(推荐)高中数学函数:题型分类

合集下载

高一所有类型函数知识点

高一所有类型函数知识点

高一所有类型函数知识点在高中数学学习中,函数是一个重要的概念。

学习函数的类型是理解和掌握数学知识的基础。

在这篇文章中,将详细介绍高一阶段学习的所有类型函数的知识点。

一、一次函数一次函数又称为线性函数,其形式为f(x) = ax + b,其中a和b 为常数,a不为零。

一次函数的图像是一条直线,斜率为a,截距为b。

通过斜率和截距,我们可以确定一次函数的图像、性质和方程。

二、二次函数二次函数是形如f(x) = ax^2 + bx + c的函数,其中a、b和c为常数,且a不为零。

二次函数的图像是一条抛物线,开口方向由a 的正负决定。

通过顶点、判别式、因式分解等方法,我们可以确定二次函数的图像、性质和方程。

三、指数函数指数函数是形如f(x) = a^x的函数,其中a为常数,且a大于零且不等于1。

指数函数的图像是一条平行于y轴的曲线,呈现指数递增或递减的特点。

通过底数a的大小和正负,我们可以确定指数函数的图像、性质和方程。

四、对数函数对数函数是指满足f(x) = loga x的函数,其中a为底数,x为正实数。

对数函数与指数函数是互为反函数的关系。

对数函数的图像是一条对称于y = x的曲线。

通过底数a的大小和正负,我们可以确定对数函数的图像、性质和方程。

五、幂函数幂函数是形如f(x) = x^a的函数,其中a为常数。

幂函数的图像形状不尽相同,可以是一条直线、一条抛物线或者更复杂的曲线。

通过指数a的大小和正负,我们可以确定幂函数的图像、性质和方程。

六、三角函数三角函数包括正弦函数、余弦函数、正切函数等。

它们的定义由单位圆上的点的坐标决定。

三角函数的图像具有周期性和对称性。

通过对应关系、单位圆和性质,我们可以确定三角函数的图像、性质和方程。

七、反三角函数反三角函数是指满足特定关系的函数,包括反正弦函数、反余弦函数、反正切函数等。

反三角函数与三角函数是互为反函数的关系。

通过对应关系、定义域和值域,我们可以确定反三角函数的图像、性质和方程。

函数性质的八大题型综合应用(解析版)-高中数学

函数性质的八大题型综合应用(解析版)-高中数学

函数性质的八大题型综合应用题型梳理【题型1函数的单调性的综合应用】【题型2函数的最值问题】【题型3函数的奇偶性的综合应用】【题型4函数的对称性的应用】【题型5对称性与周期性的综合应用】【题型6类周期函数】【题型7抽象函数的性质】【题型8函数性质的综合应用】命题规律从近几年的高考情况来看,本节是高考的一个热点内容,函数的单调性、奇偶性、对称性与周期性是高考的必考内容,重点关注单调性、奇偶性结合在一起,与函数图象、函数零点和不等式相结合进行考查,解题时要充分运用转化思想和数形结合思想,灵活求解.对于选择题和填空题部分,重点考查基本初等函数的单调性、奇偶性,主要考察方向是:判断函数单调性及求最值、解不等式、求参数范围等,难度较小;对于解答题部分,一般与导数相结合,考查难度较大.知识梳理【知识点1函数的单调性与最值的求解方法】1.求函数的单调区间求函数的单调区间,应先求定义域,在定义域内求单调区间.2.函数单调性的判断(1)函数单调性的判断方法:①定义法;②图象法;③利用已知函数的单调性;④导数法.(2)函数y=f(g(x))的单调性应根据外层函数y=f(t)和内层函数t=g(x)的单调性判断,遵循“同增异减”的原则.(3)函数单调性的几条常用结论:①若f(x)是增函数,则-f(x)为减函数;若f(x)是减函数,则-f(x)为增函数;②若f(x)和g(x)均为增(或减)函数,则在f(x)和g(x)的公共定义域上f(x)+g(x)为增(或减)函数;③若f(x)>0且f(x)为增函数,则函数f(x)为增函数,1f(x)为减函数;④若f(x)>0且f(x)为减函数,则函数f(x)为减函数,1f(x)为增函数.3.求函数最值的三种基本方法:(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.4.复杂函数求最值:对于较复杂函数,可运用导数,求出在给定区间上的极值,最后结合端点值,求出最值.【知识点2函数的奇偶性及其应用】1.函数奇偶性的判断判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f(x)与f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.(3)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如f(x)+g(x),f(x)-g(x),f(x)×g(x),f(x)÷g(x).对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇×(÷)奇=偶;奇×(÷)偶=奇;偶×(÷)偶=偶.(4)复合函数y=f[g(x)]的奇偶性原则:内偶则偶,两奇为奇.(5)常见奇偶性函数模型奇函数:①函数f(x)=ma x+1a x-1(x≠0)或函数f(x)=m a x-1a x+1.②函数f(x)=±(a x-a-x).③函数f(x)=log a x+mx-m=log a1+2mx-m或函数f(x)=log a x-mx+m=log a1-2mx+m④函数f(x)=log a(x2+1+x)或函数f(x)=log a(x2+1-x).2.函数奇偶性的应用(1)利用函数的奇偶性可求函数值或求参数的取值,求解的关键在于借助奇偶性转化为求已知区间上的函数或得到参数的恒等式,利用方程思想求参数的值.(2)画函数图象:利用函数的奇偶性可画出函数在其对称区间上的图象,结合几何直观求解相关问题.【知识点3函数的周期性与对称性常用结论】1.函数的周期性常用结论(a是不为0的常数)(1)若f(x+a)=f(x),则T=a;(2)若f(x+a)=f(x-a),则T=2a;(3)若f(x+a)=-f(x),则T=2a;(4)若f(x+a)=f(1x),则T=2a;(5)若f(x+a)=f(1x),则T=2a;(6)若f(x+a)=f(x+b),则T=|a-b|(a≠b);2.对称性的三个常用结论(1)若函数f(x)满足f(a+x)=f(b-x),则y=f(x)的图象关于直线x=a+b2对称.(2)若函数f(x)满足f(a+x)=-f(b-x),则y=f(x)的图象关于点a+b2,0对称.(3)若函数f(x)满足f(a+x)+f(b-x)=c,则y=f(x)的图象关于点a+b2,c 2对称.3.函数的的对称性与周期性的关系(1)若函数y=f(x)有两条对称轴x=a,x=b(a<b),则函数f(x)是周期函数,且T=2(b-a);(2)若函数y=f(x)的图象有两个对称中心(a,c),(b,c)(a<b),则函数y=f(x)是周期函数,且T=2(b-a);(3)若函数y=f(x)有一条对称轴x=a和一个对称中心(b,0)(a<b),则函数y=f(x)是周期函数,且T=4(b-a).举一反三【题型1函数的单调性的综合应用】1(2023·广东深圳·统考模拟预测)已知函数f x 的定义域为R,若对∀x∈R都有f3+x= f1-x,且f x 在2,+∞上单调递减,则f1 ,f2 与f4 的大小关系是()A.f4 <f1 <f2B.f2 <f1 <f4C.f1 <f2 <f4D.f4 <f2 <f1【解题思路】由f3+x=f1-x,得到f1 =f3 ,利用单调性即可判断大小关系,即可求解.【解答过程】因为对∀x∈R都有f3+x=f1-x,所以f1 =f3-2=f[1-(-2)]=f3 又因为f x 在2,+∞上单调递减,且2<3<4,所以f4 <f3 <f2 ,即f4 <f1 <f2 .故选:A.【变式训练】1(2023·山西朔州·怀仁市第一中学校校考二模)定义在R上的函数f(x)满足f2-x=f x ,且当x ≥1时,f (x )单调递增,则不等式f 2-x ≥f (x +1)的解集为()A.12,+∞ B.0,12C.-∞,-12D.-∞,12【解题思路】根据函数的对称性和单调性即可.【解答过程】由f 2-x =f (x ),得f (x )的对称轴方程为x =1,故2-x -1 ≥x +1 -1 ,即(1-x )2≥x 2,解得x ≤12.故选:D .2(2023上·江西鹰潭·高三校考阶段练习)已知函数f x =-x 2+2ax +4,x ≤1,1x,x >1是-12,+∞ 上的减函数,则a 的取值范围是()A.-1,-12B.-∞,-1C.-1,-12D.-∞,-1【解题思路】首先分析知,x >1,函数单调递减,则x ≤1也应为减函数,同时注意分界点处的纵坐标大小关系即可列出不等式组,解出即可.【解答过程】显然当x >1时,f x =1x为单调减函数,f x <f 1 =1当x ≤1时,f x =-x 2+2ax +4,则对称轴为x =-2a2×-1=a ,f 1 =2a +3若f x 是-12,+∞上减函数,则a ≤-122a +3≥1解得a ∈-1,-12 ,故选:A .3(2023·四川绵阳·统考三模)设函数f x 为x -1与x 2-2ax +a +3中较大的数,若存在x 使得f x ≤0成立,则实数a 的取值范围为()A.-43,-1 ∪1,4 B.-∞,-43∪4,+∞ C.-∞,1-132∪1+132,4D.-1,1【解题思路】根据绝对值函数的图像和二次函数讨论对称轴判定函数的图像即可求解.【解答过程】因为f x =max x -1,x 2-2ax +a +3 ,所以f x 代表x -1与x 2-2ax +a +3两个函数中的较大者,不妨假设g (x )=|x |-1,h (x )=x 2-2ax +a +3g (x )的函数图像如下图所示:h(x)=x2-2ax+a+3是二次函数,开口向上,对称轴为直线x=a,①当a<-1时,h(x)=x2-2ax+a+3在-1,1上是增函数,需要h(-1)=(-1)2-2a(-1)+a+3=3a+4≤0即a≤-4 3,则存在x使得f x ≤0成立,故a≤-4 3;②当-1≤a≤1时,h(x)=x2-2ax+a+3在-1,1上是先减后增函数,需要h(x)min=h(a)=a2-2a⋅a+a+3=-a2+a+3≤0,即a2-a-3≥0,解得a≥1+132或a≤1-132,又1+132>1,1-132<-1故-1≤a≤1时无解;③当a>1时,h(x)=x2-2ax+a+3在-1,1上是减函数,需要h(1)=12-2a+a+3=-a+4≤0即a≥4,则存在x使得f x ≤0成立,故a≥4.综上所述,a的取值范围为-∞,-4 3∪4,+∞.故选:B.【题型2函数的最值问题】1(2023·江西九江·校考模拟预测)若0<x<6,则6x-x2有()A.最小值3B.最大值3C.最小值9D.最大值9【解题思路】根据二次函数的性质进行求解即可.【解答过程】令y =6x -x 2=-(x -3)2+9,对称轴为x =3,开口向下,因为0<x <6,所以当x =3时,6x -x 2有最大值9,没有最小值,故选:D .【变式训练】1(2023·全国·校联考三模)已知函数f x =bx -b +3 x 3在-1,1 上的最小值为-3,则实数b的取值范围是()A.-∞,-4B.9,+∞C.-4,9D.-92,9【解题思路】由已知可得当-1≤x <1时,可得bx 1+x ≥-3x 2+x +1 恒成立,通过分离变量,结合函数性质可求b 的取值范围【解答过程】因为f 1 =-3,函数f x =bx -b +3 x 3在-1,1 上的最小值为-3,所以对∀x ∈-1,1 ,f x ≥-3恒成立,所以bx -b +3 x 3≥-3恒成立,即bx 1-x 2 ≥-31-x 3 恒成立,当x =1时,b ∈R ,当-1≤x <1时,可得bx 1+x ≥-3x 2+x +1 恒成立.当x =0或x =-1时,不等式显然成立;当0<x <1时,b ≥-3x 2+x +1 x 1+x =-31+1x 2+x,因为x 2+x ∈0,2 ,所以1x 2+x ∈12,+∞ ,1+1x 2+x ∈32,+∞ ,-31+1x 2+x∈-∞,-92 ,所以b ≥-92;当-1<x <0时,b ≤-31+1x 2+x,因为x 2+x ∈-14,0 ,所以1x 2+x ∈-∞,-4 ,1+1x 2+x ∈-∞,-3 ,-31+1x 2+x∈9,+∞ ,所以b ≤9.综上可得,实数b 的取值范围是-92,9.故选:D .2(2023上·广东广州·高一校考阶段练习)定义一种运算min a ,b =a ,a ≤bb ,a >b,设f x =min 4+2x -x 2,x -t (t 为常数,且x ∈[-3,3],则使函数f x 的最大值为4的t 的值可以是()A.-2或4B.6C.4或6D.-4【解题思路】根据定义,先计算y=4+2x-x2在x∈-3,3上的最大值,然后利用条件函数f(x)最大值为4,确定t的取值即可.【解答过程】y=4+2x-x2=-x-12+5在x∈-3,3上的最大值为5,所以由4+2x-x2=4,解得x=2或x=0,所以x∈0,2时,y=4+2x-x2>4,所以要使函数f(x)最大值为4,则根据定义可知,当t≤1时,即x=2时,2-t=4,此时解得t=-2,符合题意;当t>1时,即x=0时,0-t=4,此时解得t=4,符合题意;故t=-2或4.故选:A.3(2023·广东惠州·统考一模)若函数f x 的定义域为D,如果对D中的任意一个x,都有f x > 0,-x∈D,且f-xf x =1,则称函数f x 为“类奇函数”.若某函数g x 是“类奇函数”,则下列命题中,错误的是()A.若0在g x 定义域中,则g0 =1B.若g x max=g4 =4,则g x min=g-4=1 4C.若g x 在0,+∞上单调递增,则g x 在-∞,0上单调递减D.若g x 定义域为R,且函数h x 也是定义域为R的“类奇函数”,则函数G x =g x h x 也是“类奇函数”【解题思路】对A,根据“类奇函数”的定义,代入x=0求解即可;对B,根据题意可得g-x=1g x,再结合函数的单调性判断即可;对C,根据g-x=1g x,结合正负分数的单调性判断即可;对D,根据“类奇函数”的定义,推导G x G-x=1判断即可.【解答过程】对于A,由函数g x 是“类奇函数”,所以g x g-x=1,且g x >0,所以当x=0时,g0 g-0=1,即g0 =1,故A正确;对于B,由g x g-x=1,即g-x=1g x,g-x随g x 的增大而减小,若g(x)max=g4 =4,则g(x)min=g-4=14成立,故B正确;对于C,由g x 在0,+∞上单调递增,所以g-x=1g x,在x∈0,+∞上单调递减,设t=-x∈-∞,0 ,∴g t 在t ∈-∞,0 上单调递增,即g x 在x ∈-∞,0 上单调递增,故C 错误;对于D ,由g x g -x =1,h x h -x =1,所以G x G -x =g x g -x h x h -x =1,所以函数G x =g x h x 也是“类奇函数”,所以D 正确;故选:C .【题型3 函数的奇偶性的综合应用】1(2023·广东·东莞市校联考一模)已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=ax +1,若f (-2)=5,则不等式f (x )>12的解集为()A.-∞,-12 ∪0,16B.-12,0 ∪0,16C.-∞,-12 ∪16,+∞ D.-12,0 ∪16,+∞ 【解题思路】根据条件可求得x >0时f (x )的解析式,根据函数为奇函数继而可求得当x <0时f (x )的解析式,分情况解出不等式即可.【解答过程】因为函数f (x )是定义在R 上的奇函数,所以f (-2)=-f (2)=5,则f (2)=-5,则2a +1=-5,所以a =-3,则当x >0时,f (x )=-3x +1,当x <0时,-x >0,则f (x )=-f (-x )=-[-3×(-x )+1]=-3x -1,则当x >0时,不等式f (x )>12为-3x +1>12,解得0<x <16,当x <0时,不等式f (x )>12为-3x -1>12,解得x <-12,故不等式的解集为-∞,-12 ∪0,16,故选:A .【变式训练】1(2023·全国·模拟预测)已知函数f (x ),g (x )的定义域均为R ,f (3x +1)为奇函数,g (x +2)为偶函数,f (x +1)+g (1-x )=2,f (0)=-12,则102k =1 g (k )=()A.-51B.52C.4152D.4092【解题思路】由题意,根据函数奇偶性可得f (x )的图象关于点(1,0)中心对称、g (x )的图象关于点(1,2)中心对称,进而可知g (x )是以4为周期的周期函数.求出g (1),g (2),g (3),g (4),结合周期即可求解.【解答过程】因为f (3x +1)为奇函数,所以f (x +1)为奇函数,所以f (x +1)=-f (-x +1),f (x )的图象关于点(1,0)中心对称,f (1)=0.因为g (x +2)为偶函数,所以g (x +2)=g (-x +2),g (x )的图象关于直线x =2对称.由f (x +1)+g (1-x )=2,得f (-x +1)+g (1+x )=2,则-f (x +1)+g (1+x )=2,所以g (x +1)+g (1-x )=4,g (x )+g (2-x )=4,所以g (x )的图象关于点(1,2)中心对称.因为g (x )的图象关于x =2轴对称,所以g (x )+g (2+x )=4,g (x +2)+g (x +4)=4,所以g (x +4)=g (x ),即g (x )是以4为周期的周期函数.因为f (1)=0,f (0)=-12,所以g (1)=2,g (2)=52,g (3)=g (1)=2,g (4)=g (0)=4-g (2)=32,所以102k =1g (k )=25×2+52+2+32 +2+52=4092.故选:D .2(2023·安徽亳州·蒙城第一中学校联考模拟预测)已知函数f x 是定义在R 上的偶函数,函数g x 是定义在R 上的奇函数,且f x ,g x 在0,+∞ 上单调递减,则()A.f f 2 >f f 3B.f g 2 <f g 3C.g g 2 >g g 3D.g f 2 <g f 3【解题思路】利用函数的单调性以及函数的奇偶性,判断各选项的正负即可.【解答过程】因为f x ,g x 在0,+∞ 上单调递减,f x 是偶函数,g x 是奇函数,所以g x 在R 上单调递减,f x 在-∞,0 上单调递增,对于A ,f 2 >f 3 ,但无法判断f 2 ,f 3 的正负,故A 不正确;对于B ,g 2 >g 3 ,但无法判断g 2 ,g 3 的正负,故B 不正确;对于C ,g 2 >g 3 ,g x 在R 上单调递减,所以g g 2 <g g 3 ,故C 不正确;对于D ,f 2 >f 3 ,g x 在R 上单调递减,g f 2 <g f 3 ,故D 正确.故选:D .3(2023·江西吉安·江西省遂川中学校考一模)若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R有f (x 1+x 2)=f (x 1)+f (x 2)-2016,且x >0时,f (x )>2016,记f (x )在[-2017,2017]上的最大值和最小值为M ,N ,则M +N 的值为()A.2016B.2017C.4032D.4034【解题思路】先计算得到f (0)=2016,再构造函数g (x )=f (x )-2016,判断g (x )的奇偶性得出结论.【解答过程】解:令x 1=x 2=0得f (0)=2f (0)-2016,∴f (0)=2016,令x 1=-x 2得f (0)=f (-x 2)+f (x 2)-2016=2016,∴f (-x 2)+f (x 2)=4032,令g(x)=f(x)-2016,则g max(x)=M-2016,g min(x)=N-2016,∵g(-x)+g(x)=f(-x)+f(x)-4032=0,∴g(x)是奇函数,∴g max(x)+g min(x)=0,即M-2016+N-2016=0,∴M+N=4032.故选:C.【题型4函数的对称性的应用】1(2023·江西赣州·统考二模)已知函数f(x)的图像既关于点(-1,1)对称,又关于直线y=x对称,且当x∈[-1,0]时,f(x)=x2,则f174=()A.-194B.-92C.-72D.-174【解题思路】用Γ表示函数y=f x 的图像,设x0,y0∈Γ,根据中心对称性与轴对称性,得到4+y0,-4+x0∈Γ,令4+y0=174,求出y0,即可求出x0,即可得解.【解答过程】用Γ表示函数y=f x 的图像,对任意的x0∈-1,0,令y0=x20,则x0,y0∈Γ,且y0∈0,1,又函数f(x)的图像既关于点(-1,1)对称,且关于直线y=x对称,所以y0,x0∈Γ,则-2-y0,2-x0∈Γ,则2-x0,-y0-2∈Γ,则-4+x0,4+y0∈Γ,则4+y0,-4+x0∈Γ,令4+y0=174,即y0=14,此时x0=-12或x0=12(舍去),此时-4+x0=-4+-1 2=-92,即174,-92∈Γ,因此f174 =-92.故选:B.【变式训练】1(2023·四川绵阳·绵阳中学校考一模)若函数y=f x 满足f a+x+f(a-x)=2b,则说y=f x 的图象关于点a,b对称,则函数f(x)=xx+1+x+1x+2+x+2x+3+...+x+2021x+2022+x+2022x+2023的对称中心是()A.(-1011,2022)B.1011,2022C.(-1012,2023)D.1012,2023【解题思路】求出定义域,由定义域的对称中心,猜想a=-1012,计算出f(-1012+x)+f(-1012-x) =4046,从而求出对称中心.【解答过程】函数定义域为{x|x≠-1,x≠-2...,...x≠-2022,x≠-2023},定义域的对称中心为(-1012,0),所以可猜a=-1012,则f(-1012+x)=-1012+x-1011+x+-1011+x-1010+x+-1010+x-1009+x+...+1009+xx+1010+1010+x1011+x,f(-1012-x)=-1012-x-1011-x +-1011-x-1010-x+-1010-x-1009-x+...+1009-x1010-x+1010-x1011-x=1012+x 1011+x +1011+x1010+x+1010+x1009+x+...+1009-x1010-x+1010-x1011-x,故f(-1012+x)+f(-1012-x)=1010+x1011+x +1012+x 1011+x+1009+xx+1010+1011+x 1010+x⋯+-1012+x-1011+x +1010-x 1011-x=2×2023=4046所以y=f x 的对称中心为(-1012,2023),故选:C.2(2023·四川南充·四川省南充高级中学校考三模)函数f x 和g x 的定义域均为R,且y=f3+3x为偶函数,y=g x+3+2为奇函数,对∀x∈R,均有f x +g x =x2+1,则f7 g7 = ()A.615B.616C.1176D.2058【解题思路】由题意可以推出f x =f6-x,g x =-4-g6-x,再结合f x +g x =x2+1可得函数方程组,解出函数方程组后再代入求值即可.【解答过程】由函数f3+3x为偶函数,则f3+3x=f3-3x,即函数f x 关于直线x=3对称,故f x =f6-x;由函数g x+3+2为奇函数,则g x+3+2=-g-x+3-2,整理可得g x+3+g-x+3=-4,即函数g x 关于3,-2对称,故g x =-4-g6-x;由f x +g x =x2+1,可得f6-x+g6-x=(6-x)2+1,所以f x -4-g x =(6-x)2+1,故f x +g x =x2+1f x -4-g x =(6-x)2+1 ,解得f x =x2-6x+21,g x =6x-20,所以f7 =72-6×7+21=28,g7 =6×7-20=22,所以f7 g7 =28×22=616.故选:B.3(2023·甘肃张掖·高台县校考模拟预测)已知函数f(x)的定义域为R,f x-1的图象关于点(1,0)对称,f3 =0,且对任意的x1,x2∈-∞,0,x1≠x2,满足f x2-f x1x2-x1<0,则不等式x-1f x+1≥0的解集为()A.-∞,1∪2,+∞B.-4,-1∪0,1C.-4,-1∪1,2D.-4,-1∪2,+∞【解题思路】首先根据f(x-1)的图象关于点(1,0)对称,得出(x)是定义在R上的奇函数,由对任意的x1,x2∈(-∞,0),x1≠x2,满足f(x2)-f(x1)x2-x1<0,得出f(x)在(-∞,0)上单调递减,然后根据奇函数的对称性和单调性的性质,求解即可.【解答过程】∵f(x-1)的图象关于点(1,0)对称,∴f(x)的图象关于点(0,0)对称,∴f(x)是定义在R 上的奇函数,∵对任意的x1,x2∈(-∞,0),x1≠x2,满足f(x2)-f(x1)x2-x1<0,∴f(x)在(-∞,0)上单调递减,所以f(x)在(0,+∞)上也单调递减,又f3 =0所以f-3=0,且f0 =0,所以当x∈-∞,-3∪0,3时,f x >0;当x∈-3,0∪3,+∞时,f x <0,所以由x-1f x+1≥0可得x-1<0,-3≤x+1≤0或x-1>0,0≤x+1≤3或x-1=0,解得-4≤x≤-1或1≤x≤2,即不等式x-1f x+1≥0的解集为-4,-1∪1,2.故选:C.【题型5对称性与周期性的综合应用】1(2023·四川宜宾·统考一模)已知函数f x ,g x 的定义域为R,g x 的图像关于x=1对称,且g2x+2为奇函数,g1 =1,f x =g3-x+1,则下列说法正确的个数为()①g(-3)=g(5);②g(2024)=0;③f(2)+f(4)=-4;④2024n=1f(n)=2024.A.1B.2C.3D.4【解题思路】根据奇函数定义得到g-2x+2=-g2x+2,进而得到g x 的对称中心为,再根据对称轴求出周期,通过赋值得到答案.【解答过程】因为g2x+2为奇函数,所以g-2x+2=-g2x+2,则g-x+2=-g x+2,所以g x 对称中心为2,0,又因为g x 的图像关于x=1对称,则g-x+2=g x ,所以-g x+2=g x ,则g x+4=-g x+2=g x ,所以g x 的周期T=4,①g-3=g-3+8=g5 ,所以①正确;②因为g1 =1,g-x+2=g x ,g x 对称中心为2,0,所以g0 =g2 =0,所以g(2024)=g0 =0,所以②正确;③因为f x =g3-x+1,所以f2 =g1 +1=2,因为-g x+2=g x ,所以g-1=-g1 ,则f4 =g-1+1=-g1 +1=0,所以f(2)+f(4)=2,所以③错误;④因为f x =g 3-x +1且g x 周期T =4,所以f x +4 =g 3-x -4 +1=g 3-x +1=f x ,则f x 的周期为T =4,因为f 1 =g 2 +1=1,f 2 =2,f 3 =g 0 +1=1,f 4 =0,所以f 1 +f 2 +f 3 +f 4 =4,所以2024n =1 f (n )=506f 1 +f 2 +f 3 +f 4 =4 =506×4=2024,所以④正确.故选:C .【变式训练】1(2023·北京大兴·校考三模)已知函数f x 对任意x ∈R 都有f x +2 =-f x ,且f -x =-f x ,当x ∈-1,1 时,f x =x 3.则下列结论正确的是()A.函数y =f x 的图象关于点k ,0 k ∈Z 对称B.函数y =f x 的图象关于直线x =2k k ∈Z 对称C.当x ∈2,3 时,f x =x -2 3D.函数y =f x 的最小正周期为2【解题思路】根据f x +2 =-f x 得到f x +2 =f x -2 ,所以f x 的周期为4,根据f -x =-f x 得到f x 关于x =-1对称,画出f x 的图象,从而数形结合得到AB 错误;再根据f x =-f x -2 求出x ∈2,3 时函数解析式;D 选项,根据y =f x 的最小正周期,得到y =f x 的最小正周期.【解答过程】因为f x +2 =-f x ,所以f x =-f x -2 ,故f x +2 =f x -2 ,所以f x 的周期为4,又f -x =-f x ,所以f -x =f x -2 ,故f x 关于x =-1对称,又x ∈-1,1 时,f x =x 3,故画出f x 的图象如下:A 选项,函数y =f x 的图象关于点1,0 不中心对称,故A 错误;B 选项,函数y =f x 的图象不关于直线x =2对称,B 错误;C 选项,当x ∈2,3 时,x -2∈0,1 ,则f x =-f x -2 =-x -2 3,C 错误;D 选项,由图象可知y =f x 的最小正周期为4,又f x +2 =-f x =f x ,故y =f x 的最小正周期为2,D 正确.故选:D .2(2023·四川绵阳·绵阳校考模拟预测)已知函数f x 的定义域为R ,f 1 =0,且f 0 ≠0,∀x ,y∈R 都有f x +y +f x -y =2f x f y ,则下列说法正确的命题是()①f 0 =1;②∀x ∈R ,f -x +f x =0;③f x 关于点1,0 对称;④2023i =1 f (i )=-1A.①②B.②③C.①②④D.①③④【解题思路】利用特殊值法,结合函数的奇偶性、对称性和周期性进行求解即可.【解答过程】对于①,由于∀x ,y ∈R 都有f x +y +f x -y =2f x f y ,所以令x =y =0,则f 0 +f 0 =2f 0 f 0 ,即f 0 =f 20 ,因为f 0 ≠0,所以f 0 =1,所以①正确,对于②,令x =0,则f y +f -y =2f 0 f y =2f y ,所以f y =f -y ,即f x =f -x ,所以∀x ∈R ,f -x -f x =0,所以②错误,对于③,令x =1,则f 1+y +f 1-y =2f 1 f y =0,所以f 1+y =-f 1-y ,即f 1+x =-f 1-x ,所以f x 关于点1,0 对称,所以③正确,对于④,因为f 1+x =-f 1-x ,所以f 2+x =-f -x ,因为f x =f -x ,所以f 2+x =-f x ,所以f 4+x =-f 2+x ,所以f 4+x =f x ,所以f x 的周期为4,在f x +y +f x -y =2f x f y 中,令x =y =1,则f 2 +f 0 =2f 1 f 1 =0,因为f 0 =1,所以f (2)=-1,f (3)=f (-1)=f (1)=0,f (4)=f (0)=1,所以f (1)+f (2)+f (3)+f (4)=0+(-1)+0+1=0,所以2023i =1 f (i )=505×f (1)+f (2)+f (3)+f (4) +f (1)+f (2)+f (3)=-1,所以④正确,故选:D .3(2023·安徽合肥·合肥一中校考模拟预测)已知函数f x 与g (x )的定义域均为R ,f (x +1)为偶函数,且f (3-x )+g (x )=1,f (x )-g (1-x )=1,则下面判断错误的是()A.f x 的图象关于点(2,1)中心对称B.f x 与g x 均为周期为4的周期函数C.2022i =1f (i )=2022D.2023i =0g (i )=0【解题思路】由f (x +1)为偶函数可得函数关于直线x =1轴对称,结合f (3-x )+g (x )=1和f (x )-g (1-x )=1可得f x 的周期为4,继而得到g x 的周期也为4,接着利用对称和周期算出对应的值即可判断选项【解答过程】因为f x +1 为偶函数,所以f x +1 =f -x +1 ①,所以f x 的图象关于直线x =1轴对称,因为f x -g 1-x =1等价于f 1-x -g x =1②,又f 3-x +g x =1③,②+③得f 1-x +f 3-x =2④,即f 1+x +f 3+x =2,即f 2+x =2-f x ,所以f 4+x =2-f 2+x =f x ,故f x 的周期为4,又g x =1-f 3-x ,所以g x 的周期也为4,故选项B 正确,①代入④得f 1+x +f 3-x =2,故f x 的图象关于点2,1 中心对称,且f 2 =1,故选项A 正确,由f 2+x =2-f x ,f 2 =1可得f 0 =1,f 4 =1,且f 1 +f 3 =2,故f 1 +f 2 +f 3 +f 4 =4,故2022i =1 f (i )=505×4+f (1)+f (2)=2021+f (1),因为f 1 与f 3 值不确定,故选项C 错误,因为f 3-x +g x =1,所以g 1 =0,g 3 =0,g 0 =1-f 3 ,g 2 =1-f 1 ,所以g 0 +g 2 =2-f 1 +f 3 =0,故g 0 +g 1 +g 2 +g 3 =0,故2023i =0 g (i )=506×0=0,所以选项D 正确,故选:C .【题型6 类周期函数】1(2023·安徽合肥·合肥一六八中学校考模拟预测)定义在R 上的函数f x 满足f x +1 =12f x ,且当x ∈0,1 时,f x =1-2x -1 .当x ∈m ,+∞ 时,f x ≤332,则m 的最小值为()A.278B.298C.134D.154【解题思路】根据已知计算出f x =12n 1-2x -2n +1 ≤12n ,画出图象,计算f x =332,解得x =298,从而求出m 的最小值.【解答过程】由题意得,当x ∈1,2 时,故f x =12f x -1 =121-2x -3 ,当x ∈2,3 时,故f x =12f x -1 =141-2x -5 ⋯,可得在区间n ,n +1 n ∈Z 上,f x =12n 1-2x -2n +1 ≤12n ,所以当n ≥4时,f x ≤332,作函数y =f x 的图象,如图所示,当x ∈72,4 时,由f x =181-2x -7 =332,2x -7 =14,x =298,则m ≥298,所以m 的最小值为298故选:B .【变式训练】1(2023上·湖南长沙·高三校考阶段练习)定义域为R 的函数f x 满足f x +2 =2f x -1,当x∈0,2 时,f x =x 2-x ,x ∈0,1 1x,x ∈1,2.若x ∈0,4 时,t 2-7t 2≤f x ≤3-t 恒成立,则实数t 的取值范围是()A.1,2B.1,52C.12,2D.2,52【解题思路】由f (x +2)=2f (x )-1,求出x ∈(2,3),以及x ∈[3,4]的函数的解析式,分别求出(0,4]内的四段的最小值和最大值,注意运用二次函数的最值和函数的单调性,再由t 2-7t2≤f x ≤3-t 恒成立即为t 2-7t2≤f x min ,f x max ≤3-t ,解不等式即可得到所求范围【解答过程】当x ∈(2,3),则x -2∈(0,1),则f (x )=2f (x -2)-1=2(x -2)2-2(x -2)-1,即为f (x )=2x 2-10x +11,当x ∈[3,4],则x -2∈[1,2],则f (x )=2f (x -2)-1=2x -2-1.当x ∈(0,1)时,当x =12时,f (x )取得最小值,且为-14;当x ∈[1,2]时,当x =2时,f (x )取得最小值,且为12;当x ∈(2,3)时,当x =52时,f (x )取得最小值,且为-32;当x ∈[3,4]时,当x =4时,f (x )取得最小值,且为0.综上可得,f (x )在(0,4]的最小值为-32.若x ∈(0,4]时, t 2-7t2≤f x min 恒成立,则有t 2-7t 2≤-32.解得12≤t ≤3.当x ∈(0,2)时,f (x )的最大值为1,当x ∈(2,3)时,f (x )∈-32,-1 ,当x ∈[3,4]时,f (x )∈[0,1],即有在(0,4]上f (x )的最大值为1.由f x max ≤3-t ,即为1≤3-t ,解得t ≤2,综上,即有实数t 的取值范围是12,2.故选:C .2(2022·四川内江·校联考二模)定义域为R 的函数f (x )满足f (x +2)=3f (x ),当x ∈[0,2]时,f (x )=x 2-2x ,若x ∈[-4,-2]时,f (x )≥1183t-t 恒成立,则实数t 的取值范围是()A.-∞,-1 ∪0,3B.-∞,-3 ∪0,3C.-1,0 ∪3,+∞D.-3,0 ∪3,+∞【解题思路】根据题意首先得得到函数的具体表达式,由x ∈[-4,-2],所以x +4∈[0,2],所以f (x +4)=x 2+6x +8,再由f (x +4)=3f (x +2)=9f (x )可得出f (x )的表达式,在根据函数思维求出f (x )最小值解不等式即可.【解答过程】因为x ∈[-4,-2],所以x +4∈[0,2],因为x ∈[0,2]时,f x =x 2-2x ,所以f x +4 =(x +4)2-2(x +4)=x 2+6x +8,因为函数f x 满足f x +2 =3f x ,所以f x +4 =3f x +2 =9f x ,所以f x =19f x +4 =19x 2+6x +8 ,x ∈[-4,-2],又因为x ∈[-4,-2],f x ≥1183t-t 恒成立,故1183t -t ≤f x min =-19,解不等式可得t ≥3或-1≤t <0.故选C .3(2023上·浙江台州·高一校联考期中)设函数f x 的定义域为R ,满足f x =2f x -2 ,且当x∈0,2 时,f x =x 2-x .若对任意x ∈-∞,m ,都有f x ≤3,则m 的取值范围是()A.-∞,52B.-∞,72C.-∞,92D.-∞,112【解题思路】根据给定条件分段求解析式及对应函数值集合,再利用数形结合即得.【解答过程】因为函数f x 的定义域为R ,满足f x =2f x -2 ,且当x ∈0,2 时,f x =x 2-x =-x -1 2+1∈0,1 ,当x ∈(2,4],时,x -2∈(0,2],则f (x )=2f (x -2)=2x -2 2-x -2 =-2x -3 2+2∈0,2 ,当x ∈(4,6],时,x -4∈(0,2],则f (x )=4f (x -2)=4x -2-2 4-x -2 =-4x -5 2+4∈0.4 ,当x ∈(-2,0],时,x +2∈(0,2],则f (x )=12f (x +2)=12(x +2)-x =-12x +1 2+12∈0,12,作出函数f x 的大致图象,对任意x ∈-∞,m ,都有f x ≤3,设m 的最大值为t ,则f t =3,所以-4t -5 2+4=3,解得t =92或t =112,结合图象知m 的最大值为92,即m 的取值范围是-∞,92.故选:C .【题型7 抽象函数的性质】1(2023·新疆乌鲁木齐·统考二模)已知f x ,g x 都是定义在R 上的函数,对任意x ,y 满足f x -y=f x g y -g x f y ,且f -2 =f 1 ≠0,则下列说法正确的是()A.f 0 =1B.函数g 2x +1 的图象关于点1,0 对称C.g 1 +g -1 =0D.若f 1 =1,则2023n =1 f n =1【解题思路】利用赋值法结合题目给定的条件可判断AC ,取f x =sin2π3x ,g x =cos 2π3x 可判断B ,对于D ,通过观察选项可以推断f x 很可能是周期函数,结合f x g y ,g x f y 的特殊性及一些已经证明的结论,想到令y =-1和y =1时可构建出两个式子,两式相加即可得出f x +1 +f x -1 =-f x ,进一步得出f x 是周期函数,从而可求2023n =1 f n 的值.【解答过程】解:对于A ,令x =y =0,代入已知等式得f 0 =f 0 g 0 -g 0 f 0 =0,得f 0 =0,故A 错误;对于B ,取f x =sin 2π3x ,g x =cos 2π3x ,满足f x -y =f x g y -g x f y 及f -2 =f 1 ≠0,因为g 3 =cos2π=1≠0,所以g x 的图象不关于点3,0 对称,所以函数g 2x +1 的图象不关于点1,0 对称,故B 错误;对于C ,令y =0,x =1,代入已知等式得f 1 =f 1 g 0 -g 1 f 0 ,可得f 1 1-g 0 =-g 1 f 0 =0,结合f 1 ≠0得1-g 0 =0,g 0 =1,再令x =0,代入已知等式得f -y =f 0 g y -g 0 f y ,将f 0 =0,g 0 =1代入上式,得f -y =-f y ,所以函数f x 为奇函数.令x =1,y =-1,代入已知等式,得f 2 =f 1 g -1 -g 1 f -1 ,因为f -1 =-f 1 ,所以f 2 =f 1 g -1 +g 1 ,又因为f 2 =-f -2 =-f 1 ,所以-f 1 =f 1 g -1 +g 1 ,因为f 1 ≠0,所以g 1 +g -1 =-1,故C 错误;对于D ,分别令y =-1和y =1,代入已知等式,得以下两个等式:f x +1 =f x g -1 -g x f -1 ,f x -1 =f x g 1 -g x f 1 ,两式相加易得f x +1 +f x -1 =-f x ,所以有f x +2 +f x =-f x +1 ,即:f x =-f x +1 -f x +2 ,有:-f x +f x =f x +1 +f x -1 -f x +1 -f x +2 =0,即:f x -1 =f x +2 ,所以f x 为周期函数,且周期为3,因为f 1 =1,所以f -2 =1,所以f 2 =-f -2 =-1,f 3 =f 0 =0,所以f 1 +f 2 +f 3 =0,所以2023n =1 f n =1=f 1 +f 2 +f 3 +⋯+f 2023 =f 2023 =f 1 =1,故D 正确.故选:D .【变式训练】1(2023·福建宁德·福鼎市校考模拟预测)已知函数f x 及其导函数f x 的定义域均为R ,对任意的x ,y ∈R ,恒有f x +y +f x -y =2f x f y ,则下列说法正确的个数是()①f 0 =0;②fx 必为奇函数;③f x +f 0 ≥0;④若f (1)=12,则2023n =1f (n )=12.A.1B.2C.3D.4【解题思路】利用赋值法可判断①;利用赋值法结合函数奇偶性定义判断②;赋值,令y =x ,得出f 2x+f0 ≥0,变量代换可判断③;利用赋值法求出f(n)部分函数值,推出其值具有周期性,由此可计算2023n=1f(n),判断④,即可得答案.【解答过程】令x=y=0,则由f x+y+f x-y=2f x f y 可得2f0 =2f20 ,故f(0)=0或f0 =1,故①错误;当f(0)=0时,令y=0,则f(x)+f(x)=2f(x)f(0)=0,则f(x)=0,故f (x)=0,函数f (x)既是奇函数又是偶函数;当f(0)=1时,令x=0,则f(y)+f(-y)=2f(0)f(y),所以f-y=f y ,则-f (-y)=f (y),即f (-y)=-f (y),则f (x)为奇函数,综合以上可知f (x)必为奇函数,②正确;令y=x,则f2x+f0 =2f2x ,故f2x+f0 ≥0.由于x∈R,令t=2x,t∈R,即f t +f0 ≥0,即有f x +f0 ≥0,故③正确;对于D,若f1 =12,令x=1,y=0,则f1 +f1 =2f1 f0 ,则f(0)=1,令x=y=1,则f2 +f0 =2f21 ,即f2 +1=12,∴f2 =-12,令x=2,y=1,则f3 +f1 =2f2 f1 ,即f3 +12=-12,∴f(3)=-1,令x=3,y=1,则f4 +f2 =2f3 f1 ,即f4 -12=-1,∴f(4)=-12,令x=4,y=1,则f5 +f3 =2f4 f1 ,即f5 -1=-12,∴f(5)=12,令x=5,y=1,则f6 +f4 =2f5 f1 ,即f6 -12=12,∴f(6)=1,令x=6,y=1,则f7 +f5 =2f6 f1 ,即f7 +12=1,∴f(7)=12,令x=7,y=1,则f8 +f6 =2f7 f1 ,即f8 +1=12,∴f(8)=-12,⋯⋯,由此可得f(n),n∈N*的值有周期性,且6个为一周期,且f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0,故2023n=1f n =337×[f(1)+f(2)+f(3)+f(4)+f(5)+f(6)]+f(1)=12,故④正确,即正确的是②③④,故选:C.2(2023·河南·校联考模拟预测)已知函数f x 对任意实数x,y恒有f(x-y)+f(x+y)=f(2x)成立,且当x<0时,f(x)>0.(1)求f(0)的值;(2)判断f x 的单调性,并证明;(3)解关于x的不等式:f x2-(a+2)x+f(a+y)+f(a-y)>0.【解题思路】(1)根据题意,令x=0,y=0,即可求得f(0)=0;(2)令x=0,得到f(-y)=-f(y),所以f x 为奇函数,在结合题意和函数单调性的定义和判定方法,即可求解;(3)化简不等式为f x2-(a+2)x>f(-2a),结合函数f x 的单调性,把不等式转化为x2-(a+2)x <-2a,结合一元二次不等式的解法,即可求解.【解答过程】(1)解:因为函数f(x)对任意实数x,y恒有f(x-y)+f(x+y)=f(2x)成立,令x=0,y=0,则f(0)+f(0)=f(0),所以f(0)=0.(2)解:函数f x 为R上的减函数.证明:令x=0,则f(-y)+f(y)=f(0)=0,所以f(-y)=-f(y),故f x 为奇函数.任取x1,x2∈R,且x1<x2,则x1-x2<0,因为当x<0时,f(x)>0,所以f x1-x2>0,所以f x1-f x2=f x1+f-x2=fx1-x22+x1+x22+f x1-x22-x1+x22=f x1-x2>0,即f x1>f x2,所以f x 是R上的减函数.(3)解:根据题意,可得f x2-(a+2)x>-[f(a+y)+f(a-y)]=-f(2a)=f(-2a),由(2)知f x 在R上单调递减,所以x2-(a+2)x<-2a,即x2-(a+2)x+2a<0,可得(x-2)(x-a)<0,当a>2时,原不等式的解集为(2,a);当a=2时,原不等式的解集为∅;当a<2时,原不等式的解集为(a,2).3(2023上·广东东莞·高一校联考期中)已知函数f x 对任意实数x,y恒有f x+y=f x +f y ,当x>0时,f x <0,且f1 =-2.(1)判断f x 的奇偶性;(2)判断函数单调性,求f x 在区间-3,3上的最大值;(3)若f x <m2-2am+2对所有的x∈-1,1,a∈-1,1恒成立,求实数m的取值范围.【解题思路】(1)令x=y=0,求得f0 =0,再令y=-x,从而得f-x=-f x ,从而证明求解. (2)设x1,x2∈R且x1<x2,结合条件用单调性的定义证明函数f x 的单调性,然后利用单调性求解区间-3,3上的最大值.(3)根据函数f x <m2-2am+2对所有的x∈-1,1,a∈-1,1恒成立,说明f x 的最大值2小于右边,因此先将右边看作a的函数,解不等式组,即可得出m的取值范围.【解答过程】(1)f x 为奇函数,证明如下:令x=y=0,则f0+0=2f0 ,所以f0 =0,令y=-x,则f x-x=f x +f-x=f0 =0,所以:f-x=-f x 对任意x∈R恒成立,所以函数f x 为奇函数.(2)f x 在R上是减函数,证明如下:任取x1,x2∈R且x1<x2,则x2-x1>0f x2-f x1=f x2+f-x1=f x2-x1<0,所以f x2<f x1,所以f x 在R上为减函数.当x∈-3,3时,f x 单调递减,所以当x=-3时,f x 有最大值为f-3,因为f3 =f2 +f1 =3f1 =-2×3=-6,所以f-3=-f3 =6,故f x 在区间-3,3上的最大值为6.(3)由(2)知f x 在区间-1,1上单调递减,所以f x ≤f-1=-f1 =2,因为f x <m2-2am+2对所有的x∈-1,1,a∈-1,1恒成立,即m2-2am>0对任意a∈-1,1恒成立,令g a =-2am+m2,则g-1>0g1 >0,即2m+m2>0-2m+m2>0,解得:m>2或m<-2.故m的取值范围为-∞,-2∪2,+∞.【题型8函数性质的综合应用】1(2023上·河北石家庄·高一校考阶段练习)已知函数f(x)=a x,g(x)=b⋅a-x+x,a>0且a≠1,若f(1)+g(1)=52,f(1)-g(1)=32,设h(x)=f(x)+g(x),x∈[-4,4].(1)求函数h(x)的解析式并判断其奇偶性;(2)判断函数h(x)的单调性(不需证明),并求不等式h(2x+1)+h(2x-1)≥0的解集.【解题思路】(1)由f(1)+g(1)=52、f(1)-g(1)=32代入可解出a、b,得到h(x),再计算h(x)与h(-x)的关系即可得到奇偶性;(2)分别判断h(x)中每一部分的单调性可得h(x)的单调性,结合函数的单调性与奇偶性解决该不等式即可得.【解答过程】(1)由f(1)+g(1)=52,f(1)-g(1)=32,即有a+ba+1=52a-ba-1=32,解得a=2b=-1,即f(x)=2x,g(x)=-2-x+x,则h(x)=2x-2-x+x,其定义域为R,h (-x )=2-x -2x -x =-2x -2-x +x =-h (x ),故h (x )为奇函数.(2)h (x )=2x -2-x +x ,由2x 在R 上单调递增,-2-x 在R 上单调递增,x 在R 上单调递增,故h (x )在R 上单调递增,由h (2x +1)+h (2x -1)≥0,且h (x )为奇函数,即有h (2x +1)≥-h (2x -1)=h 1-2x ,即有2x +1≥1-2x ,解得x ≥0,故该不等式的解集为x x ≥0 .【变式训练】1(2023上·上海·高一校考期中)已知定义在全体实数上的函数f x 满足:①f x 是偶函数;②f x 不是常值函数;③对于任何实数x 、y ,都有f x +y =f x f y -f 1-x f 1-y .(1)求f 1 和f 0 的值;(2)证明:对于任何实数x ,都有f x +4 =f x ;(3)若f x 还满足对0<x <1有f x >0,求f 13+f 23 +⋯+f 20263 的值.【解题思路】(1)取x =1,y =0代入计算得到f 1 =0,取y =0得到f x =f x f 0 ,得到答案.(2)取y =1,结合函数为偶函数得到f x +2 =-f x ,变换得到f x +4 =f x ,得到证明.(3)根据函数的周期性和奇偶性计算f 13 +f 23 +⋯+f 123 =0,取x =y =13和取x =13,y =-13得到f 13 =32,根据周期性得到f 13 +f 23 +⋯+f 20263=-f 13 -1,计算得到答案.【解答过程】(1)f x +y =f x f y -f 1-x f 1-y取x =1,y =0得到f 1 =f 1 f 0 -f 0 f 1 =0,即f 1 =0;取y =0得到f x =f x f 0 -f 1-x f 1 =f x f 0 ,f x 不是常值函数,故f 0 =1;(2)f x +y =f x f y -f 1-x f 1-y ,取y =1得到f x +1 =f x f 1 -f 1-x f 0 =-f 1-x ,f x 是偶函数,故f x +1 =-f x -1 ,即f x +2 =-f x ,f x +4 =-f x +2 =f x .(3)f x +2 +f x =0,f x 为偶函数,取x =-13,则f 53 +f -13 =0,即f 53 +f 13 =0;取x =-23,则f 43 +f -23 =0,即f 43 +f 23=0;故f 73+f 83 +f 103 +f 113 =-f 13 -f 23 -f 43 -f 53 =0,f 2 =-f 0 =-1,f 3 =f -1 =f 1 =0,f 4 =f 0 =1,故f 13+f 23 +⋯+f 123 =0,取x =y =13得到f 23 =f 213 -f 223,取x =13,y =-13得到f 0 =f 213 -f 23 f 43 =f 213 +f 223=1,f 13 >0,f 23 >0,解得f 13 =32,f 13+f 23 +⋯+f 20263 =-f 113 -f 123 =-f 13 -1=-32-1.2(2023下·山西运城·高二统考期末)已知f x =e x -1+e 1-x +x 2-2x +a ,(1)证明:f x 关于x =1对称;(2)若f x 的最小值为3(i )求a ;(ii )不等式f m e x +e -x +1 >f e x -e -x 恒成立,求m 的取值范围【解题思路】(1)代入验证f (x )=f (2-x )即可求解,(2)利用单调性的定义证明函数的单调性,即可结合对称性求解a =2,分离参数,将恒成立问题转化为m >e x -e -x -1e x +e -xmax ,构造函数F (x )=e x -e -x -1e x +e-x ,结合不等式的性质即可求解最值.【解答过程】(1)证明:因为f x =e x -1+e 1-x +x 2-2x +a ,所以f (2-x )=e 2-x -1+e1-(2-x )+(2-x )2-2(2-x )+a =e 1-x +e x -1+x 2-2x +a ,所以f (x )=f (2-x ),所以f (x )关于x =1对称.(2)(ⅰ)任取x 1,x 2∈(1,+∞),且x 1<x 2f x 1 -f x 2 =e x 1-1+e1-x 1+x 21-2x 1-ex 2-1+e1-x 2+x 22-2x 2=e x 1-1-ex 2-1+e1-x 1-e1-x 2+x 21-x 22 -2x 1-x 2=(ex 1-1-ex 2-1)(e x 1-1e x 2-1-1)ex 1-1ex 2-1+(x 1-x 2)(x 1+x 2-2)∵1<x 1<x 2,∴0<x 1-1<x 2-1,∴e x 1-1>1,ex 2-1>1,ex 1-1-ex 2-1<0,ex 1-1e x 2-1-1>0,x 1-x 2<0,x 1+x 2-2>0,∴f (x 1)<f (x 2),所以f (x )在1,+∞ 上单调递增,又f (x )关于x =1对称,则在-∞,1 上单调递减.所以f (x )min =f (1)=1+a =3,所以a =2.(单调性也可以用单调性的性质、复合函数的单调性判断、导数证明)(ⅱ)不等式f (m (e x +e -x )+1)>f (e x -e -x )恒成立等价于(m (e x +e -x )+1)-1 >e x -e -x -1 恒成立, 即m >ex-e -x -1 e x +e -x =e x -e -x -1e x +e -x恒成立,即m >e x -e -x -1e x +e -xmax令F (x )=e x -e -x -1e x +e -x ,则F (x )=e 2x -e x -1e 2x +1=1-e x +2e 2x +1,令e x +2=n ,n ∈2,+∞ ,则e x =n -2则g n =1-n n 2-4n +5=1-1n -4+5n,因为n ∈2,+∞ ,n -4+5n ≥25-4,n =5取等号,则g n ∈-52,1,所以g n ∈0,52,所以m >52,即m ∈-∞,-52 ∪52,+∞ .3(2023下·广东·高一统考期末)已知函数y =φx 的图象关于点P a ,b 成中心对称图形的充要条件是φa +x +φa -x =2b .给定函数f x =x -6x +1及其图象的对称中心为-1,c .(1)求c 的值;(2)判断f x 在区间0,+∞ 上的单调性并用定义法证明;(3)已知函数g x 的图象关于点1,1 对称,且当x ∈0,1 时,g x =x 2-mx +m .若对任意x 1∈0,2 ,总存在x 2∈1,5 ,使得g x 1 =f x 2 ,求实数m 的取值范围.【解题思路】(1)根据函数的对称性得到关于c 的方程,解出即可求出函数的对称中心;(2)利用函数单调性的定义即可判断函数f (x )单增,(3)问题转化为g (x )在[0,2]上的值域A ⊆[-2,4],通过讨论m 的范围,得到关于m 的不等式组,解出即可.【解答过程】(1)由于f (x )的图象的对称中心为-1,c ,则f (-1+x )+f (-1-x )=2c ,即(x -1)-6x -1+1+(-x -1)-6-x -1+1=2c ,整理得-2=2c ,解得:c =-1,故f (x )的对称中心为(-1,-1);(2)函数f (x )在(0,+∞)递增;设0<x 1<x 2,则f x 1 -f x 2 =x 1-6x 1+1-x 2+6x 2+1=x 1-x 2 +6x 1-x 2 x 2+1 x 1+1=x 1-x 2 1+6x 2+1 x 1+1,由于0<x 1<x 2,所以x 1-x 2<0, 6x 2+1 x 1+1>0,所以f x 1 -f x 2 <0⇒f x 1 <f x 2 ,故函数f (x )在(0,+∞)递增;。

专题07 函数的性质-单调性、奇偶性、周期性 (学生版)高中数学53个题型归纳与方法技巧总结篇

专题07 函数的性质-单调性、奇偶性、周期性 (学生版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】1.高中数学53个题型归纳与方法技巧总结篇专题07函数的性质——单调性、奇偶性、周期性函数的单调性(1)单调函数的定义一般地,设函数()f x 的定义域为A ,区间D A ⊆:如果对于D 内的任意两个自变量的值1x ,2x 当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是增函数.如果对于D 内的任意两个自变量的值1x ,2x ,当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是减函数.①属于定义域A 内某个区间上;②任意两个自变量1x ,2x 且12x x <;③都有12()()f x f x <或12()()f x f x >;④图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的.(2)单调性与单调区间①单调区间的定义:如果函数()f x 在区间D 上是增函数或减函数,那么就说函数()f x 在区间D 上具有单调性,D 称为函数()f x 的单调区间.②函数的单调性是函数在某个区间上的性质.(3)复合函数的单调性复合函数的单调性遵从“同增异减”,即在对应的取值区间上,外层函数是增(减)函数,内层函数是增(减)函数,复合函数是增函数;外层函数是增(减)函数,内层函数是减(增)函数,复合函数是减函数.2.函数的奇偶性函数奇偶性的定义及图象特点奇偶性定义图象特点偶函数如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,那么函数()f x 就叫做偶函数关于y 轴对称奇函数如果对于函数()f x 的定义域内任意一个x ,都有) ()(f x f x --=,那么函数()f x 就叫做奇函数关于原点对称判断()f x -与()f x 的关系时,也可以使用如下结论:如果0(())f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数;如果0(())f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数.注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x ,x -也在定义域内(即定义域关于原点对称).3.函数的对称性(1)若函数()y f x a =+为偶函数,则函数()y f x =关于x a =对称.(2)若函数()y f x a =+为奇函数,则函数()y f x =关于点(0)a ,对称.(3)若()()2f x f a x =-,则函数()f x 关于x a =对称.(4)若2(2)()f x f a x b -=+,则函数()f x 关于点()a b ,对称.4.函数的周期性(1)周期函数:对于函数()y f x =,如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有(()f x T f x +=),那么就称函数()y f x =为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数()f x 的所有周期中存在一个最小的正数,那么称这个最小整数叫做()f x 的最小正周期.【方法技巧与总结】1.单调性技巧(1)证明函数单调性的步骤①取值:设1x ,2x 是()f x 定义域内一个区间上的任意两个量,且12x x <;②变形:作差变形(变形方法:因式分解、配方、有理化等)或作商变形;③定号:判断差的正负或商与1的大小关系;④得出结论.(2)函数单调性的判断方法①定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断.②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间.(3)记住几条常用的结论:①若()f x 是增函数,则()f x -为减函数;若()f x 是减函数,则()f x -为增函数;②若()f x 和()g x 均为增(或减)函数,则在()f x 和()g x 的公共定义域上()()f x g x +为增(或减)函数;③若()0f x >且()f x 为增函数,1()f x 为减函数;④若()0f x >且()f x 为减函数,1()f x 为增函数.2.奇偶性技巧(1)函数具有奇偶性的必要条件是其定义域关于原点对称.(2)奇偶函数的图象特征.函数()f x 是偶函数⇔函数()f x 的图象关于y 轴对称;函数()f x 是奇函数⇔函数()f x 的图象关于原点中心对称.(3)若奇函数()y f x =在0x =处有意义,则有(0)0f =;偶函数()y f x =必满足()(||)f x f x =.(4)偶函数在其定义域内关于原点对称的两个区间上单调性相反;奇函数在其定义域内关于原点对称的两个区间上单调性相同.(5)若函数()f x 的定义域关于原点对称,则函数()f x 能表示成一个偶函数与一个奇函数的和的形式.记1()[()()]2g x f x f x =+-,1()[()()]2h x f x f x =--,则()()()f x g x h x =+.(6)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如()(),()(),()(),()()f x g x f x g x f x g x f x g x +-⨯÷.对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇()⨯÷奇=偶;奇()⨯÷偶=奇;偶()⨯÷偶=偶.(7)复合函数[()]y f g x =的奇偶性原来:内偶则偶,两奇为奇.(8)常见奇偶性函数模型奇函数:①函数1()(01x x a f x m x a +=≠-()或函数1()()1x x a f x m a -=+.②函数()()x x f x a a -=±-.③函数2()log log (1aa x m m f x x m x m +==+--或函数2()log log (1)a a x m m f x x m x m-==-++④函数()log )a f x x =+或函数()log )a f x x =.注意:关于①式,可以写成函数2()(0)1x m f x m x a =+≠-或函数2()()1x mf x m m R a =-∈+.偶函数:①函数()()x x f x a a -=±+.②函数()log (1)2mx a mxf x a =+-.③函数(||)f x 类型的一切函数.④常数函数3.周期性技巧()()()()211();()2()()()()2()()4()()2()()()()()2()()()2()()()(x R f x T f x T f x T f x T f x T f x T T f x f x f x T f x T T f x T f x T T f a x f a x b a f b x f b x f a x f a x a f x f a x f a x b a f b x f b x f a ∈+=+=-+=+=-+=-+=--+=-⎧-⎨+=-⎩+=-⎧⎨⎩+=--⎧-⎨+=--⎩函数式满足关系()周期为偶函数)()2()()()4()()()()()4()()()4()x f a x a f x f a x f a x b a f b x f b x f a x f a x a f x f a x f a x af x +=--⎧⎨⎩+=-⎧-⎨+=--⎩+=-⎧⎨⎩+=--⎧⎨⎩为奇函数为奇函数为偶函数4.函数的的对称性与周期性的关系(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-;(2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.5.对称性技巧(1)若函数()y f x =关于直线x a =对称,则()()f a x f a x +=-.(2)若函数()y f x =关于点()a b ,对称,则()()2f a x f a x b ++-=.(3)函数()y f a x =+与()y f a x =-关于y 轴对称,函数()y f a x =+与()y f a x =--关于原点对称.【题型归纳目录】题型一:函数的单调性及其应用题型二:复合函数单调性的判断题型三:利用函数单调性求函数最值题型四:利用函数单调性求参数的范围题型五:基本初等函数的单调性题型六:函数的奇偶性的判断与证明题型七:已知函数的奇偶性求参数题型八:已知函数的奇偶性求表达式、求值题型九:已知()f x =奇函数+M 题型十:函数的对称性与周期性题型十一:类周期函数题型十二:抽象函数的单调性、奇偶性、周期性题型十三:函数性质的综合【典例例题】题型一:函数的单调性及其应用例1.(2022·全国·高三专题练习)若定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有()-()-f a f b a b>0成立,则必有()A .f (x )在R 上是增函数B .f (x )在R 上是减函数C .函数f (x )先增后减D .函数f (x )先减后增例2.(2022·全国·高三专题练习)已知函数()f x 的定义域为R ,且对任意两个不相等的实数a ,b 都有()()()0a b f a f b -->⎡⎤⎣⎦,则不等式()()315f x f x ->+的解集为().A .(),3-∞B .()3,+∞C .(),2-∞D .()2,+∞例3.(2022·全国·高三专题练习)()252f x x x =-的单调增区间为()A .1,5⎛⎫+∞ ⎪⎝⎭B .1,5⎛⎫-∞ ⎪⎝⎭C .1,5⎛⎫-+∞ ⎪⎝⎭D .1,5⎛⎫-∞- ⎪⎝⎭例4.(2022·全国·高三专题练习)已知函数1()22xxf x =-.(1)判断()f x 在其定义域上的单调性,并用单调性的定义证明你的结论;(2)解关于x 的不等式2(log )(1)f x f <.例5.(2022·全国·高三专题练习)讨论函数()1axf x x =-(0a ≠)在(11)-,上的单调性.【方法技巧与总结】函数单调性的判断方法①定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断.②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间.题型二:复合函数单调性的判断例6.(2022·全国·高三专题练习(文))函数y =)A .1,2⎛⎫-∞ ⎪⎝⎭B .(,1]-∞-C .112⎡⎤-⎢⎥⎣⎦,D .[]12-,例7.(2022·全国·高三专题练习)函数()213log 412y x x =-++单调递减区间是()A .(),2-∞B .()2,+∞C .()2,2-D .()2,6-例8.(2022·全国·高三专题练习)函数2231()(2x x f x --=的单调递减区间是()A .(,)-∞+∞B .(,1)-∞C .(3,)+∞D .(1,)+∞【方法技巧与总结】讨论复合函数[()]y f g x =的单调性时要注意:既要把握复合过程,又要掌握基本函数的单调性.一般需要先求定义域,再把复杂的函数正确地分解为两个简单的初等函数的复合,然后分别判断它们的单调性,再用复合法则,复合法则如下:1.若()u g x =,()y f u =在所讨论的区间上都是增函数或都是减函数,则[()]y f g x =为增函数;2.若()u g x =,()y f u =在所讨论的区间上一个是增函数,另一个是减函数,则[()]y f g x =为减函数.列表如下:()u g x =()y f u =[()]y f g x =增增增增减减减增减减减增复合函数单调性可简记为“同增异减”,即内外函数的单性相同时递增;单性相异时递减.题型三:利用函数单调性求函数最值例9.(2022·河南·新乡县高中模拟预测(理))在人工智能领域的神经网络中,常用到在定义域I 内单调递增且有界的函数()f x ,即0M ∃>,x I ∀∈,()f x M ≤.则下列函数中,所有符合上述条件的序号是______.①()f x =()21x f x x =+;③()e e e ex xx x f x ---=+;④()11e x f x -=+.例10.(2022·全国·高三专题练习)定义在()0,∞+上的函数()f x 对于任意的*,x y R ∈,总有()()()f x f y f xy +=,且当1x >时,()0f x <且()1f e =-.(1)求()1f 的值;(2)判断函数在()0,∞+上的单调性,并证明;(3)求函数()f x 在21,e e ⎡⎤⎢⎥⎣⎦上的最大值与最小值.例11.(2022·全国·高三专题练习)已知函数()(0)2axf x a x =≠-.(1)判断函数()f x 在区间()2,2-上的单调性,并用单调性的定义加以证明;(2)若()33f =,求[]1,1x ∈-时函数()f x 的值域.例12.(2022·山西运城·模拟预测(理))已知a b <,函数()f x 的定义域为I ,若存在[,]a b I ⊆,使得()f x 在[,]a b 上的值域为[,]a b ,我们就说()f x 是“类方函数”.下列四个函数中是“类方函数”的是()①()21f x x =-+;②2()f x x =;③()2f x =+;④1()2xf x ⎛⎫= ⎪⎝⎭.A .①②B .②④C .②③D .③④【方法技巧与总结】利用函数单调性求函数最值时应先判断函数的单调性,再求最值.常用到下面的结论:1.如果函数()y f x =在区间(]a b ,上是增函数,在区间[)b c ,上是减函数,则函数()()y f x x a c =∈,在x b =处有最大值()f b .2.如果函数()y f x =在区间(]a b ,上是减函数,在区间[)b c ,上是增函数,则函数()()y f x x a c =∈,在x b =处有最小值()f b .3.若函数()y f x =在[]a b ,上是严格单调函数,则函数()y f x =在[]a b ,上一定有最大、最小值.4.若函数()y f x =在区间[]a b ,上是单调递增函数,则()y f x =的最大值是()f b ,最小值是()f a .5.若函数()y f x =在区间[]a b ,上是单调递减函数,则()y f x =的最大值是()f a ,最小值是()f b .题型四:利用函数单调性求参数的范围例13.(2022·河南濮阳·一模(理))“1b ≤”是“函数()()22,0log 2,20bx x f x x b x +>⎧=⎨++-<≤⎩是在()2,-+∞上的单调函数”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例14.(2022·全国·江西科技学院附属中学高三阶段练习(理))已知函数()()e 4,0,2log 1,10,x m m x f x x x ⎧+>⎪=⎨-+-<≤⎪⎩若1x ∀,2x ∈R ,()()12120f x f x x x ->-,且()()2g x f x x =--仅有1个零点,则实数m 的取值范围为()A .11,4e ⎡⎫⎪⎢⎣⎭B .11,4e ⎡⎤⎢⎥⎣⎦C .1,1e ⎡⎫⎪⎢⎣⎭D .1,1e ⎛⎫ ⎪⎝⎭例15.(2022·浙江·高三学业考试)已知函数2()2f x x ax b =-+在区间(-∞,1]是减函数,则实数a 的取值范围是()A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-1]例16.(2022·全国·高三专题练习)若函数21,1()2,,1ax x f x x ax x -<⎧=⎨-≥⎩是R 上的单调函数,则a 的取值范围()A .20,3⎛⎫⎪⎝⎭B .20,3⎛⎤ ⎥⎝⎦C .(]0,1D .()0,1例17.(2022·全国·高三专题练习)已知函数()f x =0a >且1a ≠)在区间[)1,3上单调递增,则实数a 的取值不可能是()A .13B .12C .23D .56例18.(2022·山东·济南市历城第二中学模拟预测)函数()53x f x x a +=-+在()1,+∞上是减函数,则实数a的范围是_______.例19.(2022·全国·高三专题练习)如果5533cos θsin θ7(cos θsin θ),θ[0,2π]->-∈,则θ的取值范围是___________.例20.(2022·全国·高三专题练习)已知函数()f x 满足()()()()1,f x y f x f y x y R +=+-∈,当0x >时,()1f x >,且()12f =.(1)求()()0,1f f -的值,并判断()f x 的单调性;(2)当[]1,2x ∈时,不等式()()231f ax x f x -+<恒成立,求实数a 的取值范围.【方法技巧与总结】若已知函数的单调性,求参数a 的取值范围问题,可利用函数单调性,先列出关于参数a 的不等式,利用下面的结论求解.1.若()a f x >在[]m n ,上恒成立()a f x ⇔>在[]m n ,上的最大值.2.若()a f x <在[]m n ,上恒成立()a f x ⇔<在[]m n ,上的最小值.题型五:基本初等函数的单调性例21.(2022·全国·高三阶段练习(文))下列函数在()1,3上单调递减的是()A .24y x x =-B .12x y -=C .y =D .cos 1y x =+例22.(2022·全国·高三专题练习)下列函数中,定义域是R 且为增函数的是A .xy e -=B .3y x =C .ln y x=D .y x=例23.(2022·全国·高三专题练习)已知()f x 是奇函数,且()()12120f x f x x x ->-对任意12,x x R ∈且12x x ≠都成立,设32a f ⎛⎫= ⎪⎝⎭,()3log 7b f =,()30.8c f =-,则()A .b a c <<B .c a b <<C .c b a<<D . a c b<<例24.(2022·山东·济南一中模拟预测)设函数()232xf x x ⎛⎫=+ ⎪⎝⎭,若()ln 3a f =,()5log 2b f =-,c f =(e 为自然对数的底数),则().A .a b c>>B .c b a>>C .c a b>>D .a c b>>【方法技巧与总结】1.比较函数值大小,应将自变量转化到同一个单调区间内,然后利用函数单调性解决.2.求复合函数单调区间的一般步骤为:①求函数定义域;②求简单函数单调区间;③求复合函数单调区间(同增异减).3.利用函数单调性求参数时,通常要把参数视为已知数,依据函数图像或单调性定义,确定函数单调区间,与已知单调区间比较,利用区间端点间关系求参数.同时注意函数定义域的限制,遇到分段函数注意分点左右端点函数值的大小关系.题型六:函数的奇偶性的判断与证明例25.(2022·北京通州·模拟预测)已知函数1()33xxf x ⎛⎫=- ⎪⎝⎭,则()f x ()A .是偶函数,且在R 是单调递增B .是奇函数,且在R 是单调递增C .是偶函数,且在R 是单调递减D .是奇函数,且在R 是单调递减例26.(2022·安徽·蒙城第一中学高三阶段练习(理))下列函数中,在其定义域内既是奇函数又是减函数的是()A .1y x=B .ln y x x=--C .3y x x=--D .3=-+y x x例27.(2022·广东·二模)存在函数()f x 使得对于x R ∀∈都有()()f g x x =,则函数()g x 可能为()A .()sin g x x=B .()22g x x x=+C .()3g x x x=-D .()()x xg x e e-=+例28.(2022·全国·高三专题练习)判断下列函数的奇偶性:(1)f (x )(2)f (x )=(x +(3)f (x ).(4)f (x )=2221,0,21,0;x x x x x x ⎧-++>⎨+-<⎩例29.(2022·全国·高三专题练习)已知定义在R 上的函数()f x ,()g x 满足:①()01f =;②()g x 为奇函数;③()0,x ∀∈+∞,()0>g x ;④任意的x ,R y ∈,()()()()()f x y f x f y g x g y -=-.(1)判断并证明函数()f x 的奇偶性;(2)判断并证明函数()f x 在()0,+∞上的单调性.【方法技巧与总结】函数单调性与奇偶性结合时,注意函数单调性和奇偶性的定义,以及奇偶函数图像的对称性.题型七:已知函数的奇偶性求参数例30.(2022·北京海淀·二模)若(),01,0x a x f x bx x +<⎧=⎨->⎩是奇函数,则()A .1,1a b ==-B .1,1a b =-=C .1,1a b ==D .1,1a b =-=-例31.(2022·河南洛阳·三模(理))若函数()()322x xx a f x -=⋅-是偶函数,则=a ()A .-1B .0C .1D .±1例32.(2022·江苏南通·模拟预测)若函数()22x x af x a +=-为奇函数,则实数a 的值为()A .1B .2C .1-D .±1例33.(2022·江西·南昌十中模拟预测(理))已知函数()(1)1x mf x x e=++为偶函数,则m 的值为_________.例34.(2022·全国·高三阶段练习(理))已知函数()()22330x xa a a f x -+=-⋅≠为奇函数,则=a ______.例35.(2022·全国·高三阶段练习(文))已知函数()2221x xa b f x x -+⋅=+为偶函数,则=a ______.例36.(2022·陕西·西安中学模拟预测(文))已知函数)1()e ln e x xf x x ⎛⎫=- ⎪⎝⎭为R 上的偶函数,则实数=a ___________.【方法技巧与总结】利用函数的奇偶性的定义转化为()()f x f x -=±,建立方程,使问题得到解决,但是在解决选择题、填空题时还显得比较麻烦,为了使解题更快,可采用特殊值法求解.题型八:已知函数的奇偶性求表达式、求值例37.(2022·安徽省芜湖市教育局模拟预测(理))设()f x 为奇函数,且0x >时,()e ln xf x x =+,则()1f -=___________.例38.(2022·重庆一中高三阶段练习)已知偶函数()f x ,当0x >时,()()212f x x f x '=-+,则()f x 的图象在点()()2,2f --处的切线的斜率为()A .3-B .3C .5-D .5例39.(2022·河北衡水·高三阶段练习)已知()f x 是定义在R 上的奇函数,且0x ≤时,()232f x x x m =-+,则()f x 在[]1,2上的最大值为()A .1B .8C .5-D .16-例40.(2022·江西·模拟预测(理))(),()f x g x 分别是定义在R 上的奇函数和偶函数,且()()2022sin 25+=--x f x g x x x ,则下列说法错误的是()A .(0)1g =B .()g x 在[]0,1上单调递减C .(1101)-g x 关于直线1101=x 对称D .()g x 的最小值为1例41.(2022·山西吕梁·一模(文))已知函数()f x 为定义在R 上的奇函数,且当0x ≥时,()21x f x x =+-,则当0x <时,()f x =()A .21x x ---B .21x x -++C .121x ----D .121x --++例42.(2022·北京·高三专题练习)已知定义在R 上的奇函数()f x 满足()()2f x f x =+,且当()0,1x ∈时,()241xxf x =+.(1)求()1f 和()1f -的值;(2)求()f x 在[]1,1-上的解析式.例43.(2022·全国·高三专题练习)若函数()f x 是奇函数,()g x 是偶函数,且其定义域均为{R,1}x x x ∈≠±.若()1()1f xg x x +=-,求()f x ,()g x 的解析式.【方法技巧与总结】抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性得出关于()f x 的方程,从而可得()f x 的解析式.题型九:已知()f x =奇函数+M例44.(2022·重庆一中高三阶段练习)已知()34f x ax =++(a ,b 为实数),()3lg log 102022f =,则()lg lg3f =______.例45.(2022·河南·西平县高级中学模拟预测(理))已知函数()2sin 414x xf x x -=++,且()5f a =,则()f a -=()A .2B .3C .-2D .-3例46.(2022·福建省福州第一中学高二期末)若对,x y R ∀∈,有()()()4f x y f x f y +=+-,函数2sin ()()cos 1xg x f x x =++在区间[2021,2021]-上存在最大值和最小值,则其最大值与最小值的和为()A .4B .8C .12D .16例47.(2022·上海·高一专题练习)若函数()()2221sin 1x xf x x ++=+的最大值和最小值分别为M 、m ,则函数()()()sin 3g x M m x M m x π⎡⎤=+++-⎢⎥⎣⎦图像的对称中心不可能是_______A .4,33ππ⎛⎫⎪⎝⎭B .,123ππ⎛⎫ ⎪⎝⎭C .28,33ππ⎛⎫ ⎪⎝⎭D .416,33ππ⎛⎫ ⎪⎝⎭例48.(2022·河南·温县第一高级中学高三月考(理))若函数()()113e sin 1ex x x f x --⋅--=在区间[]3,5-上的最大值、最小值分别为p 、q ,则p q +的值为().A .2B .1C .6D .3例49.(2022·黑龙江·哈尔滨三中高三月考(理))函数()()211()2x x f x x x e e x --=--+在区间[1,3]-上的最大值与最小值分别为M ,N ,则M N +的值为()A .2-B .0C .2D .4例50.(2022·广东潮阳·高一期末)函数()()22ln41ax a xf x x a++=++,若()f x 最大值为M ,最小值为N ,[]1,3a ∈,则M N +的取值范围是______.例51.(2022·安徽·合肥市第九中学高三月考(理))已知定义域为R 的函数2222020sin ()2x x e e x xf x x λλμ++=++有最大值和最小值,且最大值和最小值的和为6,则λ-μ=___.【方法技巧与总结】已知()f x =奇函数+M ,[,]x a a ∈-,则(1)()()2f x f x M -+=(2)max min ()()2f x f x M +=题型十:函数的对称性与周期性例52.(2022·天津三中二模)设函数()y f x =的定义域为D ,若对任意的12,x x D ∈,且122x x a +=,恒有()()122f x f x b +=,则称函数()f x 具有对称性,其中点(,)a b 为函数()y f x =的对称中心,研究函数1()1tan(1)1f x x x x =+++--的对称中心,求13540432022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()A .2022B .4043C .4044D .8086例53.(2022·全国·模拟预测)已知定义在R 上的函数()f x 满足()()24f x f x +=+,且()1f x +是奇函数,则()A .()f x 是偶函数B .()f x 的图象关于直线12x =对称C .()f x 是奇函数D .()f x 的图象关于点1,02⎛⎫⎪⎝⎭对称例54.(2022·全国·模拟预测)已知函数()f x 的定义域为R ,且()()()2220222f x f x f +=-+对任意x ∈R 恒成立,又函数()2021f x +的图象关于点()2021,0-对称,且()12022f =,则()2021f =()A .2021B .2021-C .2022D .2022-例55.(2022·新疆·三模(文))已知定义在R 上的偶函数()f x 满足()()6f x f x +=,且当[]0,3x ∈时,()e x f x x =,则下面结论正确的是()A .()()()3ln 3e e f f f <<-B .()()()3e ln 3ef f f -<<C .()()()3e e ln 3f f f <-<D .()()()3ln 3e ef f f <-<例56.(2022·山东·肥城市教学研究中心模拟预测)已知函数()f x 满足(3)(1)9(2)f x f x f +=-+对任意x ∈R 恒成立,又函数(9)f x +的图象关于点(9,0)-对称,且(1)2022,f =则(45)f =()A .2021B .2021-C .2022D .2022-例57.(2022·广东茂名·模拟预测)已知函数()f x 是R 上的奇函数,且3()()2f x f x -=-,且当30,4x ⎛⎤∈ ⎥⎝⎦时,()23f x x =-,则(2021)(2022)(2023)f f f -+--的值为()A .4B .4-C .0D .6-例58.(2022·江西鹰潭·二模(文))已知()f x 是定义在R 上的奇函数,若32f x ⎛⎫+ ⎪⎝⎭为偶函数且()12f =,则()()()202020212022f f f ++=()A .2-B .4C .4-D .6例59.(2022·江苏·徐州市第七中学高三阶段练习)函数()()()222f x x x x ax b =+++满足:对x R ∀∈,都有()()11f x f x +=-,则函数()f x 的最小值为()A .-20B .-16C .-15D .0例60.(2022·黑龙江·哈尔滨三中三模(理))定义在R 上的函数()y f x =满足以下三个条件:①对于任意的实数x ∈R ,都有()()220f x f x ++-=成立;②函数()1y f x =+的图象关于y 轴对称;③对任意的1x ,[]20,1x ∈,12x x ≠,都有()()()()11221221x f x x f x x f x x f x +>+成立.则()2021f ,()2022f ,()2023f 的大小关系为()A .()()()202120232022f f f >>B .()()()202120222023f f f >>C .()()()202320222021f f f >>D .()()()202220212023f f f >>例61.(2022·陕西·榆林市教育科学研究所模拟预测(理))已知函数()f x 满足()()f x f x -=--,且函数()f x 与()cos 2g x x x =≠-⎛⎫ ⎪⎝⎭的图象的交点为()11,x y ,()22,x y ,()33,x y ,()44,x y ,则()41i ii x y =+=∑()A .-4πB .-2πC .2πD .4π【方法技巧与总结】(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-;(2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.题型十一:类周期函数例62.(2022·天津一中高三月考)定义域为R 的函数()f x 满足()()22f x f x +=,当[]0,2x 时,()[)[)232,0,11,1,22x x x x f x x -⎧-∈⎪⎪=⎨⎛⎫-∈⎪ ⎪⎪⎝⎭⎩,若当[)4,2x ∈--时,不等式()2142m f x m ≥-+恒成立,则实数m 的取值范围是()A .[]2,3B .[]1,3C .[]1,4D .[]2,4例63.(2022·浙江·杭州高级中学高三期中)定义域为R 的函数()f x 满足(2)3()f x f x +=,当[0,2]x ∈时,2()2f x x x =-,若[4,2]x ∈--时,13()()18f x t t≥-恒成立,则实数t 的取值范围是()A .(](],10,3-∞- B.((,-∞ C .[)[)1,03,-+∞ D.))⎡+∞⎣ 例64.(2022山西省榆林市高三二模理科数学试卷)定义域为R 的函数()f x 满足()()22f x f x +=,当[)0,2x ∈时,()[)[)2213,0,1{ln ,1,2x x x f x x x x -+∈=∈,若当[)4,2x ∈--时,函数()22f x t t ≥+恒成立,则实数t 的取值范围为()A .30t -≤≤B .31t -≤≤C .20t -≤≤D .01t ≤≤例65.(2022·湖北·高三月考)已知函数()11,022(2),2x x f x f x x ⎧--≤≤=⎨->⎩,其中R a ∈,给出以下关于函数()f x 的结论:①922f ⎛⎫= ⎪⎝⎭②当[]0,8x ∈时,函数()f x 值域为[]0,8③当4,15k ⎛⎤∈ ⎥⎝⎦时方程()f x kx =恰有四个实根④当[]0,8x ∈时,若()22xf x a +≤恒成立,则1a ≥-)A .1B .2C .3D .4【方法技巧与总结】1.类周期函数若()y f x =满足:()()f x m kf x +=或()()f x kf x m =-,则()y f x =横坐标每增加m 个单位,则函数值扩大k 倍.此函数称为周期为m 的类周期函数.xx类周期函数图象倍增函数图象2.倍增函数若函数()y f x =满足()()f mx kf x =或()(xf x kf m=,则()y f x =横坐标每扩大m 倍,则函数值扩大k倍.此函数称为倍增函数.注意当m k =时,构成一系列平行的分段函数,222311()[1)(1)[)()(1)[)(1)[)n n ng x x m g x m x m m f x g x m x m m g x m x m m --∈⎧⎪-+∈⎪⎪=-+∈⎨⎪⎪⎪-+∈⎩,,,,,,,,.题型十二:抽象函数的单调性、奇偶性、周期性例66.(2022·山东聊城·二模)已知()f x 为R 上的奇函数,()22f =,若对1x ∀,()20,x ∈+∞,当12x x >时,都有()()()1212210f x f x x x x x ⎡⎤--<⎢⎥⎣⎦,则不等式()()114x f x ++>的解集为()A .()3,1-B .()()3,11,1---C .()(),11,1-∞-- D .()(),31,-∞-⋃+∞例67.(2022·全国·模拟预测(理))已知定义在R 上的奇函数()f x 的图象关于直线1x =对称,且()y f x =在[]0,1上单调递增,若()3a f =-,12b f ⎛⎫=- ⎪⎝⎭,()2c f =,则a ,b ,c 的大小关系为()A .c b a <<B .b a c <<C .b c a <<D .c a b<<例68.(2022·黑龙江大庆·三模(理))已知定义域为R 的偶函数满足()()2f x f x -=,当01x ≤≤时,()1e 1x f x -=-,则方程()11f x x =-在区间[]3,5-上所有解的和为()A .8B .7C .6D .5例69.(2022·全国·高三专题练习)已知定义在R 上的函数()f x ,()g x 满足:①()01f =;②任意的x ,R y ∈,()()()()()f x y f x f y g x g y -=-.(1)求()()22f xg x -的值;(2)判断并证明函数()f x 的奇偶性.例70.(2022·上海·高三专题练习)定义在(-1,1)上的函数f (x )满足①对任意x 、y ∈(-1,1),都有f (x )+f (y )=f (1x y xy ++);②当x ∈(-1,0)时,有f (x )>0.求证:21111()()()()511312f f f f n n +++>++ .【方法技巧与总结】抽象函数的模特函数通常如下:(1)若()()()f x y f x f y +=+,则()(1)f x xf =(正比例函数)(2)若()()()f x y f x f y +=,则()[(1)]x f x f =(指数函数)(3)若()()()f xy f x f y =+,则()log b f x x =(对数函数)(4)若()()()f xy f x f y =,则()a f x x =(幂函数)(5)若()()()f x y f x f y m +=++,则()(1)f x xf m =-(一次函数)(6)对于抽象函数判断单调性要结合题目已知条件,在所给区间内比较大小,有时需要适当变形.题型十三:函数性质的综合例71.(2022·重庆南开中学模拟预测)已知函数()()ln ln 2cos 2f x x x x=---,则关于t 的不等式()()20f t f t +<的解集为()A .()2,1-B.(-C .()0,1D.(例72.(2022·安徽·六安市裕安区新安中学高三开学考试(文))已知函数()f x 是定义在R 上的偶函数,且在区间[0,)+∞上单调递增.若实数a 满足212(log )(lo )g )2(1f a f f a +≤,则a 的最小值是()A .32B .1C .12D .2例73.(2022·河南许昌·高三月考(理))已知函数31()224e e x xf x x x =-++-,其中e 是自然对数的底数,若()2(6)8f a f a -+>,则实数a 的取值范围是()A .(2,)+∞B .(3,2)-C .(,3)-∞-D .(,3)(2,)-∞-⋃+∞例74.(2022·河南·新蔡县第一高级中学高三月考(文))已知函数()3112e 33ex x f x x x =-+-+,其中e是自然对数的底数,若()2(23)6f a f a -+≥,则实数a 的取值范围是()A .(,3][1,)-∞-+∞ B .(,3]-∞-C .[1,)+∞D .[]3,1-例75.(2022·江苏·南京市中华中学高三月考)定义在R 上的函数()f x 满足()(2)f x f x -=,且当1x ≥时()23,141log ,4x x f x x x -+≤<⎧=⎨-≥⎩,若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,则实数t 的最大值为()A .1-B .23-C .13-D .13例76.(2022·内蒙古·赤峰二中高一月考(理))设()f x 是定义在R 上的奇函数,且当0x ≥时,()2f x x =,若对任意[]2x a a ∈+,,不等式()()2f x a f x +≥恒成立,则实数a 的取值范围是()A.)+∞B.)+∞C .()1-∞,D.⎡⎣例77.(2022·湖南·岳阳一中一模)已知函数221e e ()312x x xf x --=++,若不等式2(4)(2)1f ax f ax -+≤对任意x ∈R 恒成立,则实数a 的取值范围是()A .[]e,0-B .[]2,0-C .[]4,0-D .2e ,0⎡⎤-⎣⎦例78.(2022·全国·模拟预测)已知函数()2121xx f x -=+,若()()e 0x f f ax +<有解,则实数a 的取值范围为()A .()0,∞+B .(),e -∞-C .[]e,0-D .()(),e 0,-∞-⋃+∞例79.(2022·黑龙江·哈师大附中三模(理))已知函数()()1ln e 12x f x x =+-(e 为自然对数的底数),若()()21f a f a ≥-,则实数a 的取值范围是()A .1,3⎛⎤-∞ ⎥⎝⎦B .[1,+∞)C .1,13⎡⎤⎢⎥⎣⎦D .[)1,1,3⎛⎤-∞⋃+∞ ⎥⎝⎦【方法技巧与总结】(1)奇偶性与单调性综合解题,尤其要重视利用偶函数(或轴对称函数)与单调性综合解不等式和比较大小.(2)奇偶性、单调性、周期性综合解题,尤其要注意对称性与周期性之间的关系,周期是两条对称轴(或对称中心)之间距离的2倍,是对称中心与对称轴之间距离的4倍.【过关测试】一、单选题1.(2022·安徽·蒙城第一中学高三阶段练习(理))下列函数中,在其定义域内既是奇函数又是减函数的是()A .1y x=B .ln y x x =--C .3y x x =--D .3=-+y x x2.(2022·河南·模拟预测(文))已知0x >,0y >,且2e e sin 2sin x y x y ->-,则()A .2x y<B .2x y>C .x y>D .x y<3.(2022·湖北·房县第一中学模拟预测)已知函数()221e e 1x x f x -=+,不等式()()22f x f x >+的解集为()A .()(),12,-∞-+∞B .()1,2-C .()(),21,-∞-+∞ D .()2,1-4.(2022·浙江浙江·高三阶段练习)已知定义在R 上的奇函数()f x 在0x >时满足32()(1)62f x x x =-++,且()()8f x m f x +≤在[]1,3x ∈有解,则实数m 的最大值为()A .23B .2C .53D .45.(2022·河北·石家庄二中高三开学考试)已知函数(()cos ln 4f x x x π=+⋅+在区间[5,5]-的最大值是M ,最小值是m ,则()f M m +的值等于()A .0B .10C .4πD .2π6.(2022·安徽·蒙城第一中学高三阶段练习(理))已知()f x 为奇函数,且当0x >时()211e xf x x-=+,则曲线()y f x =在点11,22f⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处的切线方程为()A .240x y ++=B .240x y -+=C .220x y -+=D .220x y ++=7.(2022·河南·模拟预测(理))已知函数()f x 的图象关于原点对称,且()()4f x f x =+,当()0,2x ∈时,()f x =32433log 4f ⎛⎫+= ⎪⎝⎭()A .-11B .-8C .3log 4D .38log 4-8.(2022·江西·南昌市实验中学一模(理))对于函数()y f x =,若存在0x ,使()()00f x f x =--,则称点()()00,x f x 与点()()00,x f x --是函数()f x 的一对“隐对称点”.若函数()2ln ,0,0x x f x mx mx x >⎧=⎨--≤⎩的图像恰好有2对“隐对称点”,则实数m 的取值范围是()A .10,e ⎛⎫ ⎪⎝⎭B .()0,1⋃(1,)+∞C .1,e ⎛⎫+∞ ⎪⎝⎭D .(1,)+∞二、多选题9.(2022·海南·模拟预测)下面关于函数23()2x f x x -=-的性质,说法正确的是()A .()f x 的定义域为(,2)(2,)-∞⋃+∞B .()f x 的值域为RC .()f x 在定义域上单调递减D .点(2,2)是()f x 图象的对称中心10.(2022·辽宁·模拟预测)已知定义在R 上的偶函数()f x 的图像是连续的,()()()63f x f x f ++=,()f x 在区间[]6,0-上是增函数,则下列结论正确的是()A .()f x 的一个周期为6B .()f x 在区间[]12,18上单调递减C .()f x 的图像关于直线12x =对称D .()f x 在区间[]2022,2022-上共有100个零点11.(2022·重庆巴蜀中学高三阶段练习)已知函数()f x 对任意x ∈R 都有()()2f x f x +=-,若函数()1y f x =-的图象关于1x =对称,且对任意的()12,0,2x x ∈,且12x x ≠,都有()()12120f x f x x x ->-,若()20f -=,则下列结论正确的是()A .()f x 是偶函数B .()20220f =C .()f x 的图象关于点()1,0对称D .()()21f f ->-12.(2022·河北秦皇岛·二模)已知函数())lg f x x =,()212xg x =+,()()()F x f x g x =+,则()A .()f x 的图象关于()0,1对称B .()g x 的图象没有对称中心C .对任意的[](),0x a a a ∈->,()F x 的最大值与最小值之和为4D .若()3311F x x x -+-<-,则实数x 的取值范围是()(),13,-∞⋃+∞三、填空题13.(2022·山东临沂·二模)已知函数e ()1xmxf x x =+-是偶函数,则m =__________.14.(2022·湖北·房县第一中学模拟预测)已知函数()()ln 0f x x a a a =-+>在21,e ⎡⎤⎣⎦上的最小值为1,则a 的值为________.15.(2022·广东佛山·三模)已知函数()22x x f x a -=+⋅的图象关于原点对称,若3(21)2f x ->,则x 的取值范围为________.16.(2022·陕西宝鸡·二模(文))若函数f (x )同时满足:(1)对于定义域上的任意x ,恒有()()0f x f x +-=;(2)对于定义域上的任意12,x x ,当12x x ≠,恒有()()12120f x f x x x -<-,则称函数f (x )为“理想函数”,下列①()1f x x=,②()=f x ,③()1212xxf x -=+,④22,0(),0x x f x x x ⎧-=⎨<⎩四个函数中,能被称为“理想函数”的有___________.(填出函数序号)四、解答题17.(2022·上海市市西中学高三阶段练习)设a ∈R ,函数2()21x x af x +=+;(1)求a 的值,使得f (x )为奇函数;(2)若3()2a f x +<对任意x ∈R 成立,求a 的取值范围.18.(2022·全国·高三专题练习)已知函数()21ax bf x x +=+是定义在()1,1-上的函数,()()f x f x -=-恒成立,且12.25f ⎛⎫= ⎪⎝⎭(1)确定函数()f x 的解析式;(2)用定义证明()f x 在()1,1-上是增函数;(3)解不等式()()10f x f x -+<.19.(2022·陕西·武功县普集高级中学高三阶段练习(理))设函数()()20,1,R x xf x ka a a a k -=->≠∈,()f x 是定义域为R 的奇函数(1)确定k 的值(2)若()13f =,判断并证明()f x 的单调性;(3)若3a =,使得()()()221f x f x λ≤+对一切[]2,1x ∈--恒成立,求出λ的范围.20.(2022·全国·高三专题练习)定义域均为R 的奇函数()f x 与偶函数()g x 满足()()10x f x g x +=.(1)求函数()f x 与()g x 的解析式;(2)证明:1212()()2()2x x g x g x g ++≥;(3)试用1()f x ,2()f x ,1()g x ,2()g x 表示12()f x x -与12()g x x +.21.(2022·全国·高三专题练习)定义在R 上的函数()f x ,对任意12,x x R ∈,满足下列条件:①1212()()()2f x x f x f x +=+-②(2)4f =(1)是否存在一次函数()f x 满足条件①②,若存在,求出()f x 的解析式;若不存在,说明理由.(2)证明:()()2g x f x =-为奇函数;22.(2022·上海·二模)对于函数()f x ,若在定义域内存在实数0x ,满足00()()f x f x -=-,则称()f x 为“M 类函数”.(1)已知函数π()2cos 3f x x ⎛⎫=- ⎪⎝⎭,试判断()f x 是否为“M 类函数”?并说明理由;(2)设1()423x x f x m +=-⋅-是定义域R 上的“M 类函数”,求实数m 的取值范围;(3)若()22log 2,3()2,3x mx x f x x ⎧->⎪=⎨-<⎪⎩为其定义域上的“M 类函数”,求实数m 取值范围.。

高中数学 函数题型

高中数学 函数题型

高中数学函数题型
以下是一些常见的高中数学函数题型:
1. 基础函数题:这类题目通常会考察函数的定义、性质和图像。

例如,给定一个函数的解析式,要求判断函数的奇偶性、单调性或求函数的值域等。

2. 复合函数题:这类题目会考察对复合函数的解析式、单调性、奇偶性等的理解和应用。

3. 函数应用题:这类题目通常会结合实际问题,考察学生运用函数模型解决实际问题的能力。

例如,求最优解问题、最大利润问题等。

4. 抽象函数题:这类题目通常会给出一些抽象的函数关系,要求学生通过观察和分析,推导出函数的性质和图像。

5. 函数综合题:这类题目通常会将函数的性质、图像和实际应用等结合起来,综合考察学生的数学应用能力。

请注意,这只是其中的一部分题型,并不包括全部的高中数学函数题目。

高中函数题型及解题方法

高中函数题型及解题方法

高中函数题型及解题方法
一、高中函数题型
1、一元函数:一元函数是一种函数,它将一个变量映射到另
一个变量。

它只有一个自变量,只有一个因变量。

2、二元函数:二元函数是一种函数,它将两个变量映射到另
一个变量。

它有两个自变量,只有一个因变量。

3、指数函数:指数函数是一种函数,它将一个变量映射到另
一个变量,并且满足指数关系。

4、对数函数:对数函数是一种函数,它将一个变量映射到另
一个变量,并且满足对数关系。

5、反比例函数:反比例函数是一种函数,它将一个变量映射
到另一个变量,并且满足反比例关系。

6、三角函数:三角函数是一种函数,它将一个变量映射到另
一个变量,并且满足三角关系。

二、解题方法
1、分析问题:首先要仔细阅读题目,把握问题的内容,如果
是函数的问题,要确定函数的类型,以及函数的定义域和值域。

2、解方程:如果是求函数的值,要先把函数表示出来,然后
根据给出的条件解出方程,最后求出函数的值。

3、画图:如果需要求函数的图像,可以根据函数的定义,画出一些点,然后连接这些点,就可以得到函数的图像了。

4、总结:最后,要总结出问题的结果,把函数的定义域和值域,以及函数的图像都写出来。

高中数学题型归纳及方法

高中数学题型归纳及方法

高中数学题型归纳及方法一、函数题型。

1. 求函数定义域题型。

题目:求函数y = (1)/(√(x 1))+ln(x + 2)的定义域。

解析:对于(1)/(√(x 1)),要使根式有意义,则根号下的数大于0,即x 1>0,解得x>1。

对于ln(x + 2),对数函数中真数大于0,即x+2>0,解得x > 2。

综合起来,函数的定义域为x>1。

2. 函数单调性判断题型。

题目:判断函数y = x^2-2x + 3在(-∞,1)上的单调性。

解析:对于二次函数y = ax^2+bx + c(a≠0),其对称轴为x =-(b)/(2a)。

在函数y = x^2-2x + 3中,a = 1,b=-2,对称轴x = 1。

因为a = 1>0,二次函数开口向上,所以在对称轴左侧(-∞,1)上函数单调递减。

二、三角函数题型。

3. 三角函数化简求值题型。

题目:化简sin(α+β)cosβ-cos(α +β)sinβ并求值(已知α=(π)/(3))。

解析:根据两角差的正弦公式sin(A B)=sin Acos B-cos Asin B,这里A=α+β,B = β,所以sin(α+β)cosβ-cos(α+β)sinβ=sin(α+β-β)=sinα。

当α=(π)/(3)时,sinα=(√(3))/(2)。

4. 三角函数图象平移题型。

题目:将函数y=sin x的图象向左平移(π)/(3)个单位,再将所得图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),求得到的函数解析式。

解析:将y = sin x的图象向左平移(π)/(3)个单位,根据“左加右减”原则,得到y=sin(x+(π)/(3))的图象。

再将所得图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则x的系数变为原来的(1)/(2),得到y=sin((1)/(2)x+(π)/(3))。

三、数列题型。

5. 等差数列通项公式求题型。

题目:已知等差数列{a_n}中,a_1=2,公差d = 3,求其通项公式a_n。

函数的奇偶性十大题型归类总结-高一数学(人教A版2019必修第一册)

函数的奇偶性十大题型归类总结-高一数学(人教A版2019必修第一册)

(7)定义域:
x2 1
1
x2
0 0
,解得
x
1 ,所以
f
x
0 ,所以
f
x
既是奇函数又为偶函数
(8)定义域: 1 x 0 ,即 x 1 x 1 ,所以 f x 为非奇非偶函数 1 x
【例
2】判断函数
f
(x)
x2
x
2
(x (x
0) 0)
的奇偶性。
【答案】奇函数
【解析】法一:当 x 0 时, x 0,所以 f x x2 x2 f x
1 x2 , x [1, 0) ,
1 x2 , x (0,1]
当 x1,0 时, 0 f x 1;
当 x0,1时, 1 f x 0 ,
故 f x 的值域为 1,1 ,故 B 正确.
由 f 1 f 1 0 可得 f x 不是定义域上的增函数,故 C 错误.
故选:C. 【题型专练】 1.设函数 f(x),g(x)的定义域都为 R,且 f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( )
奇函数对 B 当 x 0 时, x 0,所以 f x x2 x x2 x f x
当 x 0 时, x 0,所以 f x x2 x x2 x f x ,所以为偶函数
对 C 定义域:1 x2 0 ,即 x 1 x 1 ,所以 x 2 2 x 2 2 x
对 C 定义域: x x 0 ,奇函数除奇函数=偶函数 对 D 定义域: x x 0 ,所以 f x 为非奇非偶函数
5.(2022·全国·高一课时练习)下列函数既是偶函数,又在 (0, ) 上单调递增的是( )
A. y x 【答案】C
B. y x2
C. y x

高中数学题型归纳大全函数与导数题型归纳六、极值点偏移

高中数学题型归纳大全函数与导数题型归纳六、极值点偏移

高中数学题型归纳大全函数与导数6题型归纳六、极值点偏移考点1.对称构造1.已知函数f(x)=xe﹣x(x∈R)(Ⅰ)求函数f(x)的单调区间和极值;(Ⅱ)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明:当x>1时,f(x)>g(x);(Ⅲ)如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2.2.已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.考点2.比值(作差)换元3.已知函数f(x)=e x﹣ax(a∈R)有两个零点.(1)求实数a的取值范围;(2)若函数f(x)的两个零点分别为x1,x2,求证:x1+x2>2.4.设函数f(x)=ax−lnx+1x+b(a、b∈R),(1)讨论f(x)的单调性;(2)若函数f(x)有两个零点x1、x2,求证:x1+x2+2>2ax1x2.考点3.消参减元5.已知函数f(x)=x2+ax﹣alnx.(1)若函数f(x)在[2,5]上单调递增,求实数a的取值范围;(2)当a=2时,若方程f(x)=x2+2m有两个不等实数根x1,x2,求实数m的取值范围,并证明x1x2<1.6.已知函数f(x)=e x﹣ax+a(a∈R),其中e为自然对数的底数.(1)讨论函数y=f(x)的单调性;(2)若函数f(x)有两个零点x1,x2,证明:x1+x2<2lna.考点4.拐点偏移7.已知函数f(x)=xlnx−a2x2+(a﹣1)x,其导函数f′(x)的最大值为0.(1)求实数a的值;(2)若f(x1)+f(x2)=﹣1(x1≠x2),证明:x1+x2>2.8.已知函数f(x)=2lnx﹣3x2﹣11x.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若关于x的不等式f(x)≤(a﹣3)x2+(2a﹣13)x﹣2恒成,求整数a的最小值;(3)若正实数x1,x2满足f(x1)+f(x2)+4(x12+x22)+12(x1+x2)=4,证明:x1+x2≥2.题型归纳六、极值点偏移考点1.对称构造1.已知函数f(x)=xe﹣x(x∈R)(Ⅰ)求函数f(x)的单调区间和极值;(Ⅱ)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明:当x>1时,f(x)>g(x);(Ⅲ)如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2.【分析】(1)先求导求出导数为零的值,通过列表判定导数符号,确定出单调性和极值.(2)先利用对称性求出g(x)的解析式,比较两个函数的大小可将它们作差,研究新函数的最小值,使最小值大于零,不等式即可证得.(3)通过题意分析先讨论,可设x1<1,x2>1,利用第二问的结论可得f(x2)>g(x2),根据对称性将g(x2)换成f(2﹣x2),再利用单调性根据函数值的大小得到自变量的大小关系.【解答】解:(Ⅰ)解:f′(x)=(1﹣x)e﹣x令f′(x)=0,解得x=1当x变化时,f′(x),f(x)的变化情况如下表x(﹣∞,1) 1 (1,+∞)f′(x)+ 0 ﹣f(x)增极大值减所以f(x)在(﹣∞,1)内是增函数,在(1,+∞)内是减函数.函数f(x)在x=1处取得极大值f(1)且f(1)=1 e.(Ⅱ)证明:由题意可知g(x)=f(2﹣x),得g(x)=(2﹣x)e x﹣2令F(x)=f(x)﹣g(x),即F(x)=xe﹣x+(x﹣2)e x﹣2于是F'(x)=(x﹣1)(e2x﹣2﹣1)e﹣x当x>1时,2x﹣2>0,从而e2x﹣2﹣1>0,又e﹣x>0,所以F′(x)>0,从而函数F(x)在[1,+∞)是增函数.又F(1)=e﹣1﹣e﹣1=0,所以x>1时,有F(x)>F(1)=0,即f(x)>g(x).(Ⅲ)证明:(1)若(x1﹣1)(x2﹣1)=0,由(I)及f(x1)=f(x2),则x1=x2=1.与x1≠x2矛盾.(2)若(x1﹣1)(x2﹣1)>0,由(I)及f(x1)=f(x2),得x1=x2.与x1≠x2矛盾.根据(1)(2)得(x1﹣1)(x2﹣1)<0,不妨设x1<1,x2>1.由(Ⅱ)可知,f(x2)>g(x2),则g(x2)=f(2﹣x2),所以f(x2)>f(2﹣x2),从而f(x1)>f(2﹣x2).因为x2>1,所以2﹣x2<1,又由(Ⅰ)可知函数f(x)在区间(﹣∞,1)内是增函数,所以x1>2﹣x2,即x1+x2>2.2.已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.【分析】(Ⅰ)由函数f(x)=(x﹣2)e x+a(x﹣1)2可得:f′(x)=(x﹣1)e x+2a (x﹣1)=(x﹣1)(e x+2a),对a进行分类讨论,综合讨论结果,可得答案.(Ⅱ)设x1,x2是f(x)的两个零点,则﹣a=(x1−2)e x1(x1−1)2=(x2−2)ex2(x2−1)2,令g(x)=(x−2)e x(x−1)2,则g(x1)=g(x2)=﹣a,分析g(x)的单调性,令m>0,则g(1+m)﹣g(1﹣m)=m+1m2e1−m(m−1m+1e2m+1),设h(m)=m−1m+1e2m+1,m>0,利用导数法可得h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,可得结论.【解答】解:(Ⅰ)∵函数f(x)=(x﹣2)e x+a(x﹣1)2,∴f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①若a=0,那么f(x)=0⇔(x﹣2)e x=0⇔x=2,函数f(x)只有唯一的零点2,不合题意;②若a>0,那么e x+2a>0恒成立,当x<1时,f′(x)<0,此时函数为减函数;当x>1时,f′(x)>0,此时函数为增函数;此时当x=1时,函数f(x)取极小值﹣e,由f(2)=a>0,可得:函数f(x)在x>1存在一个零点;当x<1时,e x<e,x﹣2<x﹣1<0,∴f(x)=(x﹣2)e x+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x﹣1)﹣e,令a(x﹣1)2+e(x﹣1)﹣e=0的两根为t1,t2,且t1<t2,则当x<t1,或x>t2时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数f(x)在x<1存在一个零点;即函数f(x)在R是存在两个零点,满足题意;③若−e2<a<0,则ln(﹣2a)<lne=1,当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当ln(﹣2a)<x<1时,x﹣1<0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=ln(﹣2a)时,函数取极大值,由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0得:函数f(x)在R上至多存在一个零点,不合题意;④若a=−e2,则ln(﹣2a)=1,当x<1=ln(﹣2a)时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故函数f(x)在R上单调递增,函数f(x)在R上至多存在一个零点,不合题意;⑤若a<−e2,则ln(﹣2a)>lne=1,当x<1时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当1<x<ln(﹣2a)时,x﹣1>0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>ln(﹣2a)时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=1时,函数取极大值,由f(1)=﹣e<0得:函数f(x)在R上至多存在一个零点,不合题意;综上所述,a的取值范围为(0,+∞)证明:(Ⅱ)∵x1,x2是f(x)的两个零点,∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,∴﹣a=(x1−2)e x1(x1−1)2=(x2−2)ex2(x2−1)2,令g(x)=(x−2)e x(x−1)2,则g(x1)=g(x2)=﹣a,∵g′(x)=[(x−2)2+1]e x(x−1)3,∴当x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)=m−12e1+m−−m−12e1−m=m+12e1−m(m−1m+1e2m+1),设h(m)=m−1m+1e2m+1,m>0,则h′(m)=2m2(m+1)2e2m>0恒成立,即h(m)在(0,+∞)上为增函数,h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,即x1+x2<2.考点2.比值(作差)换元3.已知函数f(x)=e x﹣ax(a∈R)有两个零点.(1)求实数a的取值范围;(2)若函数f(x)的两个零点分别为x1,x2,求证:x1+x2>2.【分析】(1)利用导数判断函数的单调性,以及结合零点定理即可求出a的范围;(2)由e x1=ax1,e x2=ax2得x1=lna+lnx1,x2=lna+lnx2;得到所以x1+x2=(t+1)lnt t−1;构造函数h(t)=lnt−2(t−1)t+1,求证即可.【解答】解:(1)由f(x)=e x﹣ax,得f'(x)=e x﹣a,当a<0时,f(x)在R上为增函数,函数f(x)最多有一个零点,不符合题意,所以a>0.当a>0时,f'(x)=e x﹣a=e x﹣e lnaf'(x)<0⇔x<lna;f'(x)>0⇔x>lna;所以f(x)在(﹣∞,lna)上为减函数,在(lna,+∞)上为增函数;所以f(x)min=f(lna)=a﹣alna;若函数f(x)有两个零点,则f(lna)<0⇒a>e;当a>e时,f(0)=1>0,f(1)=e﹣a<0;f(3a)=(e a)3﹣3a2>0;由零点存在定理,函数f(x)在(0,1)和(1,3a)上各有一个零点.结合函数f(x)的单调性,当a>e时,函数f(x)有且仅有两个零点,所以,a的取值范围为(e,+∞).(2)证明:由(1)得a>e,0<x1<x2;由ex1=ax1,ex2=ax2得x1=lna+lnx1,x2=lna+lnx2;所以x 2﹣x 1=lnx 2﹣lnx 1=ln x 2x 1;设x 2x 1=t (t >1),则{x 2=tx 1x 2−x 1=lnt ,解得x 1=lnt t−1,x 2=tlntt−1; 所以x 1+x 2=(t+1)lntt−1, 当t >1时,x 1+x 2>2⇔(t+1)lnt t−1>2⇔lnt −2(t−1)t+1>0; 设h (t )=lnt −2(t−1)t+1,则h '(t )=(t−1)2t(t+1)2,当t >1时,h '(t )>0;于是h (t )在(1,+∞)上为增函数;所以,当t >1时,h (t )>h (1)=0,即lnt −2(t−1)t+1>0; 所以x 1+x 2>2.4.设函数f(x)=ax −lnx +1x+b (a 、b ∈R ), (1)讨论f (x )的单调性;(2)若函数f (x )有两个零点x 1、x 2,求证:x 1+x 2+2>2ax 1x 2.【分析】(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间即可; (2)求出a =lnx 2−lnx 1x 2−x 1+1x 2x 1,问题转化为证x 2x 1−x 1x 2>2ln x 2x 1,设x 2x 1=t ,则t >1,只需证t −1t >2lnt ,设ℎ(t)=t −1t −2lnt(t >1),根据函数的单调性证明即可.【解答】解:(1)f ′(x)=a −1x −1x 2=ax 2−x−1x 2(x >0),﹣﹣﹣﹣(1分)设g (x )=ax 2﹣x ﹣1(x >0),①当a ≤0时,g (x )<0,f '(x )<0;﹣﹣﹣﹣﹣﹣(2分) ②当a >0时,由g (x )=0得x =1+√1+4a 2a 或x =1−√1+4a 2a<0, 记x =1+√1+4a2a=x 0 则g(x)=ax 2−x −1=a(x −x 0)(x −1−√1+4a 2a ),(x >0),∵x −1−√1+4a2a >0 ∴当x ∈(0,x 0)时,g (x )<0,f '(x )<0,当x ∈(x 0,+∞)时,g (x )>0,f '(x )>0,﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分) ∴当a ≤0时,f (x )在(0,+∞)上单调递减;当a >0时,f (x )在(0,1+√1+4a 2a )上单调递减,在(1+√1+4a2a,+∞)上单调递增.﹣﹣﹣(5分)(2)不妨设x 1<x 2,由已知得f (x 1)=0,f (x 2)=0,即ax 1=lnx 1−1x 1−b ,ax 2=lnx 2−1x 2−b ,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)两式相减得a(x 2−x 1)=lnx 2−lnx 1−(1x 2−1x 1),∴a =lnx 2−lnx 1x 2−x 1+1x 2x 1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分) 要证x 1+x 2+2>2ax 1x 2, 即要证x 1+x 2+2>2(lnx 2−lnx 1x 2−x 1+1x 2x 1)x 1x 2,只需证x 1+x 2>2⋅lnx 2−lnx 1x 2−x 1⋅x 1x 2, 只需证x 22−x 12x 1x 2>2ln x 2x 1,即要证x 2x 1−x 1x 2>2lnx 2x 1,﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)设x 2x 1=t ,则t >1,只需证t −1t>2lnt ,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)设ℎ(t)=t −1t−2lnt(t >1),只需证h (t )>0,∵ℎ′(t)=1+1t 2−2t =t 2−2t+1t 2=(t−1)2t 2>0,∴h (t )在(1,+∞)上单调递增,∴h (t )>h (1)=0,得证.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)考点3.消参减元5.已知函数f (x )=x 2+ax ﹣alnx .(1)若函数f (x )在[2,5]上单调递增,求实数a 的取值范围;(2)当a =2时,若方程f (x )=x 2+2m 有两个不等实数根x 1,x 2,求实数m 的取值范围,并证明x 1x 2<1.【分析】(1)由已知可知f ′(x )=2x +a −ax≥0在[2,5]上恒成立,结合函数的性质可求(2)由已知m =x ﹣lnx 有两个不等实数根x 1,x 2,结合函数单调性可证明 【解答】解:(1)∵f (x )=x 2+ax ﹣alnx 在[2,5]上单调递增 ∴f ′(x )=2x +a −ax ≥0在[2,5]上恒成立∴a≥−2x2x−1在[2,5]上恒成立令g(x)=−2x2x−1=−2[(x﹣1)+1x−1+2]在[2,5]上单调递减∴g(5)≤g(x)≤g(2),即−252≤g(x)≤﹣8∴a≥﹣8(2)当a=2时,f(x)=x2+2x﹣2lnx=x2+2m有两个不等实数根x1,x2,∴m=x﹣lnx有两个不等实数根x1,x2,令h(x)=x﹣lnx,x>0则h′(x)=1−1x=x−1x,令h′(x)>0可得x>1,h(x)单调递增;令h′(x)<0可得0<x<1,h(x)单调递减当x=1时,函数取得极小值,也即是最小值h(1)=1∴m>1且0<x1<1<x2∵x2﹣lnx2=m>1∴x2>1+lnx2>1,∴0<1x2<1,∴x1﹣x2=lnx1﹣lnx2,∵ℎ(x1)−ℎ(1x2)=x1−lnx1−1x2−lnx2=x2−1x2−2lnx2令F(x)=x−1x−2lnx,x∈(1,+∞),则F′(x)=1+1x2−2x=(x−1)2x2≥0,∴F(x)在(0,1)上单调递增,F(x)<F(1)=0即h(x1)<h(1x2)∴x1<1 x2∴x1x2<1.6.已知函数f(x)=e x﹣ax+a(a∈R),其中e为自然对数的底数.(1)讨论函数y=f(x)的单调性;(2)若函数f(x)有两个零点x1,x2,证明:x1+x2<2lna.【解答】解:(1)函数f (x )=e x ﹣ax +a ,求导,f '(x )=e x ﹣a .①当a ≤0时,f '(x )>0,则函数f (x )为R 上的单调递增函数.②当a >0时,令f '(x )=0,则x =lna .若x <lna ,则f '(x )<0,f (x )在(﹣∞,lna )上是单调减函数;若x >lna ,则f '(x )>0,f (x )在(lna ,+∞)上是单调增函数.(2)证明:由(Ⅰ)可知,不妨设1<x 1<x 2,由{e x 1−ax 1+a =0e x 2−ax 2+a =0两式相减得a =e x 2−e x 1x 2−x 1. 要证x 1+x 2<2lna ,即证e x 1+x 22<a ,也就是证e x 1+x 22<e x 2−e x 1x 2−x 1, 即e x 1+x 22−e x 2−e x 1x 2−x 1=e x 1+x 22(1−e x 2−x 12−e −x 2−x 12x 2−x 1)<0,即证e x 2−x 12−e −x 2−x 12x 2−x 1>1,又x 2﹣x 1>0,只要证e x 2−x 12−e −x 2−x 12>x 2−x 1(*). 令x 2−x 12=t >0,则(*)式化为 e t ﹣e ﹣t >2t ,设g (t )=(e t ﹣e ﹣t )﹣2t (t >0),g '(t )=(e t +e ﹣t )﹣2>0,所以g (t )在(0,+∞)上单调递增,所以g (t )>g (0)=0.∴x 1+x 2<2lna . 考点4.拐点偏移7.已知函数f (x )=xlnx −a 2x 2+(a ﹣1)x ,其导函数f ′(x )的最大值为0.(1)求实数a 的值;(2)若f (x 1)+f (x 2)=﹣1(x 1≠x 2),证明:x 1+x 2>2.【分析】(1)f ′(x )=lnx ﹣ax +a =h (x ),x ∈(0,+∞).h ′(x )=1x −a =1−ax x .对a 分类讨论,利用导数研究函数的单调性即可得出.(2)当a =1时,f (x )=xlnx −12x 2,f ′(x )=lnx ﹣x +1.由(1)可知:f ′(x )≤0恒成立.f (x )在(0,+∞)上单调递减,且f (1)=−12.f (x 1)+f (x 2)=﹣1=2f (1)(x 1≠x 2).不妨设0<x 1<x 2,即0<x 1<1<x 2,要证:x 1+x 2>2.即证明:x 2>2﹣x 1.由f (x )在(0,+∞)上单调递减,因此即证明:f(x2)<f(2﹣x1).又f(x1)+f(x2)=﹣1,即证明:﹣f(x1)﹣1<f(2﹣x1).即﹣1<f(x1)+f(2﹣x1).令F(x)=f(x)+f(2﹣x).x∈(0,1),F(1)=2f(1)=﹣1.利用导数研究函数的单调性即可得出.【解答】(1)解:f′(x)=lnx﹣ax+a=h(x),x∈(0,+∞).h′(x)=1x−a=1−axx.当a≤0时,h′(x)>0,此时函数h(x)在x∈(0,+∞)单调递增,且h(1)=0,x>1时,h(x)>0,不成立,舍去.当a>0时,此时函数h(x)在x∈(0,1a )单调递增,在(1a,+∞)上单调递减.∴h(x)max=ℎ(1a)=−lna+a﹣1.令g(a)=﹣lna+a﹣1.g′(a)=−1a+1=a−1a,可得:当a=1时,函数g(a)取得极小值即最小值,g(1)=0,故a=1.(2)当a=1时,f(x)=xlnx−12x2,f′(x)=lnx﹣x+1.由(1)可知:f′(x)≤0恒成立.∴f(x)在(0,+∞)上单调递减,且f(1)=−12.f(x1)+f(x2)=﹣1=2f(1)(x1≠x2).不妨设0<x1<x2,即0<x1<1<x2,要证:x1+x2>2.即证明:x2>2﹣x1.由f(x)在(0,+∞)上单调递减,因此即证明:f(x2)<f(2﹣x1).又f(x1)+f(x2)=﹣1,即证明:﹣f(x1)﹣1<f(2﹣x1).即﹣1<f(x1)+f(2﹣x1).令F(x)=f(x)+f(2﹣x).x∈(0,1),F(1)=2f(1)=﹣1.F′(x)=f′(x)﹣f′(2﹣x)=1+lnx﹣x﹣[1+ln(2﹣x)﹣2+x]=lnx﹣ln(2﹣x)+2(1﹣x),F″(x)=2(1−x)2x(2−x)>0,∴F′(x)在x∈(0,1)上单调递增,∴F′(x)<F′(1)=0,∴F(x)在x∈(0,1)上单调递减,F(x)>F(1).因此x1+x2>2.8.已知函数f(x)=2lnx﹣3x2﹣11x.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若关于x的不等式f(x)≤(a﹣3)x2+(2a﹣13)x﹣2恒成,求整数a的最小值;(3)若正实数x1,x2满足f(x1)+f(x2)+4(x12+x22)+12(x1+x2)=4,证明:x1+x2≥2.【分析】(1)求出函数f(x)的导数,计算f′(1),f(1)的值,求出切线方程即可;(2)令g(x)=f(x)﹣(a﹣3)x2﹣(2a﹣13)x+2,求出函数的导数,通过讨论a 的范围,根据函数的单调性求出a的最小值即可;(3)得到(x1+x2)2+(x1+x2)=2x1x2﹣2ln(x1x2)+4,令t=x1•x2,令φ(t)=2t﹣2lnt+4,根据函数的单调性证明即可.【解答】解:(1)∵f′(x)=2x−6x﹣11,f′(1)=﹣15,f(1)=﹣14,∴切线方程是:y+14=﹣15(x﹣1),即y=﹣15x+1;(2)令g(x)=f(x)﹣(a﹣3)x2﹣(2a﹣13)x+2=2lnx﹣ax2+(2﹣2a)x+2,∴g′(x)=2x−2ax+(2﹣2a)=−2ax2+(2−2a)x+2x,a≤0时,∵x>0,∴g′(x)>0,g(x)在(0,+∞)递增,∵g(1)=﹣a+2﹣2a+2=﹣3a+4>0,∴关于x的不等式f(x)≤(a﹣3)x2+(2a﹣13)x﹣2不能恒成立,a>0时,g′(x)=−2a(x−1a)(x+1)x,令g′(x)=0,得x=1 a,∴x∈(0,1a )时,g′(x)>0,x∈(1a,+∞)时,g′(x)<0,故函数g(x)在(0,1a )递增,在(1a,+∞)递减,故函数g(x)的最大值是g(1a )=2ln1a+1a=1a−2lna≤0,令h(a)=1a−2lna,则h(a)在(0,+∞)递减,∵h(1)=1>0,h(2)=12−2ln2<12−2ln√e<0,∴a≥2时,h(a)<0,故整数a的最小值是2;(3)证明:由f(x1)+f(x2)+4(x12+x22)+12(x1+x2)=4,得2ln(x1x2)+(x12+x22)+(x1+x2)=4,从而(x1+x2)2+(x1+x2)=2x1x2﹣2ln(x1x2)+4,令t=x1•x2,则由φ(t)=2t﹣2lnt+4,得φ′(t)=2(t−1)t,可知φ(t)在区间(0,1)递减,在(1,+∞)递增,故φ(t)≥φ(1)=6,∴(x1+x2)2+(x1+x2)≥6,又x1+x2>0,故x1+x2≥2成立.。

函数-高考数学常见题型大全

函数-高考数学常见题型大全

函数常见题型总结一.函数的概念及表达式题型一:函数的概念函数是一种特殊的映射,必须是数集和数集之间的对应。

例1:下列各组函数中,函数)(x f 与)(x g 表示同一函数的是(1))(x f =x ,)(x g =xx 2;(2))(x f =3x -1,)(t g =3t -1;(3))(x f =0x ,)(x g =1;(4))(x f =2x ,)(x g =2(x ;题型二:函数的表达式1.解析式法例2:已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩,且()3f a =-,则(6)f a -=()(A )74-(B )54-(C )34-(D )14-2.图象法例3:如图,长方形的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记,将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则的图像大致为()A .B .C .D .题型三:求函数的解析式.1.换元法例4:已知1)1(+=+x x f ,则函数)(x f =例5:已知f(x 6)=log 2x,那么f(8)等于2.待定系数法例6:已知二次函数f (x)满足条件f (0)=1及f (x+1)-f (x)=2x。

则f (x)的解析式____________3.构造方程法例7:已知f(x)是奇函数,g(x)是偶函数,且f(x)+g(x)=11-x ,则f(x)=例8:若函数(),()f x g x 分别是R 上的奇函数、偶函数,且满足()()xf xg x e -=,则有()A .(2)(3)(0)f f g <<B .(0)(3)(2)g f f <<C .(2)(0)(3)f g f <<D .(0)(2)(3)g f f <<二.函数的定义域题型一:求函数定义域问题1.求有函数解析式的定义域问题例9:函数y =的定义域是()A .[1,)+∞B .2(,)3+∞C .2[,1]3D .2(,1]32.求抽象函数的定义域问题例10:已知函数()f x 的定义域为(1,1)-,函数()(21)g x f x =-,则函数()g x 的定义域为()A .(1,1)-B .(0,1)C .(3,1)-D .((3)f -,f (1))例11:若函数y =)13(-x f 的定义域是[1,2],则y =)12(-x f 的定义域是.题型二:已知函数定义域的求解问题例12:如果函数34)(2++=kx kx x f 的定义域为R,则实数k 的取值范围是.例13:已知函数()f x =的值域是[0,)+∞,则实数m 的取值范围是_____________例14:已知函数()2()lg 2f x x x a =++,(1)若它的定义域为R ,求实数a 的取值范围;(2)若它的值域为R ,求实数a 的取值范围.三.函数的值域1.二次函数类型(图象法):例19:函数()2f x x =-的最小值为.2.单调性法例20:求函数51)(--=x x x f []4,1∈x 的最大值和最小值。

函数的各种题型

函数的各种题型

函数是数学中非常重要的概念,涉及的题型也比较多。

以下是一些常见的函数题型:
1. 函数定义域与值域:这类题型要求确定函数的定义域和值域,或者根据函数的定义域和值域来求参数的值。

2. 函数单调性:单调性是函数的重要性质之一,这类题型要求判断函数的单调性或者根据函数的单调性求参数的值。

3. 函数奇偶性:奇偶性也是函数的重要性质之一,这类题型要求判断函数的奇偶性或者根据函数的奇偶性求参数的值。

4. 函数图像:这类题型要求根据函数的解析式画出函数的图像,或者根据函数的图像求参数的值。

5. 复合函数:复合函数是函数中比较复杂的一类,这类题型要求根据复合函数的定义求函数的解析式,或者根据复合函数的性质求参数的值。

6. 分式函数:分式函数也是函数中比较常见的一类,这类题型要求根据分式函数的定义求函数的解析式,或者根据分式函数的性质求参数的值。

7. 三角函数:三角函数是函数中比较特殊的一类,这类题型要求根据三角函数的定义求函数的解析式,或者根据三角函数的性质求参数的值。

总之,函数的各种题型非常多,需要掌握好函数的定义、性质和图
像等基础知识,才能更好地解决这些问题。

2021《高中数学专题题型分类大全》第一分册函数专题3函数的奇偶性及对称性

2021《高中数学专题题型分类大全》第一分册函数专题3函数的奇偶性及对称性

《必修1》函数专题三、函数的奇偶性与对称性 『知识与方法梳理』☟1、奇偶函数的定义与性质:2、几个初等函数的奇偶性:(1)函数:y = ax + b 为奇函数时b=0 ;为偶函数时a=0 .为奇函数时a=c=0 ;为偶函数时b=0 .(3)函数:y = ax为奇函数的时a∈R ;为偶函数时a=0 .(4)指数函数:y = a x(a≠1,a>0) 与对数函数:y = log a x(a≠1,a>0)属于非奇非偶函数.(5)幂函数:y = xα(α∈Q) 为奇函数时α为奇数;为偶函数时α为偶数.3、函数图形的对称性:4.常识知识与方法:(1)复合及合成函数的奇偶性:.奇函数在原点有定义时一定经过原点(3)一个定义在R上的函数如果有两个对称轴或对称中心,则该函数一定是周期函数. (4)定义域关于原点对称的常函数是偶函数(5)既是奇函数又是偶函数的函数必是零函数『题型分类例析』✍(一)函数奇偶性的概念性质问题■题型结构特征:无解析式函数的奇偶性的判断.★判断识真☆1.下列说法正确的是()A.如果一个函数的定义域关于坐标原点对称,则这个函数为奇函数B.如果一个函数为偶函数,则它的定义域关于坐标原点对称C.如果一个函数的定义域关于坐标原点对称,则这个函数为偶函数D.如果一个函数的图象关于y轴对称,则这个函数为奇函数2.已知y=f(x),x∈(-a,a),F(x)=f(x)+f(-x),则F(x)是()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数【例题1】[2014全国课标1文5]设函数)(),(xgxf的定义域为R,且)(xf是奇函数,)(xg是偶函数,则下列结论中正确的是()A.)()(xgxf是偶函数 B. )(|)(|xgxf是奇函数C. |)(|)(xgxf是奇函数 D. |)()(|xgxf是奇函数〖类型题〗(一)1.f(x)是定义在R上的奇函数,下列结论中,不正确的是()A.f(-x)+f(x)=0 B.f(-x)-f(x)=-2f(x)C.f(x)·f(-x)≤0 D.f(x)f(-x)=-12.设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()A.f(x)+|g(x)|是偶函数B.f(x)-|g(x)|是奇函数C.|f(x)|+g(x)是偶函数D.|f(x)|- g(x)是奇函数3.函数()f x的定义域为R,若(1)f x+与(1)f x-都是奇函数,则( )A.f(x)是偶函数B.f(x)是奇函数C.()(2)f x f x=+ D.(3)f x+是奇函数4.函数1211111(),(),,(),,()()nnf x f x f xx x f x x f x+===++则函数2015()f x是()A.奇函数但不是偶函数B.偶函数但不是奇函数奇偶性定义性质偶函数对定义域内任意x都有f(-x) = f(x)关于y轴对称奇函数对定义域内任意x都有f(-x) = - f(x)关于原点对称函数y = f(x)满足对称性对称轴或中心f(x) = f– 1(x) 轴对称y=xf(x) = f(2a – x) 轴对称x=af(a + x) = f(a – x) 轴对称x=af(a + x) = f(b – x) 轴对称x= a+b 2f(a + x) + f(a - x) = 2b 中心对称(a, b) f(x) + f(2a - x) = 2b 中心对称(a, b)f(a + x) + f(b - x) = c 中心对称(a+b2,c2)函数f(x) g(x) f[g(x)] f(x) ± g(x) f(x) ⋅ g(x)奇偶性奇奇奇奇偶偶偶偶偶偶奇偶偶非奇偶奇偶非奇非奇非非非非偶偶非非奇非非非非偶非非非非C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数(二)函数解析式奇偶性的判断■题型结构特征:有解析式函数的奇偶性的判断【例题2】 判断下列函数的奇偶性.(1) )y = x 4 - x 3x - 1 ;(2) y = 12 - x 2;(3) f(x)=x( 12x - 1 + 12);(4)f(x) = log 2(x + x 2 + 1).【例题3】判断函数 222 0,()2 0x x x f x x x x ⎧-≥⎪=⎨--<⎪⎩的奇偶性并画出它的图像.※解法辩伪※判断函数f(x) = 2223, 0,2, 0,23, 0x x x x x x x ⎧++<⎪=⎨⎪-+->⎩的奇偶性.〖错解〗∵当x < 0时,f( - x) = - ( - x)2 + 2( - x) – 3 = - (x 2 + 2x + 3) = - f(x);∵当x > 0时,f( - x) = ( - x)2 + 2( - x) + 3 = - (- x 2 + 2x – 3) = - f(x). ∴函数f(x)是奇函数.【例题4】 [2015广东理3]下列函数中,既不是奇函数,也不是偶函数的是( )A .x e x y += B .xx y 1+=C .xx y 212+= D .21xy +=1. 判断下面两个函数的奇偶性并说明为什么:(1)f (x )=|2x -1|-|2x +1|;(2)f(x) =x + 1x;(3)f(x) = x 2-1x+1+ 1;(4)f (x )=⎩⎪⎨⎪⎧1-x 2, x >0,0, x =0,x 2-1, x <0.2. 函数y = 1 - x 2 + x 2- 1 是( ); A.奇函数但不是偶函数 B.偶函数但不是奇函数 C.既是奇函数又是偶函数 D.非奇非偶函数3. 函数y =1-x 2+91+|x |是( ).A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数4. [2015湖南文8]设函数f(x)=ln(1+x)-ln(1-x),则f (x )是( )A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数5. 函数f(x) =ln(1)(0),0 (x=0),ln(1x )(0)x x x x x ⎧+->⎪⎨⎪-+-<⎩的奇偶性是( )A.奇函数B.偶函数C.即是奇函数也是偶函数D.非奇非偶函数6. 下列函数中,在其定义域内既是奇函数又是增函数的是( )A .y =-x 2+5(x ∈R )B .y =-xC .y =x 3(x ∈R )D .y =-1x(x ∈R ,x ≠0)7. 若函数f (x )=3x +3-x 与g (x )=3x -3-x的定义域均为R ,则( )A .f (x )与g (x )均为偶函数B .f (x )为偶函数,g (x )为奇函数C .f (x )与g (x )均为奇函数D .f (x )为奇函数,g (x )为偶函数(三)利用对称点求值1. 分段函数求值■题型结构特征:具有奇偶性的分段函数【例题5】若函数f(x)=⎩⎨⎧x 2+2x x≥0g(x)x <0为奇函数,则f(g(-1))=________.2. 抽象函数求值■题型结构特征:具有奇偶性的抽象函数【例题6】 设函数f (x )(x ∈R)为奇函数,f (1)=12,且f (x +2)=f (x )+f (2),则f (5)=________.3. 合成复合函数求值■题型结构特征:具有奇偶性的合成及复合函数 ★判断识真☆给出函数f (x )=|x 3+1|+|x 3-1|,则下列坐标表示的点一定在函数y =f (x )的图象上的是( )A. (a ,-f (a )) B .(a ,f (-a )) C .(-a ,-f (a )) D .(-a ,-f (-a ))【例题7】 已知函数()()2ln 1931,f x x x =++则()1lg 2lg 2f f ⎛⎫+= ⎪⎝⎭( )A. - 1 B .0 C .1 D .2(四)函数的对称中心和轴1. 对称轴的判断■题型结构特征:判断是否具有轴对称性或求其对称轴 ★判断识真☆函数()412x x f x +=的图象( )A. 关于原点对称B. 关于直线y=x 对称C. 关于x 轴对称D. 关于y 轴对称※解法辩伪※ 已知f(2x + 1)是偶函数,求函数f(2x)及f(x)的图象的对称轴.〖错解〗 ∵f(2x + 1)是偶函数, ∴f(2x + 1) = f( - 2x + 1) 故f(2x)的对称轴为 x = 1,f(x)的对称轴为x = 12.【例题8】[2017全国新课标1文9] 已知函数f(x) = lnx + ln(2 - x),则 A .f(x)在(0,2)单调递增 B .f(x)在(0,2)单调递减C .y = f(x)的图像关于直线x =1对称D .y = f(x)的图像关于点(1,0)对称2. 对称中心的判断■题型结构特征:判断是否具有中心对称性或求对称中心【例题9】 三次函数都存在对称中心,某同学发现把函数f(x)= x 3 - 3x 2 + 5x - 1的图像平移,使其对称中心变成原点,则新图像对应函数就会变成奇函数. 那么函数f(x)图像的对称中心是 .(五)函数奇偶性对称性确定的参数问题1. 偶函数确定的参数■题型结构特征:已知偶函数求参数【例题10】 [2014湖南文15]若()()ax e x f x ++=1ln 3是偶函数,则=a __________.2. 奇函数确定的参数■题型结构特征:已知奇函数求参数【例题11】 已知函数f (x )=ax 2+1bx +c (a ,b ,c ∈Z )是奇函数,又f (1)=2,f (2)<3,求a ,b ,c 的值.※解法辩伪※已知定义域为R 的函数abx f x x++-=+122)(,是否存在实数a,b使函数f(x )为奇函数,如果存在求a,b 的值,若不存在说明理由. 〖错解〗当f(x)是奇函数时,f(0)=0, f(-1) = - f(1),即110,22214ba b b a a --+⎧=⎪⎪+⎨-+-+⎪=-⎪++⎩解得2,1a b =⎧⎨=⎩.故存在a 、b 实数使f(x)为奇函数.3. 非奇偶对称函数确定的参数■题型结构特征:非奇偶函数具有对称性,求参数【例题12】 [2015福建文15]若函数()2()x a f x a R -=∈满足(1)(1)f x f x +=-,且()f x 在[,)m +∞单调递增,则实数m 的最小值等于_______.【例题13】 若函数f (x )=(1-x 2)(x 2+ax +b )的图像关于直线x =-2对称,则f (x )的最大值是______.〖类型题〗(五)1. 函数 f(x) = x 2 + ax – 1是偶函数,则a 的值为 .2. 若函数f (x )=(x +1)(x -a )为偶函数,则a 等于( ). A .-2 B .-1 C .1 D .23. 已知函数f (x )=ax 2+bx +3a +b为偶函数,其定义域为[a -1,2a ],则a +b =________.4. 若函数f (x )=-x +abx +1为区间[-1,1]上的奇函数,则它在这一区间上的最大值为_______. 5. [2015新课标1理13]若函数f (x )=xln (x +2a x +)为偶函数,则a =6. 设函数f(x)=x(e x +ae -x )(x ∈R )是偶函数,则实数a =______.7. 若1()21x f x a =+-是奇函数,则a = .8. [2015天津文7] 已知定义在R 上的函数||()21x m f x -=- (m 为实数)为偶函数,记0.5(log 3),af 2b (log 5),c (2)f f m ,则,,a b c ,的大小关系为( )A. b c aB. b c aC. b a cD. b c a9. [2015山东文8] 若函数21()2xx f x a+=-是奇函数,则使f (x )>3A.( )B.(-1, 0))C.(0,1)D.(1,+∞)10. 已知函数f (x )=x 2+ax(x ≠0).(1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在[1,+∞)上的单调性.11. [2014上海21]设常数0≥a ,函数aax f x x -+=22)( (1)若a =4,求函数)(x f y =的反函数)(1x f y -=; (2)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由. (六)奇偶对称性函数的单调问题■题型结构特征:函数的奇偶性对称性与单调性的综合问题1. 偶函数的单调性★判断识真☆1.设函数f (x )是定义在R 上的偶函数,且f (x )=f (2-x ),若f (x )在区间[]1,2上是减函数,则函数f (x )( )A .在区间[]-2,-1上是增函数,区间[]3,4上是增函数B .在区间[]-2,-1上是增函数,区间[]3,4上是减函数C .在区间[]-2,-1上是减函数,区间[]3,4上是增函数D .在区间[]-2,-1上是减函数,区间[]3,4上是减函数【例题14】[2017天津理6]已知奇函数f(x)在R 上是增函数,g(x) = xf(x).若a = g( - log 25.1),b = g(20.8),c = g(3),则a ,b ,c 的大小关系为 A. a b c <<B. c b a <<C. b a c <<D. b c a <<2. 奇函数的单调性★判断识真☆1.设f (x )为定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( )A .恒为正值B .恒等于零C .恒为负值D .无法确定正负2.[2017北京理5]已知函数f(x) = 3x - ( 13)x ,则f(x)A. 是奇函数,且在R 上是增函数B. 是偶函数,且在R 上是增函数C. 是奇函数,且在R 上是减函数D. 是偶函数,且在R 上是减函数【例题15】 已知定义在R 上的奇函数f (x )满足f (x )=x 2+2x (x ≥0),若f (3-a 2)>f (2a -a 2),则实数a 的取值范围是______.3. 非奇偶对称函数的单调性【例题16】 已知函数f (x )的图象向右平移a ()a >0个单位后关于x =a +1对称,当x 2>x 1>1时,[]f (x 2)-f (x 1)(x 2-x 1)<0恒成立,设a =f (-12),b =f (2),c =f (e),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c【例题17】 对于定义在区间M 上的函数f (x ),若满足对∀x 1,x 2∈M 且x 1<x 2时,都有f (x 1)≤f (x 2),则称函数f (x )为区间M 上的“非减函数”,若f (x )为区间[0,1]上的“非减函数”,且f (0)=0,f (x )+f (1﹣x )=1;又当x ∈[,1]时,f (x )≤2x ﹣1恒成立.有下列命题:①∀x ∈[0,1],f (x )≥0;②当x 1,x 2∈[0,1]且x 1≠x 2时,f (x 1)≠f (x 2);③f ()+f ()+f ()+f ()=2;④当x ∈[,1]时,f (f (x ))≤f (x ). 其中正确命题有( )A .②③B .①②③C . ①②④D . ①③④【例题18】 若定义在R 上的函数f (x )对任意的x 1,x 2∈R都有f (x 1+x 2)=f (x 1)+f (x 2)-1成立,且当x >0时,f (x )>1. (1)求证:f (x )-1为奇函数; (2)求证:f (x )是R 上的增函数;(3)若f (4)=5,解不等式f (3m 2-m -2)<3.【例题19】 已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0,有f (a )+f (b )a +b > 0成立.(1)判断f (x )在[-1,1]上的单调性,并证明你的结论;(2)解不等式f (x +12)<f (1x -1);(3)若f (x )≤m 2-2am +1对所有的x ∈[-1,1],a ∈[-1,1]恒成立,求实数m 的取值范围.1. [2017全国新课标1理5]函数f(x)在(-∞, +∞)单调递减,且为奇函数.若f(1) = - 1,则满足 - 1≤f(x - 2)≤ 1的x 的取值范围是 A .[-2, 2] B .[-1, 1] C .[0, 4] D .[1, 3]2. 下列函数中,其图象既是轴对称图形又在区间(0,+∞)上单调递增的是( )3. (2016天津)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足1(2)(2)a f f ->-,则a 的取值范围是______.4. 设函数f (x )定义在实数集R 上,f (2-x )=f (x ),且当x ≥1时f (x )=ln x ,则有( )A .f (13)<f (2)<f (12)B .f (12) < f (2) < f (13)C .f (12)<f (13) < f (2)D .f (2)<f (12) <f (13)5. 已知定义域为R 的函数f(x)是(8,+∞)上的减函数,且函数y = f(x + 8)为偶函数,则( ) A.f(6)>f(7) B.f(6)>f(9) C.f(7)>f(9) D.f(7)>f(10)6. 已知函数f (x )=⎩⎨⎧-x 2-4x ,x ≥0x 2-4x ,x <0,若f (a -2)+f (a )>0,则实数a 的取值范围是______.7. 已知()f x 是定义域为R的偶函数,当x≥时,2()4f x x x =-,那么,不等式(2)5f x +<的解集是_______.8. 已知奇函数f (x )=⎩⎪⎨⎪⎧-x 2+2x (x >0)0 (x =0)x 2+mx (x <0).(1)求实数m 的值,并画出y =f (x )的图象;(2)若函数f (x )在区间[-1,a -2]上单调递增,试确定a 的取值范围.9. 函数f(x)的定义域为D={x| x ≠0},且满足对于任意x 1, x 2∈D ,有f(x 1⋅x 2) = f(x 1) + f(x 2).(1)求f(1)的值; (2)判断f(x)的奇偶性并证明你的结论; (3)如果f(4) = 1, f(x – 1)< 2,且f(x)在(0, +∞)上是增函数,求x 的取值范围.10. 定义在( - 1, 1)上的函数f(x), ①对任意的x,y ∈( - 1, 1)都有:f(x) + f(y) = f(x + y1 + xy); ②当x ∈( - 1, 0)时,f(x) > 0.(1)判断f(x)在( - 1, 1)上的奇偶性,并说明理由; (2)判断函数f(x)在(0, 1)上的单调性;(3)若f( 15 ) = - 12 ,试求f( 12 ) - f( 111 ) - f( 119 )的值.(七)奇偶性对称性与周期性的综合问题1.两对称确定的周期■题型结构特征:有两个对称关系函数判断其周期 ★判断识真☆1.函数f (x )是定义在R 上非常数的偶函数,且f (x )满足条件:对任意x ∈R ,都有f (2+x )=f (2-x ),则f (x )( )A .是周期为2的函数B .是周期为4的函数C .关于(2,0)点中心对称D .是奇函数【例题20】[2014·全国大纲]奇函数f (x )的定义域为R .若f (x+2)为偶函数,且f (1)=1,则f (8)+f (9)=( ) A .-2 B .-1 C .0 D .12.轴对称与周期■题型结构特征:已知一对称的周期函数 ★判断识真☆2.函数f (x )在定义域R 上不是常数函数,且f (x )满足条件:对任意x ∈R ,都有f (2+x )=f (2-x ),f (1+x )=-f (x ),则f (x )( )A .是奇函数但非偶函数B .是偶函数但非奇函数C .既是奇函数又是偶函数D .是非奇非偶函数【例题21】 设函数f(x)(x ∈R)满足f(- x) = f(x),f(x + 2) =f(x),则函数y = f(x)的图像是( )3.中心对称与周期■题型结构特征:已知一对称关系和半周期关系函数【例题22】 已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,则( ). A.(25)(11)(80)f f f -<< B. (80)(11)(25)f f f <<-C. (11)(80)(25)f f f <<-D. (25)(80)(11)f f f -<<〖类型题〗(七)1. 已知函数)(x f 是定义在R 上的奇函数,且)2()(+-=x f x f .当10≤≤x 时,2)(xx f =,则(2007)f =2. 设)(x f 是定义在),(+∞-∞上,以2为周期的周期函数,且)(x f 为偶函数,在区间[2,3]上,)(x f =4)3(22+--x ,则时,]2,0[∈x )(x f = .3. 已知f(x)是R 上的偶函数,对任意的x ∈R 都有f(x + 6) = f(x)+f(3)成立,若f(1) = 2,则f(2005) = ( )A.2005B.2C.1D.04. 已知定义在(-1,1)的函数f(x),若对任意x ,y ∈(-1,1)都有f(x) + f(y)= f(x + y),且函数y = f(x)的图像关于直线x = 13 对称,则f(- 23)= .5. 定义在R 上的函数()f x 满足:(1)(1)(1)f x f x f x -=+=-成立,且()f x 在[1,0]-上单调递增,设(3),(2),(2)a f b f c f ===,则a 、b 、c 的大小关系是( )A.a b c >>B.a c b >>C.b c a >>D.c b a >>6. 设f x ()是定义在R 上的偶函数,其图象关于直线x =1对称。

高考数学中的基本初等函数题型总结

高考数学中的基本初等函数题型总结

高考数学中的基本初等函数题型总结作为全国高中生的普及性质考试,高考中必定会考到数学这个科目,而其中初等函数部分则是数学中的基础知识。

初等函数常常出现在多项式函数、指数函数、对数函数、三角函数、反三角函数等高中知识点当中。

因此,对于考生来说,掌握初等函数的知识点,对高考数学考试及日后的数学学习都非常重要。

本文就高考数学中的基本初等函数题型进行总结。

1. 最值问题求函数的最值是很常见的一种初等函数题型。

以一些典型的例子为参考,可更好地掌握这类题型。

例1:已知$f(x)=x^2-2x+2$,求$f(x)$的最小值。

解:首先,把$f(x)$变形为完全平方的形式。

即$$f(x)=(x-1)^2+1$$显然,当$x=1$时,$(x-1)^2$取最小值$0$。

故$f(x)$在$x=1$时取得最小值$1$。

例2:已知$f(x)=\dfrac{1}{2}x^2-3x+5$,求$f(x)$的最大值。

解:同样把$f(x)$变形为完全平方的形式。

即$$f(x)=\dfrac{1}{2}(x-3)^2+\dfrac{1}{2}$$显然,当$x=3$时,$(x-3)^2$取最小值$0$。

故$f(x)$在$x=3$时取得最大值$\dfrac{1}{2}$。

2. 解方程解初等函数的方程是另一种常见的题型。

以下为几个典型的例子,例3:已知$y=2^x-x$,求$y=0$时的$x$的值。

解:根据方程可得$$2^x-x=0$$$$x=2^x$$把函数$y=2^x-x$作图,可以看出在$x=1$时交于$y=0$。

因此,方程的解为$x=1$。

例4:已知$y=\dfrac{1}{2}\log_2(x-1)+2$,求$y=1$时$x$的值。

解:根据方程可得$$\dfrac{1}{2}\log_2(x-1)+2=1$$$$\log_2(x-1)=2$$$$x-1=2^2=4$$因此,方程的解为$x=5$。

3. 函数图像解题函数图像是初等函数题目中重要的一部分。

高中数学函数题型归纳

高中数学函数题型归纳

高中数学函数题型归纳随着社会的发展,数学的重要性日趋凸显,在高中数学学科中,函数问题占有重要的地位。

函数与解析几何、统计、概率等其他数学科目的关系非常密切,掌握函数的基本知识很有必要。

下面,我们就一起来归纳高中数学中函数的一些题型。

一、定义:首先,介绍一下函数的定义,函数定义为满足特定关系的一组点,函数就是把某种关系抽象化表示出来,研究此关系的变化情况和规律。

二、分类:1、一元函数:函数的变量只有一个的叫一元函数,它们可以用数学关系式来表示,一般以y=f(x)来表示;这里的y叫函数图象,x 叫函数变量,而f(x)叫函数表达式,也叫(函数关系式)。

2、多元函数:函数的变量不止一个,变量至少有两个以上时,就称之为多元函数。

多元函数也可以用数学关系式来表示,一般以z=f(x,y)来表示;这里的z叫函数图象,x和y叫函数变量,而f(x,y)叫函数表达式,也叫(函数关系式)。

三、函数的性质:1、调性:若一个函数的单调性是单调递增,则表示当变量X的值增加时,函数值Y也将增加,反之,若函数的单调性是单调递减,则表示当变量X的值增加时,函数值Y也将减小。

2、偶性:在一元函数的图象中,函数的图象对称轴是X轴时,该函数称为奇函数,如果函数的图象对称轴是Y轴,则称之为偶函数。

3、称性:一元函数f(x)如果存在一个值a,使得在函数图象上任取一点P,假定P的横坐标为x,则在它的对称点P’上,横坐标也记为x,则有x=2a-x,也就是x=a,称此函数为中心对称函数。

四、函数的应用:在社会各个领域,函数都得到广泛的应用。

下面以力学中的抛体问题做一个简单的介绍:抛体问题是指,当物体投掷上升后,受到重力作用而运动的问题。

抛体运动的运动轨迹就是一个定义域内的函数y=f(x),X轴表示投掷物体在空气中水平位置变化,而Y轴表示投掷物体在空气中垂直位置变化。

总之,函数是高中数学中的重要知识点,理解函数的定义、分类及其应用,不仅有助于我们深入理解其他数学知识,而且能够有效地帮助我们解决实际问题。

高中数学各章节详解及题目类型

高中数学各章节详解及题目类型

高中数学各章节详解及题目类型高中数学是我们学习数学的重要一步,这一阶段是我们接触高等数学的跳板。

在高中数学学习过程当中,我们需要学习的知识点非常的繁多,包括了函数、三角函数、数列、概率论等等知识。

本文将详细探究高中数学各章节的教学内容,以及常见的题目类型和解题技巧,帮助读者更加深入地了解这门学科。

第一章函数与映射在这一章节中,学生需要掌握函数的概念、性质及其图像的绘制方法。

同时,需要学会求解函数的零点、单调性、最大值最小值等相关问题。

其中离散型函数和连续型函数区别及特点也需要学生了解。

题目类型:1、函数绘制:给定函数的表达式,绘制出其对应的函数图像。

2、函数性质:针对给定的函数,判断其是否是奇函数、偶函数、周期函数,求函数的定义域和值域。

3、函数的零点及单调性:求函数的零点和单调区间。

4、函数最值问题:求解函数的最大值和最小值。

解题技巧:1、绘制函数图像时,首先掌握函数的基本性质,如对称性,奇偶性,周期性等。

2、对于离散型函数和连续型函数的题目,要有明确的区分。

3、函数最值问题在求导学习后可以通过求导的方法解决。

第二章三角函数在这一章中,学生需要了解角度的概念,以及sin、cos、tan三角函数的定义、性质、图像及其基本变换。

此外还需要学习到三角函数的值域、周期、减角公式、倍角公式等知识点。

题目类型:1、三角函数图像:给定三角函数的基本式或变形式,绘制其对应的函数图像。

2、三角函数的周期、性质等:求出三角函数的周期、奇偶性、定义域和值域等。

3、减角公式、倍角公式:用减角公式和倍角公式来求解各种三角函数值。

解题技巧:1、掌握三角函数值的特点及其基本变换方法。

2、熟悉三角函数的周期及其减角公式、倍角公式。

3、注意处理复合函数的方式。

第三章数列与数学归纳法在这一章节中,学生需要学习数列的定义、等差数列、等比数列、递推数列等内容,并能正确掌握这些数列的性质及解法。

同时,学生还需要学会运用数学归纳法来证明各种数列中的等式成立。

高考数学函数的单调性、奇偶性、对称性、周期性10大题型(解析版)

高考数学函数的单调性、奇偶性、对称性、周期性10大题型(解析版)

函数的单调性、奇偶性、对称性、周期性10大题型命题趋势函数的性质是函数学习中非常重要的内容,对于选择题和填空题部分,重点考查基本初等函数的单调性,利用性质判断函数单调性及求最值、解不等式、求参数范围等,难度较小,属于基础题;对于解答题部分,一般与导数结合,考查难度较大。

满分技巧一、单调性定义的等价形式: 1、函数()x f 在区间[]b a ,上是增函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021<−x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>−−x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121>−−x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>−−x f x f x x .2、函数()x f 在区间[]b a ,上是减函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021>−x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<−−x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121<−−x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<−−x f x f x x .二、判断函数奇偶性的常用方法1、定义法:若函数的定义域不是关于原点对称,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的,再判断()f x −与()f x ±之一是否相等.2、验证法:在判断()f x −与()f x 的关系时,只需验证()f x −()f x ±=0及()1()f x f x −=±是否成立. 3、图象法:奇(偶)函数等价于它的图象关于原点(y 轴)对称.4、性质法:两个奇函数的和仍为奇函数;两个偶函数的和仍为偶函数;两个奇函数的积是偶函数;两个偶函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数.5、分段函数奇偶性的判断判断分段函数的奇偶性时,通常利用定义法判断.分段函数不是几个函数,而是一个函数.因此其判断方法也是先考查函数的定义域是否关于原点对称,然后判断()f x −与()f x 的关系.首先要特别注意x 与x −的范围,然后将它代入相应段的函数表达式中,()f x 与()f x −对应不同的表达式,而它们的结果按奇偶函数的定义进行比较. 三、常见奇、偶函数的类型1、()x x f x a a −=+(00a a >≠且)为偶函数;2、()x x f x a a −=−(00a a >≠且)为奇函数;3、()2211x x x x x xa a a f x a a a −−−−==++(00a a >≠且)为奇函数; 4、()log ab xf x b x−=+(00,0a a b >≠≠且)为奇函数;5、())log a f x x =±(00a a >≠且)为奇函数;6、()f x ax b ax b ++−为偶函数;7、()f x ax b ax b +−−为奇函数; 四、函数的周期性与对称性常用结论1、函数的周期性的常用结论(a 是不为0的常数)(1)若()()+=f x a f x ,则=T a ; (2)若()()+=−f x a f x a ,则2=T a ; (3)若()()+=−f x a f x ,则2=T a ; (4)若()()1+=f x a f x ,则2=T a ; (5)若()()1+=−f x a f x ,则2=T a ; (6)若()()+=+f x a f x b ,则=−T a b (≠a b ); 2、函数对称性的常用结论(1)若()()+=−f a x f a x ,则函数图象关于=x a 对称;(2)若()()2=−f x f a x ,则函数图象关于=x a 对称; (3)若()()+=−f a x f b x ,则函数图象关于2+=a bx 对称; (4)若()()22−=−f a x b f x ,则函数图象关于(),a b 对称; 3、函数的奇偶性与函数的对称性的关系(1)若函数()f x 满足()()+=−f a x f a x ,则其函数图象关于直线=x a 对称,当0=a 时可以得出()()=−f x f x ,函数为偶函数,即偶函数为特殊的线对称函数; (2)若函数()f x 满足()()22−=−f a x b f x ,则其函数图象关于点(),a b 对称,当0=a ,0=b 时可以得出()()−=−f x f x ,函数为奇函数,即奇函数为特殊的点对称函数; 4、函数对称性与周期性的关系(1)若函数()f x 关于直线=x a 与直线=x b 对称,那么函数的周期是2−b a ; (2)若函数()f x 关于点(),0a 对称,又关于点(),0b 对称,那么函数的周期是2−b a ; (3)若函数()f x 关于直线=x a ,又关于点(),0b 对称,那么函数的周期是4−b a . 5、函数的奇偶性、周期性、对称性的关系(1)①函数()f x 是偶函数;②函数图象关于直线=x a 对称;③函数的周期为2a . (2)①函数()f x 是奇函数;②函数图象关于点(),0a 对称;③函数的周期为2a . (3)①函数()f x 是奇函数;②函数图象关于直线=x a 对称;③函数的周期为4a . (4)①函数()f x 是偶函数;②函数图象关于点(),0a 对称;③函数的周期为4a .其中0≠a ,上面每组三个结论中的任意两个能够推出第三个。

高中数学函数的经典题型

高中数学函数的经典题型

一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。

例1求函数831522-+--=x x x y 的定义域。

解:要使函数有意义,则必须满足⎪⎩⎪⎨⎧≠-+≥--08301522x x x 二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求;另一个抽象函数的解析式,一般有两种情况。

(1)已知)(x f 的定义域,求[])(x g f 的定义域。

其解法是:已知)(x f 的定义域是],[b a 求[])(x g f 的定义域是解b x g a ≤≤)(,即为所求的定义域。

例3已知)(x f 的定义域为]2,2[-,求)1(2-x f 的定义域。

(2)已知[])(x g f 的定义域,求)(x f 的定义域。

其解法是:已知[])(x g f 的定义域是],[b a 求)(x f 的定义域的方法是:b x a ≤≤,求)(x g 的值域,即所求)(x f 的定义域。

例4已知)12(+x f 的定义域为]2,1[,求)(x f 的定义域。

解:因为21≤≤x ,422≤≤x ,5123≤+≤x 。

即函数)(x f 的定义域是{}53|≤≤x x 。

三、逆向型即已知所给函数的定义域求解析式中参数的取值范围。

特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。

例5已知函数862++-=m mx mx y 的定义域为R 求实数m 的取值范围。

分析:函数的定义域为R ,表明0862≥++-m mx mx ,使一切R x ∈都成立,由2x 项的系数是m ,所以应分0=m 或0≠m 进行讨论。

解:当0=m 时,函数的定义域为R ;当0≠m 时,0862≥++-m mx mx 是二次不等式,其对一切实数x 都成立的充要条件是⎩⎨⎧≤+--=∆>0)8(4)6(02m m m m 10≤<⇒m 综上可知10≤≤m 。

高中函数的常见类型

高中函数的常见类型

高中函数的常见类型
高中数学中的六大类函数及其定义:
1.一次函数:在某一个变化过程中 , 设有两个变量 x 和 y,如果可以写成 y=kx+b(k 为一次项系数≠0,k ≠0,b为常数 ,), 那么我们就说 y 是 x 的一次函数 ,其中 x 是自变量 ,y 是因变量 .
2.二次函数:在数学中,二次函数最高次必须为二次,二次函数( quadratic function )的基本表示形式为y=ax2+bx+c. 二次函数的图像是一条对称轴平行或重合于y 轴的抛物线 .
二次函数表达式y=ax2+bx+c 的定义是一个二次多项式.
3.指数函数:一般地,形如 y=a^x(a>0且a≠ 1) (x∈ R)的函数叫做指数函数. 也就是说以指数为自变量 ,幂为因变量 ,底数为常量的函数称为指数函数,它是初等函数中的一种.可以扩展定义为 R
4.对数函数:一般地 ,如果 ax=N( a>0, 且 a≠1),那么数 x 叫做以 a 为底 N 的对数 , 记作 x=logaN, 读作以 a 为底 N 的对数 ,其中 a 叫做对数的底数 ,N 叫做真数 .
5.幂函数:一般地的函数称为幂函数是幂函数 .,形如 y=xa(a 为常数)的函数,即以底数为自变量,幂为因变量 ,指数为常量.例如函数y=x0 y=x1 、 y=x2 、 y=x-1 (注: y=x-1=1/x y=x0时x≠0)等都
6.三角函数:三角函数是数学中常见的一类关于角度的函数.也就是说以角度为自变量,角度对应任意两边的比值为因变量的函数叫三角函数,三角函数将直角三角形的内角和它的两个
边长度的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义.常见的三角函数包括正弦函数、余弦函数和正切函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学函数学生常见问题以及函数常见题型、解法指导一、学生常见问题:(一)、认知层面的问题:这个问题是在高一学习函数时就一直在困扰学生的问题。

我们要了解高一学生在学习数学时产生困难的原因,首先要了解学生的数学认知结构。

即学生在对数学对象、数学知识和数学经验感知和理解的基础上形成的一种心理结构。

通俗地说:数学认知结构就是人们按照自己的经验与理解,根据自己的感知、记忆、思维的特点,把数学知识在大脑中组合而成的具有内部规律的整体结构。

数学认知结构受个体认知特点的制约,具有浓厚的认知主体性与鲜明的个性色彩。

高一新生在学习数学时的困难正是由于数学认知结构的特点所决定。

高一新生在学习高中数学时,碰到的困难比如无法理解函数的概念,无法建立对应的观念,对集合的概念理解不够透彻等问题,导致高中数学的学习存在很大的困难。

(二)、基础知识层面的问题:在进行高三复习的时候,同学们普遍的反映都不太好。

原因在于,同学们感觉学校老师复习得很快。

学校老师的讲课思路是先大致的把知识点串讲一遍,接着在课上做一些例题,课后给同学发一些卷子以做为练习,这些练习在做完之后老师也不一定会仔细的讲解,知识点的落实也不太扎实。

因此同学感觉老师的复习很快。

(因此这里学生会出现的问题就是基础知识不扎实)那么我们在具体的操作中,首先应该了解学生复习的程度。

在总复习的过程中侧重于整体性,所以可以先了解一下学生是否有一个整体的框架。

(框架的作用是帮助PEC检查学生的知识体系是否完善)函数被分成了两块:横轴和纵轴。

(参见策略库函数基本概念第一部分)接下来,就是要求学生能够对这个表格里的每个点都比较了解。

(框架完善了,就要看基础知识点是否真的落实)首先这六大基础函数,学生是否都了解呢?包括:正比例函数,反比例函数,一次函数,二次函数,指数函数,对数函数。

只有指数函数和对数函数是在高中的时候新学的,其他函数都是以前的时候就学过的。

但是在考试当中会结合到一起,尤其是二次函数。

抽象函数就是在考察的时候只告诉函数的一些基本性质,进行一些证明等等。

复合函数就是()[]x g f 这种形式的函数,因此在跟学生交流的时候,如果学生没有这样一个整体知识框架,可以让学生首先熟悉这一块的内容,因为这是属于知识层面比较基础的部分。

函数性质和图像的内容,同样要看学生是否都知道,如果掌握的不是特别清楚,那么都属于基础知识层面的问题。

(三)、(接下来)基本题型的问题可以按照表格中体现出的顺序来考察学生基本题型的能力。

(1)定义域相关的基本题型 两类:1.给定函数式,在函数式当中有些限定性的条件,如存在,以及对数log 要求大于零,以及存在分母(分母不能为零)等等基本的方式去求定义域。

2.复合函数求定义域的问题。

复合函数求定义域是很严格的。

就是这样一层一层的函数顺序下来要求的。

如()[]()[]21x t f x g f 和,首先就要求其中()()21x t x g 和必须符合()x f 的定义域的要求;其次我们才去看21x x 和各自要按照哪个函数要求去求定义域,1x 需要符合函数()x g 的定义域要求,2x 需要符合函数()x t 的定义域要求。

其实就是两点:首先,只要是同一函数对应法则,括号内的式子的范围都是一样的。

第二点就是求定义域,是求最核心的自变量x 的范围。

(2)值域相关的基本题型(其实关键的就是几种方法)1.二次函数的值域问题。

而且这是最为关键的问题。

简单的二次函数,就可以通过顶点和最值等来求值域。

困难的地方在于函数有参数的问题。

带有参数的二次函数值域的问题也被我们称为限定性的二次函数求值域问题。

也就是说,自变量x 的取值不是全体实数R ,而是在一定范围之内,如()b a x ,∈,求函数的值域的问题。

解决的办法只有一种,即分类讨论。

分类讨论时需要注意的是,对称轴abx 2-=是在a 的左端、在b 的右端还是位于区间()b a ,之内,因此需要分类讨论的就是分这三类。

(这个问题只要反复的练是可以达到效果的)2.换元法(也是最常用的方法),转换成二次函数。

这种题的特点是,题目中的自变量的次数关系是倍半关系,如22,1,1,x xx x ,都可以利用换元的方法把题目转换成上面第一类的问题。

3.利用函数的单调性求值域。

当前两种办法不能用的时候,都可以考虑函数的单调性。

因此这里存在函数是否存在单调性的问题。

有两种方式,一种就是平时题目的积累;一种就是猜测,去试这个函数的单调性(因为知道单调性要去证明单调性并不是一个困难的问题),单调性的利用其实也是在利用函数的图像。

4.运用均值不等式。

但是均值不等式适用的范围比较窄,且函数的形式也是比较固定的。

一般来说都是函数带有分母的。

如1111+++=+=x x y x x y 或者等这样的形式可以利用均值不等式。

5.数形结合。

这种类型的题目也是比较特殊的。

一般的形式如l nx mx c bx ax y +++++=22,两个根号的和的形式。

根号下的函数可以转化为点线的距离和两点间的距离。

6.反解法。

这种方法也就是说这个函数的定义域是比较清晰的,就可以写出反函数,利用反函数来求原函数的值域。

这种方法要求原函数得存在反函数,即()y x x f y 与的=是一一对应的。

这样反函数才存在,才可以反解。

7.“∆”法。

这种方法适用于cbx ax nmx y +++=22这种形式的函数,“∆”法就是把分母乘到左边去,然后整理成一个关于x 降幂排列的方程,然后利用0≥∆来求y 的取值范围。

这些方法中,常用的就是1、2、3、7这几种方法。

其他的几种就题型也是比较单一的。

(3)求解析式(方法比较少,考得也不多) 1.配 和 凑利用它的形式,凑出()2∇+∇+∇=∇k f 这样的形式,这要求学生做题目比较有感觉。

2.待定系数法。

即设()c bx ax x f ++=2,再利用已知条件把c b a ,,的取值确定。

(4)单调性、周期性、奇偶性、对称性1.首先,得知道这几个性质的概念各自的确定的含义。

学生面临的问题就是比较偏向于用一个特定的数代入函数,以此来判断函数的单调性或者奇偶性等。

其实核心在于他们对于恒成立这个概念的理解存在偏差,比较模糊。

因为函数的性质是对于定义域范围内任意的x 都成立的。

因此,在证明的过程中,不能用一些特定的数代入函数,因为这只是猜测函数的性质的一种方法。

2.各种性质的代数形式。

单调性:定义域内()()2121,x f x f x x >>则有 单调增 奇偶性:定义域内 ()()x f x f =- 为偶函数 ()()x f x f -=- 为奇函数 周期性:定义域内 ()()x f a x f =+ a 为周期 对称性:包括关于轴对称,关于点对称,如关于函数关于a x =对称,则()()x a f x a f -=+这个可以让学生去归纳。

3.解题时,题目基本都是抽其中的一条性质或者两条性质结合起来考查。

如说到奇偶性(]()()⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧±=--∈轴对称偶函数:关于)对称,奇函数:关于(图像没有奇偶性)对称的,如,定义域是关于原点(y.2.1.3xfxf.21,1x.1如周期性在三角函数里运用的比较多另外就对称性就跟刚才需要学生去总结的内容相同。

二、解决学生认知障碍的策略:(1)在高一新学期开始之时,做好如下几件事:一是要对学生进行高中数学知识结构特点和知识系统构成的讲解,使其尽快进入角色,尽快适应高中数学知识学习的要求。

二是要帮助学生尽快调整相关心理结构,以尽快适应高中数学的认知结构。

可以从认知方法、认知结构及认知层次等方面,给学生讲清初中与高中的认知差异及调整方法,从而帮助学生及早做好心理上的准备。

三是要从高中与初中数学的思想方法和学习方法等方面给学生讲清二者之间的差异,让学生了解高中数学的思想方法和学习方法,为学习高中数学知识作好思想和方法上的准备。

具体可以从初、高中的教材教法、思想方法和学习方法的差异入手进行调整,与高中比较,初中明显存在着时间多、形象记忆多、强化训练多,教材内容少、抽象思维少、灵活应用少;让学生了解在初中通过强化记忆和题海战术来提高成绩是可能的,甚至是行之有效的方法。

但将此类方法克隆到高中的学习中则是行不通的,甚至是根本不可能实现的。

(2)注重对比。

从学生初中的数学知识和数学经验与新的高中数学知识的矛盾入手帮助学生消除数学认知障碍,尽快实现高中数学知识与初中数学知识和知识经验的重新组织。

在这方面要充分发挥教师的主导作用,充分利用课堂教学的便利条件,在课堂教学过程中要有意识地进行新、旧知识和新、旧方法的对照、比较。

让学生通过自己的观察、比较、反思、总结、批判达到吸收、消化、升华的目的。

实现新的数学知识与初中的数学经验、数学知识互相促进、协调发展。

(3)对于那些习惯于知识堆积的同学要有意识地对其进行高中数学思维特征及思想方法的辅导。

一方面要积极发挥其直观、形象记忆好的优势,另一方面要通过课堂教学发展其抽象、形式的思维方法,树立学习信心,培养学习兴趣,以期尽快消除数学认知的障碍,走出数学学习的误区。

(4)形象直观。

由数学认知结构层次不同造成的数学认知障碍,解决方法是教师要通过课堂教学积极地加以引导,课堂教学要充分利用学生的直观、形象思维好的特点,在抽象性较强的概念教学时要通过创设恰当的问题情景与学习情景从实际问题和形象化入手,直观、形象的自然引入,尽量避免过多的抽象性讲解,帮助学生尽可能的缩短适应高中数学认知结构的过程,减少由于数学认知结构的层次不同所带来的认知障碍的负面影响。

(5)针对学生由于数学认知结构的动态性所造成的认知障碍,还是要从动态性入手加以解决。

首先要从其心理上加以调整,要学生明确这种心理障碍的存在是客观事物发展的必然规律,是人人都必须面对的客观事实,是每一个同学都会遇到的必然矛盾,它的存在并不可怕。

关键是我们如何面对。

正确的态度是认真对待、理智应对,尽快找到解决问题的方法,尽早消除此类认知障碍。

其次在日常教育教学过程中要充分发挥数学认知结构动态能动性的积极作用,当新的问题情景出现的时候要积极引导学生用他们过去已有的数学认知结构对所面临的问题进行加工和处理,在这个过程中教师要通过创设不同的问题情景,强化新、旧知识结构和新、旧认知结构之间的联系,引导学生不断的补充、修正过去已有的知识结构和认知结构,加快建立新的知识结构和认知结构,以尽快适应高中数学知识结构和认知结构的要求。

心理学的研究表明,认知一致性是人们认知结构发展的心理机制。

无论是新概念的引入、新命题的发现,还是新问题的解决,都能导致学生的数学认知结构出现失衡。

而在学生的学习过程中,通过概念的掌握、技能的形成以及数学问题的解决,其数学认知结构将会取得新的平衡。

相关文档
最新文档