原子吸收光谱仪基本课程

合集下载

仪器分析教案第五章原子吸收光谱法

仪器分析教案第五章原子吸收光谱法

23:52:01
3)富燃性火焰:燃气与助燃气比例大于化学计量比, 燃助比大于1:3。这种火焰燃烧高度较高,温度较 低,噪声较大。但由于燃烧不完全,火焰呈强还原 性气氛,金属氧化物易被还原产生基态原子。适用 于易形成难熔氧化物的元素,如Mo,Cr等。 空气—乙炔火焰是原子吸收分析中最常用的火焰。
☆☆火焰原子化法的优点:重现性好、火焰稳定性 高、背景噪声低、易于操作的特点。 缺点:原子化效率仅为10%左右,灵敏度较低。
23:52:01
• 原子吸收光谱和原子发射光谱的比较 • 1.原子吸收法的选择性高,干扰较少且易于克服。 • 由于原于的吸收线比发射线的数目少得多,这样 谱线重叠的几率小得多。而且空心阴极灯一般并 不发射那些邻近波长的辐射线经,因此其它辐射 线干扰较小。 • 2.原子吸收具有较高的灵敏度。 • 在原子吸收法的实验条件下,原子蒸气中基态原 于数比激发态原子数多得多,所以测定的是大部 分原子。 • 3.原子吸收法 比发射法具有更佳的信噪比。 • 这是由于激发态原子数的温度系数显著大于基态 原子。
锐线光谱,光的强度稳定且背景小。
☆空心阴极灯、蒸气放电灯、无极放电灯 ☆空心阴极灯应用最广泛
直流电压 300V~500V
23:52:01
Anode Ne+
Optically transparent window
Cathode
M
M* →M + hn M
Shield
23:52:01
空心阴极灯的发射光谱主要是阴极元素的光谱, 用不同的待测元素作阴极,就制成相应待测元素的 空心阴极灯。
物,如AsH3 、SnH4 、BiH3等。这些氢化物经载气送入石
英管后,进行原子化与测定。
23:52:01

培训讲义一原子吸收光谱仪基本课程共38页文档

培训讲义一原子吸收光谱仪基本课程共38页文档

41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
培训讲义一原子吸收光谱仪基本课程
1、纪律是管理关系的形式。——阿法 纳西耶Biblioteka 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴
45、自己的饭量自己知道。——苏联

岛津原子吸收光谱仪基础知识培训课件

岛津原子吸收光谱仪基础知识培训课件
(b) 光散射
光程中的样品颗粒产生加宽吸收谱带的效应
(c) 光谱干扰
样品中分析物和其他自由原子的原子吸收发 生重叠,两光谱的吸收波长非常接近
光谱线干扰
目标元素
Al Ca Cd Co Cu Fe Ga Hg Mn Sb Si Zn
光谱线 (nm)
干扰元素
V Ge As In Eu Pt Mn Co Ga Pb V Fe
岛津原子吸收光谱仪基础知识
分析中心
原子吸收光谱法的基础
原子吸收光谱分析概况
1802年伍郎斯顿(W.H.Wollasten)研究太阳光谱, 发现连续光谱中有暗线
1860年克希霍夫(G.Kirchhoff)和本生 (R.B.Bunsen)研究碱金属和碱土金属
1955年澳大利亚物理学家瓦尔什(A.Walsn)发表著 名论文《原子吸收光谱在化学分析中的应用》
传统GFA
电流控温
(目标元素挥发)
的问题 (样品易爆沸)
1000~3000℃
100℃
300~900℃
时间
干燥
灰化 原子化
传统GFA
GFA-EX7 GFA-EX7i
传统电流控温
自动温度校准 电流控制
光学控温 光学控温
高灵敏度GFA
新设计的优点
高灵敏度 长寿命的石墨管 适合连续多样品分析减少操作成本
E2
hn
E2 = 激发态 E1 = 基态 h = Planck 常数 n = 光谱频率
E1
e-
钠线
eV 6
4 2.2eV
2 589nm
基态
3.6eV 330.3nm
Lambert-Beer定律
Io
I
原子蒸汽

原子吸收光谱法(AAS)

原子吸收光谱法(AAS)

局限性:测不同的元素需不同的元 素灯,不能同时测多元素,难熔元 素、非金属元素测定困难。
原子吸收光谱法基本原理
1.原子的能级与跃迁
基态第一激发态,吸收一定频率的辐射能量。 产生共振吸收线(简称共振线) 吸收光谱 激发态基态,发射出一定频率的辐射。 产生共振吸收线(也简称共振线) 发射光谱
原子吸收光谱法基本原理
A kc
原子吸收分光度计
原子吸收分光度计
原子吸收分光度计
光源
原子化器
单色器
检测系统
思考:光学系统(单色器)为什么在原子化器和检 测系统之间?
光 源
提供待测元素的特征光谱。获得较高的 灵敏度和准确度。 光源应满足如下要求; (1)能发射待测元素的共振线; (2)能发射锐线; (3)辐射光强度大,稳定性好。
2.元素的特征谱线
(1)各种元素的原子结构和外层电子排布不同 基态第一激发态:
跃迁吸收能量不同——具有特征性。
(2)各种元素的基态第一激发态
最易发生,吸收最强,最灵敏线。特征谱线。
(3)利用原子蒸气对特征谱线的吸收可以进行定量分析
原子吸收光谱法基本原理
从光源发射出具有待测元素特征 谱线的光,通过试样蒸气时,被蒸气 中待测元素的基态原子所吸收,吸收 的程度与被测元素的含量成正比。故 可根据测得的吸光度,求得试样中被 测元素的含量。
将待测试样在专门的氢化物生成器中产生氢
化物,送入原子化器中检测。
单色器
•作用:将待测元素的吸收线与邻近线分开
•组件:色散元件 ( 棱镜、光栅 ) ,凹凸镜、 狭缝等
检测系统
•作用: 将待测元素光信号转换为电信号, 经放大数据处理显示结果。 •组件: 检测器、放大器、对数变换器、显 示记录装置。

仪器分析-第7章 原子吸收与原子荧光光谱法

仪器分析-第7章 原子吸收与原子荧光光谱法

原子的能级与跃迁和元素的特征谱线 1. 基态第一激发态, 吸收一定频率的辐射能量。 产生共振吸收线(简称共振线) 吸收光谱 2.第一激发态基态 发射出同样频率的辐射。 产生共振发射线(也简称共振线) 发射光谱 3.各种元素的原子结构和外层电子排布不同: 特征谱线 最易发生,吸收最强,最灵敏线,分析线。 利用待测原子蒸气对同种元素的特征谱线(共振 线)的吸收可以进行定量分析。原子吸收光谱位于光 谱的紫外区和可见区。
(二)原子吸收光谱轮廓与变宽
☺ 1、吸收定律 强度为I0 的单色平行光通过厚度为l的原子蒸气,其 中一部分光被吸收,透过光的强度I服从吸收定律:
I0 原子蒸汽 l I
I I 0 e
( k l )
K是基态原子对频率为的
光的吸收系数。它与入射 光的频率、基态原子密度 及原子化温度等有关。
第一节
一、原子吸收的历史发展
概述
原子吸收光谱法是一种基于待测基态原子蒸 气对特征谱线的吸收而建立的一种分析方法。 发展经历了3个发展阶段: 1、原子吸收现象的发现 –1802年Wollaston发现太阳光谱的暗线;
太阳光
暗 线
–1859年Kirchhoff和Bunson解释了暗线产生的原因: 是由于大气层中的钠原子对太阳光选择性吸收的结果。
若采用一个连续光源(氘 或钨灯),即使是用高质 量的单色器入射可得到光 谱带为(0.2nm)的高纯光。 原子吸收线半宽度(10-3 nm, 即便是全部吸收)。由待测 原子吸收线引起的吸收值, 仅相当于总入射光强度的 0.5% [(0.001/0.2)×100%=0.5%], 原子吸收只占其中很少部 分,使测定灵敏度极差。
原子吸收光谱仪又称原子吸收分光光度计,虽 然种类很多,但基本结构是一样的。 锐线光源 原子化器 主要组成部分

原子吸收光谱仪实验课ppt课件

原子吸收光谱仪实验课ppt课件
22
2.2.7 样品分析
23
2.2.8 关机
24
2.3 原子吸收的干扰及抑制
1. 物 理 干 扰(基体效应) 如:通过标准加入法来抑制 3. 光 谱 干 扰 如:通过氘灯进行校正 2. 化 学 干 扰 如:石墨炉法测铅加入加入磷酸二氢铵 (NH4H2PO4)
25
化学干扰
产生:待测元素与共存组分发生了化学反应,生成了难挥发或难 解离的化合物,使基态原子数目减少所产生的干扰。
24小时,并清洗干净
• 矩管及与发生器的连接管使用前保持清洁
、干燥
• 测砷时使用到碘化钾,因此应及时用酸清
洗整个系统4小时以上,再用蒸馏水清洗, 以免碘化钾吸收汞蒸气影响汞的测定。
44
思考题
• 原子吸收光谱仪为何要做维护保养? • 测试时如何选择定量分析方法? • 原子吸收光谱用于定量分析的理论依据是
什么?
45
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
46
气 液 分 离 器
蠕动泵管
42
3.7 氢化物发生器使用注意事项
当仪器调试好后,确认光路是最优化状态 时,测定发现无信号,相对偏差太大,应 考虑以下几点:
蠕动泵管是否正常运作 矩管及与发生器的连接管是否清洁、干燥 气液分离器是否干净无污
43
3.7.1 氢化物发生器的维护保养
• 蠕动泵管用后及时清洗,防止堵塞 • 气液分离器污染后,必要时拆下用硝酸泡
特点:原子吸收分析的主要干扰来源,具有选择性。 如:石墨炉法加入加入磷酸二氢铵(NH4H2PO4)
26
3 仪器的维护与保养
• 仪器缺乏保养可能出现的问题 • 仪器的维护保养内容 • 仪器的使用注意事项与保养

〖21世纪仪器分析教材〗原子吸收光谱分析篇

〖21世纪仪器分析教材〗原子吸收光谱分析篇

原子吸收光谱分析基本要点:1. 了解影响原子吸收谱线轮廓的因素;2. 理解火焰原子化和高温石墨炉原子化法的基本过程;3. 了解原子吸收分光光度计主要部件及类型;4. 了解原子吸收分光光度法干扰及其抑制方法;5. 掌握原子吸收分光光度法的定量分析方法及实验条件选择原则。

第一节原子吸收光谱分析概述一、原子吸收光谱分析定义:根据物质产生的原子蒸气中待测元素的基态原子对光源特征辐射谱线吸收程度进行定量的分析方法。

二、原子吸收光谱分析的特点:( 1 )灵敏度高:其检出限可达 10 -9 g /ml ( 某些元素可更高 ) ;( 2 )选择性好:分析不同元素时,选用不同元素灯,提高分析的选择性;( 3 )具有较高的精密度和准确度:试样处理简单。

第二节原子吸收光谱分析基本原理一、原子吸收光谱的产生及共振线在一般情况下,原子处于能量最低状态(最稳定态),称为基态(E 0 = 0)。

当原子吸收外界能量被激发时,其最外层电子可能跃迁到较高的不同能级上,原子的这种运动状态称为激发态。

处于激发电磁波的形式放出能量:共振发射线:电子从基态跃迁到能量最低的激发态时要吸收一定频率的光,它再跃迁回基态时,则发射出同样频率的光(谱线),这种谱线称为共振发射线。

共振吸收线:电子从基态跃迁至第一激发态所产生的吸收谱线称为共振吸收线。

共振线:共振发射线和共振吸收线都简称为共振线。

各种元素的原子结构和外层电子排布不同,不同元素的原子从基态激发至第一激发态(或由第一激发态跃迁返回基态)时,吸收(或发射)的能量不同,因而各种元素的共振线不同而各有其特征性,所以这种共振线是元素的特征谱线。

二、谱线轮廓与谱线变宽式中:Kn ——基态原子对频率为的光的吸收系数,它是光源辐射频率的n函数由于外界条件及本身的影响,造成对原子吸收的微扰,使其吸收不可能仅仅对应于一条细线,即原子吸收线并不是一条严格的几何线(单色l ),而是具有一定的宽度、轮廓,即透射光的强度表现为一个相似于图8-3的频率分布, 若用原子吸收系数Kn随n变化的关系作图得到吸收系数轮廓图:(二)谱线变宽引起谱线变宽的主要因素有:1. 自然宽度:在无外界影响下,谱线仍有一定宽度,这种宽度称为自然宽度,以ΔvN 表示。

大学仪器分析教学课件原子吸收光谱仪主要部件.ppt

大学仪器分析教学课件原子吸收光谱仪主要部件.ppt
device of atomization
四、单色器
monochromators
五、检测器
detector
15:25:11
原子吸收仪器(1)
15:25:11
原子吸收仪器(2)
15:25:11
原子吸收仪器(3)
15:25:11
一、流程
特点
1.采用待测元素的 锐线光源 2.单色器在火焰与 检测器之间 3.原子化系统
(1)雾化器
结构如图所示
主要缺点:雾化效率低。
15:25:11
(动画)
(2)燃烧器
它的作用是产生火焰,使进入火焰的试样 气溶胶蒸发和原子化。燃烧器是用不锈钢材料制 成,耐腐蚀、耐高温。燃烧器所用的喷灯有“孔 型”和“长缝型”两种。预混合型燃烧器中,一
般 采用吸收光程较长的长缝型喷灯。喷灯的缝长和 缝宽随火焰而不同, 空气-乙炔焰: 0.5mm×100mm; 氧化亚氮-乙炔焰:0.5mm×50mm;
(动画)
原子化过程分为干燥、灰化(去除基体)、原子化、净化( 去除残渣) 四个阶段,待测元素在高温下生成基态原子。
15:25:11
(3)优缺点
优点:原子化程度高,试样用量少(1-100μL),可测固 体及粘稠试样,灵敏度高,检测极限10-12 g/L。
缺点:重现性差,测定速度慢,操作不够简便,装置复 杂。
15:25:11
5.其他原子化方法
(1)低温原子化方法 主要是氢化物原子化方法,原子化温度700~900 ゜C ; 主要应用于:As、Sb、Bi、Sn、Ge、Se、Pb、Ti等元素 原理: 在酸性介质中,与强还原剂硼氢化钠反应生成气
态氢化物。例
AsCl3 +4NaBH4 + HCl +8H2O = AsH3 ↑+4NaCl +4HBO2+13H2 将待测试样在专门的氢化物生成器中产生氢化物,送入原

原子吸收光谱仪操作流程

原子吸收光谱仪操作流程

原子吸收光谱仪操作流程原子吸收光谱仪是一种常用于分析金属元素含量的仪器,在化学、环境监测、冶金等领域起着重要作用。

本文将介绍原子吸收光谱仪的操作流程,包括样品准备、仪器设置、测量步骤等内容。

一、样品准备1. 样品采集:根据实际分析要求,选择合适的样品进行采集。

样品可以是固体、液体或气体。

确保样品完整性并避免污染。

2. 样品预处理:样品可能含有杂质,需进行预处理。

固体样品可通过研磨、溶解等方法,将其转化为适合分析的形态。

液体样品可能需要进行稀释或过滤。

3. 校准曲线制备:选取一系列已知浓度的标准溶液,制备出浓度递增的标准曲线。

标准溶液的浓度应覆盖待测样品的浓度范围。

二、仪器设置1. 仪器预热:打开原子吸收光谱仪电源,让仪器预热一段时间,使其达到稳定工作状态。

2. 光源选择:根据待测元素选择合适的光源。

通常有氢气火焰、乙炔火焰、硝酸作为氧化剂等。

3. 波长选择:选择适合待测元素吸收峰的波长。

可通过查阅相关文献或使用仪器内置的波长库来确定。

4. 仪器调节:调节仪器的参数,包括灯丝电流、火焰稳定性、光源强度、焰高等,以获得最佳的测量结果。

三、测量步骤1. 空白校正:使用纯溶剂进行空白校正。

将纯溶剂注入原子吸收光谱仪,在所选定的波长下进行测量,并记录吸光度值。

2. 样品测量:将经过预处理的样品溶液输入原子吸收光谱仪。

对于固体样品,可以通过溶解后得到的溶液进行测量。

根据所选择的波长,进行吸光度测量,并记录吸光度值。

3. 曲线绘制:利用测得的标准溶液吸光度值和对应的浓度值,绘制校准曲线。

根据吸光度与浓度的线性关系,可通过拟合曲线来获得待测样品的浓度。

4. 结果分析:根据校准曲线和样品测量结果,计算出待测样品中目标元素的含量。

四、数据处理和质控1. 数据分析:根据实验结果,进行数据处理和分析,包括平均值、相对标准偏差等统计参数的计算。

2. 质控措施:在实验过程中,进行质控措施来确保结果的准确性和可靠性,如引入空白对照、加入内标等。

仪器操作流程原子吸收光谱仪的操作步骤

仪器操作流程原子吸收光谱仪的操作步骤

仪器操作流程原子吸收光谱仪的操作步骤仪器操作流程:原子吸收光谱仪的操作步骤原子吸收光谱仪是一种常用于化学分析和环境监测的仪器,其操作步骤十分重要。

本文将介绍原子吸收光谱仪的基本操作流程,帮助读者更好地理解和应用该仪器。

1. 仪器准备在正式操作之前,首先要进行仪器的准备工作。

确保原子吸收光谱仪与电源连接正常,并检查仪器的各个部件是否完好无损。

另外,还需检查气源和溶液等实验所需物质是否充足,并准备好所需的标准溶液和样品溶液。

2. 仪器开机在确认仪器准备就绪后,将电源开关打开,启动原子吸收光谱仪。

待仪器完成自检过程后,进入正式的操作界面。

3. 参数设置在进行样品测试之前,需要根据实际需要对仪器的参数进行设置。

通常,原子吸收光谱仪的参数设置包括波长选择、灯源选择、工作曲线选择等。

根据样品的性质和测定的要求,选择合适的参数设置。

4. 样品处理为了确保测定的准确性和可靠性,对样品进行预处理是必要的。

样品处理的具体过程取决于样品的特性和测定的目的。

常见的样品处理方法包括稀释、溶解、过滤等。

在进行样品处理时,要注意严格按照操作规程进行,并避免样品受到外界污染。

5. 校准仪器在样品测试之前,必须进行仪器的校准。

校准的目的是建立仪器的工作曲线,以便对样品进行准确的定量测定。

校准可通过标准溶液进行,根据需要选择合适的标准溶液进行校准。

6. 样品测试校准完成后,即可进行样品的测试。

先将标准溶液注入样品池,测得稳定的吸光度数值后,再进行待测样品的测试。

确保待测样品的体积、浓度等参数符合要求,将待测样品注入样品池进行测试。

记录下样品的吸光度数值。

7. 数据处理样品测试完成后,需要对数据进行处理。

通常,原子吸收光谱仪会自动计算出样品的浓度值,并将测试结果显示在操作界面上。

对于需要进一步处理的数据,可使用相关软件对数据进行分析和处理,包括绘制曲线图、计算样品浓度等。

8. 仪器关机在完成样品测试并保存好数据后,应及时关闭原子吸收光谱仪。

thermo原子吸收光谱仪说明书

thermo原子吸收光谱仪说明书

thermo原子吸收光谱仪说明书Thermo原子吸收光谱仪说明书第一部分:引言1.1 产品简介Thermo原子吸收光谱仪是一种高精度的分析仪器,广泛应用于化学分析、环境监测和食品安全等领域。

本说明书将介绍该仪器的基本原理、操作步骤和注意事项,以确保用户正确且安全地使用该设备。

1.2 主要特点(1) 高灵敏度:该仪器能够检测非常低浓度的样品,并提供高精度的分析结果。

(2) 宽波长范围:该仪器能够在紫外、可见和近红外范围内进行分析。

(3) 快速分析:使用该仪器进行分析的速度比传统分析方法更快。

(4) 自动化操作:该仪器具有用户友好的界面和自动化的样品处理功能。

1.3 适用范围Thermo原子吸收光谱仪适用于各种液体和固体样品的分析,如水质检测、土壤分析、食品安全检测等。

第二部分:原理和仪器组成2.1 原理Thermo原子吸收光谱仪采用原子吸收光谱技术进行分析。

该技术基于原子在特定波长下吸收光的特性,通过测量样品对特定波长的光的吸收程度来分析目标物质的浓度。

2.2 仪器组成Thermo原子吸收光谱仪主要由光源、样品室、光谱仪和数据处理系统组成。

光源产生特定波长的光,通过样品室中的样品,进入光谱仪进行光谱分析。

数据处理系统负责处理和显示分析结果。

第三部分:操作步骤3.1 准备工作(1) 将Thermo原子吸收光谱仪放置在稳定的工作台上,并确保周围环境无异味和尘埃。

(2) 接通电源,并确保电源稳定。

(3) 打开仪器,并等待仪器自检完成。

3.2 样品处理(1) 准备样品,并将其注入样品室中。

(2) 调整样品室温度和压力,以确保样品在稳定的条件下进行分析。

3.3 设置分析参数(1) 打开数据处理系统,并选择相应的分析程序。

(2) 设置光谱范围和分析波长。

3.4 开始分析(1) 点击“开始分析”按钮,仪器将开始自动进行分析。

(2) 观察显示屏上的分析结果,并记录下相关数据。

3.5 数据处理(1) 将得到的数据导出到计算机上进行进一步处理。

原子吸收光谱仪操作

原子吸收光谱仪操作

原子吸收光谱仪操作1.准备样品:首先,准备待测样品。

样品可以是液体、固体或气体,具体根据需要选择。

确保样品净化,避免杂质对测试结果的影响。

2.准备工作台:将原子吸收光谱仪放在清洁的、稳定的工作台上。

确保仪器的稳定性和安全性。

检查谱仪的供电情况、仪器所有部件的完整性和使用是否正常。

3.设置参数:根据测量的要求,设置吸收光谱仪的参数。

这些参数包括波长范围、进样量、样品情况等。

测量前需要进行初始校准,使用标准样品进行调整,使仪器在测量范围内保持准确稳定的工作状态。

4.进样操作:根据仪器的样品容器要求选择样品装载方法。

液体样品可以使用玻璃孔板装载,而固体样品则可以使用石英或陶瓷杯装载,有些仪器可以使用气体进样系统。

将样品放置于进样装置中,并确保样品加载正确,不会溢出或造成样品传输的中断。

5.启动仪器:将仪器的电源打开,启动仪器。

等待仪器的启动时间,一般为几分钟到十几分钟不等。

在启动过程中,可以根据仪器的要求进行提示和操作。

6.数据采集:启动仪器后,使用相应的软件或操作面板设置数据采集参数。

根据需要选择吸收波长范围,并调整其他参数,如灯的亮度、平台位置等。

然后启动数据采集程序,开始数据采集。

7.数据处理与分析:数据采集完成后,进行数据处理与分析。

根据仪器提供的软件或其他数据处理工具,对原始数据进行处理和分析,得出相应的结果。

此过程可能包括去除背景信号、基线校正、峰面积计算等。

8.结果解释:最后,根据分析结果进行结果解释。

对测量得到的结果进行评估,并与标准样品进行比较,以确定样品中特定元素的浓度。

根据结果进行必要的修正和校准,确保结果的准确性和可靠性。

总结:原子吸收光谱仪操作需要准备样品,准备工作台,设置参数,进样操作,启动仪器,数据采集,数据处理与分析以及结果解释。

通过这些步骤,可以获得样品中各种元素的浓度信息,为进一步研究和应用提供参考。

原子吸收光谱仪实训操作内容流程

原子吸收光谱仪实训操作内容流程

原子吸收光谱仪实训操作内容流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!原子吸收光谱仪实训操作流程详解一、实训前的准备1. 安全教育:在开始任何实验之前,确保所有参与者都接受过安全培训,了解实验室规则和应对突发情况的措施。

原子吸收光谱法

原子吸收光谱法

结构 工作原理
《仪器分析》第四章原子吸收光谱法
石墨炉原子化系统
基本原理:利用大电流(数百安培)通过高阻值的石墨管所产 生的高温,使管中少量试液或固体试样蒸发和原子化。
电源:12~24V 0~500 A 直流电
《仪器分析》第四章原子吸收光谱法
石墨炉原子化步骤
四个阶段: 1.干燥 (去除溶剂) 2.灰化(去除基体) 3.原子化 4.净化(去除残渣),
石墨炉升温示意图
《仪器分析》第四章原子吸收光谱法
元 最 高 灰 化 最高原子化温 线性范围 推荐的改进剂
素 温 度 度(℃)
( ppb )
(℃)
Ag 800 Al 1200 As 1200
1500
1-15 0.005mgPd+0.03mgMg(NO3)2
反2230应0000物和产5物5--的1800熔0 沸0同.点0A1g5或mgSMe g(NO3)2
• f-----振子强度, N0----单位体积内的基态原子数, • e----为电子电荷, m--- -个电子的质量.
《仪器分析》第四章原子吸收光谱法
积分吸收的限制
要对半宽度(∆v)约为10-3 nm的吸收谱线进行积分, 需要极高分辨率的光学系统和极高灵敏度的检测器, 目前还难以做到。 这就是早在19世纪初就发现了原子吸收的现象, 却难以用于分析化学的原因。
Kv~v曲线反映出原子核外层电子 对不同频率的光辐射具有选择性
吸收特性。
《仪器分析》第四章原子吸收光谱法
影响原子谱线宽度的因素
由原子本身性质决定 由外界影响决定
①. 自然宽度ΔλN( Δ υ N)
它与原子发生能级间跃迁时激发态原子的有限寿命
有关。 一般情况下约相当于10-4 Å (10-5nm)

原子吸收光谱仪实验指导书

原子吸收光谱仪实验指导书

原子吸收光谱仪测定水样中的铜一 实验目的1. 学习原子吸收光谱仪的基本原理。

2. 了解原子吸收吸收光谱仪的基本结构及其操作方法。

3. 掌握原子吸收光谱仪进行定量分析的方法。

二 实验原理1.仪器基本原理:仪器从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射特征谱线光被减弱的程度来测定试样中待测元素的含量。

如果光源强度为I 0,则吸收后信号为I ,光强度的变化为:I a = I 0-I实际测量的是透过率T=(I 0-I)/I 0。

其关系式仍然还是朗贝-比尔定律:其中:A-溶液产生的吸光值K-比例常数C-溶液浓度2.定量分析原理:配制一组合适浓度的标准样品,在最佳测定条件下,由低浓度到高浓度依次测定它们的吸光度A ,以吸光度A 对浓度C 作图得A-C 标准曲线。

在相同的测定条件下,测定未知样品的吸光度,从A-C 标准曲线上用内插法求出未知样品中被测元素的浓度。

三 仪器原子吸收光谱仪由光源、原子化器、分光器及检测器四个部分组成。

光源的功能是发射被测元素的特征共振辐射。

原子吸收中使用的光源主要是空心阴极灯(HCL)和无极放电灯(EDL)。

原子化器的功能是提供能量,使试样干燥,蒸发和原子化,在原子吸收光谱分析中,试样中被测元素的原子化是整个分析过程的关键环节。

分光器由入射和出射狭缝、反射镜和色散元件组成,其作用是将所需要的共振吸收线分离出来。

分光器的关键部件是色散元件,现在商品仪器都是使用光栅。

原子吸收光谱仪中广泛使用的检测器是光电倍增管,最近一些仪器也采用CCD 作为检测器。

1x A Lg K Tc ==图1 原子吸收光谱仪光路图四操作步骤1 仪器操作步骤接通电源→开排风、开空气压缩机、开实验气体→开机(电脑、原子吸收仪)→进入Winlab软件→光源预热→方法建立→测定试样→数据处理→仪器复原2 实验步骤(1)铜标准溶液制备:将1000μg/mL铜标液,用去离子水依次稀释成0.2,0.4,0.6,0.8和1.0μg/mL 的标准溶液作为标准曲线上的浓度点。

原子吸收光谱仪基本课程

原子吸收光谱仪基本课程

原子吸收技术能分析的元素
原子吸收技术的应用
第二部分、原子吸收光谱仪: 硬件简介
AA 240 DUO
Spectr AA 50/55
AA240Z
原子吸收光谱仪基本组成部分
光源:产生含有被分析元素特征波长的光线。常见的有空芯阴极灯(HCL) 、无级 放电灯(EDL)和超强度灯(UltrAA Lamp)。 原子化器:将样品中被分析元素成比例地转化成自由原子。所需能量通常 是加热。 a)火焰原子化器: 最常用的方法是用空气-乙炔或 氧化亚氮-乙炔火 焰 。 样品 以雾状被导入火焰中,燃烧头被调节好,使光线通过火 焰,火焰 中的原子对光线 产生吸收。 b)石墨炉原子化器:一定量的样品加入到石墨管(一般为石墨材质)内, 电加热经干燥、灰化等几个阶段,最后在一个较高的温度-原子化阶段,被 迅速地原子化,从而产生与被测元素的含量成正比的原子数量 光学系统:将光线导入原子蒸汽并将出射光导入单色器。 单色器:将元素灯所产生的特定被分析元素的特征波长从其它非特征波长 中分离出 来。 检测器:光敏检测器(通常是光电倍增管)准确地将光强测出。转换成电 信号。 电子线路:将检测器的相应值转换成有用的分析测量值。
a = 吸收系数 b = 样品在光路中的强度 c = 浓度
朗伯-比耳定律的适用条件
理论曲线 A = abc
吸 收 值 (ABS) 浓度
火焰原子化分析曲线线性 较窄。
实际 A abc
光的吸收定律(朗伯-比 耳定律)适用条件:1、 谱线纯;2、浓度稀。

原子吸收的基本原理可用以下几点来 说明:
1、所有原子均可对光产生吸收; 2、被吸收光线的波长只与特定元素相关。 如样品中含镍、铅、铜等元素,如将该样品 置于镍的特征波长中,那么只有镍原子才会 对该特征光线产生吸收. 3、光程中该原子的数量越多,对其特征波 长的吸收就越大,与该原子的浓度成正比。

原子吸收光谱分析培训资料

原子吸收光谱分析培训资料
原子吸收光谱分析培训资 料
原子吸收光什么是原子吸收光谱分析
1 原理
2 工作原理
通过在试样中引入光源和吸收器,测量金 属元素吸收光的强度,并通过浓度分析计 算物质中金属元素的含量。
光源产生特定波长的光,经由吸收器,通 过衡量光的吸收与无吸收来确定金属元素 的浓度。
包括环境分析、食品安 全、药物分析和地质研 究。
4 实验室安全
5 案例研究和实践
注意化学品安全、眼部安全、设备操作和 废物处置。
学习实际应用和操作技巧。
食品安全
检测食品中的有害金属元素,确保食品安全。
地质研究
研究岩石和矿石中的金属元素含量,了解地 质过程。
实验室安全和注意事项
1 化学品安全
2 眼部安全
正确存放和处理化学品,遵循实验室安全 规定。
佩戴护目镜,防止有害光线伤害。
3 设备操作
按照操作说明正确使用仪器设备。
4 废物处置
正确处理废物和污染物,保护环境。
仪器和设备
原子吸收光谱仪
火焰原子吸收光谱仪
石墨炉原子吸收光谱仪
使用特定波长的光源和吸收器 来测量物质中金属元素的含量。
通过将样品通入火焰中,使用 光源测量金属元素的吸收光线。
使用石墨炉加热样品,以增加 对金属元素的灵敏度。
常见应用
环境分析
监测土壤、水源和大气中金属元素的污染程 度。
药物分析
测量药物中的微量金属元素,确保质量。
案例研究和实践
1
案例研究
分析不同水样中的重金属含量,并提出解决方案。
2
实践
通过实验操作,学习如何准确测量样品中金属元素的含量。
3
数据分析
收集实验数据并进行分析,以获取准确的结果。

第4章 原子吸收光谱法3-仪分教程

第4章 原子吸收光谱法3-仪分教程
Vx cx
直接加入,没有定容测定: 直接加入#43; cs
Ax = kCx 联立方程式: 联立方程式: C V +CsVs Ax+s = k x x Vx +Vs
求解: 求解:
定容后测定: 定容后测定:
CsVs Ax Cx = Vx (Ax+s − Ax ) + Ax+sVx
m
(二) 特征浓度(cc) 特征浓度(
能够产生1 吸收(吸光度0 0044) 能够产生1%吸收(吸光度0.0044)所需要的待测组分的 质量浓度。 质量浓度。 此时吸光度为: 此时吸光度为: A’ = lg(100 / 99) = 0.0044 = k’cc …(1) lg(100 99) 配制浓度为 c 的标液,测得吸光度 的标液, A = k’c ……( 二式相比得: ……(2)二式相比得:
cc = 0.0044 c / A (µg · mL-1 / 1%)
故 , cc 可反映火焰法的灵敏度的大小 , 特征浓 可反映火焰法的灵敏度的大小, 度越小,灵敏度越高。 度越小,灵敏度越高。
(三) 特征含量(mc) 特征含量(
能够产生1 吸收(吸光度0 0044) 能够产生1%吸收(吸光度0.0044)时所需的待 测元素的质量。 测元素的质量。 mc = 0.0044 cV /A 样体积(mL) 样体积(mL)。 ( g / 1% )
(1) 相对检出限(Dc): 适用于火焰法。 相对检出限( 适用于火焰法。
配制一系列空白溶液或接近空白的待测组分的 标准溶液,平行测定10 以上, 10次 标准溶液,平行测定10次以上,计算其标准偏差 σ:
- 2 Σ ( Ai -A ) S b = ————— σ n-1

原子吸收光谱仪基本原理

原子吸收光谱仪基本原理

原子吸收光谱仪基本原理1.原子的能级结构:原子中的电子存在不同的能级,与固定的能量相关联。

当原子处于基态时,电子位于最低的能级上。

当吸收能量时,电子会跃迁到更高的能级,该过程称为激发。

激发态是不稳定的,电子会返回到较低的能级并发射出能量,称为发射光。

如果能够控制原子吸收和发射光的能量,就可以测量其中的差异,从而获得有关样品中元素存在的信息。

2.光源:原子吸收光谱仪使用特定波长的光源,通常是一个单色光源。

光源发出的光线通过一个特定的滤光片或光栅,使其只能透过一定波长范围的单色光。

这种单色光会通过样品中的原子或离子产生吸收和发射。

3.样品制备:在进行光谱测量之前,样品通常需要进行制备。

样品可以以固体、液体或气体的形式存在。

对于固体样品,通常需要将其溶解或研磨成液体或粉末。

对于液体样品,可以通过直接测量或进行稀释来处理。

对于气体样品,可以通过进样器引入。

4.原子吸收光谱仪的构成:原子吸收光谱仪通常由光源、光路系统、样品室、检测器和数据处理系统组成。

光路系统用于引导光线,在光源和样品间进行对准调节。

样品室通常是一个封闭的空间,用于放置样品和测量样品的光吸收。

检测器用于测量样品中的光吸收,并将信号转化为电信号。

数据处理系统用于接收、处理和显示或存储测量得到的光谱数据。

5. 光吸收测量原理:样品中的原子或离子会吸收特定波长范围内的光。

通过测量经过样品后透过的光的强度,就可以获得关于样品中原子或离子存在的信息。

将光源从未经过样品的强度定义为Io,经过样品后透过的光的强度定义为I。

样品中的光吸收比例可以通过吸光度(A)定义为A=log(Io/I)来表示。

吸光度与样品的浓度成正比关系,因此可以通过测量吸光度来推断样品中的元素浓度。

综上所述,原子吸收光谱仪通过测量样品中原子或离子对特定波长光的吸收,利用原子能级结构和吸收特性,提供了关于元素存在及其浓度的信息。

这种仪器在许多领域中被广泛应用,例如环境监测、食品检测、药物化学和地球化学分析等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19
吸收与浓度的关系
透光率T(%)与 吸光度(ABS)的关系
透光率/T 100 %
吸光度/A 0
10 %
1%
20
1
2 3
0.1 %
比耳-朗伯定律(Beer-Lambert) 吸收计算
A = log (
Io ) = abc It Ac
a = 吸收系数 b = 样品在光路中的强度 c = 浓度
这里: A = 吸光度 Io = 初始光强 It = 透过光的强度
因此发现了Rb和Cs 将盐放在金属丝上 并放入火焰中 透镜
白卡
燃烧头
棱镜
发射线
吸收和发射
Fraunhofer 吸收线
Cu
Ba
Na
K
发射线
190 nm 元素定性分析
900 nm
基态原子
Orbitals 中子 质子 电子
12
原子能量的吸收和发射
外层 电子
吸收能量 h 基态 h 放出能量 激发态
石墨炉吸收(10 L进样)
Absorbance
火焰吸收的信号
0.004
火焰与石墨炉吸收的检出限比较
元素 火焰 (ppb) 3 450 石墨炉 0.035 0.25
(ppb)*
Ag As
Bi
Cd Cr Pb Zn
50
3 9 15 1.5
0.45
0.01 0.075 0.2 0.0075
*采用20L 进样,D2 扣背景,峰高测量
原子吸收光谱仪基本课程
戴青山

原子吸收光谱仪是用来测量溶液中金属浓度的 一种仪器。
大约可测六十八种金属,浓度 范围从PPB级到 PPM级。测量精度可达到1%RSD。 样品的前处理相对较简单,通常只需用适当的 酸对样品进行消解即可。 仪器的调整及操 作也较为简单。



1
周期表
H
Li Be Na Mg 火焰 石墨炉和火焰

23
原子化

原子化即产生自由基态原子以便进行吸收测量的过 程。原子吸收分析,必须要产生被分 析元素的自由 基态原子,并将之置于该元素的特征谱线中。原子 吸收用于检测元素的浓 度,通常是以液态形式。原 子吸收最适合于分析溶解或吸收后呈水溶液状态样 品中元素 的分析,或者用其它溶剂如有机溶剂稀释 处理的样品。自原子吸收建立以来,已有数种 原子 化器问世。主要有三类:火焰、石墨炉和氢化物发 生器。
便于使用、可靠和受记忆效应的影响小。 燃烧器系统小巧、耐用、价格低廉 可获得足够的信噪比,精密度高,线性范围较石墨炉宽

缺点:

样品量需要较多
雾化效率低:一般5~10% 不能或难以直接分析固体或黏度高的液体样品

灵敏度低,因为燃气和助燃气体将样品大量稀释,因而灵敏度 受到限制
31

石墨炉:
He
B C N O F Ne Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Zn Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta w Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Tm Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu AmCm Bk Cf Es Fm Md No Lr
24
火焰原子化
最常用的原子化器是化学火焰。其反应机理是其他燃料 (如乙炔)和氧化剂(如空气和氧化亚氮)燃烧,样品 中的被测物在这种火焰下,分解产生出原子。测定的是 平衡时通过光路吸收区平均基态原子数,其特征是原子 蒸发特性不随时间变化,即是可以连续重复测定结果, 是已知简便、快速、稳定的装置,适用与广泛元素的常 规分析 通过大量 实践经验,我们能够知道那种元素的分析采用 那种火焰比较合适,因火焰的类型可决定 那些元素能够 产生更多的自由基态原子。从该目的出发,我们可将元 素按其分解的难易 程度分为三大类。
E1 a b c d
}
激发态
c b a
Eo 基态
16
发射能量图
(每个元素有较多的发射线)
发射
E 离子化
E3
E2
能量
E1 a b c d Eo
}
激发态
c b a 基态
17
离子化问题
被分析元素的离子化会降低灵敏度,使高浓度样品上弯 。因此,如被分析元素的校正曲 线上弯的十分明显,表 明低浓度样品受离子化影响更为严重。 当浓度较高时,离子与电 子复合而成为原子的可能性更 大,因而自由基态原子所占的比例更大。 火焰温度越高, 离子化的程度越大。离子化的程度,因 元素不同而不同,这取决于剥离电子所需能量的 大小。 离子化干扰,可通过加入高浓度的更易离子化的元素来 加以抑制。 如钠,钾(0.2%KCl )或2000-5000mg/mL的铯。这 样可在火焰中形成大量电子,从而抑制被分析元素的离子 化反应。
35
这些 元素的测量需综合考虑火焰温度及火焰的化学环境, 可通过调节火焰的燃烧比来仔细调 整之。



29
可用这两种火焰进行分析的元素

有些元素,如As, Ca, Cr, Mg, Mo, Os, Se 和Sr 即 可用空气-乙炔,也可用氧化亚氮-乙 炔火焰来 进行测量。
30
火焰原子化

优点:

一定量的样品加入到石墨炉(一般为石墨材质)内,电加热经几 个步骤,最后在一个较高的温度下,被迅速地原子化,从而产生 与被测元素的含量成正比的原子数量 突出的优点:
灵敏度高,检出限低 进样量少




重要的问题:
分析速度慢(一般每次分析2~3分钟) 精度差(一般1~5%,正常吸光度) 原子化机理复杂,导致背景问题
原子吸收过程
阳光 太阳外层大气压 能量跃迁 E3 E2 E1
3 2

1
4
1
2
3
4
Eo
基态原子吸收共振线
Pb 的能级跃迁图
电子能量跃迁
E4 E3 E2 E1
Eo
202.2
217.0
波长 / nm
261.4
283.3
15
吸收能量图
(每个元素的吸收线较少)
激发
E 离子化
E3
E2
能量
光源:产生含有被分析元素特征波长的光线。常见的有空芯 阴极灯(HCL)、无级 放电灯(EDL)和超强度灯(UltrAA Lamp)。 原子化器:将样品中被分析元素成比例地转化成自由原子。 所需能量通常是加热。 最常用的方法是用空气-乙炔或 氧化 亚氮-乙炔火 焰。 样品 以雾状被导入火焰中,燃烧头被调 节好,使光线通过火 焰,火焰中的原子对光线 产生吸收。 光学系统:将光线导入原子蒸汽并将出射光导入单色器。 单色器:将元素灯所产生的特定被分析元素的特征波长从其 它非特征波长中分离出 来。 检测器:光敏检测器(通常是光电倍增管)准确地将光强测 出。转换成电信号。 电子线路:将检测器的相应值转换成有用的分析测量值。
18
原子发射
在低温状态下,几乎没有原子被激发。当温度升到2000K时, 一些容易 被激发的元素,如碱金属元素可用发射法测出。
通过测量样品的发射量,并将其与已知标样的发射量相比较,同样可得 到未知样品的浓 度值。 除无需光源以外,发射光谱与吸收光谱的基本组成是一样的。在发射光 谱仪中,比较关 键的部分是原子化器(或称之为离子化器)-要能够提 供足够的能量激发自由原子。最 早的激发能源为空气-乙炔及氧化亚氮 -乙炔火焰。多数原子吸收光谱仪也都有发射功 能,可用该功能对诸如 Li,Na,K等碱金属元素进行测量,因这些元素较易激发。 然而,原子吸收光谱仪中所采用的火焰,通常缺乏足够的热能以真正产 生大量激发原子 或离子。另外大多数AA系统所采用的单色器的分辨率充 分地将所需的发射波长从众多的谱线中分离出来。鉴于上述原因,发射 法在原子吸收系统中使用并不很多。
原子吸收的基本原理可用以下几点来说明:
所有原子均可对光产生吸收;
被吸收光线的波长只与特定元素相关。如样品中含 镍、铅、铜等元素,如将该样品 置于镍的特征波长 中,那么只有镍原子才会对该特征光线产生吸收. 光程中该原子的数量越多,对其特征波长的吸收就 越大,与该原子的浓度成正比。
3
4
原子吸收光谱仪有以下几个最基本的组成部分:
5
决大多数情况下,分析过程如下:

将样品制备成溶液形态; 制备一个不含被分析元素的溶液(空白); 制备一系列已知浓度的被分析元素的校正溶液(标样); 依次测出空白及标样的相应值; 依据上述相应值绘 出校正曲线; 测出未知样品的相应值: 依据校正曲线及未知样品的相应值得出样品的浓度值。


27
采用乙炔-氧化亚氮火焰进行分析的元素

第二类元素是那些用空气-乙炔火焰不能分解,而需要 更热的氧化亚氮-乙炔火焰的难 熔元素,火焰温度大约 在 3000oC。如Al、Si、W等。
28

然而,火焰温度并不是所要考虑的唯一元素-燃烧比也同 样重要。

‘贫焰’中含乙炔量 较少,且均被氧化。这类火焰对那些 受氧化作用影响较强的元素来说,将不能产生足够 的自由 基态原子。 但如果火焰中含乙炔量较多,即在‘富焰’中,因其中含 较多的炭、 氢,因而可打破被分析元素较强的氧化链,形 成自由原子。 一个较好的例子是铬元素的 测量,在空气-乙炔火焰中, 贫焰状态下没有吸光度,但富焰状态下确有吸光度。
21
比耳-朗伯定律
理论曲线 A = abc
吸 收 值 (ABS) 浓度
相关文档
最新文档