第二章-药物代谢动力学

合集下载

第2章 药物代谢动力学

第2章  药物代谢动力学

药量---时间关系
血药浓度 A(给药量)可代替C

n=1:一级动力学

n=0:零级动力学
正值:表示吸收动力学 负值:表示消除动力学
一级消除动力学(first-order elimination kinetics
----体内药量以恒定的百分率进行消除(恒比消除() 掌握)
一级消除动力学特点
----线性动力学(掌握)
pH=7
pH=4
总量 A + H+HA
100001 105
1
HAH+ + A 总量
1
102 101
10pH-pKa =
[ A ] [HA]
= 107-2 = 105
10pH-pKa =
[ A ] [HA]
= 104-2 = 102
问题
某人过量服用苯巴比妥(酸 性药)中毒,有何办法加速 脑内药物排至外周,并从尿 内排出?
F、Vd、 T1/2、 CL
(掌握) 简单扩散
(掌握)
首关消除 药酶诱导/抑制 尿液PH对药物排泄影响
(掌握)
一级消除动力学 零级消除动力学
Css 、F、Vd、 T1/2、 CL
被动转运 药物跨膜转运方式
滤过 水溶性扩散
简单扩散 脂溶性扩散

易化扩散
体 扩
主动转运





1.滤过(Filtration) --水溶性扩散(了解)
3.易化扩散 (Facilitated diffusion; Carrier-mediated diffusion) (了解

▲有载体协助的顺差转运,有饱和、竟争现象。

第二章 药物代谢动力学

第二章 药物代谢动力学

4)D类(危险):临床有资料表明对胎儿有危害 ,但治疗孕妇疾病的疗效肯定,又无代替药物 ,权衡利弊后再应用。如抗惊厥药苯妥英钠,链 霉素等。 5)X类(高度危险):证实对胎儿有危害,禁用
第二章
选药原则: 有A不选B类,X绝对禁选;选AB不选CD, 无药替代才选CD.
三、代谢(生物转化)
定义: 药物 代谢产物
1.4-3.4
=
[ A- ]
[HA]
= 10 -2 =1/100
血浆中:10 7.4-3.4 =
[ A- ]
[HA]
= 10 4 = 10000/1
酸酸少易;酸碱多难
第二章
• 某弱酸性药物的pKa是3.4,该药物在血浆( 血浆pH=7.4)中的解离百分率约为( ) • A.1% • B.10% • C.90% • D.99% • E.99. 99%
二、影响药物通过细胞膜的因素
第二章
(二)药物的浓度差、膜通透性、面积厚度
(三)血流量——影响膜两侧药物浓度差 (四)细胞膜转运蛋白的量和功能
分子量小,脂溶性高,解离度小的药物易转运
第二节 药物的体内过程
一、吸收:
定义:给药部位 影响因素 血液循环
第二章
1. 给药途径 2. 理化性质
3. 吸收环境
dC/dt = - keC
恒量消除 零级消除动力学 (Zero order elimination kinetics) 非线性动力学消除 n=0 dC/dt = - ke
第二章
血 药 浓 度 半 对 数 血 药 浓 度
零级 一级
零级
一级
时间
时间
浓度越大,消除速度越快 浓度越小,消除速度越慢
一、一级消除动力学

药理学-第二章-药物代谢动力学

药理学-第二章-药物代谢动力学
特点是:①转运体为非对称性,并具有与ATP结 合的专属性结构区域; ②将酶反应(ATP分解为ADP+Pi)与 离子转运相结合,通过转运体构象改变来单向 转运离子。
• 如Na+-K+-ATPase,也称钠钾泵( sodium pump):是存在于细胞膜(小 肠上皮细胞和肾小管上皮细胞基底侧膜 )上的一种具有ATP酶活性的特殊蛋白质 ,可被细胞膜内的Na+增加或细胞外K+ 的增加所激活,分解ATP释放能量,进行 Na+ 、K+逆浓度和电位梯度的转运。
作为驱动力的离子和被转运物质按同一方向转
运者称为协同转运;按相反方向转运者称为交
换转运或逆转运、对向转运。如Na+-H+交换 泵。
3、膜动转运
极少数药物还可通过膜的运动促使大分子物 质转运。膜动转运包括: 胞饮:通过生物膜的内陷形成小胞吞噬而进入 细胞内的胞饮。 胞吐:某些药物通过胞裂外排或出胞,从细胞 内转运到胞外,即胞吐。
受体介导入胞则是通过被转运物质与膜受体特异结 合,二者一同凹入细胞内,再分离,细胞膜与受体 均可以重复使用。通过这种方式入胞的物质很多, 包括胰岛素及一些多肽类激素、内皮生长因子、神 经生长因子、低密度脂蛋白颗粒、结合了铁离子的 运铁蛋白、结合了维生素的运输蛋白质、抗体及一 些细菌等。它与一般的入胞比较,速度快,特异性 高。
需特异性载体。
如体内葡萄糖和一些离子(Na+、K+、 Ca2+等)的吸收。
顺浓度梯度,不耗能,不能逆浓度梯度 转运。
2、主动转运(active transport):
药物从低浓度一侧跨膜向高浓度一 侧的转运,又称逆流转运、上山运动。
主动转运的特点: (1)药物逆浓度差转运 (2)耗能 (3)需要载体 (4)有饱和现象及竞争性抑制

第二章 药物代谢动力学

第二章   药物代谢动力学

第二章药物代谢动力学基本要求重点难点讲授学时内容提要1 基本要求[TOP]1.1 掌握膜两侧pH对药物跨膜转运的影响及其有关运算;掌握首过消除、生物利用度、表观分布容积的药理学意义和计算公式;掌握肝药酶的特性、肝药酶诱导剂、肝药酶抑制剂及其对药物作用的影响;掌握肾小管重吸收和肝肠循环的药理学意义及两者对药物作用的影响;掌握药物消除及消除速率的基本概念,熟悉典型的量效曲线、房室模型、多次定时定量重复给药的动力学及其计算;掌握药物的消除速率常数(K)、半衰期(t1/2)、消除率(Cl)、稳态血浓(Css)等的药理学意义及其表达公式。

1.2 熟悉药物的吸收、分布的概念及其影响因素;熟悉一级动力学消除及零级动力学消除和应用。

1.3 了解药物跨膜转运的主要形式和特点;了解药物体内生物转化(代谢)的概念及主要方式;了解药物排泄的概念和排泄的主要途径。

2 重点难点[TOP]2.1 重点1.药物的跨膜转运:被动转运和主动转运(重点阐明单纯扩散的理论和实际意义)。

2.吸收、分布、生物转化与排泄及其影响因素。

3.基本参数及概念:生物利用度、血药峰值浓度、血浆半衰期、•表观分布容积、清除率和房室概念。

肝药酶诱导剂及抑制剂,首过消除等基本概念。

4.药物消除动力学:零级动力学、一级动力学与药物半衰期(t1/2)•的理论与实际意义。

连续多次给药的血药浓度变化:经5个t1/2血药浓度达稳态坪值;首次负荷剂量。

2.2 难点1.药代动力学数据的意义和应用2.如何应用这些参数优化治疗方案和个体Wq21270;用药3 讲授学时[TOP]建议3学时4 内容提要[TOP]第一节第二节第三节第四节第五节第六节第七节药物代谢动力学第一节药物分子的跨膜转运[TOP]一、药物通过细胞膜的方式药物分子通过细胞膜的方式有滤过(水溶性扩散)、简单扩散(脂溶性扩散)和载体转运(包括主动转运和易化扩散)。

(一)滤过(filtration)(二)简单扩散(simple diffusion)绝大多数药物按此种方式通过生物膜。

药物代谢动力学

药物代谢动力学

第二章药物代谢动力学药物代谢动力学(药动学):指药物的体内过程,研究药物的吸收、分布、代谢和排泄,血药浓度随时间而变化的规律。

常用数学公式和图解表示。

第一节药物分子的跨膜转运药物的吸收、分布、排泄需要通过各种生物膜。

生物膜基本结构:液态脂质双分子结构脂溶性物质容易通过功能蛋白质(载体、酶、受体)膜孔转运小分子物质转运方式1.被动转运:不耗能,顺浓度差(高→低)转运。

(1)简单扩散:称脂溶性扩散,高浓度→低浓度,转运数度取决膜二侧浓度差、脂溶性、极性、分子量。

药物属弱酸、弱减性,以离子、非离子型存在,非离子型易转运,解离程度取决药物的pK a(解离常数的负对数),并受pH的影响。

弱酸性药物:解离方程式HA ===H+ +A- Ka(解离常数) =〔H+〕〔A-〕/〔HA〕(两侧取负对数)-logKa = - log〔H+〕-- log〔A-〕/〔HA〕pKa = pH - log〔A-〕/〔HA〕(以指数表示)10 pH - pKa = A-(离子型)/HA(非离子型)当pH = pKa(100 = 1),解离型 = 非解离型既pKa = 药物解离一半时的pH值。

药物的pKa是不变的,pH的变化明显影响药物的解离。

苯巴比妥(弱酸性),pKa = 7.4,在胃中的吸收。

血浆(pH = 7.4) 胃粘膜胃液(pH = 1.4)HA HA‖‖A- A-+ +H++结论:弱酸性药物在酸性环境中,解离少,易吸收;″″″在碱性″,″多,难吸收;弱碱性药物在酸性环境中,解离多,难吸收;″″″在碱性″,″少,易吸收;2.主动转运:通过细胞膜上的载体,逆浓度差转运,耗能,可发生竞争性抑制(丙磺舒抑制青霉素的排泄)。

第二节药物的体内过程一、吸收吸收:药物经给药部位进入血循环。

1.胃肠道给药口服:经胃肠道粘膜,主要由小肠被动吸收。

(1)胃内pH = 0.9--1.5;小肠内5--8,多数药物都可吸收。

(2)小肠比胃吸收面积大;小肠血流丰富蠕动较快。

第二章 药物代谢动力学

第二章 药物代谢动力学

A
14
当药物pKa不变时,改变溶液的pH,可 明显影响药物的解离度,从而影响药物 的跨膜转运。
归纳:弱酸性药物在酸性环境中,解离 少,吸收多,排泄少;而在碱性环境中, 解离多,吸收少,排泄多。
A
15
归纳为:“酸酸少易,酸碱多难”。
解释为:“酸酸少易”-弱酸性药物在 酸性体液中解离少,容易透过细胞膜; “酸碱多难”- 弱酸性药物在碱性体液 中解离多,则很难透过细胞膜。
C.机械门控通道——受膜两侧的机械力学因 素变化来控制开闭的通道。
A
22
电 压 门 控 通 道
A
23
化学门控通道
(配体门控通道)
ቤተ መጻሕፍቲ ባይዱ
A
24
机 械 门 控 通 道
A
25
2、主动转运(active transport):
药物从低浓度一侧跨膜向高浓度一 侧的转运,又称逆流转运、上山运动。
主动转运的特点: (1)药物逆浓度差转运 (2)耗能 (3)需要载体 (4)有饱和现象及竞争性抑制
从细胞内转运到胞外,即胞吐。
A
33
A
34
A
35
受体介导入胞则是通过被转运物质与膜 受体特异结合,二者一同凹入细胞内, 再分离,细胞膜与受体均可以重复使用。 通过这种方式入胞的物质很多,包括胰 岛素及一些多肽类激素、内皮生长因子、 神经生长因子、低密度脂蛋白颗粒、结 合了铁离子的运铁蛋白、结合了维生素 的运输蛋白质、抗体及一些细菌等。它 与一般的入胞比较,速度快,特异性高。
A
38
二、药物的吸收及给药途径
药物的吸收:药物自给药部位进入血液循 环的过程。 静脉注射和静脉滴注直接进入血液,没有 吸收过程。 吸收速率和程度受药物的理化性质、剂型、 吸收部位的血流量、给药途径等因素影响。

药理学第2章 药物代谢药动学

药理学第2章 药物代谢药动学
又称曲线下面积,是指由坐标横轴与时间-药物浓度 曲线围成的面积。它代表一段时间内,血液中的药 物的相对累积量,也是研究药物制剂的一个重要指 标。
(三)生物利用度(F)
生物利用度是指血管外给药时,药物吸收进入血液 循环的相对数量。生物利用度也是评价药物制剂质 量的一个十分重要的指标。通常用吸收百分率表示。
二、药物消除类型
1.一级消除动力学又称恒比消除,即单位时间内, 药物总是按血药浓度的恒定比例进行消除,其消除 速率总是与血药浓度成正比。大多数药物的消除都 属于一级动力学消除。而且药物吸收、分布中的被 动转运,也是按照一级动力学方式进行的。
特点: 1.单位时间内实际消除的药量于血中药物浓度成正比,消 除量不恒定。 2.药物消除半衰期恒定,t1/2=0.693/ke,消除速率不变。 3.为曲线消除,纵坐标取对数为线性消除。 4.大多数药物。
(三)其他途径:通过唾液、乳汁、汗液、泪液等 排泄。乳汁pH略低于血浆,碱性药物(吗啡、阿 托品)可较多自乳汁排泄,应注意。
第六节
药物代谢动力学的基本概念
一、时间-药物浓度曲线
定义:以药物浓度(C)为纵坐标,以时间(t)为横 坐标绘出曲线图,称为时间-药物浓度曲线,简称时浓 曲线或时量曲线。
三个时程: 潜伏期 持续期 残效期 2个水平: 中毒及有效 2个点: 起效和峰值
相对F 是评价厂家产品质量的重要标准之一。一 般药典上都规定药厂生产的制剂,生物利用度的差距 不应超过±10%。
生物利用度的意义: ①从机体方面而言,剂量、剂型甚至制剂都完全相 同的药物,因为在不同生理或病理条件下应用,也 可引起生物利用度的改变如空腹和饱食后给药,或 肝、肾功能不全时给药,均可因生物利用度的改变, 而使时间-药物浓度曲线发生改变。 ②从制剂方面而言,剂量和剂型相同的药物,如果 厂家的制剂工艺不同,甚至同一药厂生产的同一制 剂的药物,仅因批号不同,都可以使药物的晶型、 颗粒大小或其他物理特性,以及药物的生产质量控 制等发生改变,从而影响药物的崩解和溶解度,使 药物的生物利用度发生明显的改变。

药理学 第2章 药物代谢动力学

药理学 第2章 药物代谢动力学
是少数药物消除形式
等量等间隔多次给药血中积累药物总药量
t1/2数
给药后的
经过半衰期药量
1
100% A0
50% A0
2
150% A0
75% A0
3
175% A0
87.5% A0
4
187.5% A0
93.8% A0
5
193.8% A0
96.9% A0
6
196.9% A0
98.4% A0
7
198.4% A0
99.2% A0
常用药动学参数
1.. 血浆半衰期:
Half-life (in Conc.-Time Curve)
是临床用药间隔的依据
Half-Life The amount of time required to rid the body of half of the initial concentration of the drug.
三、药物的分布:
影响药物分布的因素: 1.药物与血浆蛋白结合; 2.局部器官的血流量; 3.体液pH; 4.组织亲和力; 5.体内屏障,包括血脑屏障和胎盘屏障。
血浆蛋白结合(Plasma protein binding)
D+P
DPc
可逆性(Reversible equilibrium) 可饱和性(Saturable)
血脑屏障
(Blood-brain barrier, BBB)
由毛细血管 壁和N胶质细 胞构成
Blood Brain Barrier
四、生物转化 (transformation / metabolism)
又称为药物代谢,是药物在体内发生的 化学变化,药物经转化后成为极性高的 水溶性代谢物而利于排出体外。

第二章 药物代谢动力学

第二章 药物代谢动力学

肾脏排泄
肾小球滤过; 肾小管分泌(主动分泌通道, 竞争性抑制);
肾小管重吸收(被动扩散,尿液pH)、
消化道排泄 肝肠循环:胆汁排入肠腔的药物部分可再经小肠上皮细胞吸收经
肝脏进入血液循环,形成的肝—胆汁—小肠间的循环。
其他途径 汗液、泪液、唾液、乳汁、呼吸道、头发和皮肤。
第三节 药物的速率过程
一、一次给药的药—时曲线下面积
内转运的药物量随时间而下降;
t1/2恒定,与剂量或血药浓度无关, t1/2=0.693/ ke
消除 5单位/h
2.5单位/h
1.25单位/h
零级动力学消除
单位时间内消除恒定量的药物(超过机体的消除能力),
即血药浓度按恒定消除速度进行消除,也称恒量消除。
过量用药时出现;
单位时间消除恒量的药物;
消除速率与药量或浓度无关,与初始浓度无关;
特点 通过毛细血管壁吸收(简单扩散、滤过); 可避免胃肠液中酸碱及消化酶对药物的影响; 可避免首过消除现象; 给药剂量准确; 药物效应快速显著.
影响因素 药物在组织间液的溶解度; 注射部位血流量。
血管内给药
无吸收过程,可迅速起效; 静脉注射、静脉滴注; 静脉滴注适用于治疗指数小、药物容积大、不易吸收或刺激性
代第 谢二 动章 力药 学物
药物代谢动力学
研究机体对药物的处置过程,即药物在体内吸收、分布、生
物转化(代谢)及排泄的过程,以及血药浓度随时间变化而 变化的规律的科学。
第一节 药物的跨膜转运
药物分子的跨膜转运方式
被动转运(passive transport):滤过、简单扩散 载体转运(active transport):主动转运、易化扩散 膜动转运:胞吐、胞饮

第2章 药物代谢动力学

第2章 药物代谢动力学

(三)膜动转运(cytosis)
指大分子转运伴随膜 运动。 1 胞饮(pinocytosis): 又称吞饮或入胞,指 液态蛋白质或大分子 物质,可通过生物膜 内陷形成吞噬小胞, 进入细胞内。 胞饮:垂体后叶素粉 剂经鼻粘膜吸收
2 胞吐(exocytosis): 又称胞裂外排或出胞, 指液态大分子,可从细 胞内转运到细胞外。 胞吐:腺体分泌,递质 释放
硝酸甘油(95%)
3 吸收环境
(1)胃的排空、肠蠕动的快慢 推进性蠕动过快影响吸收。 适宜的蠕动有利于药物与肠壁接触,利于吸收。
(2)胃肠内容物的多少和性质 内容物过多,影响药物与肠壁接触不利吸收。 油及脂肪可促进脂溶性药物吸收。
三 药物的分布和影响因素
分布:指药物随血液循环到达全身各个部位的过程。 影响因素: 1 与血浆蛋白结合: 血浆蛋白结合率:与蛋白结合的药物占药物总量 的百分数(表示药物与血浆蛋白结合的程度) ①不能跨膜转运 + ②不能被代谢或排泄 ③暂时无生物活性 ④结合率高,消除慢,维持时间长
图:苯巴比妥加速双香豆素代谢
苯+双 双香豆素 凝 血 酶 原 时 间
36
血药浓度(mg/L)
28 20 12 4 30 60 90 120 150 180 210 服药时间 (日 )
(2)酶的抑制
酶的抑制:某些化学物质能抑制肝微粒体药物代谢酶 的活性,减慢其他药物的代谢速率,使药物效应增 强此现象称酶的抑制(enzyme inhibition)。 ①常见抑制剂:氯霉素、对氨水杨酸、异烟肼、保泰 松。 ②意义:可减慢自身代谢和其他药物代谢。 长期应用可产生积蓄中毒。 ③例如:肝药酶抑制剂氯霉素与苯妥英钠合用,则因 肝药酶活性降低,使苯妥英钠的代谢作用减弱,使 苯妥英钠疗效增强或出现毒性反应.

第二章 药物代谢动力学

第二章 药物代谢动力学
31
肝药酶诱导剂(enzyme inducer) 使肝药酶活性↑的药物,如苯巴比妥。 Some drugs are able to increase
the activity of cytochrome P450 and thus increase their own metabolism as well as that of other drugs.
巴比妥类或阿司匹林中毒如何解救?
巴比妥类
碱化尿液
中毒
阿司匹林
NaHCO3
减少吸收 加速排泄
36
(二)胆汁排泄(bile excretion) 肝肠循环(hepatoenteric circulation)
经胆汁排进小肠的药物部分可再经小 肠上皮细胞吸收经肝脏进入血液循环。
Hepatoenteric circulation can prolong (延长) the effect of drugs. (三)乳汁排泄(breast milk excretion)
H + +[A- ]
结论 ( conclusion ): 酸性药在酸性环境易转运, 在碱性环境不易转运。
不易跨膜 转运
13
脂溶扩散规律 (laws of lipid diffusion): 1. 弱酸性药物在酸性环境中易跨膜转运; 2. 弱酸性药物易由酸侧进入较碱侧; 3. 弱酸性药物在动态平衡后酸侧浓度低
15
二 主动转运(active transport) 载体转运( carrier-mediated transport)
特点( properties ) 1. 少数药物的转运方式 2. 逆浓差,耗能 3. 需载体 4. 具有饱和现象和竞争抑制
16

02 药物代谢动力学(人卫九版药理学)

02 药物代谢动力学(人卫九版药理学)

时浓曲线
布 相
Cmin 纵坐标:浓度或对数浓度
维持时间
tmax 时间
横坐标:时间
药物消除动力学类型
消除:药物代谢与排泄的总和。
• 一级动力学消除 恒比消除,线性消除; 单位时间内体内药物浓度按恒定比例消除;
• 零级动力学消除 恒量消除,非线性消除; 单位时间消除恒量的药物;
一级动力学消除
(机体的消除能力超过剂量)
特点:逆浓度差转运、需要载体协助、消耗能量、 具有饱和性、有竞争性抑制现象。
例如:青霉素与丙磺舒自肾小管的分泌
3、其他转运方式
胞饮
一些大分子的肽类药物(如胰岛素)通过膜 的内陷形成小泡而进入细胞。
胞吐
又称胞裂外排或者出胞,指大分子物质从细 胞内转运到细胞外。
定义 特点
应用
被动转运
依赖膜两侧浓度差顺浓度梯 度转运(高→低)
华法林(血浆蛋白结合率为99%)+保泰松 (血浆蛋白结合率为98%)→出血倾向
磺胺类置换胆红素与血浆蛋白结合,可导 致新生儿核黄疸症
竞争血浆蛋白结合
华法林:99%
华法林结合型型 药物浓度下降

保泰松
游离型药物浓度 上升
2.体内屏障
① 血脑屏障:血液与脑细胞 血液与脑脊液 脑脊液与脑细胞
�脂溶性或小分子药物可通过; �葡萄糖以载体转运方式通过; �可变性,炎症时通透性↑
药物跨膜转运方式
滤过(filtration)
直径小于膜孔的水溶性的极性或非极性药物 分子,借助于膜两侧的流体静压或渗透压通过 细胞膜的水性通道,由细胞膜一侧到达另一侧, 为被动转运方式。
如:肾小球滤过。
特点:
1. 水溶性物质; 2. 顺浓度差,高低; 3. 通过细胞膜的水性通道; 4. 不耗能,不需要载体; 5. 无饱和性,无竞争性抑制;

第2章-药物代谢动力学

第2章-药物代谢动力学

2021/3/10
17
首过消除 (First pass eliminaiton)
肠壁 门静脉
体循环
粪 代谢
代谢
吸20收21/3/过10 程是药物从用药部位进入体内检测部1位8 18
(2) 注射部位的吸收
静脉注射(intravenous injection,iv) 静脉滴注(intravenous infusion,iv in drop) 肌内注射(intramuscular injection,im) 皮下注射(subcutaneous injection,sc)
3
看图思考
简单扩散
载体转运
主动转运
易化扩散
2021/3/10
44
1.滤过
水溶性小分子药物通过细胞膜的水通道,受流体静压或 渗透压的影响,称水溶性扩散为被动转运方式
肠黏膜上皮细胞及其它大多数细胞膜孔道4~8Å (=1010m ),仅水、尿素等小分子水溶性物质能通 过,分子量>100Da者即不能通过。
药物的理化性质决定其固定的pKa值。
2021/3/10
10
3.载体转运
1.主动转运(上山转运)
特点:
(1)药物逆浓度差转运
(2)耗能
(3)需要载体参与
(4)有饱和现象及竞争性抑制
2.易化转运
特点:(1)药物顺浓度差转运

(2)不耗能

(3)需要载体参与
2021/3/10
11
4.膜动转运
• 指大分子物质通过膜的运动而转运,包 括胞饮和胞吐。
第二章 药物代谢动力学
2021/3/10
1
学习内容与要求
一、理解药物分子的跨膜转运 二、掌握药物的体内过程 三、掌握药物的消除方式 四、理解体内药物的药量-时间关系 五、掌握药动学的基本参数

第二章药物代谢动力学

第二章药物代谢动力学

非线性动力学:non-linear kinetics
dC/dt = -KCn
在t时间内可处置的药物量(浓度)
西安交大医学院药理学系 曹永孝 ;
1 一级动力学
dC/dt = -KCn
药物消除速率与血药浓度成正比 即单位时间内消除某恒定比例 的药量。
dC/dt = -K C
血药浓度与时间作图 指数曲线 lgC 与 t 作图 直线
曲线下面积(AUC)---血药浓度随时间变化的积分值(g٠ h/L)
15
西安交大医学院药理学系 曹永孝 ;
二、速率过程
药物浓度随时间变化的过程
速率---血药浓度随时间的变化率(dC/dt)
可用数学式表达
一级动力学: first-order kinetics
零级动力学: zero-order kinetics
少数药的消除有此饱和现象如胃肠 的主动转运,肾和胆的排泄。
或当药物浓度过高,酶系统饱和时, 如乙醇 阿司匹林等
西安交大医学院药理学系 曹永孝 ;
dC/dt = -KCn
3.非线性动力学(non-linear kinetics)
在治疗剂量时,血浆浓度按一级动力学消除, 在血药浓度较高时,以零级动力学消除。
浓度为纵,时间为横- 时量曲线。
潜伏期反应吸收和分布过程 药高峰浓浓度度,与(C剂ma量x)—成药正后比达到的最 达 高峰 浓时 度间 的时(Tm间ax)—用药后达到最 持续期—持续有效的时间。与
吸收和消除速率有关
2. 曲线下面积(AUC)---血药浓度随时间变化的积分值(g·h/L)
表示药物在血中的相对累积量。
第二节 药物体内的速率过程
药物的转运及转化使药物在不同器官、组织、体液中的浓度 随时间而变化,这个动力过程称动力学过程。

第二章 药动学

第二章 药动学

第五节
体内药物的药量-时间关系
一次给药的药时曲线
药时曲线
•Cmax •Tpeak •有效时间 •AUC
•起效快慢与吸收速率有关
•持续时间与消除速率有关
AUC意义:
1.表示吸收进入血循环药物的量 2.求参数,如CL、生物利用度 A B AUC0-∞= + α β
多次给药
多次给药时,随着次数增加,血药浓 度不断递增,但当给药量等于消除量 minimal toxic concentration 时,血药浓度不再增加,而是在稳态 水平上下波动,此浓度成为稳态血药 浓度,也称坪浓度。 minimal effect concentration
系统,系统内部按动力学特点将机体
划分为若干房室(compartment),
房室内药物转运速率相同。药物可进
出房室,为一开放系统。
房室模型
单室模型 药物进入体内后,能迅速、均 匀分布到全身各组织、器官和体液中,然后 消除。可以把整个机体看成药物转运动态平 衡的“均一单元”。
双室模型 药物进入体内后,能迅速进入机 体的某些部位,对另一些部位,需要一段时 间才能完成分布。
特点:
1.顺浓度梯度扩散,不耗能。
2.无选择性。 3.无饱和现象。 4.无竞争性抑制。
载体转运
特点:借助于载体、常耗能、
逆浓度转运、具有饱和性、具有选择性、 存在竞争。
载体:P-糖蛋白、转运体(阳、阴离子)
存在部位:肾小管、胆道、血脑屏障、胃
肠道
方式:主动转运、易化扩散。
影响药物跨膜的因素
• 药物解离度及体液PH值 • 药物浓度差及细胞膜通透性、面积和 厚度 • 血流量 • 细胞膜转运蛋白的量和功能
连续恒速给药
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10pH-pKa=
[离子型] [非离子型]
101.4-3.4=
[离子型] [非离子型]
1 100
=
[离子型] [非离子型]
2020/6/9
10pHpKa=
[离子型] [非离子型]
107.4-3.4=
[离子型] [非离子型]
10000 1
=
[离子型] [非离子型]
9
简单扩散
易化扩散 (通道)
易化扩散 (载体)
• 是跨膜转运蛋白,药物载体的一种。分为:
– 摄取性转运体:促进吸收,如小肠的寡肽转运体 – 外排性转运体:排出药物,限制吸收,如P-gp(p-
糖蛋白)
2020/6/9
13
二、药物的吸收及给药途径
吸收 Absorption 定义:药物由给药部位进入血液循环的过程 影响因素:
• 药物理化性质, • 给药途径, • 剂型, • 吸收部位的血流量等
20
四、 药物的代谢
• 定义:药物在体内发生化学结构的改变, 也称生物转化
• 发生部位:肝脏,小肠,肾,肺等
2020/6/9
21
1. 代谢的方式与步骤
• I相反应
– 氧化 – 还原 – 水解
• II相反应
– 结合:葡萄糖醛酸结合,硫酸结合,乙酰化,甲基化, 谷胱甘肽结合。。。
• 结果:活化 or 失活
[H+] [A-] Ka = [HA]
[A-] pKa = pH log [HA]
[A-] 10pH-pKa = [HA]
当pH = pKa时, [HA] = [A-]
pKa 即弱酸性或弱碱性药物在50% 解离时的溶液pH值。
2020/6/9
8
• 例:丙磺舒的pKa=3.4
胃液pH=1.4
血液pH=7.4
• (一)药动学模型
✓ 开放性一室模型 ✓ 开放性二室模型
2020/6/9
31
(二)消除速率过程
1. 一级动力学过程,又称一级速率过程
– 药物的体内过程 – 药物在体内随时间变化的速率过程
2020/6/9
3
第一节 药物的体内过程
• 药物从进入机体至离开机体,可分为四个 过程:
– 吸收 Absorption – 分布 Distribution – 代谢 Metabolism – 排泄 Excretion
简称ADME过程
2020/6/9
丙磺舒
弱碱性药物
吗啡 哌替啶 氨苯蝶啶 多巴胺
2020/6/9
28
胆汁消除
• 某些药物经肝脏转化为 极性较强的水溶性代谢 产物,也可自胆汁消除。 – 肝肠循环:经门静脉、 肝脏重新进入体循环 的反复循环过程称为 肝肠循环。
2020/6/9
29
第二节 药物的速率过程
2020/6/9
30
一、药动学基本原理
2020/6/9
22
2. 代谢部位及其催化酶
• 代谢部位:肝(主要) • 酶:
– 专一性酶:胆碱酯酶,单胺氧化酶 – 非专一性酶:肝脏微粒体细胞色素P450系统,
(细胞色素P450,CYP)
2020/6/9
23
CYP的特点
⑴ 选择性低
⑵ 变异性较大
2020/6/9
24
3. 代谢的影响因素
• 遗传因素 • 环境因素:酶的诱导与抑制 • 生理因素与营养状态 • 病理因素


2020/6/9
10
2. 主动转运
• 定义:药物从低浓度一侧跨膜向高浓度一 侧的转运
• 特点:
– 消耗能量 – 需要载体 – 有饱和现象 – 有竞争性抑制现象
2020/6/9
11
3. 膜动转运
• 1.胞饮(pinocytosis) • 2.胞吐(exocytosis)
2020/6/9
12
(二)药物转运体(主动转运)
2020/6/9
17
影响分布的因素
1 与血浆蛋白结合
2 细胞膜屏障
血脑屏障(blood brain barrier) 胎盘屏障(placental barrier) 血眼屏障(blood eye barrier)
3 其他
2020/6/9
18
与血浆蛋白的结合
• 白蛋白、α1-酸性糖蛋白、脂蛋白等。
第二章 药物代谢动力学
2020/6/9
1
学习要求
1. 掌握药物代谢动力学、吸收、分布、代谢、 排泄及各药物代谢动力学参数的概念。掌 握一级动力学、零级动力学的特点。
2. 熟悉药物主动转运和被动转运的特点、熟 悉血浆蛋白结合的临床意义。
3. 了解房室模型的概念及米-曼式速率过程
2020/6/9
2
• 药物代谢动力学(pharmacokinetics)简称药 代动力学,药动学,是研究药物在体内变 化规律的一门学科。
游离型
动态平衡
(free drug)
结合型
临床意义?
✓饱和性
(bound drug) ✓竞争抑制
✓疾病的影响
发挥药理作用 跨膜转运 代谢排泄
暂时的贮库
2020/6/9
19
血脑屏障
• 定义:是指血管壁与神经胶质细胞形成的血浆与 脑细胞外液间的屏障和由脉络丛形成的血浆与脑 脊液间的屏障
2020/6/9
2020/6/9
25
五、药物的消除
• 定义:药物及其代谢物通过消除器官被排 出体外的过程。
• 消除器官:
– 肾脏(主要),等
2020/6/9
26
肾消除
肾小球滤过 肾小管分泌
肾小管重吸收
2020/6/9
竞争分泌系统
27
一些由肾小管主动分泌排泄的 弱酸性药物和弱碱性药物
弱酸性药物
阿司匹林 头孢噻啶 呋塞米 青霉素 噻嗪类利尿药
4
一、药物的跨膜转运及转运体 (一)药物的转运方式
被动转运
简单扩散 易化扩散
转运方式
主动转运 原发性主动转运 继发性主动转运
膜动转运 胞饮 胞吐
2020/6/9
5
Байду номын сангаас
1. 被动转运
• 定义:药物借助细胞膜两侧存在的药物浓度梯度 或电位差,从高浓度向低浓度侧扩散。
• 特点:顺浓度差、不消耗能量 • 分类:
载体 饱和现象
(1)简单扩散 不需要

(2)异化扩散 需要

竞争性 无 有
2020/6/9
6
影响简单扩散的因素
• 浓度差
• 脂溶性

脂溶扩散
• 解离度:离子障的概念

• pH值
水溶扩散

2020/6/9
7
弱酸或弱碱药物的解离
Handerson-Hasselbalch公式
以弱酸药物为例
HA Ka
H+ + A-
2020/6/9
14
药物的理化性质
a) 脂溶性 b) 解离度 c) 分子量
2020/6/9
15
给药途径
首过效应
(含义?)
吸入>腹腔注射 >舌下>肌注>皮下>口服>直肠 给药>皮肤给药
2020/6/9
16
三、药物的分布及药物与血浆蛋白结合
药物的分布 Distribution
• 定义:药物吸收后随血液循环到达各组织 器官的过程。
相关文档
最新文档