第7章-受压构件
第7章 偏心受压构件的正截面承载力
第7章偏心受压构件的正截面承载力计算当轴向压力N的作用线偏离受压构件的轴线时[图7-1a)],称为偏心受压构件。
压力N的作用点离构件截面形心的距离e称为偏心距。
截面上同时承受轴心压力和弯矩的构件[图7-1b)],称为压弯构件。
根据力的平移法则,截面承受偏心距为e的偏心压力N相当于承受轴心压力N和弯矩M(=Ne)的共同作用,故压弯构件与偏心受压构件的基本受力特性是一致的。
β)图7-1 偏心受压构件与压弯构件a)偏心受压构件b)压弯构件钢筋混凝土偏心受压(或压弯)构件是实际工程中应用较广泛的受力构件之一,例如,拱桥的钢筋混凝土拱肋,桁架的上弦杆、刚架的立柱、柱式墩(台)的墩(台)柱等均属偏心受压构件,在荷载作用下,构件截面上同时存在轴心压力和弯矩。
钢筋混凝土偏心受压构件的截面型式如图7-2所示。
矩形截面为最常用的截面型式,截面高度h大于600mm的偏心受压构件多采用工字形或箱形截面。
圆形截面主要用于柱式墩台、桩基础中。
图7-2 偏心受压构件截面型式a)矩形截面b)工字形截面c)箱形截面d)圆形截面在钢筋混凝土偏心受压构件的截面上,布置有纵向受力钢筋和箍筋。
纵向受力钢筋在截面中最常见的配置方式是将纵向钢筋集中放置在偏心方向的两对面[图7-3a)],其数量通过正截面承载力计算确定。
对于圆形截面,则采用沿截面周边均匀配筋的方式[图7-3b)]。
箍筋的作用与轴心受压构件中普通箍筋的作用基本相同。
此外,偏心受压构件中还存在着一定的剪力,可由箍筋负担。
但因剪力的数值一般较小,故一般不予计算。
箍筋数量及间距按普通箍筋柱的构造要求确定。
图7-3 偏心受压构件截面钢筋布置形式a)纵筋集中配筋布置b)纵筋沿截面周边均匀布置7.1 偏心受压构件正截面受力特点和破坏形态钢筋混凝土偏心受压构件也有短柱和长柱之分。
本节以矩形截面的偏心受压短柱的试验结果,介绍截面集中配筋情况下偏心受压构件的受力特点和破坏形态。
7.1.1 偏心受压构件的破坏形态钢筋混凝土偏心受压构件随着偏心距的大小及纵向钢筋配筋情况不同,有以下两种主要破坏形态。
建筑结构第7章 钢筋混凝土受拉构件
公式适用条件:
2a s x b h0
a's h0 -a's h0 as
as
7-2 大偏心受拉构件
第7 章
钢筋混凝土受拉构件
当时 x 2a s ,令 x 2a s ,则:
Ne As ) f y (h0 as
h e eo a s 2
截面设计时,当其他条件已知,求As和A's时,可设 x=ξbh0,将
λ: 计算截面的剪跨比 λ=a/h0(a为集中荷载至支座截面或节点边缘的距
离),
nA 当 λ<1.5 时,取 λ=1.5 ;当 λ=3。 sv时,取 1 当上式右侧计算值小于 f yv λ>3 h 0 时,应取等
于 f nAsv1 h ,且 0.36 f t bh0 yv 0
s
nAsv1 f yv h0 s
本章结束
轴心受拉构件纵向受拉钢筋在截面中对称布置或沿截Байду номын сангаас周边均匀布置。
从限制裂缝宽度的角度,宜选配直径小的受拉钢筋。 轴心受拉构件一侧的受拉钢筋的配筋率应不小于0.2%和0.45ft / fy中的较
大值。
轴拉构件及小偏心受拉构件的纵向受力钢筋不得采用绑扎接头。
第7 章
钢筋混凝土受拉构件
二、 正截面承载力计算
贯通全截面的斜裂缝,使斜截面受剪承载力降低。受剪承载力的降低与轴 向拉力N近乎成正比。 《混凝土设计规范》规定矩形截面偏心受拉构件的受剪承载力 的计算公式为
nAsv1 1.75 V f t bh0 f yv h0 0.2 N 1.0 s
N: 与剪力设计值V相应的轴向拉力设计值;
第7 章
钢筋混凝土受拉构件
第七章偏心受力构件
第七章偏心受力构件一、选择题1.偏心受压构件计算中,通过哪个因素来考虑二阶偏心矩的影响( )。
A.e ; B.ae ; C.i e; D.η;2.判别大偏心受压破坏的本质条件是:( )。
A .03.0h e i >η;B .03.0h e i <η;C .B ξξ<;D .B ξξ>;3.由uu M N -相关曲线可以看出,下面观点不正确的是:( )。
A .小偏心受压情况下,随着N 的增加,正截面受弯承载力随之减小;B .大偏心受压情况下,随着N 的增加,正截面受弯承载力随之减小;C .界限破坏时,正截面受弯承载力达到最大值;D .对称配筋时,如果截面尺寸和形状相同,混凝土强度等级和钢筋级别也相同,但配筋数量不同,则在界限破坏时,它们的uN 是相同的;4.钢筋混凝土大偏压构件的破坏特征是:( )。
A.远侧钢筋受拉屈服,随后近侧钢筋受压屈服,混凝土也压碎;B.近侧钢筋受拉屈服,随后远侧钢筋受压屈服,混凝土也压碎;C.近侧钢筋和混凝土应力不定,远侧钢筋受拉屈服;D.远侧钢筋和混凝土应力不定,近侧钢筋受拉屈服;5.一对称配筋的大偏心受压构件,承受的四组内力中,最不利的一组内力为:( )。
A .m kN M ⋅=500 kN N 200=;B .m kN M ⋅=491 kN N 304=;C .m kN M ⋅=503 kN N 398=;D .m kN M ⋅-=512 kN N 506=; 6.一对称配筋的小偏心受压构件,承受的四组内力中,最不利的一组内力为:( )。
A .m kN M ⋅=525 kN N 2050=;B .m kN M ⋅=520 kN N 3060=;C .m kN M ⋅=524 kN N 3040=;D .m kN M ⋅=525 kN N 3090=; 7.偏压构件的抗弯承载力( )。
A.随着轴向力的增加而增加;B.随着轴向力的减少而增加;C.小偏压时随着轴向力的增加而增加;D.大偏压时随着轴向力的增加而增加;8.钢筋混凝土偏心受拉构件,判别大、小偏心受拉的根据是( )。
精编第七章 钢筋溷凝土偏心受力构件承载力计算资料
本章的重点是: 了解偏心受压构件的受力特性,熟悉两种不同的受压
破坏特性及两类受压构件 掌握其判别方法; 熟悉偏心受压构件的二阶效应及计算方法; 掌握偏心受压构件的受力特性及正截面承载力计算方
法; 掌握偏心受压构件斜截面受剪承载力计算方法。
§7.1 概述
结构构件的截面上受到轴力和弯矩的共同作用或受 到偏心力的作用时,该结构构件称为偏心受压构件。
xn
cu
h0 xnb
cu
h0
3. 矩形截面偏心受压构件不对称配筋计算
(1)构件大小偏心的判别
理论判别式:当
时,为大偏心受压构件;
b
当 b时,为小偏心受压构件。
经验判别式:
当偏心距ηei≤0.3h0 时,按小偏心受压计算;
当偏心距ηei>0.3h0时,先按大偏心受压计算.
1 1 1400 ei
fyAs
f'yA's
◆ 截面受拉侧混凝土较早出现裂缝,As的应力随荷载增加发展
较快,首先达到屈服。
◆ 裂缝迅速开展,受压区高度减小。
◆ 最后受压侧钢筋A's 受压屈服,压区混凝土压碎而达到破坏。
◆ 这种破坏具有明显预兆,变形能力较大,破坏特征与配有受 压钢筋的适筋梁相似,承载力主要取决于受拉侧钢筋。
D3
D2
D1
ÓÐ ²à ÒÆ ¿ò ¼Ü ½á ¹ µÄ ¶þ ½×Ч¦Ó
(1)无侧移钢筋混凝土柱:η-l0法
对于无侧移钢筋混凝土柱在偏心压力作用下将产生挠曲
变形,即侧向挠度 。侧向挠度引起附加弯矩N 。当柱的长
细比较大时,挠曲的影响不容忽视,计算中须考虑侧向挠度 引起的附加弯矩对构件承载力的影响。
第6,7章计算题
第七章偏心受压构件承载力计算题参考答案1.(矩形截面大偏压)已知荷载设计值作用下的纵向压力,弯矩·m,柱截面尺寸,,混凝土强度等级为C30,f c=14.3N/mm2,钢筋用HRB335级,f y=f’y=300N/mm2,,柱的计算长度,已知受压钢筋(),求:受拉钢筋截面面积A s。
解:⑴求e i、η、e取(2)判别大小偏压为大偏压(3)求A s由即整理得:解得(舍去),由于x满足条件:由得选用受拉钢筋,2。
(矩形不对称配筋大偏压)已知一偏心受压柱的轴向力设计值N= 400KN,弯矩M= 180KN·m,截面尺寸,,计算长度l0 = 6.5m, 混凝土等级为C30,f c=14.3N/mm2,钢筋为HRB335,, ,采用不对称配筋,求钢筋截面面积。
解:(1)求e i、η、e有因为取(2)判别大小偏压按大偏心受压计算。
(3)计算和则按构造配筋由公式推得故受拉钢筋取,A s= 1256mm2受压钢筋取,402mm23.(矩形不对称配筋大偏压)已知偏心受压柱的截面尺寸为,混凝土为C25级,f c=11.9N/mm2 ,纵筋为HRB335级钢,,轴向力N,在截面长边方向的偏心距。
距轴向力较近的一侧配置416纵向钢筋,另一侧配置220纵向钢筋,柱的计算长度l0= 5m。
求柱的承载力N。
解:(1)求界限偏心距C25级混凝土,HRB335级钢筋查表得,。
由于A’s及A s已经给定,故相对界限偏心距为定值,=0.506属大偏心受压。
(2)求偏心距增大系数,故,(3)求受压区高度x及轴向力设计值N。
代入式:解得x=128.2mm;N=510.5kN(4)验算垂直于弯矩平面的承载力4.(矩形不对称小偏心受压的情况)某一矩形截面偏心受压柱的截面尺寸计算长度混凝土强度等级为C30,f c=14.3N/mm2,,用HRB335级钢筋,f y=f y’=300N/mm2,轴心压力设计值N = 1512KN,弯矩设计值M = 121.4KN·m,试求所需钢筋截面面积。
偏心受压构件课件
si
cu
Es
(
x
/ h0i
1)
得一元三次方程
Ax3 Bx2 Cx D 0
7-20
1.当 h / h0 z b 时,取 x / h0
由7-10可钢筋应力 s
s
cu
E
s
(
h0
x
1)
求得钢
筋中的应力 。s 再将钢筋面积 、As 钢筋应力 以及s 值代x
入式(7-4)中,
0 Nd fcdbx fsd As s As
即可得所需钢筋面积 As且应满足 。 As' m inbh
当 时h / h,0 取 则钢x 筋h面积 计算式为As :
As'
Nes
)]
➢当 2as x 时bh,0
As
fcdbx
f
' sd
As'
0 Nd
f sd
➢当 x ,bh且0
时x , 2as
令 x ,2则a可s 求得
As
0 Nd es
fsd (ho as )
2)当 e0 0时.3h0
已知:b h N d M d
f cd
f sd
f sd
l0
求: As 、As'
N
2.受压破坏——小偏心受压破坏
N
产生条件: (1)偏心距很小。 (2)偏心距 (e0 较/ h小) ,或偏心距较大而受拉钢
筋较多。 (3)偏心距 (e0很/ h小) ,但离纵向压力较远一侧
钢筋数量少,而靠近纵向力N一侧钢筋较多时。 破坏特征:
一般是靠近纵向力一侧的混凝土首先达到极限 压应变而压碎,该侧的钢筋达到屈服强度,远离 纵向力一侧的钢筋不论受拉还是受压,一般达不 到屈服强度。构件的承载力取决于受压区混凝土 强度和受压钢筋强度。 破坏性质:脆性破坏。
第七章 偏心受压构件的强度计算
影响,各截面所受的弯矩不再是Ne0,而
变成N(e0+y)见图(7-4)所示,y为构件 任意点的水平侧向挠度。在柱高度中心处,
y
N
侧向挠度最大,截面上的弯矩为N(e0+f)。
一般,把偏心受压构件截面弯矩中心的Ne0称为初始弯矩或一
阶弯矩(不考虑侧向挠度时的弯矩),将Nf或Ny称为附加弯矩或
二阶弯矩。
由于二阶弯矩的影响,将造成偏心受压构件不同的破坏类型。(见教材122 页图7-12) 短柱——材料破坏,即由于截面中材料达到其强度极限而发生的破坏; 长柱(8<lo /h≤30) ——材料破坏 细长柱——失稳破坏。即当偏心压力达到最大值时,侧向挠度f突然剧增, 但材料未达到其强度极限情况下发生的破坏。由于失稳破坏与材料破坏有本 质的区别,设计中一般尽量不采用细长柱。
rb N j e M u Rg Ag (h0 a ' ) (7-12) rs 当按式(7-12)求得的正截面承载力M u比不考虑受压钢筋A/g时更小,则 在计算中不应考虑受压钢筋A/g 。
'
3)当偏心压力作用的偏心距很小,即小偏心受压情况下且全截面受压。 若靠近偏心压力一侧的纵向钢筋A/g配置较多,而远离偏心压力一侧的纵向钢 筋Ag配置较少时,钢筋Ag的应力可能达到受压屈服强度,离偏心压力较远一 侧的混凝土也有可能压坏,这时的截面应力分布如图(7-8)所示。为使钢筋 Ag数量不致过少,防止出现一侧压应力负担较大引起的破坏,《公路桥规》 规定:对于小偏心受压构件,若偏心压力作用于钢筋Ag合力点和A/g合力点之 间时,尚应符合下列条件:
e
e/
e0
e/
x
Ra
z
x 2a '
rb / Rg Ag C rs
第七章 钢筋混凝土受拉构件
e = e 0 − 0 .5 h + a ′
7.2偏心受拉构件 7.2偏心受拉构件
α1 f cbh0 e'
h0-as' e0 fyA s e as a s‘ fy'A' s
N
值为 240kN, , 混凝土强度等级 C30, , 钢筋为 HRB335。 。 求截面配筋。 求截面配筋。
f y = 300N / mm2 ,代入上式 钢筋, 代入上 【解】HRB335 钢筋,
得
As = N / f y = 240000 / 300 = 800mm2
As = 804mm2 。 选用 4 Φ 16, ,
7.2偏心受拉构件 偏心受拉构件
(2)矩形截面大偏心受拉构件正截面承载力计算 ) 1)基本公式 ) 根据截面内力平衡,见下图, 根据截面内力平衡,见下图,可写出如下公式
N = f y As − f y′ As′ − α1 f c bx
x N ⋅ e ≤ α1 f c bx ( h0 − ) + f y′ As′ ( h0 − a s′ ) 2
大偏心受拉构件
7.2偏心受拉构件 7.2偏心受拉构件
2)适用条件 ) 同大偏心受压构件。 同大偏心受压构件。 3)不对称配筋计算方法 ) ①截面设计;类似于大偏心受压构件。 截面设计;类似于大偏心受压构件。 ②截面校核,一般已知构件尺寸、配筋、材料强度。若再已 截面校核,一般已知构件尺寸、配筋、材料强度。 可求出x和 或再已知e 则可求出x和 。 知N可求出 和e0或再已知 0则可求出 和N。 可求出 4)对称配筋计算方法 )
钢筋混凝土偏心受力构件承载力计算习题课
一、填空题
1、小偏心受压构件的破坏都是由于 混凝土被压碎 而造成的。 2、大偏心受压破坏属于 延性 ,小偏心破坏属 于 脆性 。 3、偏心受压构件在纵向弯曲影响下,其破坏特 征有两种类型,对长细比较小的短柱属于 材料 破坏,对长细比较大的细长柱,属于 失稳 破坏。
第7章钢筋混凝土偏心受力构件承载力计算习题课
第7章钢筋混凝土偏心受力构件承载力计算习题课
第7章钢筋混凝土偏心受力构件承载力计算习题课
第7章钢筋混凝土偏心受力构件承载力计算习题课
第7章钢筋混凝土偏心受力构件承载力计算习题课
判断题
第7章钢筋混凝土偏心受力构件承载力计算习题课
三、计算题
第7章钢筋混凝土偏心受力构件承载力计算习题课
第7章钢筋混凝土偏心受力构件承载力计算习题课
第7章钢筋混凝土偏心受力构件承载力计算习题课
第7章钢筋混凝土偏心受力构件承载力计算习题课
第7章钢筋混凝土偏心受力构件承载力计算习题课
第7章钢筋混凝土偏心受力构件承载力力计算习题课
7、偏心受压构件 轴向压力N
是对抗剪有利。
填空题
第7章钢筋混凝土偏心受力构件承载力计算习题课
二、判断题
不大于 0.2%bh 。 1、在偏心受压构件中,As (× ) 2、小偏心受压构件偏心距一定很小。( ×)
3、在偏心受力构件中,大偏压比小偏压材料受 力更合理。( √ )
填空题
第7章钢筋混凝土偏心受力构件承载力计算习题课
4、《混凝土结构设计规范》(GB50010-2010) 将柱端的附加弯矩计算,用 偏心距调节系数 和 弯矩增大系数 来表示。
b 5、大小偏心受压的分界限是 。
6、对于对称配筋的偏心受压构件,在进行截面 设计时, b 和 b 作为判别偏心受压类 型的唯一依据。
7.偏心受压构件的截面承载力计算20191120
(2)轴压比N/fcA>0.9
(3) l0 3412(M1 )
i
M2
2、两端弯矩异号时的P—δ效应
e0 N
M2=N e0 M2
M2
Nf
N
M0
N
N
M1 = -N e1 M1
e1
一般不会出现控制截面转移的情况,故不必考虑P—δ 效应。
(二) 结构有侧移偏心受压构件的二阶弯矩
a‘
xc
A
‘ s
h h0
cu
N
ηei
e‘ s
x
e
As a
b
>y
N
二、 矩形截面偏心受压
x
构件承载力计算公式 e
1.矩形截面大偏心受压 构件承载力计算公式
fyA‘ s‘ D
T=fyAs fyA‘ s‘
C =afcbx
T=fyAs
(1)计算公式
由纵向力的平衡和各力对受拉 钢筋合力点取矩,可以得到下 面两个基本计算公式:
试验表明,在“受压破
坏轴”力的一情定况时下,,随弯着矩轴越 力大的越增危加险,。构件的抗弯
能力随之减小。
但在“受拉破坏’’的
情弯况矩下一,定轴时力,的存小在偏反心 而高在受 险使。界压 ,构限,大件状轴偏的态力 心抗时越 受弯,能构大 压力越 ,提危轴 件力能越承小受越弯危矩险的能。
力达到最大值。
四、偏心受压构件的二阶效应
混凝土的极限压应变值随着偏心距的减小而减小,当为轴 心受压时,混凝土的极限压应变0.002。
构件截面的极限曲率值也是随着偏心距的减小而减小,
截面所能承受的轴向压力N则随着偏心距的减小而不断增大。 因此,《规范》取用界限状态下的承载力Nb与N的相对大小来 间接反映偏心距对极限曲率的影响,即:
第七章偏心受力构件
§7.1 概 述
7.1.1 定义 偏心受力构件是指轴向力偏离截面形心或构件
同时受到弯矩和轴向力的共同作用。
N
NM
N
(a)
N
(b)
NM
(c)
N
图7-1
(d)
(e)
(f)
偏心受拉(拉弯构件) 偏心受压(压弯构件)
单向偏心受力构件 双向偏心受力构件
7.1.2. 工程应用
hf 100mm
d 80mm
第
混凝土
七 章
7.2.3 配筋形式
• 纵筋布置于弯矩作用方向两侧面 d12mm 纵筋间距>50mm 中距 350mm
构造给筋212
构造给筋416
h<600 (a)
600h1000 (b)
1000<h1500 (c)
600h1000 (d)
(g)
600h1000 (e)
N2 N2ei
短柱(材料破坏)
B
中长柱(材料破坏)
N1af1 C
细长柱(失稳破坏)
N2af2
E
图7-8 0
D
M
N
f
M = N(ei+f)
侧向挠曲将引起附加弯矩,
M增大较N更快,不成正比。
二阶矩效应
ei+ f = ei(1+ f / ei) = ei
=1 +f / ei
…7-6
––– 偏心距增大系数
构件破坏,As s。
)
(
受 压 破 坏
小 偏 心 受 压 破 坏
第
混凝土
七 章
7.3.2 界限破坏及大小偏心的界限
第7章 钢轴心受力及拉弯、压弯构件
南航土木工程系
第7章 钢轴心受力及拉弯压弯构件
12
第7章 钢轴心受力及拉弯、压弯构件 7.2 轴心受压构件的整体稳定 7.2.1 概述 轴心受压构件承载力通常由整体稳定来控制的。 因为直杆丧失整体稳定的临界应力常低于钢材屈 服应力,即构件在达到强度极限状态前就会丧失 整体稳定。而轴心受压构件整体失稳带有突然性, 必须严格控制。
南航土木工程系 第7章 钢轴心受力及拉弯压弯构件 43
l0 x x ix l0 y y iy
2)截面为单轴对称的构件
对于单轴对称截面,构件绕非对称轴( x 轴) 的长细比计算同前;而绕对称轴( y 轴)失 稳时,应将扭转效应的不利影响考虑进去,用 换算长细比 yz 代替 y 。
临界应力:
2
2
2
N cr π E cr 2 A
2
欧拉临界力
南航土木工程系
N cr 和临界应力 cr 常记为 N E 和 E
第7章 钢轴心受力及拉弯压弯构件 22
轴心受力构件计算长度 l0 构件计算长度l0(l0x、 l0y)取决于其两端支承情 况。
南航土木工程系
第7章 钢轴心受力及拉弯压弯构件
kπ E t cr 2 12(1 ) b
2
2
2、弹塑性屈曲
kπ E t cr 2 12(1 ) b
2
南航土木工程系 第7章 钢轴心受力及拉弯压弯构件
2
49
7.3.2 轴心受压构件局部稳定的计算方法
采用限制构件截面板件宽厚比的办法来实现,即 限制板件宽度与厚度之比不要过大,否则临界应 力 cr 很低,会过早发生局部屈曲。
材料力学第07章 受压杆件的稳定性设计知识分享
材料力学第07章 受压杆件的稳 定性设计
第一节 压杆稳定的概念
在第三章讨论杆件轴向拉伸和压缩的强度计算中,对于受压 杆件,当最大压应力达到极限应力(屈服极限或强度极限)时, 会发生强度失效(出现塑性变形或破裂)。只要其最大压应力 小于或等于许用应力,即满足强度条件时,杆件就能安全正常 工作。然而,在实际工程中的一些细长杆件受压时,杆件可能 发生突然弯曲,进而产生很大的弯曲变形而导致最后折断,而 杆件的压应力却远低于屈服极限或强度极限。显然,此时杆件 的失效不是由于强度不够而引起的,而是与杆件在一定压力作 用下突然弯曲,不能保持其原有的平衡形态有关。我们把构件 在外力作用下保持其原有平衡形态的能力称为构件的稳定性 (stability)。受压直杆在压力作用下保持其直线平衡形态的 能力称为压杆的稳定性。可见,细长压杆的失效是由于杆件丧 失稳定性而引起的,属于稳定性失效(failure by lost stability)。
w
A Fcr
l
B Fcr
x
x
Fcr
F
M(x)
图7-8 两端铰支细长压杆
选取如图所示坐标系xAw。
w
A
l
设距原点为x距离的任意截面 Fcr
的挠度为w,弯矩M的绝对值为
Fw。若挠度w为负时,M为正。
即M与w的符号相反,于是有
第七章-受压构件正截面受压承载力
第7章 受压构件正截面受压承载力知识点1.配有纵筋和箍筋的轴心受压柱的受力全过程及其破坏特征;2.配有纵筋和箍筋的轴心受压柱的承载力计算;3.配有纵筋和螺旋筋的轴心受压柱的承载力及计算公式;4.偏心受压构件的破坏形态及其分类,界限破坏,纵向弯曲(二阶弯矩)的影响;5.矩形、工字形截面偏心受压构件的正截面承载力计算,矩形截面不对称和对称配筋的计算方法;6.偏心受压构件斜截面受剪承载力计算;7.双向偏心受压矩形正截面承载力的简化计算方法;8.受压构件的构造要求;9.偏心受压构件的截面延性的特点。
要点1.螺旋箍筋柱较普通箍筋柱承载力提高的原因是螺旋筋约束了混凝土的横向变形。
2.轴心受压构件,配置纵筋的作用是帮助混凝土承受压力,减力构件截面尺寸。
3.《混凝土结构设计规范》规定,配有螺旋式或焊接环式间接钢筋柱的承载能力不能高于配有普通箍筋柱承载能力的50%。
4.偏心受压构件界限破坏的特点:偏心受压构件界限破坏时远离轴向力一侧的钢筋屈服与受压区混凝土压碎同时发生。
5.如何确定大偏心受压构件:计算偏心受压构件,当b ξξ≤时,构件确定属于大偏心受压构件。
6.偏心受压构件的破坏形态有大偏心受压和小偏心受压两种情况。
7.轴心受压承载力的计算公式:N =0.9φ(f c A +f ′′y A ′s )。
8.偏心受压构件斜截面受剪承载力计算公式是在受弯构件斜截面受剪承载力公式基础上多了一项0.07N ,同时要求当轴向力N>0.3f c A 时,取A f N c 3.0=。
9.《混凝土结构设计规范》采用稳定系数ϕ表示长柱承载能力的降低程度,所以,ϕ为长柱的承载力)(l u N 与短柱的承载力)(su N 之比。
<0.55h 0 >2a ′10.轴心受压构件中,配置纵筋的作用是帮助混凝土承受压力,减小构件截面尺寸。
11.偏心受压构件的破坏特征:大偏心受压破坏,属延性破坏;破坏特点是受拉钢筋先达到屈服强度,导致压区混凝土压碎。
第7章 钢筋混凝土受扭构件承载力计算
第7章 钢筋混凝土受扭构件承载力计算1.简述钢筋混凝土矩形截面纯扭构件的四种破坏形态及其与设计的关系。
答:矩形截面纯扭构件的破坏形态以下四种类型:(1)少筋破坏当抗扭钢筋数量过少时,裂缝首先出现在截面长边中点处,并迅速沿45°方向向邻近两个短边的面上发展,在第四个面上出现裂缝后(压区很小),构件立即破坏。
破坏形态如图7-3(a),其破坏类似于受弯构件的少筋梁,破坏时扭转角较小(图7-4曲线1),属于脆性破坏,构件受扭极限承载力取决于混凝土抗拉强度和截面尺寸,设计中应予避免。
该类破坏模型是计算混凝土开裂扭矩的试验依据,并可按此求得抗扭钢筋数量的最小值。
(2)适筋破坏 当抗扭钢筋数量适中时,破坏形态如图7-3(b)。
混凝土开裂并退出工作,由其承担的拉力转给钢筋,钢筋的应力突增,但没有达到屈服,使构件在破坏前形成多条裂缝。
当通过主裂缝处的纵筋和箍筋达到屈服强度后,第四个面上的受压区混凝土被压碎而破坏。
适筋破坏扭转角较大(图7-4曲线2),属于延性破坏,该类破坏模型是建立构件受扭承载力设计方法的试验依据。
(3)超筋破坏当抗扭钢筋数量过多,构件破坏时抗扭纵筋和箍筋均未达到屈服,破坏是由某相邻两条45°螺旋缝间混凝土被压碎引起的。
破坏形态见图7-3(c),构件破坏时螺旋裂缝条数多而细,扭转角较小(图7-4曲线3),属于超筋脆性破坏,构件承载力主要取决于截面尺寸及混凝土抗压强度。
这类破坏称为完全超筋破坏,在设计中应避免。
该类破坏模型是计算抗扭钢筋数量最大值的试验依据。
(4)部分超筋破坏当抗扭纵筋和抗扭箍筋数量比例不当,致使混凝土压碎时,箍筋或纵筋两者之一不能达到屈服点,这种破坏属于部分超筋破坏。
虽然结构在破坏时有一定延性,设计可用,但不经济。
2.什么是配筋强度比ζ的物理意义、计算公式与合理的取值范围。
答:配筋强度比ζ的物理意义:ζ为受扭构件纵向钢筋与箍筋的配筋强度比,如图7-5,其物理意义是协调抗扭纵筋和箍筋应合理配置,充分利用抗扭钢筋的作用,使受扭构件的破坏形态呈现适筋破坏。
(新)第7章:钢筋混凝土偏心受力构件承载力计算
b的取值与受弯构件相同 。
近似判别方法 :
ei 0.3h0 ei 0.3h0
2.偏心受压构件正承载力计算
2.2 偏心受压构件正截面承载力计算
矩形截面非对称配筋
大偏压:
X 0,N 1 fcbx f y' As' f y As
由式(7-19)得:
…7-33
2.偏心受压构件正承载力计算
2.1 偏心受压构件的破坏特征
小偏心受压
无法避免,可增加横 向钢筋约束砼,提高 变形能力。 要避免
产生条件: (1)偏心距很小。
(2)偏心距 (e0 / h) 较大,但离力较远一侧的钢筋过多。 破坏特征:靠近纵向力一侧的混凝土首先达到极限压应变而压碎 ,该侧的钢筋达到屈服强度,远离纵向力一侧的钢筋 不论受拉还是受压,一般达不到屈服强度。构件的承 载力取决于受压区混凝土强度和受压钢筋强度。 破坏性质: 脆性破坏。
2.偏心受压构件正承载力计算
2.1 偏心受压构件的破坏特征
大偏心受压
产生条件: 相对偏心距 (e0 / h ) 较大, 且离力较远一侧的钢筋适当。 破坏特征: 部分受拉、部分受压,受拉钢筋应力先达到屈 服强度,随后,混凝土被压碎,受压钢筋达屈 服强度。 构件的承载力取决于受拉钢筋的强度和数量。 破坏性质: 塑性破坏。
c
0.5 f c A 1.0 N
2.偏心受压构件正承载力计算
小偏心受压时的应力可按下式近似计算:
1 s fy b 1
s 0时,As受拉; s 0时,As受压; f y f y ; s f y时,取 s f y。
第七章_受压构件计算
N
➢ 受拉破坏(大偏心受压破坏)
发生条件:相对偏心距e0/h0较大, 受拉纵筋As 配筋适量
受拉边出现水平裂缝
继而形成一条或几条主要水平裂缝
主要水平裂缝扩展较快,裂缝宽度增大 使受压区高度减小
(a)
N
拉压破坏形态
受拉钢筋的应力首先达到屈服强度
受压边缘的混凝土达到极限压应变而破坏
受压钢筋应力一般都能达到屈服强度
一、基本原则
一、基本原则
1、偏心受压正截面受力分析方法与受弯情况是相同的,即仍采用以 平截面假定为基础的计算理论。 2、以破坏时的受力状态为计算依据 3、采用与受弯构件正截面计算相同的基本假定 4、采用等效矩形应力图
e ei
e’
Nu
e e’ ei
Nu
0.8xn
fc
1fc
C
fy’
fyAs
As’ xn
0.412xn
Asfy
α1fc
f yAs
as
x
as
h0
h
e ei 0.5h as ei:初始偏心距 ei eo ea
e0:轴向力对截面重心的偏心距
e0 M / N
M:考虑二阶效应后的弯矩值
返回主目录 返回上级目录 前进 后退
E2N6D
5.4矩形截面正截面承载力设计计算
2. 小偏心受压构件
基本公式:
Nu 1 fcbx fyAs s As
As<< As’ 时会有As fy’, 此种破坏要
避免
e0 N
e0 N
一、偏心受压构件的试验研究
e0 N
e0 N
As s
As’ fy’
fc
As s
As’ fy’
第7章受压构件作业
=
-0.25������������������������������ℎ0
364.65>V=276 487.05>V=276 455.8>V=276 400.4>V=276
选 dsv=8
1 2
×
取
S=80 S=90 S=90 S=90
92
×
6
=
276
������������������������������������ℎ0
sv , min
0.24
ft f yv
(3)、验算截面尺寸(避免斜压破坏)
0.24 1.43N / mm2 360N / mm2
0.25c fcbh0 0.251.014.3N / mm2 200mm 460mm 328.9kN V
故截面尺寸符合要求 (4)、判断是否计算配箍
7.3 解:(1)、剪力图见下图所示
(2)、根据题意: fc 14.3N / mm2 , ft 1.43N / mm2 , c 1.0 ,
HRB300: f yv 270N / mm2 ,
HRB400: f yv 360N / mm2 ,
HRB500: f yv 432N / mm2 ,
取双肢箍 8( Asv 101mm2 )
s
Asv 0.657
154mm
360N / mm2 460mm
smax
,取
s
150mm
0.095%
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,通力根1保过据护管生高线产中敷工资设艺料技高试术中卷0资不配料仅置试可技卷以术要解是求决指,吊机对顶组电层在气配进设置行备不继进规电行范保空高护载中高与资中带料资负试料荷卷试下问卷高题总中2体2资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况1卷中下安,与全要过,加度并强工且看作尽护下可1都关能可于地以管缩正路小常高故工中障作资高;料中对试资于卷料继连试电接卷保管破护口坏进处范行理围整高,核中或对资者定料对值试某,卷些审弯异核扁常与度高校固中对定资图盒料纸位试,置卷编.工保写况护复进层杂行防设自腐备动跨与处接装理地置,线高尤弯中其曲资要半料避径试免标卷错高调误等试高,方中要案资求,料技编试术写5、卷交重电保底要气护。设设装管备备置线4高、调动敷中电试作设资气高,技料课中并3术试、件资且中卷管中料拒包试路调试绝含验敷试卷动线方设技作槽案技术,、以术来管及避架系免等统不多启必项动要方高式案中,;资为对料解整试决套卷高启突中动然语过停文程机电中。气高因课中此件资,中料电管试力壁卷高薄电中、气资接设料口备试不进卷严行保等调护问试装题工置,作调合并试理且技利进术用行,管过要线关求敷运电设行力技高保术中护。资装线料置缆试做敷卷到设技准原术确则指灵:导活在。。分对对线于于盒调差处试动,过保当程护不中装同高置电中高压资中回料资路试料交卷试叉技卷时术调,问试应题技采,术用作是金为指属调发隔试电板人机进员一行,变隔需压开要器处在组理事在;前发同掌生一握内线图部槽 纸故内资障,料时强、,电设需回备要路制进须造行同厂外时家部切出电断具源习高高题中中电资资源料料,试试线卷卷缆试切敷验除设报从完告而毕与采,相用要关高进技中行术资检资料查料试和,卷检并主测且要处了保理解护。现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常由于侧向挠度增大,而发生失稳破 坏!
20
柱的破坏形态
21
22
长柱、短柱之分:
短柱:
• 一般截面lo/i≤28; (i为构件截面回转半径) • 对矩形截面lo/b≤8 (b为截面宽度)
• 对圆形截面lo/d≤7 (d为圆形截面的直径) lo:构件计算长度
轴心受压构件承载力计算
⑴截面设计:
f c A) N 0.9 ( f y As
N - f c A) 0.9 As f y (
①已知:bh,fc, f y, l0,N,求As。
> min
min = 0.6%
⑵截面校核: 已知:bh,fc,f y,l0,As,N,校核。
(e)破坏时,钢筋应力取fy’ :
• 轴心受压构件在荷载作用下产生的轴心 力由钢筋和砼共同承担。
根据轴向力的平衡,
轴心受压短柱承载力公式可写为:
Nu= fcAc + fy’As’
25
规范对公式还引用了0.9的折减系数,即:
轴心受压短柱承载力公式可写为: Nu=0.9(fcA + fy’As’)
N
且 As配筋合适
fyAs f'yA's
第七章 受压构件
e0
N
(1)发生条件:偏心距e0较大,
As的数量合适。
(2)破坏特征
fyAs
f’yA’s
▲As先屈服;压区混凝土后压碎。 ▲延性破坏。 ▲破坏特征与适筋梁相似
受 拉 破 坏
第七章 受压构件
2、受压破坏--- 小偏心受压破坏
e0
N
e0
N
As 太 多
N长柱= N短柱
稳定系数φ:
设以φ代表长柱承载力与短柱承载力的比值, 称为轴心受压构件的稳定系数:
N φ= N
l u s u
φ主要与柱的 长细比 l0/b 有关: 构件越细长,侧向弯曲的影响就越大,
28
轴心受压长柱承载力公式可写为:
式中: N —— 轴向力设计值; φ—— 稳定系数,按表7.1采用; A —— 构件截面面积;当纵向钢筋配筋率>3%时,式 中A 改为Ac , Ac = A-As’; N AS’—— 全部纵向钢筋的截面面积
第7章 受压构件
7.1.2 截面形状和尺寸
1、形状 (1)一般 采用方形、矩形截面; (2)单层工业厂房的预制柱常采用I字形截面; (3)圆形截面主要用于桥墩、桩和公共建筑中的柱。 2、截面尺寸 (1)最小截面尺寸:250×250mm (2)长细比要求:l0/b≤30、l0/h≤25及l0/d≤25。 (3)模数尺寸:边长800mm时,以50mm为模数, 边长> 800mm时,以100mm为模数。
As’ fc f ’y A’s
第7章 受压构件
N
2、轴心受压长柱的受力性能
(1)受力时,N不可避免的初始偏心, 引起的侧向弯曲、附加弯矩不可忽略。 (2)破坏时,凸边出现横向裂缝,砼拉裂; 凹边出现纵向裂缝,砼压碎, 构件破坏。 (3)长柱的承载力小于相同条件短柱的 承载力。 《规范》用稳定系数表示。
7.1.3 纵向钢筋
▲纵筋的作用
(1)直接受压,提高柱的承载力; (2)承担偶然偏心等产生的拉应力; (3)改善破坏性能(脆性); (4)减小持续压应力下混凝土收缩和徐变的影响。
第7章 受压构件
3、纵向受力钢筋的根数: 矩形截面不得少于4根; 圆形截面不宜少于8根,不应少于6根。
4、纵向受力钢筋的直径:不宜小于12mm; 宜根数少而直径粗。 5、柱侧面的纵向构造钢筋: h≥600mm时,应设直径10~16mm的纵向构造钢筋。
23
长柱:
除短柱外的称为~
第7章 受压构件
1、轴心受压短柱的受力性能
(1)短柱的概念: l0/b≤8、l0/i≤28 l0/d≤7 (2)短柱的受力性能 (a)受力时,全截面应变相等,即es =ec =e
(b)受力时,侧向弯曲可忽略不计。 (c)破坏时,砼压碎,纵筋外鼓呈灯笼状。 (d)破坏时,混凝土应变取e0;应力取fc。
受 压 破 坏
第七章 受压构件
▲界限破坏
受拉钢筋屈服与受压区边缘混凝土达到ecu 同时
发生。与适筋梁和超筋梁的界限类似。
第7章 受压构件
6、纵向钢筋的保护层厚度:一般为30mm。
7、纵向受力钢筋的净间距: ≥ 50mm 。
8、纵向受力钢筋的中距: 300mm 。
第7章 受压构件
7.1.4 箍筋
▲箍筋的作用
(1)固定纵筋,形成钢筋骨架; (2)承担剪力; (3)约束混凝土,改善混凝土的性能; (4)给纵筋提供侧向支承,防止纵筋压屈。
无吊车 房屋柱
有吊车 房屋柱
单跨
两跨及多跨 上柱
1.5H
1.25H 2.0Hu
1.0H
1.0H 1.25Hu
1.2H
1.2H 1.5Hu
HL
H
下柱
1.0HL
2.0HL
0.8HL
1.0HL
1.0HL
-----
露天吊车柱和栈桥柱
实际柱的计算长度l0 (b)一般多层房屋的钢筋混凝土框架柱: 现浇楼盖: 底层柱 l0 = 1.0 H 其余各层柱 l0 = 1.25 H
第7章 受压构件
1、箍筋形式:采用封闭式。 2、箍筋间距: 400mm; 截面的短边尺寸; 15d。 3、箍筋直径: ≥ d/4 且≥ 6mm。 4、 当柱中全部纵筋的配筋率>3%时, 箍筋直径≥ 8mm; 箍筋间距 10倍纵筋最小直径,且 200mm。 箍筋末端应作成135°的弯钩, 弯钩末端平直段长度≥ 10箍筋直径
f c A) N u 0.9 ( f y As
当Nu N时,安全。
第七章 受压构件
7.3 偏心受压构件正截面受压破坏形态
7.3.1 破坏形态 试验表明: 偏心受压短柱有受拉破坏和受压破坏两种形态; 影响破坏形态的主要因素是偏心距e0和纵向钢筋配筋率。 1、受拉破坏 ---大偏心受压破坏。 N e0 偏心距e0较大
框架柱
7.1.3 纵向钢筋
1、最小配筋率 (1)规定最小配筋率的理由
一是防止混凝土受压脆性破坏;二是承担偶然的 附加弯矩、混凝土的收缩和温度变化产生的拉应力。
(2)最小配筋率的取值 全部纵向钢筋的配筋率: 0.6%。 一侧不宜大于5%。
钢筋混凝土轴心受压短柱 受荷后—— 截面应变为均匀分布, 钢筋应变εs与 混凝土εc应变相同。
18
破坏时,箍筋之间 的纵筋发生压屈外 凸,中间部分砼压 酥,混凝土达到主 体抗压强度fc。 特点:不论受压钢 筋破坏时是否屈服, 构件的承载力都是 由混凝土压碎来控 制。
19
•再看看——轴心受压细长柱:
框架柱
第7章 受压构件
复杂截面的箍筋形式
第7章 受压构件
6.2 轴心受压构件正截面受压承载力
(a) 轴心受压
(b) 单向偏心受压
(c)
双向偏心受压
▲轴心受压承载力是正截面受压承载力 的上限。
第7章 受压构件
7.2.1 轴心受压普通箍筋柱的正截面受压承载力
轴心受压柱
短柱
长柱
先分析——短柱:
轴心受压短柱:
第7章 受压构件
第 7章
受压构件
▲定义:以承受压力为主的构件。如柱、墙、桥墩等
▲分类
(a) 轴心受压
(b) 单向偏心受压
(c) 双向偏心受压
第六章 受压构件
7.1
受压构件的构造要求—(掌握)
7.1.1
材料强度
1、混凝土:应采用强度等级较高的混凝土; 一般结构常用C25~C40;
高层建筑常用C40~C60。 2、钢筋:常用HRB335和HRB400。
sAs
f’yA’s
sAs
f’yA’s
(1)发生条件: (a)相对偏心距e0/h0较小; (b)相对偏心距e0/h0较大,但As的数量过多。
第七章 受压构件
(2)受压破坏的特征 ▲离纵向力较近一侧的混凝土压碎,钢筋屈服; 离纵向力较远一侧的钢筋不屈服。
▲脆性破坏。
▲破坏特征与超筋梁相似
▲第二种情况在设计时应予避免。
N≤0.9φ(fcA+fy’As’) (7-1)
As’
fc f ’y A’s
第7章 受压构件
实际柱的计算长度l0--(了解) (见GB50010第7.3.11条。具体有以下三条规定)
(a)刚性屋盖单层房屋排架柱、露天吊车柱和栈桥柱
l0 柱的类别
排架方向 垂直排架方向 有柱间 无柱间 支撑 支撑
Hu