材料机械性能检测(弯曲试验)

合集下载

材料力学性能测试实验报告

材料力学性能测试实验报告

材料基本力学性能试验—拉伸和弯曲一、实验原理拉伸实验原理拉伸试验是夹持均匀横截面样品两端,用拉伸力将试样沿轴向拉伸,一般拉至断裂为止,通过记录的力——位移曲线测定材料的基本拉伸力学性能。

对于均匀横截面样品的拉伸过程,如图1所示,图1金属试样拉伸示意图则样品中的应力为其中A为样品横截面的面积。

应变定义为其中△l是试样拉伸变形的长度。

典型的金属拉伸实验曲线见图2所示。

图3金属拉伸的四个阶段典型的金属拉伸曲线分为四个阶段,分别如图3(a)-(d)所示。

直线部分的斜率E就是杨氏模量、σs点是屈服点。

金属拉伸达到屈服点后,开始出现颈缩现象,接着产生强化后最终断裂。

弯曲实验原理可采用三点弯曲或四点弯曲方式对试样施加弯曲力,一般直至断裂,通过实验结果测定材料弯曲力学性能。

为方便分析,样品的横截面一般为圆形或矩形。

三点弯曲的示意图如图4所示。

图4三点弯曲试验示意图据材料力学,弹性范围内三点弯曲情况下C点的总挠度和力F之间的关系是其中I为试样截面的惯性矩,E为杨氏模量。

弯曲弹性模量的测定将一定形状和尺寸的试样放置于弯曲装置上,施加横向力对样品进行弯曲,对于矩形截面的试样,具体符号及弯曲示意如图5所示。

对试样施加相当于σpb0.01。

(或σrb0.01)的10%以下的预弯应力F。

并记录此力和跨中点处的挠度,然后对试样连续施加弯曲力,直至相应于σpb0.01(或σrb0.01)的50%。

记录弯曲力的增量DF和相应挠度的增量Df,则弯曲弹性模量为对于矩形横截面试样,横截面的惯性矩I为其中b、h分别是试样横截面的宽度和高度。

也可用自动方法连续记录弯曲力——挠度曲线至超过相应的σpb0.01(或σrb0.01)的弯曲力。

宜使曲线弹性直线段与力轴的夹角不小于40o,弹性直线段的高度应超过力轴量程的3/5。

在曲线图上确定最佳弹性直线段,读取该直线段的弯曲力增量和相应的挠度增量,见图6所示。

然后利用式(4)计算弯曲弹性模量。

二、试样要求1.拉伸实验对厚、薄板材,一般采用矩形试样,其宽度根据产品厚度(通常为0.10-25mm),采用10,12.5,15,20,25和30mm六种比例试样,尽可能采用lo =5.65(F)0.5的短比例试样。

物理实验技术中的机械性能测试方法

物理实验技术中的机械性能测试方法

物理实验技术中的机械性能测试方法在物理实验技术中,机械性能测试方法是非常重要的一部分。

通过对各种材料、器件和装置的机械性能进行测试,可以评估其在真实工作条件下的性能和可靠性,为设计和制造提供参考。

本文将探讨几种常见的机械性能测试方法,并分析其原理和适用范围。

一、拉伸测试拉伸测试是一种常见的机械性能测试方法,用于评估材料的拉伸强度、延展性和断裂特性。

通过将材料制成标准试样,并施加均匀的拉力,观察材料在拉伸过程中的变形和破坏情况,可以得到材料的应力-应变曲线和断裂性能参数。

拉伸测试广泛应用于金属、塑料、橡胶等材料的强度和可塑性评估。

二、压缩测试压缩测试是测量材料在受到垂直压力时的变形和强度的测试方法。

通过将材料制成标准试样,并施加均匀的压力,观察材料在压缩过程中的应变和破坏情况,可以得到材料的应力-应变曲线和压缩强度。

压缩测试主要用于评估材料的抗压性能,广泛应用于建筑材料、电子元器件等的设计和生产。

三、弯曲测试弯曲测试是测量材料在受到弯曲加载时的变形和强度的测试方法。

通过将材料制成标准试样,并施加均匀的弯矩,观察材料在弯曲过程中的应变和破坏情况,可以得到材料的应力-应变曲线和弯曲强度。

弯曲测试主要用于评估材料的韧性和抗弯强度,广泛应用于建筑结构、航空航天等领域。

四、硬度测试硬度测试是测量材料抵抗局部变形和破坏的能力的测试方法。

通过在材料表面施加一定的压力或者冲击,然后测量材料在压力或冲击下产生的变形或者破裂,可以得到材料的硬度值。

硬度测试可以用于评估材料的抗磨性、抗刮性以及对外力的抵抗能力,广泛应用于金属、陶瓷、塑料等材料的生产和加工。

五、冲击测试冲击测试是测量材料在受到突然外力作用下的变形和破裂特性的测试方法。

通过使用冲击试验机或者落锤等设备,施加一定的冲击力或者冲击能量在材料上进行试验。

冲击测试可以用于评估材料的韧性、抗冲击性能以及耐久性,广泛应用于金属、塑料、复合材料等行业。

六、疲劳测试疲劳测试是测量材料在长期受到交变载荷作用下的变形和破裂特性的测试方法。

塑料的机械性能测试方法

塑料的机械性能测试方法

塑料的机械性能测试方法塑料是一种常见的材料,广泛应用于各个领域。

在使用塑料制造产品之前,我们需要对其机械性能进行测试,以确保其符合使用要求。

本文将介绍塑料的机械性能测试方法,包括拉伸性能、弯曲性能、冲击性能和硬度测试。

1. 拉伸性能测试拉伸性能是衡量塑料材料抵抗拉伸和延伸的能力。

常用的测试方法包括拉伸试验和剪切试验。

(1)拉伸试验:将塑料样品固定在拉伸试验机上,通过施加力来拉伸样品,同时记录应力和应变的变化。

从拉伸应力应变曲线中可以得到材料的弹性模量、屈服强度、断裂强度等参数。

(2)剪切试验:通过剪切试验可以测量塑料材料的剪切应力,主要用于评估材料在切削条件下的性能。

剪切试验中常用的方法是剪切试验和扭转试验。

2. 弯曲性能测试弯曲性能是衡量塑料材料在受力时的抵抗变形和破坏能力。

常用的测试方法是三点弯曲和四点弯曲试验。

(1)三点弯曲试验:将塑料样品放在两个支撑点之间,施加压力于样品的中央点,使其产生弯曲。

通过测量样品的挠度和应力来评估其弯曲性能。

(2)四点弯曲试验:与三点弯曲试验类似,不同之处在于在两个支撑点之间增加两个负载点,使得样品在其中施加更均匀的力。

四点弯曲试验能更准确地评估塑料材料的弯曲性能。

3. 冲击性能测试冲击性能是指塑料材料在受到突然施加的冲击力时的抵抗能力。

常用的测试方法有冲击试验、跌落试验和弯曲试验。

(1)冲击试验:在冲击试验中,通过施加冲击力来评估塑料材料的韧性和破坏能力。

常见的冲击试验方法有冲击强度试验和缺口冲击试验。

(2)跌落试验:将塑料制品从一定高度自由掉落,观察其受到冲击后是否会破裂或变形。

跌落试验可以模拟实际使用过程中的意外情况,评估塑料制品的耐用性和抗冲击能力。

4. 硬度测试硬度测试是通过对塑料材料表面的硬度进行测量,来评估其耐磨性和耐刮擦性能。

常用的测试方法包括洛氏硬度试验、巴氏硬度试验和磨损试验。

(1)洛氏硬度试验:通过在塑料表面施加一定负荷,测量压痕的直径来评估材料的硬度。

材料力学性能试验有哪些带你了解材料力学性能试验!

材料力学性能试验有哪些带你了解材料力学性能试验!

材料力学性能试验有哪些带你了解材料力学性能试验!材料力学性能又称机械性能,任何材料受力后都要产生变形,变形到一定程度即发生断裂。

这种在外载作用下材料所表现的变形与断裂的行为叫力学行为,它是由材料内部的物质结构决定的,是材料固有的属性。

检测可靠性实验室可材料力学性能试验服务。

作为第三方检测中心,机构拥有CMA、CNAS检测资质,检测设备齐全、数据科学可靠。

材料力学性能试验:拉伸试验拉伸试验是其中一种最常用的试验方法,用于测定试样在受到轴向拉伸载荷后的行为。

这些试验类型可在室温或受控(加热或制冷)条件下进行,以确定材料的拉伸性能。

适用材料:金属、塑料、弹性体、纸张、复合材料、橡胶、纺织品、粘合剂、薄膜等。

常见的拉伸试验结果:最大载荷、最大载荷下的挠度、最大载荷做功、刚度、断裂载荷、断裂时的形变、断裂做功、弦斜率、应力、应变、杨氏模量试验仪器:万能试验机,高速试验机等测试标准GB/T 6397-1986《金属拉伸试验试样》ASTM D3039-76用于测定高模量纤维增强聚合物复合材料面内拉伸性能ASTM D638用于测定试件的拉伸强度和拉伸模量材料力学性能试验:压缩试验压缩试验是一种常用于测定材料的压缩负载或抗压性的试验方法,同时也用于测定材料在受到一个特定的压缩负载并保持一段设定时间后的恢复能力。

压缩试验用于测定材料在加载下的行为。

此外也可测定一段时间内材料在(恒定或递增)载荷下可承受的最大应力。

适用材料金属、塑料、弹性体、纸张、复合材料、橡胶、纺织品、粘合剂、薄膜等。

试验仪器:万能试验机,高速试验机、压缩试验机等注意事项:(1)压缩试验主要适用于脆性材料,如铸铁、轴承合金和建筑材料等;(2)对于塑性材料,无法测出压缩强度极限,但可以测量出弹性模量、比例极限和屈服强度等。

测试标准GB/T7314-2023《金属压缩实验试样》ASTM D3410-75(剪切荷载法测定带无支撑标准截面的聚合体母体复合材料压缩特性的试验方法)GB/T7314-2023《金属材料室温压缩试验方法》材料力学性能试验:弯曲试验材料机械性能试验的基本方法之一,测定材料承受弯曲载荷时的力学特性的试验。

弯曲实验

弯曲实验

弯曲实验实验目的熟悉高分子材料弯曲性能测试条件、测试原理及操作。

了解测试条件对测试结果的影响。

实验原理本实验对试样施加静态三点式弯曲负荷,通过压力传感器、负荷及变形指示器,测定试样在弯曲变形过程中的特征量:如弯曲过程中任何时刻跨度中心处截面上的最大外层纤维正应力(弯曲应力)当挠度等于规定值时的弯曲应力(定挠度时弯曲应力)在规定挠度前或之时破断瞬间所达到的弯曲应力(弯曲破坏应力)在规定挠度前或之时,负荷最大值时的弯曲应力(弯曲强度、最大负荷时的弯曲应力)超过定挠度时,负荷达到最大值时的弯曲应力(表观弯曲强度)实验原材料及仪器实验原料666D PS 燕山石化试样PS长条宽10±0.5mm 厚 3<h<5mm实验仪器岛津AGS—J台式精密万能实验机实验条件温度 20℃湿度 70%跨距 67mm 压速 2mm/min 半径 2mm实验步骤1.切取实验所需规格的样条,游标卡尺精确测量每根样条的厚度和宽度2.选择负荷、跨度、速度和压头3.试样放于支座,压头与试样应该是线接触,保证与试样的接触线垂直于试样长度方向4.开动实验机,加载并记录下列数值:⑴.在规定挠度前或之时断裂的材料,记录断裂弯曲负荷值⑵出现最大负荷时,记录最大负荷值⑶在达到规定挠度时,不断裂材料测定规定挠度时的弯曲负荷值5.重复5组试样实验结果与讨论序号厚/mm 宽/mm 最大负荷/N 最大应力/MPa 弹性模量/MPa1 4.20 10.14 161.750 90.8812 3360.272 4.22 10.14 157.550 87.6843 3355.603 4.24 10.18 162.822 89.4007 3291.494 4.24 10.14 163.150 89.9465 3296.145 4.26 10.14 161.750 88.3391 3237.15平均值161.400 89.2503 3308.14标准偏差 2.24109 1.26979 51.0628此种材料在测试条件下平均最大载荷为161.1N;平均弹性模量为3308.14MPa;平均最大应力为88.2503MPa1.为什么弯曲试验要规定试样的宽度,并由厚度决定?答: 测试材料的弯曲应力和强度的目的是和其他材料作比较,如果作比较的材料的前提条件不一致,那么实验所得的数据便没有可比性,无法作为判断材料谁的性质更好的标准。

高分子材料专业实验-压缩与弯曲实验

高分子材料专业实验-压缩与弯曲实验

压缩实验实验目的1.熟悉高分子材料压缩性能测试标准条件、测试原理及其操作;2.了解测试条件对测定结果的影响。

实验原理将试样夹持在专用压缩夹具上,对试样施加静态压缩负荷,通过负荷指示器、变形指示器以及计算机处理,测绘出试样的压缩负荷-变形曲线以及变形过程中的特征量如在压缩实验过程中的任一时刻,试样单位原始横截面积所承受的压缩负荷(压缩应力)、由压缩负荷引起的试样高度的改变量(压缩变形)、在压缩实验的负荷-变形曲线上第一次出现的应变或变形增加而负荷不增大的压应力值(压缩屈服应力)、在压缩实验的负荷-变形曲线的横坐标上,在规定的变形百分数处(如0.2%的压缩应变)平行于曲线的直线部分划一直线,取直线与负荷一变形曲线交点的负荷值与试样的原始截面积之比(压缩偏置屈服应力)、在压缩实验过程中,试样所承受的最大压缩应力(压缩强度)、在应力一应变曲线的线性范围内,压缩应力与压缩应变之比(压缩模量)。

原材料试样(1)试样形状和尺寸试样应为正方柱体或矩形柱体或圆柱体,试样各处高度相差不大于0.1mm,两端面与主轴必须垂直。

圆柱体:直径10±0.2mm,高20±0.2mm。

正方柱体:横截面边长10±0.2mm,高20±0.2mm。

矩形柱体:截面边长15±0.2mm,10±0.2mm,高20±0.2mm。

(2)试样所有表面均应无可见裂纹、刮痕或其他可能影响结果的缺陷。

(3)各向同性材料每组试样至少5 个。

(4)各向异性材料每组取10个试样,垂直于和平行于各向异性的主轴方向各取5 个试样。

本次实验试样采用注塑成型高密度聚乙烯弯曲大试样。

设备能以规定恒定速度移动,并具有下列各组件的实验机均可使用。

实验机应由国家计量部门定期检定。

(1)压缩夹具能准确地沿试样轴向施加负荷,表面粗糙度为Ra0.8 的硬化钢压板,并应装有自动对中装置(2)负荷指示器。

指示试样所承受的压缩负荷,在规定的实验速度内没有惯性滞后,指示负荷的精度为指示值的±1%或更高。

钢筋进场检验中的弯曲和扭转测试方法介绍

钢筋进场检验中的弯曲和扭转测试方法介绍

钢筋进场检验中的弯曲和扭转测试方法介绍钢筋是建筑施工中常用的重要材料,其品质对于施工的质量和安全至关重要。

在钢筋进场检验过程中,弯曲和扭转测试是必不可少的环节,用于评估钢筋的强度和可塑性。

本文将介绍钢筋进场检验中的弯曲和扭转测试方法,以帮助读者更好地了解和应用这些技术。

1. 弯曲测试方法钢筋的弯曲测试是通过施加外力来评估其承载能力和韧性。

以下是常用的钢筋弯曲测试方法:1.1 三点弯曲试验三点弯曲试验是最常见的钢筋弯曲测试方法之一。

测试时,将钢筋固定在两个支点之间,然后在中间施加向下的力。

通过测量钢筋在给定力下的挠度来评估其破坏强度和弹性模量。

1.2 四点弯曲试验四点弯曲试验相比于三点弯曲试验更准确,更接近实际使用情况。

测试时,将钢筋固定在两个支点之间,然后在两个支点之间施加向下的力。

通过测量钢筋在给定力下的挠度来评估其破坏强度和弹性模量。

1.3 手工弯曲试验手工弯曲试验适用于直径较小的钢筋,如小型构件等。

测试时,将钢筋端部固定在夹具中,然后手动弯曲钢筋,观察其是否出现裂纹或断裂,以评估其可塑性和韧性。

2. 扭转测试方法钢筋的扭转测试可以评估其抗扭性能和可塑性。

以下是钢筋扭转测试的常用方法:2.1 手工扭转试验手工扭转试验适用于直径较小的钢筋。

测试时,将钢筋两端固定在夹具中,然后手动扭转钢筋,观察其是否出现断裂、裂纹或变形,以评估其抗扭性能。

2.2 机械扭转试验机械扭转试验适用于直径较大的钢筋和重要的结构构件。

测试时,通过将钢筋夹持在扭转试验机中,施加旋转力来扭转钢筋。

通过测量扭转角度、扭转力以及观察是否有裂纹、断裂来评估其抗扭性能和可塑性。

3. 弯曲和扭转测试的结果分析和评估在进行钢筋进场检验中的弯曲和扭转测试后,需要对测试结果进行分析和评估。

以下是一些常见的结果分析和评估指标:3.1 破坏形态观察钢筋在测试中是否出现断裂、裂纹或变形,可以判断其破坏形态。

正常的钢筋应该能够承受一定的弯曲或扭转而不发生严重损坏。

材料学中的机械性能测试方法

材料学中的机械性能测试方法

材料学中的机械性能测试方法材料学是一个综合性学科,它研究的对象是物质的性质、结构和性能等方面。

其中机械性能是材料科学的重要内容之一,机械性能测试方法的研究和应用是发展新材料技术的基础。

本文将介绍材料学中的机械性能测试方法。

一、拉伸试验拉伸试验是材料学中最常用的一种机械性能测试方法,它能够测定材料在拉伸载荷作用下的延展性和强度。

这种测试方法可以通过试验样品来确定其材料性能,从而对材料的应用进行合理分析。

拉伸试验的具体步骤如下:1. 选择适当的试样,根据试样几何形状设计适当的夹具。

2. 安装材料试验机,调整试验机参数并对试样进行夹紧。

3. 施加载荷并记录载荷-位移曲线。

4. 通过载荷-位移曲线得到应力-应变曲线和最大应力点,从而计算出弹性模量、屈服点和断裂强度等参数。

二、压缩试验压缩试验是衡量材料在压缩载荷下的抗压强度以及变形塑性的一种测试方法。

与拉伸试验不同,压缩试验可以通过在材料内部施加压缩应力来确定其性能。

压缩试验的具体步骤如下:1. 选择合适的试样几何形状和大小,设计适当的夹具和加载系统。

2. 将样品放置在试验机中,对试样进行夹紧。

3. 施加载荷并记录载荷-位移曲线。

4. 通过载荷-位移曲线得到应力-应变曲线和最大应力点,从而计算出抗压强度、屈服压力和压缩弹性模量等参数。

三、弯曲试验弯曲试验是一种常用的材料性能测试方法,可以测定材料的弯曲刚度、弯曲强度以及断裂韧性等性能。

该试验是一种间接性测量方法,一定程度上反映了材料在加载下的变形和破坏行为。

弯曲试验的具体步骤如下:1. 确定试样的形状和大小,然后设计适当的夹具和加载系统。

2. 在试样的中间位置施加弯曲载荷,并记录弯曲变形的载荷位移曲线。

3. 通过载荷位移曲线得到应力-应变曲线和最大应力点,从而计算出抗弯强度、韧性指数和弯曲模量等参数。

四、硬度试验硬度试验是材料相关性质的一项重要指标,可以描述材料在受外力作用下产生微小的表面塑性变形,从而评估材料的抗磨损、抗压缩、硬度等性能。

纯弯曲实验报告

纯弯曲实验报告

纯弯曲实验报告page 1 of 10 page 2 of 10 page 3 of 10 page 4 of 10 page 5 of 10篇二:弯曲实验报告弯曲实验报告材成1105班 3111605529 张香陈一、实验目的测试和了解材料的弯曲角度、机械性能、相对弯曲半径及校正弯曲时的单位压力等因素对弯曲角的影响及规律。

二、实验原理坯料在模具内进行弯曲时,靠近凸模的内层金属和远离凸模的外层金属产生了弹—塑性变。

但板料中性层附近的一定范围内,却处于纯弹性变形阶段。

因此,弯曲变形一结束,弯曲件由模中取出的同时伴随着一定的内外层纤维的弹性恢复。

这一弹性恢复使它的弯曲角与弯曲半径发生了改变。

因此弯曲件的形状的尺寸和弯曲模的形状尺寸存在差异。

二者形状尺寸上的差异用回弹角来表示。

本实验主要研究影响回弹角大小的各因素。

三、实验设备及模具(1)工具:弯曲角为90度的压弯模一套,配有r=0.1、0.4、0.8、2、4五种不同半径的凸模各一个。

刚字头,万能角度尺,半径样板和尺卡。

(2)设备:曲柄压力机(3)试件:08钢板(不同厚度),铝板(不同厚度),尺寸规格为52x14mm,纤维方向不同四、实验步骤1.研究弯曲件材料的机械性能,弯曲角度和相对弯曲半径等回弹角度的影响。

实验时利用90度弯曲角度分别配有五种不同的弯曲半径的弯模,对尺寸规格相同的试件进行弯曲,并和不同的弯曲半径各压制多件。

对不同弯曲半径的试件压成后需要打上字头0.1、0.4、0.8、2、4等,以示区别。

最后,按下表要求测量和计算。

填写好各项内容。

五、数据处理(t/mm)试件尺寸:52x14mm弯曲后的试样如下图所示δθ=f(r凸/t)曲线如下图所示分析讨论:分析相对弯曲半径,弯曲角度及材料机械性能对回弹角的影响。

答:相对弯曲半径越小,弯曲的变形程度越大,塑性变形在总变形中所占比重越大,因此卸载后回弹随相对弯曲半径的减小而减小,因而回弹越小。

相对弯曲半径越大,弯曲的变形程度越小,但材料断面中心部分会出现很大的弹性区,因而回弹越大;弯曲角度越大,表明变形区的长度越长,故回弹的积累值越大,其回弹角越大;材料的屈模比越大,则回弹越大。

弯曲试验方法 标准

弯曲试验方法 标准

弯曲试验方法标准
弯曲试验是一种测定材料承受弯曲载荷时的力学特性的试验,主要应用于材料科学和工程领域。

根据不同的材料类型和测试标准,弯曲试验的方法和标准也有所不同。

以下是一些常见的弯曲试验方法和标准:
1. 金属材料弯曲试验方法(GB/T:该标准规定了金属材料弯曲试验方法,包括试样的形状、尺寸、制备方法和试验步骤等。

该标准适用于金属材料弯曲性能的测定,包括弯曲强度、弯曲模量等指标。

2. 塑料弯曲试验方法(GB/T:该标准规定了塑料弯曲试验方法的原理、试样形状和尺寸、试验环境、试验步骤和结果处理等。

该标准适用于塑料弯曲性能的测定,包括弯曲强度、弯曲模量等指标。

3. 玻璃弯曲试验方法(GB/T:该标准规定了玻璃弯曲试验方法的原理、试样形状和尺寸、试验环境、试验步骤和结果处理等。

该标准适用于玻璃弯曲性能的测定,包括弯曲强度、弯曲模量等指标。

4. 纸和纸板弯曲试验方法(GB/T:该标准规定了纸和纸板弯曲试验方法的原理、试样形状和尺寸、试验环境、试验步骤和结果处理等。

该标准适用于纸和纸板弯曲性能的测定,包括弯曲强度、弯曲模量等指标。

除了以上常见的弯曲试验方法和标准,还有许多其他针对特定材料的弯曲试验方法和标准,如木材、复合材料、橡胶等。

在进行弯曲试验时,应根据所测材料的类型和测试目的选择合适的试验方法和标准。

材料弯曲实验报告doc

材料弯曲实验报告doc

材料弯曲实验报告篇一:3-材料力学实验报告(弯曲)材料力学实验报告(二)实验名称:弯曲正应力实验一、实验目的二、实验设备及仪器三、实验记录测点1的平均读数差ΔA1平=? ? ? ? A? 10 ? ?61平1平梁的材料:低碳钢(Q235) 梁的弹性模量E=200GPa梁的截面尺寸高H=宽b= 加载位置 a=W ? bH2抗弯截面模量 Z 6?平均递增载荷? P 平 ?与ΔP相应的弯矩 ? M ? ?Pmax2平? a ?四、测点1实验应力值与理论应力值的比较?1 实 ?E . ??1平?? ?Mmax1 理 ?W?Z误差: ?1理??1实? 100?%?1理五、回答问题1.根据实验结果解释梁弯曲时横截面上正应力分布规律。

2.产生实验误差的原因是由哪些因素造成的?审阅教师篇二:材料力学实验报告(2)实验一拉伸实验一、实验目的1.测定低碳钢(Q235)的屈服点?s,强度极限?b,延伸率?,断面收缩率?。

2.测定铸铁的强度极限?b。

3.观察低碳钢拉伸过程中的各种现象(如屈服、强化、颈缩等),并绘制拉伸曲线。

4.熟悉试验机和其它有关仪器的使用。

二、实验设备1.液压式万能实验机;2.游标卡尺;3.试样刻线机。

三、万能试验机简介具有拉伸、压缩、弯曲及其剪切等各种静力实验功能的试验机称为万能材料试验机,万能材料试验机一般都由两个基本部分组成;1)加载部分,利用一定的动力和传动装置强迫试件发生变形,从而使试件受到力的作用,即对试件加载。

2)测控部分,指示试件所受载荷大小及变形情况。

四、试验方法1.低碳钢拉伸实验(1)用画线器在低碳钢试件上画标距及10等分刻线,量试件直径,低碳钢试件标距。

(2)调整试验机,使下夹头处于适当的位置,把试件夹好。

(3)运行试验程序,加载,实时显示外力和变形的关系曲线。

观察屈服现象。

(4)打印外力和变形的关系曲线,记录屈服载荷Fs=22.5kN,最大载荷Fb =35kN。

(5)取下试件,观察试件断口: 凸凹状,即韧性杯状断口。

弯曲、焊接、机械连接试验方法2013.5.7

弯曲、焊接、机械连接试验方法2013.5.7

25
2.5和3.5
3.0<d(a)≤4.0
10±0.1
35
3.5和4.5
4.0<d(a)≤6.0
15±0.1
50
4.5和7.0
6.0<d(a)≤8.0
20±0.1
75
7.0和9.0
8.0<d(a)≤10.0
25±0.1
100
9.0和11.0
较小的拨杆孔直径适用于较细公称直径的线材(见第一栏),较大的拨杆孔直径适用于较粗公称直径的 线材(也见第一栏),对于在第一栏所列的范围直径,应选择合适的拨杆孔直径以保证线材在孔内自由 运动。
72 104 120 152
试样长度 (mm)
200 230 240 260
210 240 250 280
220 250 270 300
钢筋公称直径 (mm) 18
20
22
25
钢筋焊接接头弯曲试验参数表 表4-2-23
钢筋级别
弯心直径 (mm)
支辊内侧距(D+2.5d) (mm)

36
81

72
117
部的距离均为1.0mm。 ②拨杆孔两端应稍大,且孔径应符合表4-2-20的规定。 5、试样 1)线材试样应尽可能平直。但试验时,在其弯曲平面内允许
有轻微的弯曲. 2)必要时试样可以用手矫直,在用手不能矫直时,可在木材
、塑性材料或铜的平面上用相同材料的锤头矫直。
3)在矫直过程中,不得损伤线材表面,且试样也不得产生任 何扭曲。
4)有局部硬弯的线材应不矫直。
6、试验环境 一般应在室温10~35℃内进行试验 对温度要求严格的试验,试验温度应为23℃±5℃。 7、试验程序
1)根据表4-2-20所列线材直径,选择圆柱支座半径r,圆柱支座 顶部至拨杆底部距离h以及拨杆孔直径ds。

材料的抗弯实验实验报告(3篇)

材料的抗弯实验实验报告(3篇)

第1篇一、实验目的1. 了解材料在弯曲载荷作用下的力学行为。

2. 掌握材料抗弯性能的测试方法。

3. 研究不同材料在弯曲载荷下的变形和破坏规律。

4. 通过实验数据,分析材料的抗弯强度和弯曲刚度。

二、实验原理材料在受到弯曲载荷时,其内部将产生弯矩和剪力,导致材料发生弯曲变形。

本实验通过测试材料在弯曲载荷作用下的变形和破坏情况,来研究材料的抗弯性能。

根据材料力学理论,材料的抗弯强度和弯曲刚度可以通过以下公式计算:1. 抗弯强度(σ):σ = M / W,其中M为弯矩,W为截面模量。

2. 弯曲刚度(E):E = F / ΔL,其中F为作用力,ΔL为弯曲变形长度。

三、实验设备及材料1. 实验设备:万能材料试验机、游标卡尺、弯曲试验台、支架、砝码等。

2. 实验材料:低碳钢、铝合金、木材等不同材料的试件。

四、实验步骤1. 准备实验材料:根据实验要求,选择不同材料的试件,并按照规定的尺寸进行加工。

2. 安装试件:将试件固定在万能材料试验机的弯曲试验台上,确保试件中心线与试验机中心线对齐。

3. 设置实验参数:根据实验要求,设置试验机的加载速度、最大载荷等参数。

4. 加载:缓慢加载至规定载荷,观察试件的变形和破坏情况。

5. 记录数据:记录试件的弯曲变形、破坏载荷等数据。

五、实验结果与分析1. 低碳钢试件:在弯曲载荷作用下,低碳钢试件首先发生弯曲变形,随后出现裂缝,最终发生断裂。

实验结果表明,低碳钢具有较高的抗弯强度和弯曲刚度。

2. 铝合金试件:在弯曲载荷作用下,铝合金试件发生较大的塑性变形,但最终未发生断裂。

实验结果表明,铝合金具有较高的弯曲刚度,但抗弯强度相对较低。

3. 木材试件:在弯曲载荷作用下,木材试件首先发生弯曲变形,随后出现裂缝,最终发生断裂。

实验结果表明,木材具有较高的抗弯强度,但弯曲刚度相对较低。

六、结论1. 低碳钢、铝合金、木材等不同材料在弯曲载荷作用下的抗弯性能有所不同。

2. 低碳钢具有较高的抗弯强度和弯曲刚度,适用于承受较大弯曲载荷的场合。

各种材料弯曲试验的标准大盘点

各种材料弯曲试验的标准大盘点

各种材料弯曲试验的标准大盘点
弯曲试验测定材料承受弯曲载荷时的力学特性的试验,是材料机械性能试验的基本方法之一。

弯曲试验广泛应用于测定钢、塑料、木材、纸张、陶瓷、金属、层压板、刨花板、清水墙、瓷砖和玻璃和其他材料的机械性能。

塑料弯曲试验按照GB/T 9341-2023《塑料弯曲性能的测定》进行
金属弯曲力学性能试验按照YB/T 5349-2023《金属弯曲力学性能试验方法》进行
金属材料弯曲试验按照GB/T 232-2023《金属材料弯曲试验方法》进行
金属线材反复弯曲试验按照GB/T 238-2023《金属材料线材反复弯曲试验方法》进行
钢筋混凝土用钢筋弯曲和反向弯曲试验按照YB/T 5126-2023《钢筋混凝土用钢筋弯曲和反向弯曲试验方法》进行
热双金属热弯曲试验按照GB/T 8364-2023《热双金属热弯曲试验方法》进行热双金属横向弯曲试验按照GB/T 24298-2023《热双金属横向弯曲试验方法》进行
焊接接头弯曲试验按照GB/T 2653-2023《焊接接头弯曲试验方法》进行
纤维增强塑料弯曲试验按照 GB/T 1449-2023《纤维增强塑料弯曲性能试验方法》进行
塑料焊接试样弯曲试验按照HG/T 4283-2023《塑料焊接试样弯曲检测方法》进行
硬质泡沫塑料弯曲强度和表观弯曲弹性模量测定试验按照GB/T 8812.2-2023《硬质泡沫塑料弯曲性能的测定第2部分:弯曲强度和表现弯曲弹性模量的测定》进行
硬质橡胶弯曲试验按照HG/T 3844-2023《硬质橡胶弯曲强度的测定》进行
不透性石墨材料弯曲试验按照GB/T 13465.2-2023《不透性石墨材料抗弯强度试验方法》进行。

金属管材弯曲试验

金属管材弯曲试验

金属管材弯曲试验是一种常见的金属材料力学性能测试方法。

该试验可以评估金属管材在弯曲应力下的变形能力、强度和韧性等力学性能指标,为工程设计和生产制造提供重要的参考依据。

本文将介绍金属管材弯曲试验的原理、方法、实验步骤和注意事项,并结合实例进行详细说明。

一、试验原理金属管材弯曲试验是通过在一定条件下施加弯曲力,使金属管材产生弯曲变形,从而评估其力学性能。

在试验中,金属管材被放置在弯曲机上,通过机械装置施加弯曲力,使其产生弯曲变形。

根据弯曲变形的形式和程度,可以评估金属管材的强度、韧性和变形能力等指标。

二、试验方法1.试验材料:金属管材样品。

2.试验设备:弯曲机、力传感器、位移传感器等。

3.试验步骤:(1)将金属管材样品放置在弯曲机上,调整弯曲机的夹持装置,使其夹紧金属管材。

(2)根据试验要求,选择合适的弯曲机模具,安装在弯曲机上。

(3)根据试验要求,调整弯曲机的弯曲角度和弯曲速度等参数。

(4)启动弯曲机,施加弯曲力,使金属管材产生弯曲变形。

(5)在弯曲过程中,通过力传感器和位移传感器等装置,实时监测弯曲力和弯曲变形等试验数据。

(6)当金属管材弯曲到一定角度或出现裂纹等异常情况时,停止弯曲机,记录试验数据。

4.试验数据处理:根据试验数据,计算金属管材的强度、韧性、变形能力等力学性能指标。

三、注意事项1.试验前应对试验设备进行检查和维护,确保其正常运行。

2.选择合适的试验参数,避免过大或过小的弯曲角度和弯曲速度等参数对试验结果的影响。

3.在试验过程中,应注意观察金属管材的变形情况,避免过大的弯曲角度和弯曲速度等条件导致金属管材断裂等异常情况。

4.在试验结束后,应对试验数据进行处理和分析,得出准确的试验结果。

四、实例说明某企业生产的304不锈钢管材,经过金属管材弯曲试验后,得出以下试验数据:金属管材直径:50mm金属管材壁厚:2mm弯曲角度:90度弯曲速度:10mm/min试验结果:弯曲力:1200N弯曲变形量:15mm试验结论:该304不锈钢管材在弯曲角度为90度、弯曲速度为10mm/min的条件下,具有较好的弯曲变形能力和韧性,适用于一些需要弯曲加工的工程项目。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料机械性能检测(弯曲试验)
测定材料承受弯曲载荷时的力学特性的试验,是材料机械性能试验的基本方法之一。

弯曲试验主要用于测定脆性和低塑性材料(如铸铁、高碳钢、工具钢等)的抗弯强度并能反映塑性指标的挠度。

弯曲试验还可用来检查材料的表面质量。

弯曲试验在万能材料机上进行,有三点弯曲和四点弯曲两种加载荷方式。

试样的截面有圆形和矩形,试验时的跨距一般为直径的10倍。

对于脆性材料弯曲试验一般只产生少量的塑性变形即可破坏,而对于塑性材料则不能测出弯曲断裂强度,但可检验其延展性和均匀性展性和均匀性。

塑性材料的弯曲试验称为冷弯试验。

试验时将试样加载,使其弯曲到一定程度,观察试样表面有无裂缝。

试验特点
与拉伸试验相比,弯曲试验有着以下几个特点:
1:弯曲试验试样样式简单(圆形、方形、矩形三种),适用于测定加工不方便的脆性材料。

2:对脆性材料做拉伸试验,其变形量很小。

而弯曲试验可以用挠度来表示脆性材料的塑性。

3:弯曲试验时,截面上的应力分布是表面上的应力最大,因此其对材料表面缺陷反应灵敏。

4:对于高塑性材料,弯曲试验通常达不到其破坏程度,故一般不做弯曲强度试验。

5:弯曲试验操作比拉伸试验要简单方便。

试验应用
1:可以测定灰铸铁的抗弯强度。

灰铸铁的抗弯性能优于抗拉性能,其抗弯强度是灰铸铁的重要力学性能指标。

2:可以测定硬质合金的抗弯强度。

这些材料加工困难,难易制成拉伸试样。

而弯曲试
样形状简单,故利用弯曲试验评价其性能和质量。

3:可以测量陶瓷材料、工具钢的抗弯强度。

这些脆性材料测定抗拉强度很困难,且试样加工也比较困难,因而采用弯曲试验。

4:可以用来检测和比较表面热处理层的质量和性能。

因弯曲试验对材料表面缺陷敏感。

5.可以用来检测材料在受弯曲载荷下作用下的性能,因为许多机械零件(如脆性材料制作的刀具等)是在弯曲状态下工作的,需要对这些零件进行弯曲试验.
国家标准:
GB/T232-2010《金属材料弯曲试验方法》
以上由青岛东标检测提供。

相关文档
最新文档