππC .[,]43ππD .[,]32ππ 6.某几何体的三视图如图所示,若该几何体的体积为32π+,则它的表面积是( )A .313(3)2222π++ B .3133()22242π++C .222+ D .132247.函数sin ln y x x =+在区间[3,3]-的图象大致为( )A .B .C .D .8.二项式1()(0,0)nax a b bx +>>的展开式中只有第6项的二项式系数最大,且展开式中的第3项的系数是第4项的系数的3倍,则ab 的值为( )A .4B .8C .12D .169.执行如图的程序框图,若输入的0x =,1y =,1n =,则输出的p 的值为( )A .81B .812C .814D .81810.已知数列11a =,22a=,且222(1)nn n aa +-=--,*n N ∈,则2017S 的值为( ) A .201610101⨯- B .10092017⨯ C .201710101⨯-D .10092016⨯11.已知函数()sin()f x A x ωϕ=+(0,0,)2A πωϕ>><的图象如图所示,令()()'()g x f x f x =+,则下列关于函数()g x 的说法中不正确的是( )A .函数()g x 图象的对称轴方程为()12x k k Z ππ=-∈B .函数()g x 的最大值为22C .函数()g x 的图象上存在点P ,使得在P 点处的切线与直线l :31y x =-平行D .方程()2g x =的两个不同的解分别为1x ,2x ,则12x x -最小值为2π 12.已知函数32()31f x axx =-+,若()f x 存在三个零点,则a 的取值范围是( )A .(,2)-∞-B .(2,2)-C .(2,)+∞D .(2,0)(0,2)-第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13.向量(,)a m n =,(1,2)b =-,若向量a ,b 共线,且2a b =,则mn 的值为 . 14.设点M 是椭圆22221(0)x y a b a b+=>>上的点,以点M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M 与y 轴相交于不同的两点P、Q ,若PMQ ∆为锐角三角形,则椭圆的离心率的取值范围为 .15.设x ,y 满足约束条件230220220x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则yx 的取值范围为 .16.在平面五边形ABCDE 中,已知120A ∠=,90B ∠=,120C ∠=,90E ∠=,3AB =,3AE =,当五边形ABCDE 的面积[63,93)S ∈时,则BC 的取值范围为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列{}na 的前n 项和为nS ,112a =,*121(2,)nn S S n n N -=+≥∈.(1)求数列{}na 的通项公式;(2)记*12log ()nn b a n N =∈,求11{}n n b b+的前n 项和nT .18.如图所示的几何体ABCDEF 中,底面ABCD 为菱形,2AB a =,120ABC ∠=,AC 与BD 相交于O 点,四边形BDEF 为直角梯形,//DE BF,BD DE ⊥,222DE BF a==,平面BDEF ⊥底面ABCD .(1)证明:平面AEF ⊥平面AFC ;(2)求二面角E AC F--的余弦值.19.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A、B、C、D、E五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:(1)试估算该校高三年级学生获得成绩为B的人数;(2)若等级A、B、C、D、E分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?(3)为了解心理健康状态稳定学生的特点,现从A、B两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为A级的个数ξ的分布列与数学期望.20.已知椭圆C :22221(0)x y a b a b +=>>的离心率为22,且过点322P ,动直线l :y kx m -+交椭圆C 于不同的两点A ,B ,且0OA OB ⋅=(O 为坐标原点).(1)求椭圆C 的方程. (2)讨论2232m k -是否为定值?若为定值,求出该定值,若不是请说明理由.21.设函数22()ln ()f x a x x ax a R =-+-∈.(1)试讨论函数()f x 的单调性;(2)设2()2()ln x x aa xϕ=+-,记()()()h x f x x ϕ=+,当0a >时,若方程()()h x m m R =∈有两个不相等的实根1x ,2x ,证明12'()02x xh +>.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C :3cos 2sin x ty tαα=+⎧⎨=+⎩(t 为参数,0a >),在以坐标原点为极点,x 轴的非负半轴为极轴的极坐标系中,曲线2C :4sin ρθ=.(1)试将曲线1C 与2C 化为直角坐标系xOy 中的普通方程,并指出两曲线有公共点时a 的取值范围; (2)当3a =时,两曲线相交于A ,B 两点,求AB .23.选修4-5:不等式选讲 已知函数()211f x x x =-++.(1)在下面给出的直角坐标系中作出函数()y f x =的图象,并由图象找出满足不等式()3f x ≤的解集; (2)若函数()y f x =的最小值记为m ,设,a b R ∈,且有22a b m+=,试证明:221418117a b +≥++.参考答案及解析 理科数学(Ⅱ)一、选择题1-5: BCAAD 6-10: AABCC 11、12:CD二、填空题13. 8- 14. 625122e -<< 15. 27[,]5416. 3,33)三、解答题17.解:(1)当2n =时,由121nn S S -=+及112a =, 得2121SS =+,即121221a aa +=+,解得214a=.又由121nn S S -=+,① 可知121n n SS +=+,② ②-①得12n naa +=,即11(2)2n na n a+=≥.且1n =时,2112aa=适合上式,因此数列{}na 是以12为首项,12为公比的等比数列,故*1()2nn a n N =∈.(2)由(1)及*12log ()nn b a n N =∈,可知121log ()2n nbn==,所以11111(1)1n n b bn n n n +==-++,故2231111nn n n Tb b b b b b +=++⋅⋅⋅11111[(1)()()]2231n n =-+-+⋅⋅⋅+-+1111n n n =-=++.18.解:(1)因为底面ABCD 为菱形,所以AC BD ⊥,又平面BDEF ⊥底面ABCD ,平面BDEF 平面ABCD BD =, 因此AC ⊥平面BDEF ,从而AC EF ⊥. 又BD DE ⊥,所以DE ⊥平面ABCD , 由2AB a =,222DE BF a==,120ABC ∠=,可知22426AF a a a=+,2BD a =,6EF a==,224823AE a a a=+=,从而222AF FE AE +=,故EF AF ⊥.又AFAC A=,所以EF ⊥平面AFC .又EF ⊂平面AEF ,所以平面AEF ⊥平面AFC .(2)取EF 中点G ,由题可知//OG DE ,所以OG ⊥平面ABCD ,又在菱形ABCD 中,OA OB ⊥,所以分别以OA ,OB ,OG 的方向为x ,y ,z 轴正方向建立空间直角坐标系O xyz -(如图示), 则(0,0,0)O ,3,0,0)A a ,(3,0,0)C a ,(0,,2)E a a -,(0,2)F a a ,所以(0,,22)3,0,0)AE a a a =--(3,,2)a a a =--,(3,0,0)3,0,0)AC a a =-(3,0,0)a =-,(0,2)(0,,2)EF a a a a =--(0,2,)a =.由(1)可知EF ⊥平面AFC ,所以平面AFC 的法向量可取为(0,2,2)EF a a =.设平面AEC 的法向量为(,,)n x y z =, 则n AE n AC ⎧⋅=⎪⎨⋅=⎪⎩,即3220x y z x ⎧-+=⎪⎨=⎪⎩,即20y zx ⎧=⎪⎨=⎪⎩,令2z =4y =,所以(0,2)n =.从而cos ,n EF n EF n EF⋅<>=⋅363a==.故所求的二面角E AC F --的余弦值为3.19.解:(1)从条形图中可知这100人中,有56名学生成绩等级为B ,所以可以估计该校学生获得成绩等级为B 的概率为561410025=,则该校高三年级学生获得成绩为B 的人数约有1480044825⨯=. (2)这100名学生成绩的平均分为1(321005690780100⨯+⨯+⨯370260)91.3+⨯+⨯=,因为91.390>,所以该校高三年级目前学生的“考前心理稳定整体”已过关.(3)由题可知用分层抽样的方法抽取11个学生样本,其中A 级4个,B 级7个,从而任意选取3个,这3个为A 级的个数ξ的可能值为0,1,2,3. 则03473117(0)33C C P C ξ===,124731128(1)55C C P C ξ===,214731114(2)55C C P C ξ===,30473114(3)165C C P C ξ===.因此可得ξ的分布列为:则72814()012335555E ξ=⨯+⨯+⨯412316511+⨯=. 20.解:(1)由题意可知2ca=,所以222222()ac a b ==-,即222ab =,① 又点23(22P 在椭圆上,所以有2223144ab+=,②由①②联立,解得21b=,22a=,故所求的椭圆方程为2212x y +=.(2)设11(,)A x y ,22(,)B x y ,由0OA OB ⋅=, 可知12120x xy y +=.联立方程组2212y kx m x y =+⎧⎪⎨+=⎪⎩,消去y 化简整理得222(12)4220k x kmx m +++-=,由2222168(1)(12)0k mm k ∆=--+>,得2212km +>,所以122412km x xk +=-+,21222212m x x k -=+,③又由题知12120x x y y +=, 即1212()()0x xkx m kx m +++=,整理为221212(1)()0kx x km x x m ++++=.将③代入上式,得22222224(1)01212m km k km m k k-+-⋅+=++. 化简整理得222322012m k k--=+,从而得到22322mk -=.21.解:(1)由22()ln f x ax x ax=-+-,可知2'()2a f x x a x =-+-222(2)()x ax a x a x a x x--+-==.因为函数()f x 的定义域为(0,)+∞,所以,①若0a >时,当(0,)x a ∈时,'()0f x <,函数()f x 单调递减,当(,)x a ∈+∞时,'()0f x >,函数()f x 单调递增;②若0a =时,当'()20f x x =>在(0,)x ∈+∞内恒成立,函数()f x 单调递增;③若0a <时,当(0,)2a x ∈-时,'()0f x <,函数()f x 单调递减,当(,)2ax ∈-+∞时,'()0f x >,函数()f x 单调递增.(2)证明:由题可知()()()h x f x x ϕ=+2(2)ln (0)x a x a x x =+-->,所以'()2(2)a h x x a x=+--22(2)(2)(1)x a x a x a x x x +---+==.所以当(0,)2a x ∈-时,'()0h x <;当(,)2a x ∈-+∞时,'()0h x >;当2ax =时,'()02a h =.欲证12'()02x x h +>,只需证12'()'()22x x a h h +>,又2''()20ah x x =+>,即'()h x 单调递增,故只需证明1222x xa+>.设1x ,2x 是方程()h x m =的两个不相等的实根,不妨设为120x x <<,则21112222(2)ln (2)ln x a x a x m x a x a x m⎧+--=⎪⎨+--=⎪⎩,两式相减并整理得1212(ln ln )a x x x x -+-22121222x x x x =-+-,从而221212121222ln ln x x x x a x x x x -+-=-+-,故只需证明2212121212122222(ln ln )x x x x x x x x x x +-+->-+-,即22121212121222ln ln x x x x x x x x x x -+-+=-+-.因为1212ln ln 0x xx x -+-<,所以(*)式可化为12121222ln ln x x x x x x --<+,即11212222ln 1x x x x x x -<+.因为120x x <<,所以1201xx<<,不妨令12x t x =,所以得到22ln 1t t t -<+,(0,1)t ∈. 设22()ln 1t R t t t -=-+,(0,1)t ∈,所以22214(1)'()0(1)(1)t R t t t t t -=-=≥++,当且仅当1t =时,等号成立,因此()R t 在(0,1)单调递增. 又(1)0R =,因此()0R t <,(0,1)t ∈,故22ln 1t t t -<+,(0,1)t ∈得证, 从而12'()02x x h +>得证. 22.解:(1)曲线1C :3cos 2sin x ty tαα=+⎧⎨=+⎩,消去参数t 可得普通方程为222(3)(2)x y a -+-=.曲线2C :4sin ρθ=,两边同乘ρ.可得普通方程为22(2)4xy +-=. 把22(2)4y x -=-代入曲线1C 的普通方程得:222(3)4136ax x x=-+-=-,而对2C 有222(2)4xx y ≤+-=,即22x -≤≤,所以2125a≤≤故当两曲线有公共点时,a 的取值范围为[1,5]. (2)当3a =时,曲线1C :22(3)(2)9x y -+-=,两曲线交点A ,B 所在直线方程为23x =. 曲线22(2)4xy +-=的圆心到直线23x =的距离为23d =, 所以482493AB =-=.23.解:(1)因为()211f x x x =-++3,112,1213,2x x x x x x ⎧⎪-<-⎪⎪=-+-≤≤⎨⎪⎪>⎪⎩,所以作出图象如图所示,并从图可知满足不等式()3f x ≤的解集为[1,1]-.(2)证明:由图可知函数()y f x =的最小值为32,即32m =. 所以2232ab +=,从而227112ab +++=,从而2222142[(1)(1)]117a b a b +=+++++22222214214(1)()[5()]1711b a a a b a b +++=++≥++++2222214(1)18[52]7117b a a b ++=+⋅=++.当且仅当222214(1)11b a a b ++=++时,等号成立,即216a=,243b=时,有最小值,所以221418117a b +≥++得证.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
书山有路
9.(5 分)(2018•衡中模拟)如图为三棱锥 S﹣ABC 的三视图,其表面积为( )
A.16 B.8 +6
C.16
D.16+6
10.(5 分)(2018•衡中模拟)已知椭圆 E: + =1(a>b>0)的左焦点 F(﹣3,0),
P 为椭圆上一动点,椭圆内部点 M(﹣1,3)满足 PF+PM 的最大值为 17,则椭圆的离心率 为( )
书山有路
2018 年衡水中学高考数学全真模拟试卷(理科)
第1卷 一、选择题(本大题共 12 小题,每小题 5 分,共 60 分.在每个小题给出的四个选项中,只 有一项是符合题目要求的.) 1.(5 分)(2018•衡中模拟)已知集合 A={x|x2<1},B={y|y=|x|},则 A∩B=( ) A.∅ B.(0,1) C.[0,1) D.[0,1] 2.(5 分)(2018•衡中模拟)设随机变量 ξ~N(3,σ2),若 P(ξ>4)=0.2,则 P(3<ξ≤4) =( ) A.0.8 B.0.4 C.0.3 D.0.2
x2(a<﹣1)对任
意的 x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,则 a 的取值范围为

三、解答题(本大题共 5 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.) 17.(12 分)(2018•衡中模拟)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c,满足 c=1,且 cosBsinC+(a﹣sinB)cos(A+B)=0 (1)求 C 的大小; (2)求 a2+b2 的最大值,并求取得最大值时角 A,B 的值.
的垂线,垂足分别为 P、Q,若∠PFQ= π,则双曲线的渐近线方程为( ) A.y=± xB.y=± x C.y=±x D.y=± x 【解答】解:如图若∠PFQ= π, 则由对称性得∠QFO= , 则∠QOx= ,
7
书山有路
即 OQ 的斜率 k= =tan = , 则双曲线渐近线的方程为 y=± x, 故选:B
10.(5 分)(2018•衡中模拟)已知椭圆 E: + =1(a>b>0)的左焦点 F(﹣3,0),
P 为椭圆上一动点,椭圆内部点 M(﹣1,3)满足 PF+PM 的最大值为 17,则椭圆的离心率 为( )
A. B. C. D.
【解答】解:设右焦点为 Q, 由 F(﹣3,0),可得 Q(3,0), 由椭圆的定义可得|PF|+|PQ|=2a, 即|PF|=2a﹣|PQ|, 则|PM|+|PF|=2a+(|PM|﹣|PQ|)≤2a+|MQ|, 当 P,M,Q 共线时,取得等号,即最大值 2a+|MQ|,
20.(12 分)(2018•衡中模拟)已知椭圆 E: + =1(a>b>0),倾斜角为 45°的直线与 椭圆相交于 M、N 两点,且线段 MN 的中点为(﹣1, ).过椭圆 E 内一点 P(1, )的 两条直线分别与椭圆交于点 A、C 和 B、D,且满足 =λ , =λ ,其中 λ 为实数.当 直线 AP 平行于 x 轴时,对应的 λ= . (Ⅰ)求椭圆 E 的方程; (Ⅱ)当 λ 变化时,kAB 是否为定值?若是,请求出此定值;若不是,请说明理由.
A. B. C. D.
11.(5 分)(2018•衡中模拟)已知 f(x)=
,若函数 y=f(x)﹣kx 恒
有一个零点,则 k 的取值范围为( ) A.k≤0 B.k≤0 或 k≥1 C.k≤0 或 k≥e D.k≤0 或 k≥
12.(5 分)(2018•衡中模拟)已知数列{an}的通项公式为 an=﹣2n+p,数列{bn}的通项公式
18.(12 分)(2018•衡中模拟)如图,在四棱锥 P﹣ABCD 中,侧棱 PA⊥底面 ABCD,AD ∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M 是棱 PB 中点.
(Ⅰ)求证:平面 PBC⊥平面 PCD; (Ⅱ)设点 N 是线段 CD 上一动点,且 =λ ,当直线 MN 与平面 PAB 所成的角最大时,
(Ⅱ)若不等式 f(x)≥ax﹣1 对任意 x∈R 恒成立,求实数 a 的取值范围.
6
书山有路ห้องสมุดไป่ตู้
参考答案与试题解析
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分.在每个小题给出的四个选项中,只 有一项是符合题目要求的.) 1.(5 分)(2018•衡中模拟)已知集合 A={x|x2<1},B={y|y=|x|},则 A∩B=( ) A.∅ B.(0,1) C.[0,1) D.[0,1] 【解答】解:A={x|x2<1}={x|﹣1<x<1},B={y|y=|x|≥0}, 则 A∩B=[0,1), 故选:C.


解得 a1=3,d=2, ∴an=3+2(n﹣1)=2n+1,


∴b8= (1﹣ + ﹣ +…+ ﹣ )= (1﹣ )= 故选 B.
8.(5 分)(2018•衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10, 则 a8=( ) A.45 B.180 C.﹣180 D.720 【解答】解:(x﹣3)10=[(x+1)﹣4]10,


故选:D.
9.(5 分)(2018•衡中模拟)如图为三棱锥 S﹣ABC 的三视图,其表面积为( )
A.16 B.8 +6
C.16
D.16+6
【解答】解:由三视图可知该三棱锥为边长为 2,4,4 的长方体切去四个小棱锥得到的几何
体.
三棱锥的三条边长分别为

9
∴表面积为 4× 故选:C.
书山有路
=16 .
[选修 4-1:几何证明选讲] 22.(10 分)(2018•衡中模拟)如图所示,AC 为⊙O 的直径,D 为 的中点,E 为 BC 的 中点. (Ⅰ)求证:DE∥AB; (Ⅱ)求证:AC•BC=2AD•CD.
5
书山有路
[选修 4-4:坐标系与参数方程] 23.(2018•衡中模拟)在平面直角坐标系中,直线 l 的参数方程为
5.(5 分)(2018•衡中模拟)将半径为 1 的圆分割成面积之比为 1:2:3 的三个扇形作为三 个圆锥的侧面,设这三个圆锥底面半径依次为 r1,r2,r3,那么 r1+r2+r3 的值为( )
A. B.2 C. D.1
【解答】解:∵2πr1=
,∴r1= ,同理

∴r1+r2+r3=1, 故选:D.
求 λ 的值.
3
书山有路
19.(12 分)(2018•衡中模拟)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区 域的圆心角分别为 60°、120°、180°.用这两个转盘进行游戏,规则是:同时转动两个转盘 待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始), 记转盘(A)指针所对的区域为 x,转盘(B)指针所对的区域为 y,x、y∈{1,2,3},设 x+y 的值为 ξ. (Ⅰ)求 x<2 且 y>1 的概率; (Ⅱ)求随机变量 ξ 的分布列与数学期望.
3.(5 分)(2018•衡中模拟)已知复数 z=
(i 为虚数单位),则 3=( )
A.1 B.﹣1 C.
D.
4.(5 分)(2018•衡中模拟)过双曲线 ﹣ =1(a>0,b>0)的一个焦点 F 作两渐近线
的垂线,垂足分别为 P、Q,若∠PFQ= π,则双曲线的渐近线方程为( )
A.y=± xB.y=± x C.y=±x D.y=± x 5.(5 分)(2018•衡中模拟)将半径为 1 的圆分割成面积之比为 1:2:3 的三个扇形作为三 个圆锥的侧面,设这三个圆锥底面半径依次为 r1,r2,r3,那么 r1+r2+r3 的值为( ) A. B.2 C. D.1 6.(5 分)(2018•衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是( )
由|MQ|=
=5,可得 2a+5=17,
所以 a=6, 则 e= = = ,
故选:A.
11.(5 分)(2018•衡中模拟)已知 f(x)=
,若函数 y=f(x)﹣kx 恒
有一个零点,则 k 的取值范围为( ) A.k≤0 B.k≤0 或 k≥1 C.k≤0 或 k≥e D.k≤0 或 k≥
【解答】解:由 y=f(x)﹣kx=0 得 f(x)=kx, 作出函数 f(x)和 y=kx 的图象如图, 由图象知当 k≤0 时,函数 f(x)和 y=kx 恒有一个交点, 当 x≥0 时,函数 f(x)=ln(x+1)的导数 f′(x)= ,则 f′(0)=1,
6.(5 分)(2018•衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是( )
A.2 B.3 C.4 D.5 【解答】解:第一次循环,sin >sin0,即 1>0 成立,a=1,T=1,k=2,k<6 成立, 第二次循环,sinπ>sin ,即 0>1 不成立,a=0,T=1,k=3,k<6 成立, 第三次循环,sin >sinπ,即﹣1>0 不成立,a=0,T=1,k=4,k<6 成立, 第四次循环,sin2π>sin ,即 0>﹣1 成立,a=1,T=1+1=2,k=5,k<6 成立,
的投影为

14.(5 分)(2018•衡中模拟)若数列{an}满足 a1=a2=1,an+2=

则数列{an}前 2n 项和 S2n=

15.(5 分)(2018•衡中模拟)若直线 ax+(a﹣2)y+4﹣a=0 把区域
分成面积
相等的两部分,则
相关文档
最新文档