最新物理速度选择器和回旋加速器易错剖析
高考物理速度选择器和回旋加速器易错剖析
高考物理速度选择器和回旋加速器易错剖析一、速度选择器和回旋加速器1.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。
虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度大小E =10N/C 。
一比荷q =1×106C/kg 的带电粒子从第二象限内M 点以速度v =2.0×103m/s 沿x 轴正方向射出,M 点到x 轴距离d =1.0m ,粒子在第二象限内做直线运动;粒子进入第一象限后从直线OA 上的P 点(P 点图中未画出)离开磁场,且OP =d 。
不计粒子重力。
(1)求第二象限中电场强度和磁感应强度的比值0E B ;(2)求第一象限内磁场的磁感应强度大小B ;(3)粒子离开磁场后在电场中运动是否通过x 轴?如果通过x 轴,求其坐标;如果不通过x 轴,求粒子到x 轴的最小距离。
【答案】(1)32.010m/s ⨯;(2)3210T -⨯;(3)不会通过,0.2m 【解析】 【详解】(1)由题意可知,粒子在第二象限内做匀速直线运动,根据力的平衡有00qvB qE =解得302.010m/s E B =⨯ (2)粒子在第二象限的磁场中做匀速圆周运动,由题意可知圆周运动半径1.0m R d ==根据洛伦兹力提供向心力有2v qvB m R=解得磁感应强度大小3210T B -=⨯(3)粒子离开磁场时速度方向与直线OA 垂直,粒子在匀强电场中做曲线运动,粒子沿y 轴负方向做匀减速直线运动,粒子在P 点沿y 轴负方向的速度大小sin y v v θ=粒子在电场中沿y 轴方向的加速度大小cos yqE a mθ=设经过t ∆时间,粒子沿y 轴方向的速度大小为零,根据运动学公式有y yv t a ∆=t ∆时间内,粒子沿y 轴方向通过的位移大小2y v y t ∆=⋅∆联立解得0.3m y ∆=由于cos y d θ∆<故带电粒子离开磁场后不会通过x 轴,带电粒子到x 轴的最小距离cos 0.2m d d y θ'=-∆=2.如图所示的速度选择器水平放置,板长为L ,两板间距离也为L ,下极板带正电,上极板带负电,两板间电场强度大小为E ,两板间分布有匀强磁场,磁感强度方向垂直纸面向外,大小为B , E 与B 方向相互垂直.一带正电的粒子(不计重力)质量为m ,带电量为q ,从两板左侧中点沿图中虚线水平向右射入速度选择器. (1)若该粒子恰能匀速通过图中虚线,求该粒子的速度大小;(2)若撤去磁场,保持电场不变,让该粒子以一未知速度从同一位置水平射入,最后恰能从板 的边缘飞出,求此粒子入射速度的大小;(3)若撤去电场,保持磁场不变,让该粒子以另一未知速度从同一位置水平射入,最后恰能从板的边缘飞出,求此粒子入射速度的大小.【答案】(1)E B ; (2qELm3)54qBL m 或4qBL m【解析】 【分析】 【详解】(1)若该粒子恰能匀速通过图中虚线,电场力向上,洛伦兹力向下,根据平衡条件,有:qv 1B =qE解得:1E v B=(2)若撤去磁场,保持电场不变,粒子在电场中做类平抛运动,则 水平方向有:L =v 2t竖直方向有:21122L at = 由牛顿第二定律有:qE =ma解得:2v =(3)若粒子从板右边缘飞出,则2222L r L r =+-()解得:5 4r L =由233v qv B m r= 得:354qBLv m=若粒子从板左边缘飞出,则:4L r =由244v qv B mr=得:44qBLv m=3.图中左边有一对水平放置的平行金属板,两板相距为d ,电压为U 0,两板之间有垂直于纸面向里的匀强磁场,磁感应强度大小为B 0.图中右边有一半径为R 的圆形匀强磁场区域,磁感应强度大小为B 1,方向垂直于纸面朝外.一束离子垂直磁场沿如图路径穿出,并沿直径MN 方向射入磁场区域,最后从圆形区域边界上的P 点射出,已知图中θ=60o ,不计重力,求(1)离子到达M 点时速度的大小; (2)离子的电性及比荷q m. 【答案】(1)00U dB (2)0013U 【解析】(1)离子在平行金属板之间做匀速直线运动,由平衡条件得:qvB 0=qE 0 已知电场强度:00U E d= 联立解得:0U v dB =(2)根据左手定则,离子束带负电离子在圆形磁场区域做匀速圆周运动,轨迹如图所示:由牛顿第二定律得:21mv qvB r= 由几何关系得:3r R =0013U q m = 点睛:在复合场中做匀速直线运动,这是速度选择器的原理,由平衡条件就能得到进入复合场的速度.在圆形磁场区域内根据偏转角求出离子做匀速圆周运动的半径,从而求出离子的比荷,要注意的是离开磁场时是背向磁场区域圆心的.4.如图,平行金属板的两极板之间的距离为d ,电压为U 。
速度选择器和回旋加速器易错题知识点及练习题附答案解析
速度选择器和回旋加速器易错题知识点及练习题附答案解析一、高中物理解题方法:速度选择器和回旋加速器1.如图所示,相距为d 的平行金属板M 、N 间存在匀强电场和垂直纸面向里、磁感应强度为B 0的匀强磁场;在xOy 直角坐标平面内,第一象限有沿y 轴负方向场强为E 的匀强电场,第四象限有垂直坐标平面向里、磁感应强度为B 的匀强磁场.一质量为m 、电荷量为q 的正离子(不计重力)以初速度v 0沿平行于金属板方向射入两板间并做匀速直线运动,从P 点垂直y 轴进入第一象限,经过x 轴上的A 点射出电场进入磁场.已知离子过A 点时的速度方向与x 轴成45°角.求:(1)金属板M 、N 间的电压U ;(2)离子运动到A 点时速度v 的大小和由P 点运动到A 点所需时间t ;(3)离子第一次离开第四象限磁场区域的位置C (图中未画出)与坐标原点的距离OC .【答案】(1)00B v d ;(2) t =0mv qE;(3) 2002mv mv qE qB + 【解析】 【分析】 【详解】离子的运动轨迹如下图所示(1)设平行金属板M 、N 间匀强电场的场强为0E ,则有:0U E d =因离子所受重力不计,所以在平行金属板间只受有电场力和洛伦兹力,又因离子沿平行于金属板方向射入两板间并做匀速直线运动,则由平衡条件得:000qE qv B = 解得:金属板M 、N 间的电压00U B v d =(2)在第一象限的电场中离子做类平抛运动,则由运动的合成与分解得:0cos 45v v= 故离子运动到A 点时的速度:02v v =根据牛顿第二定律:qE ma =设离子电场中运动时间t ,出电场时在y 方向上的速度为y v ,则在y 方向上根据运动学公式得y v at =且0tan 45y v v =联立以上各式解得,离子在电场E 中运动到A 点所需时间:0mv t qE=(3)在磁场中离子做匀速圆周运动,洛伦兹力提供向心力,则由牛顿第二定律有:2v qvB m R=解得:0mv R qB qB== 由几何知识可得022cos 452mv AC R qB===在电场中,x 方向上离子做匀速直线运动,则200mv OA v t qE==因此离子第一次离开第四象限磁场区域的位置C 与坐标原点的距离为:2002mv mv OC OA AC qE qB=+=+【点睛】本题考查电场力与洛伦兹力平衡时的匀速直线运动、带电粒子在匀强磁场中的运动的半径与速率关系、带电粒子在匀强电场中的运动、运动的合成与分解、牛顿第二定律、向心力、左手定则等知识,意在考查考生处理类平抛运动及匀速圆周运动问题的能力.2.如图所示为质谱仪的原理图,A 为粒子加速器,电压为1U ,B 为速度选择器,其内部匀强磁场与电场正交,磁感应强度为1B ,左右两板间距离为d ,C 为偏转分离器,内部匀强磁场的磁感应强度为2B ,今有一质量为m ,电量为q 且初速为0的带电粒子经加速器A 加速后,沿图示路径通过速度选择器B ,再进入分离器C 中的匀强磁场做匀速圆周运动,不计带电粒子的重力,试分析: (1)粒子带何种电荷;(2)粒子经加速器A 加速后所获得的速度v ; (3)速度选择器的电压2U ;(4)粒子在C 区域中做匀速圆周运动的半径R 。
速度选择器和回旋加速器易错题知识归纳总结含答案
速度选择器和回旋加速器易错题知识归纳总结含答案一、高中物理解题方法:速度选择器和回旋加速器1.如图所示,两平行金属板AB 中间有互相垂直的匀强电场和匀强磁场。
A 板带正电荷,B 板带等量负电荷,电场强度为E ;磁场方向垂直纸面向里,磁感应强度为B 1。
平行金属板右侧有一挡板M ,中间有小孔O ′,OO ′是平行于两金属板的中心线。
挡板右侧有垂直纸面向外的匀强磁场,磁感应强度为B 2,CD 为磁场B 2边界上的一绝缘板,它与M 板的夹角θ=45°,现有大量质量均为m ,电荷量为q 的带正电的粒子(不计重力),自O 点沿OO ′方向水平向右进入电磁场区域,其中有些粒子沿直线OO ′方向运动,通过小孔O ′进入匀强磁场B 2,如果这些粒子恰好以竖直向下的速度打在CD 板上的E 点(E 点未画出),求:(1)能进入匀强磁场B 2的带电粒子的初速度v ; (2)CE 的长度L(3)粒子在磁场B 2中的运动时间.【答案】(1)1 E B (2) 122mE qB B (3) 2m qB π 【解析】 【详解】(1)沿直线OO ′运动的带电粒子,设进入匀强磁场B 2的带电粒子的速度为v , 根据B 1qv =qE解得:v =1EB (2)粒子在磁感应强度为B 2磁场中做匀速圆周运动,故:22v qvB m r=解得:r =2mv qB =12mE qB B 该粒子恰好以竖直向下的速度打在CD 板上的E 点,CE 的长度为:L =45r sin =2r 122mE(3) 粒子做匀速圆周运动的周期2mT qBπ= 2t m qBπ=2.如图所示,在直角坐标系xOy 平面内,以O 点为圆心,作一个半径为R 的园形区域,A 、B 两点为x 轴与圆形区域边界的交点,C 、D 两点连线与x 轴垂直,并过线段OB 中点;将一质量为m 、电荷量为q(不计重力)的带正电的粒子,从A 点沿x 轴正方向以速度v 0射入圆形区域.(1)当圆形区域内只存在平行于y 轴方向的电场时,带电粒子恰从C 点射出圆形区域,求此电场的电场强度大小和方向;(2)当圆形区域内只存在垂直于区域平面的磁场时,带电粒子怡从D 点射出圆形区域,求此磁场的磁感应强度大小和方向;(3)若圆形区域内同时存在(1)中的电场和(2)中的磁场时,为使带电粒子恰能沿直线从B 点射出圆形区域,其入射速度应变为多少?【答案】(1)243mv E =方向沿y 轴正方向 (2)033mv B qR= 方向垂直坐标平面向外 (3)043v v =【解析】 【分析】(1)只存在电场时,粒子在电场中做类平抛运动,根据水平和竖直方向的运动列方程求解电场强度;(2)区域只存在磁场时,做匀速圆周运动,由几何关系求解半径,再根据洛伦兹力等于向心力求解磁感应强度;(3)若电场和磁场并存,粒子做直线运动,电场力等于洛伦兹力,列式求解速度. 【详解】(1)由A 到C 做类平抛运动:032R v t =;21R=22at qE ma =解得39E qR=方向沿y 轴正方向; (2)从A 到D 匀速圆周运动,则0tan30Rr=,r = 200v qv B m r= 0mv r qB =解得03B qR=方向垂直坐标平面向外. (3)从A 到B 匀速直线运动,qE=qvB 解得E v B= 即043v v =【点睛】此题是带电粒子在电场中的偏转,在磁场中的匀速圆周运动以及在正交场中的直线运动问题;粒子在电场中做类平抛运动,从水平和竖直两个方向列式;在磁场中做匀速圆周运动,先找半径和圆心,在求磁感应强度;在正交场中的直线运动时列平衡方程求解.3.回旋加速器D 形盒中央为质子流,D 形盒的交流电压为U =2×104V ,静止质子经电场加速后,进入D 形盒,其最大轨道半径R =1m ,磁场的磁感应强度B =0.5T ,质子的质量为1.67×10-27kg ,电量为1.6×10-19C ,问: (1)质子最初进入D 形盒的动能多大? (2)质子经回旋加速器最后得到的动能多大? (3)交流电源的频率是多少?【答案】(1)153.210J -⨯; (2)121.910J -⨯; (3)67.610Hz ⨯. 【解析】 【分析】 【详解】(1)粒子在第一次进入电场中被加速,则质子最初进入D 形盒的动能411195210 1.610J 3.210J k E Uq -==⨯=⨯⨯⨯-(2)根据2v qvB m R=得粒子出D 形盒时的速度为m qBRv m=则粒子出D 形盒时的动能为22219222212271 1.610051J 1.910J (22211).670kmm q B R E mv m ---⨯⨯⨯====⨯⨯⨯. (3) 粒子在磁场中运行周期为2mT qB π=因一直处于加速状态,则粒子在磁场中运动的周期与交流电源的周期相同,即为2mT qBπ=那么交变电源的频率为196271.6100.5Hz 7.610Hz 22 3.14 1.6710qB f m π--⨯⨯===⨯⨯⨯⨯4.1932年,劳伦斯和利文斯设计出了回旋加速器.回旋加速器的工作原理如图所示,置于高真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.磁感应强度为B 的匀强磁场与盒面垂直.A 处粒子源产生的粒子,质量为m 、电荷量为+q ,在加速器中被加速,加速电压为U .加速过程中不考虑相对论效应和重力作用.(1)求粒子第2次和第1次经过两D 形盒间狭缝后轨道半径之比; (2)求粒子从静止开始加速到出口处所需的时间t ;(3)实际使用中,磁感应强度和加速电场频率都有最大值的限制.若某一加速器磁感应强度和加速电场频率的最大值分别为B m 、f m ,试讨论粒子能获得的最大动能E ㎞. 【答案】(12(2)22BR Uπ(3)当Bmm f f ≤时,E Km =2222m q B Rm;当Bm m f f ≥时,E Km =2222m mf R π【解析】 【分析】(1)狭缝中加速时根据动能定理,可求出加速后的速度,然后根据洛伦兹力提供向心力,推出半径表达式;(2)假设粒子运动n圈后到达出口,则加速了2n次,整体运用动能定理,再与洛伦兹力提供向心力,粒子运动的固有周期公式联立求解;(3)B m对应粒子在磁场中运动可提供的最大频率,f m对应加速电场可提供的最大频率,选两者较小者,作为其共同频率,然后求此频率下的最大动能.【详解】(1)设粒子第1次经过狭缝后的半径为r1,速度为v1qU=mv12qv1B=m解得同理,粒子第2次经过狭缝后的半径则.(2)设粒子到出口处被加速了n圈解得.(3)加速电场的频率应等于粒子在磁场中做圆周运动的频率,即当磁场感应强度为B m时,加速电场的频率应为粒子的动能当f Bm≤f m时,粒子的最大动能由B m决定解得当f Bm≥f m时,粒子的最大动能由f m决定v m=2πf m R解得【点睛】此题是带电粒子在复合场中运动与动能定理的灵活应用,本题每一问都比较新颖,需要学生反复琢磨解答过程.5.回旋加速器在核科学、核技术、核医学等高新技术领域得到了广泛应用,有力地推动了现代科学技术的发展。
高中物理速度选择器和回旋加速器易错题知识归纳总结及答案
高中物理速度选择器和回旋加速器易错题知识归纳总结及答案一、高中物理解题方法:速度选择器和回旋加速器1.如图,正方形ABCD 区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知该区域的边长为L 。
一个带电粒子(不计重力)从AD 中点以速度v 水平飞入,恰能匀速通过该场区;若仅撤去该区域内的磁场,使该粒子以同样的速度v 从AD 中点飞入场区,最后恰能从C 点飞出;若仅撤去该区域内的电场,该带电粒子仍从AD 中点以相同的速度v 进入场区,求: (1)该粒子最后飞出场区的位置;(2)仅存电场与仅存磁场的两种情况下,带电粒子飞出场区时速度偏向角之比是多少?【答案】(1)AB 连线上距离A 点32L 处,(2)34。
【解析】 【详解】(1)电场、磁场共存时,粒子匀速通过可得:qvB qE =仅有电场时,粒子水平方向匀速运动:L vt =竖直方向匀加速直线运动:2122L qE t m= 联立方程得:2qELv m=仅有磁场时:2mv qvB R= 根据几何关系可得:R L =设粒子从M 点飞出磁场,由几何关系:AM 222L R ⎛⎫- ⎪⎝⎭3L所以粒子离开的位置在AB 连线上距离A 3处; (2)仅有电场时,设飞出时速度偏角为α,末速度反向延长线过水平位移中点:2tan 12LL α==解得:45α︒=仅有磁场时,设飞出时速度偏角为β:tan 3AMOAβ== 解得:60β︒= 所以偏转角之比:34αβ=。
2.如图所示的装置,左半部为速度选择器,右半部为匀强的偏转磁场.一束同位素离子(质量为m ,电荷量为+q )流从狭缝S 1射入速度选择器,速度大小为v 0的离子能够沿直线通过速度选择器并从狭缝S 2射出,立即沿水平方向进入偏转磁场,最后打在照相底片D 上的A 点处.已知A 点与狭缝S 23L ,照相底片D 与狭缝S 1、S 2的连线平行且距离为L ,忽略重力的影响.则(1)设速度选择器内部存在的匀强电场场强大小为E 0,匀强磁场磁感应强度大小为B 0,求E 0∶B 0;(2)求偏转磁场的磁感应强度B 的大小和方向;(3)若将右半部的偏转磁场换成方向竖直向下的匀强电场,要求同位素离子仍然打到A 点处,求离子分别在磁场中和在电场中从狭缝S 2运动到A 点处所用时间之比t 1∶t 2.【答案】(1)v 0(2)02mv B qL =,磁场方向垂直纸面向外(3)12239=∶t t π【解析】 【详解】(1)能从速度选择器射出的离子满足qE 0=qv 0B 0所以E 0∶B 0=v 0(2)离子进入匀强偏转磁场后做匀速圆周运动,由几何关系得:222()(3)R R L L =-+则2R L =由200v Bqv m R= 则2mv B qL=磁场方向垂直纸面向外 (3)磁场中,离子运动周期2RT v π=运动时间101263L t T v π==电场中,离子运动时间203=Lt v 则磁场中和在电场中时间之比12239=∶t t π3.图中左边有一对水平放置的平行金属板,两板相距为d ,电压为U 0,两板之间有垂直于纸面向里的匀强磁场,磁感应强度大小为B 0.图中右边有一半径为R 的圆形匀强磁场区域,磁感应强度大小为B 1,方向垂直于纸面朝外.一束离子垂直磁场沿如图路径穿出,并沿直径MN 方向射入磁场区域,最后从圆形区域边界上的P 点射出,已知图中θ=60,不计重力,求(1)离子到达M 点时速度的大小; (2)离子的电性及比荷q m. 【答案】(1)00U dB (2)00133U dB B R【解析】(1)离子在平行金属板之间做匀速直线运动,由平衡条件得:qvB 0=qE 0 已知电场强度:00U E d= 联立解得:0U v dB =(2)根据左手定则,离子束带负电离子在圆形磁场区域做匀速圆周运动,轨迹如图所示:由牛顿第二定律得:21mv qvB r= 由几何关系得:3r R =00133U qm dB B R=点睛:在复合场中做匀速直线运动,这是速度选择器的原理,由平衡条件就能得到进入复合场的速度.在圆形磁场区域内根据偏转角求出离子做匀速圆周运动的半径,从而求出离子的比荷,要注意的是离开磁场时是背向磁场区域圆心的.4.如图所示,M 、N 为水平放置的两块平行金属板,板间距为L ,两板间存在相互垂直的匀强电场和匀强磁场,电势差为MN 0U U =-,磁感应强度大小为0B .一个带正电的粒子从两板中点垂直于正交的电、磁场水平射入,沿直线通过金属板,并沿与ab 垂直的方向由d 点进入如图所示的区域(忽略电磁场的边缘效应).直线边界ab 及ac 在同一竖直平面内,且沿ab 、ac 向下区域足够大,不计粒子重力,30a ∠=︒,求:(1)粒子射入金属板的速度大小;(2)若bac 区域仅存在垂直纸面向内的匀强磁场罗要使粒子不从ac 边界射出,设最小磁感应强度为B 1;若bac 区域内仅存在平行纸面且平行ab 方向向下的匀强电场,要使粒子不从ac 边射出,设最小电场强度为E 1.求B 1与E 1的比值为多少?【答案】(1)v =00U B L (2)01102B LB E U = 【解析】 【详解】(1)设带电粒子电荷量为q 、质量为m 、射入金属板速度为v ,粒子做直线运动时电场力与洛伦兹力平衡,根据平衡条件有:qvB 0= qE 0 ① E 0 =U L② 解得:v =00U B L③(2)仅存在匀强磁场时,若带电粒子刚好不从ac 边射出,则其轨迹圆与ac 边相切,则11sin 30ad R s R =+︒④ qvB 1 =2v m R⑤得:B 1=3admvqS ⑥ 仅存在匀强电场时,若粒子不从ac 边射出,则粒子到达边界线ac 且末速度也是与ac 边相切,即: x =vt ⑦ y =12at 2⑧ qE 1=ma ⑨tan30º=ad xS y+ ⑩y v at = ⑾tan30º =y vv ⑿得:E 1=232admv qS ⒀ 所以:01102B L B E U = ⒁5.如图所示,A 、B 两水平放置的金属板板间电压为U(U 的大小、板间的场强方向均可调节),在靠近A 板的S 点处有一粒子源能释放初速度为零的不同种带电粒子,这些粒子经A 、B 板间的电场加速后从B 板上的小孔竖直向上飞出,进入竖直放置的C 、D 板间,C 、D 板间存在正交的匀强电场和匀强磁场,匀强电场的方向水平向右,大小为E ,匀强磁场的方向水平向里,大小为B 1。
高中物理速度选择器和回旋加速器易错剖析
高中物理速度选择器和回旋加速器易错剖析一、速度选择器和回旋加速器1.有一个正方体形的匀强磁场和匀强电场区域,它的截面为边长L =0.20m 的正方形,其电场强度为54.010E =⨯V/m ,磁感应强度22.010B -=⨯T ,磁场方向水平且垂直纸面向里,当一束质荷比为104.010mq-=⨯kg/C 的正离子流(其重力不计)以一定的速度从电磁场的正方体区域的左侧边界中点射入,如图所示。
(计算结果保留两位有效数字) (1)要使离子流穿过电场和磁场区域而不发生偏转,电场强度的方向如何?离子流的速度多大?(2)在(1)的情况下,在离电场和磁场区域右边界D =0.40m 处有与边界平行的平直荧光屏。
若只撤去电场,离子流击中屏上a 点;若只撤去磁场,离子流击中屏上b 点。
求ab 间距离。
(a ,b 两点图中未画出)【答案】(1)电场方向竖直向下;2×107m/s ;(2)0.53m 【解析】 【分析】 【详解】(1)电场方向竖直向下,与磁场构成粒子速度选择器,离子运动不偏转,根据平衡条件有qEqvB解得离子流的速度为Ev B==2×107m/s (2)撤去电场,离子在碰场中做匀速圆周运动,所需向心力由洛伦兹力提供,则有2v qvB m R=解得mvR qB==0.4m 离子离开磁场区边界时,偏转角为θ,根据几何关系有1sin 2L R θ== 解得30θ=在磁场中的运动如图1所示偏离距离1cos y R R θ=-=0.054m离开磁场后离子做匀速直线运动,总的偏离距离为1tan y y D θ=+=0.28m若撤去磁场,离子在电场中做匀变速曲线运动通过电场的时间L t v≤加速度qE a m=偏转角为θ',如图2所示则21tan 2y v qEL vmv θ'=== 偏离距离为2212y at ==0.05m 离开电场后离子做匀速直线运动,总的偏离距离2tan y y D θ''=+=0.25m所以a 、b 间的距离ab =y +y '=0.53m2.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。
高中物理速度选择器和回旋加速器易错剖析及解析
高中物理速度选择器和回旋加速器易错剖析及解析一、速度选择器和回旋加速器1.如图所示,两平行金属板AB 中间有互相垂直的匀强电场和匀强磁场。
A 板带正电荷,B 板带等量负电荷,电场强度为E ;磁场方向垂直纸面向里,磁感应强度为B 1。
平行金属板右侧有一挡板M ,中间有小孔O ′,OO ′是平行于两金属板的中心线。
挡板右侧有垂直纸面向外的匀强磁场,磁感应强度为B 2,CD 为磁场B 2边界上的一绝缘板,它与M 板的夹角θ=45°,现有大量质量均为m ,电荷量为q 的带正电的粒子(不计重力),自O 点沿OO ′方向水平向右进入电磁场区域,其中有些粒子沿直线OO ′方向运动,通过小孔O ′进入匀强磁场B 2,如果这些粒子恰好以竖直向下的速度打在CD 板上的E 点(E 点未画出),求:(1)能进入匀强磁场B 2的带电粒子的初速度v ; (2)CE 的长度L(3)粒子在磁场B 2中的运动时间.【答案】(1)1 E B (2) 122mE qB B (3) 2m qB π 【解析】 【详解】(1)沿直线OO ′运动的带电粒子,设进入匀强磁场B 2的带电粒子的速度为v , 根据B 1qv =qE解得:v =1EB (2)粒子在磁感应强度为B 2磁场中做匀速圆周运动,故:22v qvB m r=解得:r =2mv qB =12mE qB B 该粒子恰好以竖直向下的速度打在CD 板上的E 点,CE 的长度为:L =45r sin o2r 122mE(3) 粒子做匀速圆周运动的周期2mT qBπ= 2t m qBπ=2.如图所示,有一对平行金属板,两板相距为0.05m 。
电压为10V ;两板之间有匀强磁场,磁感应强度大小为B 0=0.1T ,方向与金属板面平行并垂直于纸面向里。
图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B =33T ,方向垂直于纸面向里。
一质量为m =10-26kg 带正电的微粒沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出。
高中物理速度选择器和回旋加速器易错剖析
高中物理速度选择器和回旋加速器易错剖析一、速度选择器和回旋加速器1.质谱仪最初由汤姆孙的学生阿斯顿设计的,他用质谱仪发现了氖20和氖22,证实了同位素的存在.现在质谱仪已经是一种十分精密的仪器,是测量带电粒子的质量和分析同位素的重要工具.如右图所示是一简化了的质谱仪原理图.边长为L 的正方形区域abcd 内有相互正交的匀强电场和匀强磁场,电场强度大小为E ,方向竖直向下,磁感应强度大小为B ,方向垂直纸面向里.有一束带电粒子从ad 边的中点O 以某一速度沿水平方向向右射入,恰好沿直线运动从bc 边的中点e 射出(不计粒子间的相互作用力及粒子的重力),撤去磁场后带电粒子束以相同的速度重做实验,发现带电粒子从b 点射出,问: (1)带电粒子带何种电性的电荷?(2)带电粒子的比荷(即电荷量的数值和质量的比值qm)多大? (3)撤去电场后带电粒子束以相同的速度重做实验,则带电粒子将从哪一位置离开磁场,在磁场中运动的时间多少?【答案】(1)负电(2)2q E m B L =(3)从dc 边距离d 点距离为32L 处射出磁场;3BL Eπ【解析】 【详解】(1)正电荷所受电场力与电场强度方向相同,负电荷所受电场力与电场强度方向相反,粒子向上偏转,可知粒子带负电; (2)根据平衡条件:qE =qv 0B得:0Ev B=撤去磁场后,粒子做类平抛运动,则有:x =v 0t =L2 212qE Ly t m ==得:2 q E m B L= (3)撤去电场后带电粒子束在磁场中做匀速圆周运动,则:200v qv B m r= 得:mv r L qB== 粒子从dc 边射出磁场,设粒子射出磁场距离d 点的距离为x ,根据几何关系:2222L x r r +-=()r=L得:x L =所以13θπ=23BL t T Eθππ== 答:(1)带电粒子带负电; (2)带电粒子的比荷2qEm B L=; (3)撤去电场后带电粒子束以相同的速度重做实验,则带电粒子将从dc 边距离d 点x L =处离开磁场,在磁场中运动的时间3BL t E =π.2.边长L =0.20m的正方形区域内存在匀强磁场和匀强电场,其电场强度为E =1×104V/m ,磁感强度B =0.05T ,磁场方向垂直纸面向里,当一束质荷比为mq=5×10-8kg/C 的正离子流,以一定的速度从电磁场的正方形区域的边界中点射入,离子流穿过电磁场区域而不发生偏转,如右图所示,不计正离子的重力,求: (1)电场强度的方向和离子流的速度大小(2)在离电磁场区域右边界D=0.4m 处有与边界平行的平直荧光屏.若撤去电场,离子流击中屏上a 点;若撤去磁场,离子流击中屏上b 点,则ab 间的距离是多少?.【答案】(1)竖直向下;52s 10m /⨯(2)1.34m 【解析】 【详解】(1)正离子经过正交场时竖直方向平衡,因洛伦兹力向上,可知电场力向下,则电场方向竖直向下; 由受力平衡得qE qvB =离子流的速度5210m /s Ev B==⨯ (2)撤去电场,离子在磁场中做匀速圆周运动,所需向心力由洛伦兹力提供,则有2v qvB m r=故0.2m mvr qB== 离子离开磁场后做匀速直线运动,作出离子的运动轨迹如图一所示图一由几何关系可得,圆心角60θ=︒1sin (0.60.13)m x L D R θ=+-=- 11tan (0.630.3)m=0.74m y x θ==若撤去磁场,离子在电场中做类平抛运动,离开电场后做匀速直线运动,运动轨迹如图二所示图二通过电场的时间6110Lt s v-==⨯ 加速度11210m /s qEa m==⨯ 在电场中的偏移量210.1m 2y at == 粒子恰好从电场右下角穿出电场,则tan 1y xv v α==由几何关系得20.4m y =a 和b 的距离()120.63-0.30.40.2m ab y y y L =++=++=1.34m3.如图所示,相距为d 的平行金属板M 、N 间存在匀强电场和垂直纸面向里、磁感应强度为B 0的匀强磁场;在xOy 直角坐标平面内,第一象限有沿y 轴负方向场强为E 的匀强电场,第四象限有垂直坐标平面向里、磁感应强度为B 的匀强磁场.一质量为m 、电荷量为q 的正离子(不计重力)以初速度v 0沿平行于金属板方向射入两板间并做匀速直线运动,从P 点垂直y 轴进入第一象限,经过x 轴上的A 点射出电场进入磁场.已知离子过A 点时的速度方向与x 轴成45°角.求:(1)金属板M 、N 间的电压U ;(2)离子运动到A 点时速度v 的大小和由P 点运动到A 点所需时间t ;(3)离子第一次离开第四象限磁场区域的位置C (图中未画出)与坐标原点的距离OC .【答案】(1)00B v d ;(2) t =0mv qE;(3) 2002mv mv qE qB + 【解析】 【分析】 【详解】离子的运动轨迹如下图所示(1)设平行金属板M 、N 间匀强电场的场强为0E ,则有:0U E d =因离子所受重力不计,所以在平行金属板间只受有电场力和洛伦兹力,又因离子沿平行于金属板方向射入两板间并做匀速直线运动,则由平衡条件得:000qE qv B = 解得:金属板M 、N 间的电压00U B v d =(2)在第一象限的电场中离子做类平抛运动,则由运动的合成与分解得:0cos 45v v=o故离子运动到A 点时的速度:02v v =根据牛顿第二定律:qE ma =设离子电场中运动时间t ,出电场时在y 方向上的速度为y v ,则在y 方向上根据运动学公式得y v at =且0tan 45y v v =o联立以上各式解得,离子在电场E 中运动到A 点所需时间:0mv t qE=(3)在磁场中离子做匀速圆周运动,洛伦兹力提供向心力,则由牛顿第二定律有:2v qvB m R=解得:02mv mv R qB qB==由几何知识可得022cos 452mv AC R R qB===o在电场中,x 方向上离子做匀速直线运动,则200mv OA v t qE==因此离子第一次离开第四象限磁场区域的位置C 与坐标原点的距离为:2002mv mv OC OA AC qE qB=+=+【点睛】本题考查电场力与洛伦兹力平衡时的匀速直线运动、带电粒子在匀强磁场中的运动的半径与速率关系、带电粒子在匀强电场中的运动、运动的合成与分解、牛顿第二定律、向心力、左手定则等知识,意在考查考生处理类平抛运动及匀速圆周运动问题的能力.4.如图所示,A 、B 两水平放置的金属板板间电压为U(U 的大小、板间的场强方向均可调节),在靠近A 板的S 点处有一粒子源能释放初速度为零的不同种带电粒子,这些粒子经A 、B 板间的电场加速后从B 板上的小孔竖直向上飞出,进入竖直放置的C 、D 板间,C 、D 板间存在正交的匀强电场和匀强磁场,匀强电场的方向水平向右,大小为E ,匀强磁场的方向水平向里,大小为B 1。
高中物理速度选择器和回旋加速器易错剖析含解析
高中物理速度选择器和回旋加速器易错剖析含解析一、速度选择器和回旋加速器1.如图所示,竖直挡板MN 右侧空间存在相互垂直的匀强电场和匀强磁场,电场方向竖直向上,电场强度E =100N/C ,磁场方向垂直纸面向里,磁感应强度B =0.2T ,场中A 点与挡板的距离L =0.5m 。
某带电量q =+2.0×10-6C 的粒子从A 点以速度v 垂直射向挡板,恰能做匀速直线运动,打在挡板上的P 1点;如果仅撤去电场,保持磁场不变,该粒子仍从A 点以相同速度垂直射向挡板,粒子的运动轨迹与挡板MN 相切于P 2点,不计粒子所受重力。
求: (1)带电粒子的速度大小v ; (2)带电粒子的质量m 。
【答案】(1)500m/s v =;(2)104.010kg m -=⨯【解析】 【分析】 【详解】(1)正粒子在正交的电场和磁场中做匀速直线运动,则向上的电场力和向下的洛伦兹力平衡,有qE qvB =解得带电粒子的速度大小100m/s 500m/s 0.2E v B === (2)仅撤去电场保持磁场不变,带电粒子在磁场中做匀速圆周运动,有2v qvB m R=而粒子偏转90°,由几何关系可知0.5m R L ==联立可得带电粒子的质量6102100.20.5kg 4.010kg 500qBL m v --⨯⨯⨯===⨯2.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。
已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。
一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。
M 、N 两点间的距离为h 。
不计粒子的重力。
求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。
【答案】(1)电场强度U E d =;(2)0U v Bd=;(3)2222k qUh mU E d B d =+【解析】 【详解】(1)电场强度U E d=(2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd== (3)粒子从N 点射出,由动能定理得:2012k qE h E mv ⋅=-解得2222k qUh mU E d B d=+3.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场E 和磁场B 都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样。
最新高中物理速度选择器和回旋加速器易错剖析
高频交流电源的原来周期
故
由α粒子换为氘核时,交流电源的周期应为原来的
(3)对粒子 分析,其在磁场中的周期
每次加速偏移的时间差为
加速次数
所以获得的最大动能
9.如图是回旋加速器示意图,置于真空中的两金属D形盒的半径为R,盒间有一较窄的狭缝,狭缝宽度远小于D形盒的半径,狭缝间所加交变电压的频率为f,电压大小恒为U,D形盒中匀强磁场方向如图所示,在左侧D形盒圆心处放有粒子源S,产生的带电粒子的质量为m,电荷量为q。设带电粒子从粒子源S进入加速电场时的初速度为零,不计粒子重力。求:
(1)带电粒子的速度大小 ;
(2)带电粒子的质量 。
【答案】(1) ;(2)
【解析】
【分析】
【详解】
(1)正粒子在正交的电场和磁场中做匀速直线运动,则向上的电场力和向下的洛伦兹力平衡,有
解得带电粒子的速度大小
(2)仅撤去电场保持磁场不变,带电粒子在磁场中做匀速圆周运动,有
而粒子偏转90°,由几何关系可知
(1)求把质量为m、电荷量为q的静止粒子加速到最大动能所需时间;
(2)若此回旋加速器原来加速质量为2m,带电荷量为q的α粒子( ),获得的最大动能为Ekm,现改为加速氘核( ),它获得的最大动能为多少?要想使氘核获得与α粒子相同的动能,请你通过分析,提出一种简单可行的办法;
(3)已知两D形盒间的交变电压如图乙所示,设α粒子在此回旋加速器中运行的周期为T,若存在一种带电荷量为q′、质量为m′的粒子 ,在 时进入加速电场,该粒子在加速器中能获得的最大动能?(在此过程中,粒子未飞出D形盒)
由牛顿第二定律
粒子飞出极板后不能进入圆形磁场即轨迹刚好与圆形磁场相切,如图所示:
高考物理速度选择器和回旋加速器易错剖析及解析
高考物理速度选择器和回旋加速器易错剖析及解析一、速度选择器和回旋加速器1.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场E 和磁场B 都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样。
一带正电的粒子质量为m 、电荷量为q 从P (x =0,y =h )点以一定的速度平行于x 轴正向入射。
这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.求:(1)若只有磁场,粒子做圆周运动的半径R 0大小; (2)若同时存在电场和磁场,粒子的速度0v 大小;(3)现在,只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点。
(不计重力)。
粒子到达x =R 0平面时速度v 大小以及粒子到x 轴的距离; (4)M 点的横坐标x M 。
【答案】(1)0mv qB (2)E B (302v ,02R h +(4)22000724M x R R R h h =++-【解析】 【详解】(1)若只有磁场,粒子做圆周运动有:200qB m R =v v解得粒子做圆周运动的半径00m R qBν=(2)若同时存在电场和磁场,粒子恰好做直线运动,则有:0qE qB =v 解得粒子的速度0E v B=(3)只有电场时,粒子做类平抛,有:00y qE ma R v a t v t=== 解得:0y v v =所以粒子速度大小为:22002y v v v v =+=粒子与x 轴的距离为:20122R H h at h =+=+ (4)撤电场加上磁场后,有:2v qBv m R=解得:02R R = 粒子运动轨迹如图所示:圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y 轴的夹角均为4π,由几何关系得C 点坐标为:02C x R =,02C R y H R h =-=-过C 作x 轴的垂线,在ΔCDM 中:02CM R R ==2C R CD y h ==-解得:22220074DM CM CD R R h h =-=+-M 点横坐标为:22000724M x R R R h h =+-2.如图所示,相距为d 的平行金属板M 、N 间存在匀强电场和垂直纸面向里、磁感应强度为B 0的匀强磁场;在xOy 直角坐标平面内,第一象限有沿y 轴负方向场强为E 的匀强电场,第四象限有垂直坐标平面向里、磁感应强度为B 的匀强磁场.一质量为m 、电荷量为q 的正离子(不计重力)以初速度v 0沿平行于金属板方向射入两板间并做匀速直线运动,从P 点垂直y 轴进入第一象限,经过x 轴上的A 点射出电场进入磁场.已知离子过A 点时的速度方向与x 轴成45°角.求:(1)金属板M 、N 间的电压U ;(2)离子运动到A 点时速度v 的大小和由P 点运动到A 点所需时间t ;(3)离子第一次离开第四象限磁场区域的位置C (图中未画出)与坐标原点的距离OC .【答案】(1)00B v d ;(2) t =0mv qE;(3) 2002mv mv qE qB + 【解析】 【分析】 【详解】离子的运动轨迹如下图所示(1)设平行金属板M 、N 间匀强电场的场强为0E ,则有:0U E d =因离子所受重力不计,所以在平行金属板间只受有电场力和洛伦兹力,又因离子沿平行于金属板方向射入两板间并做匀速直线运动,则由平衡条件得:000qE qv B = 解得:金属板M 、N 间的电压00U B v d =(2)在第一象限的电场中离子做类平抛运动,则由运动的合成与分解得:0cos 45v v=o故离子运动到A 点时的速度:02v v =根据牛顿第二定律:qE ma =设离子电场中运动时间t ,出电场时在y 方向上的速度为y v ,则在y 方向上根据运动学公式得y v at =且0tan 45y v v =o联立以上各式解得,离子在电场E 中运动到A 点所需时间:0mv t qE=(3)在磁场中离子做匀速圆周运动,洛伦兹力提供向心力,则由牛顿第二定律有:2v qvB m R=解得:02mv mv R qB qB== 由几何知识可得022cos 452mv AC R R qB===o在电场中,x 方向上离子做匀速直线运动,则200mv OA v t qE==因此离子第一次离开第四象限磁场区域的位置C 与坐标原点的距离为:2002mv mv OC OA AC qE qB=+=+【点睛】本题考查电场力与洛伦兹力平衡时的匀速直线运动、带电粒子在匀强磁场中的运动的半径与速率关系、带电粒子在匀强电场中的运动、运动的合成与分解、牛顿第二定律、向心力、左手定则等知识,意在考查考生处理类平抛运动及匀速圆周运动问题的能力.3.如图,在整个直角坐标系xoy 区域存在方向沿y 轴负方向的匀强电场,场强大小为E ;在x>0区域还存在方向垂直于xoy 平面向内的匀强磁场。
高考物理易错题专题三物理速度选择器和回旋加速器(含解析)及解析
高考物理易错题专题三物理速度选择器和回旋加速器(含解析)及解析一、速度选择器和回旋加速器1.如图,正方形ABCD 区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知该区域的边长为L 。
一个带电粒子(不计重力)从AD 中点以速度v 水平飞入,恰能匀速通过该场区;若仅撤去该区域内的磁场,使该粒子以同样的速度v 从AD 中点飞入场区,最后恰能从C 点飞出;若仅撤去该区域内的电场,该带电粒子仍从AD 中点以相同的速度v 进入场区,求: (1)该粒子最后飞出场区的位置;(2)仅存电场与仅存磁场的两种情况下,带电粒子飞出场区时速度偏向角之比是多少?【答案】(1)AB 连线上距离A 3L 处,(2)34。
【解析】 【详解】(1)电场、磁场共存时,粒子匀速通过可得:qvB qE =仅有电场时,粒子水平方向匀速运动:L vt =竖直方向匀加速直线运动:2122L qE t m= 联立方程得:2qELv m=仅有磁场时:2mv qvB R= 根据几何关系可得:R L =设粒子从M 点飞出磁场,由几何关系:AM 222L R ⎛⎫- ⎪⎝⎭=32L 所以粒子离开的位置在AB 连线上距离A 点32L 处; (2)仅有电场时,设飞出时速度偏角为α,末速度反向延长线过水平位移中点:2tan 12LL α==解得:45α︒=仅有磁场时,设飞出时速度偏角为β:tan 3AMOAβ== 解得:60β︒= 所以偏转角之比:34αβ=。
2.如图所示,有一对平行金属板,两板相距为0.05m 。
电压为10V ;两板之间有匀强磁场,磁感应强度大小为B 0=0.1T ,方向与金属板面平行并垂直于纸面向里。
图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B 3,方向垂直于纸面向里。
一质量为m =10-26kg 带正电的微粒沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出。
高中物理速度选择器和回旋加速器易错题知识归纳总结
高中物理速度选择器和回旋加速器易错题知识归纳总结一、高中物理解题方法:速度选择器和回旋加速器1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。
照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。
现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。
(1)求该离子沿虚线运动的速度大小v ; (2)求该离子的比荷q m; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。
【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E∆=【解析】 【分析】 【详解】(1)离子沿虚线做匀速直线运动,合力为0Eq =B 1qv解得1Ev B =(2)在偏转磁场中做半径为R 的匀速圆周运动,所以22mv B qv R= 解得12q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意R 2=R 1+2d 它们带电量相同,进入底片时速度都为v ,得2121mv B qv R =2222m v B qv R =联立得22121()B qm m m R R v∆=-=- 化简得122B B qdm E∆=2.边长L =0.20m的正方形区域内存在匀强磁场和匀强电场,其电场强度为E =1×104V/m ,磁感强度B =0.05T ,磁场方向垂直纸面向里,当一束质荷比为mq=5×10-8kg/C的正离子流,以一定的速度从电磁场的正方形区域的边界中点射入,离子流穿过电磁场区域而不发生偏转,如右图所示,不计正离子的重力,求: (1)电场强度的方向和离子流的速度大小(2)在离电磁场区域右边界D=0.4m 处有与边界平行的平直荧光屏.若撤去电场,离子流击中屏上a 点;若撤去磁场,离子流击中屏上b 点,则ab 间的距离是多少?.【答案】(1)竖直向下;52s 10m /⨯(2)1.34m 【解析】 【详解】(1)正离子经过正交场时竖直方向平衡,因洛伦兹力向上,可知电场力向下,则电场方向竖直向下; 由受力平衡得qEqvB离子流的速度5210m /s Ev B==⨯ (2)撤去电场,离子在磁场中做匀速圆周运动,所需向心力由洛伦兹力提供,则有2v qvB m r=故0.2m mvr qB== 离子离开磁场后做匀速直线运动,作出离子的运动轨迹如图一所示图一由几何关系可得,圆心角60θ=︒1sin (0.60.13)m x L D R θ=+-=- 11tan (0.630.3)m=0.74m y x θ==-若撤去磁场,离子在电场中做类平抛运动,离开电场后做匀速直线运动,运动轨迹如图二所示图二通过电场的时间6110Lt s v-==⨯ 加速度11210m /s qEa m==⨯在电场中的偏移量210.1m2y at == 粒子恰好从电场右下角穿出电场,则tan 1y xv v α==由几何关系得20.4m y =a 和b 的距离()120.63-0.30.40.2m ab y y y L =++=++=1.34m3.如图所示,一束质量为m 、电荷量为q 的粒子,恰好沿直线从两带电平行板正中间通过,沿圆心方向进入右侧圆形匀强磁场区域,粒子经过圆形磁场区域后,其运动方向与入射方向的夹角为θ(弧度).已知粒子的初速度为v 0,两平行板间与右侧圆形区域内的磁场的磁感应强度大小均为B ,方向均垂直纸面向内,两平行板间距为d ,不计空气阻力及粒子重力的影响,求:(1)两平行板间的电势差U ;(2)粒子在圆形磁场区域中运动的时间t ; (3)圆形磁场区域的半径R . 【答案】(1)U=Bv 0d ;(2)mqBθ;(3)R=0tan 2mv qBθ【解析】 【分析】(1)由粒子在平行板间做直线运动可知洛伦兹力和电场力平衡,可得两平行板间的电势差.(2)在圆形磁场区域中,洛伦兹力提供向心力,找到转过的角度和周期的关系可得粒子在圆形磁场区域中运动的时间. (3))由几何关系求半径R . 【详解】(1)由粒子在平行板间做直线运动可知,Bv 0q=qE ,平行板间的电场强度E=Ud,解得两平行板间的电势差:U=Bv 0d(2)在圆形磁场区域中,由洛伦兹力提供向心力可知:Bv0q=m2 0 v r同时有T=2rvπ粒子在圆形磁场区域中运动的时间t=2θπT解得t=mBqθ(3)由几何关系可知:r tan2θ=R解得圆形磁场区域的半径R=0tan2mvqBθ4.如图中左边有一对平行金属板,两板相距为d,电压为U,两板之间有匀强磁场,磁感应强度大小为B0,方向与金属板面平行并垂直于纸面朝里。
最新高中物理速度选择器和回旋加速器易错剖析
最新高中物理速度选择器和回旋加速器易错剖析一、速度选择器和回旋加速器1.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。
虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度大小E =10N/C 。
一比荷q =1×106C/kg 的带电粒子从第二象限内M 点以速度v =2.0×103m/s 沿x 轴正方向射出,M 点到x 轴距离d =1.0m ,粒子在第二象限内做直线运动;粒子进入第一象限后从直线OA 上的P 点(P 点图中未画出)离开磁场,且OP =d 。
不计粒子重力。
(1)求第二象限中电场强度和磁感应强度的比值0E B ;(2)求第一象限内磁场的磁感应强度大小B ;(3)粒子离开磁场后在电场中运动是否通过x 轴?如果通过x 轴,求其坐标;如果不通过x 轴,求粒子到x 轴的最小距离。
【答案】(1)32.010m/s ⨯;(2)3210T -⨯;(3)不会通过,0.2m 【解析】 【详解】(1)由题意可知,粒子在第二象限内做匀速直线运动,根据力的平衡有00qvB qE =解得302.010m/s E B =⨯ (2)粒子在第二象限的磁场中做匀速圆周运动,由题意可知圆周运动半径1.0m R d ==根据洛伦兹力提供向心力有2v qvB m R=解得磁感应强度大小3210T B -=⨯(3)粒子离开磁场时速度方向与直线OA 垂直,粒子在匀强电场中做曲线运动,粒子沿y 轴负方向做匀减速直线运动,粒子在P 点沿y 轴负方向的速度大小sin y v v θ=粒子在电场中沿y 轴方向的加速度大小cos y qE amθ=设经过t ∆时间,粒子沿y 轴方向的速度大小为零,根据运动学公式有y yv t a ∆=t ∆时间内,粒子沿y 轴方向通过的位移大小2y v y t ∆=⋅∆联立解得0.3m y ∆=由于cos y d θ∆<故带电粒子离开磁场后不会通过x 轴,带电粒子到x 轴的最小距离cos 0.2m d d y θ'=-∆=2.如图所示,有一对平行金属板,两板相距为0.05m 。
物理速度选择器和回旋加速器易错剖析
物理速度选择器和回旋加速器易错剖析一、速度选择器和回旋加速器1.如图所示为一速度选择器,也称为滤速器的原理图.K为电子枪,由枪中沿KA方向射出的电子,速度大小不一.当电子通过方向互相垂直的均匀电场和磁场后,只有一定速率的电子能沿直线前进,并通过小孔S.设产生匀强电场的平行板间的电压为300 V,间距为5 cm,垂直纸面的匀强磁场的磁感应强度为0.06 T,问:(1)磁场的方向应该垂直纸面向里还是垂直纸面向外?(2)速度为多大的电子才能通过小孔S?【答案】(1)磁场方向垂直纸面向里(2)1×105m/s【解析】【分析】【详解】(1)由题图可知,平行板产生的电场强度E方向向下.带负电的电子受到的静电力F E=eE,方向向上.若没有磁场,电子束将向上偏转,为了使电子能够穿过小孔S,所加的磁场施于电子束的洛伦兹力必须是向下的,根据左手定则分析得出,B的方向垂直于纸面向里.(2)能够通过小孔的电子,其速率满足evB=eE解得:v=E B又因为E=U d所以v=UBd=1×105m/s即只有速率为1×105m/s的电子才可以通过小孔S2.如图中左边有一对平行金属板,两板相距为d,电压为U,两板之间有匀强磁场,磁感应强度大小为B0,方向与金属板面平行并垂直于纸面朝里。
图中右边有一半径为R、圆心为O的圆形区域内也存在匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里。
一正离子沿平行于金属板面、从A点垂直于磁场的方向射入平行金属板之间,沿同一方向射出平行金属板之间的区域,并沿直径CD方向射入磁场区域,最后从圆形区域边界上的F点射出。
已知速度的偏向角为θ=90°,不计重力。
求:(1)离子速度v 的大小; (2)离子的比荷q/m 。
【答案】0Uv B d = ;0q U m BB Rd=【解析】 【详解】(1)离子在平行金属板之间做匀速直线运动:00B qv qE =0U E d =得:0Uv B d=(2)在圆形磁场区域,离子做匀速圆周运动,由牛顿第二定律得:2v Bqv m r=由几何关系得:r=R离子的比荷为:0q U m BB Rd=3.如图所示为质谱仪的原理图,A 为粒子加速器,电压为1U ,B 为速度选择器,其内部匀强磁场与电场正交,磁感应强度为1B ,左右两板间距离为d ,C 为偏转分离器,内部匀强磁场的磁感应强度为2B ,今有一质量为m ,电量为q 且初速为0的带电粒子经加速器A 加速后,沿图示路径通过速度选择器B ,再进入分离器C 中的匀强磁场做匀速圆周运动,不计带电粒子的重力,试分析: (1)粒子带何种电荷;(2)粒子经加速器A 加速后所获得的速度v ; (3)速度选择器的电压2U ;(4)粒子在C 区域中做匀速圆周运动的半径R 。
高中物理速度选择器和回旋加速器易错题专项复习及答案
高中物理速度选择器和回旋加速器易错题专项复习及答案一、高中物理解题方法:速度选择器和回旋加速器1.图中左边有一对水平放置的平行金属板,两板相距为d ,电压为U 0,两板之间有垂直于纸面向里的匀强磁场,磁感应强度大小为B 0.图中右边有一半径为R 的圆形匀强磁场区域,磁感应强度大小为B 1,方向垂直于纸面朝外.一束离子垂直磁场沿如图路径穿出,并沿直径MN 方向射入磁场区域,最后从圆形区域边界上的P 点射出,已知图中θ=60,不计重力,求(1)离子到达M 点时速度的大小; (2)离子的电性及比荷q m. 【答案】(1)00U dB (2)00133U dB B R【解析】(1)离子在平行金属板之间做匀速直线运动,由平衡条件得:qvB 0=qE 0 已知电场强度:00U E d= 联立解得:0U v dB =(2)根据左手定则,离子束带负电离子在圆形磁场区域做匀速圆周运动,轨迹如图所示:由牛顿第二定律得:21mv qvB r= 由几何关系得:3r R =00133U qm dB B R=点睛:在复合场中做匀速直线运动,这是速度选择器的原理,由平衡条件就能得到进入复合场的速度.在圆形磁场区域内根据偏转角求出离子做匀速圆周运动的半径,从而求出离子的比荷,要注意的是离开磁场时是背向磁场区域圆心的.2.PQ 和 MN 分别是完全正对的金属板,接入电动势为E 的电源,如图所示,板间电场可看作匀强电场,MN 之间距离为d ,其间存在着磁感应强度为B ,方向垂直纸面向里的匀强磁场。
紧挨着P 板有一能产生正电荷的粒子源S ,Q 板中间有孔J ,SJK 在一条直线上且与 MN 平行。
产生的粒子初速度不计,粒子重力不计,发现粒子能沿着SJK 路径从孔 K 射出,求粒子的比荷q m。
【答案】222EB d 【解析】 【分析】粒子在PQ 板间是匀加速直线运动,根据动能定理列式;进入MN 板间是匀速直线运动,电场力和洛伦兹力平衡,根据平衡条件列式;最后联立求解即可. 【详解】PQ 板间加速粒子,穿过J 孔是速度为v 根据动能定理,有:212qE mv =沿着SJK 路径从K 孔穿出,粒子受电场力和洛伦兹力平衡:qEqvB d= 解得:222q E m B d = 【点睛】本题关键是明确粒子的受力情况和运动情况,根据动能定理和平衡条件列式.3.如图所示的平面直角坐标系,x 轴水平,y 轴竖直,第一象限内有磁感应强度大小为B ,方向垂直坐标平面向外的匀强磁场;第二象限内有一对平行于x 轴放置的金属板,板间有正交的匀强电场和匀强磁场,电场方向沿y 轴负方向,场强大小未知,磁场垂直坐标平面向里,磁感应强度大小也为B ;第四象限内有匀强电场,电场方向与x 轴正方向成45°角斜向右上方,场强大小与平行金属板间的场强大小相同.现有一质量为m ,电荷量为q 的粒子以某一初速度进入平行金属板,并始终沿x 轴正方向运动,粒子进入第一象限后,从x 轴上的D 点与x 轴正方向成45°角进入第四象限,M 点为粒子第二次通过x 轴的位置.已知OD 距离为L ,不计粒子重力.求:(1)粒子运动的初速度大小和匀强电场的场强大小. (2)DM 间的距离.(结果用m 、q 、v 0、L 和B 表示)【答案】(1)22B qLE m=(2)220222m v DM B q L = 【解析】 【详解】(1)、粒子在板间受电场力和洛伦兹力做匀速直线运动,设粒子初速度为v 0,由平衡条件有:qv 0B=qE…①粒子在第一象限内做匀速圆周运动,圆心为O 1,半径为R ,轨迹如图,由几何关系知R =245LL cos =︒…② 由牛顿第二定律和圆周运动的向心力公式有:qv 0B =m 20 v R…③由②③式解得:v 0=2BqL…④ 由①④式解得:E =22 B qL…⑤ (2)、由题意可知,粒子从D 进入第四象限后做类平抛运动,轨迹如图,设粒子从D 到M 的运动时间为t ,将运动分解在沿场强方向和垂直于场强的方向上,则粒子沿DG 方向做匀速直线运动的位移为:DG =v 0t …⑥粒子沿DF 方向做匀加速直线运动的位移为:22122Eqt DF at m==…⑦ 由几何关系可知: DG DF =, 2DM DG =…⑧由⑤⑥⑦⑧式可解得220222 m v DM q B L=. 【点睛】此类型的题首先要对物体的运动进行分段,然后对物体在各段中进行正确的受力分析和运动的分析,进行列式求解; 洛伦兹力对电荷不做功,只是改变运动电荷的运动方向,不改变运动电荷的速度大小.带电粒子做匀速圆周运动的圆心、半径及运动时间的确定:①、圆心的确定:因为洛伦兹力提供向心力,所以洛伦兹力总是垂直于速度的方向,画出带电粒子运动轨迹中任意两点(一般是射入磁场和射出磁场的两点)洛伦兹力的方向,其延长线的交点即为圆心.②、半径的确定:半径一般都是在确定圆心的基础上用平面几何的知识求解,常常用到解三角形,尤其是直角三角形.③、运动时间的确定:利用圆心角与弦切角的关系或者四边形的内角和等于360°计算出粒子所经过的圆心角θ的大小,用公式t=360T θ︒可求出运动时间.4.1932 年美国物理学家劳伦斯发明了回旋加速器,巧妙地利用带电粒子在磁场中的运动特点,解决了粒子的加速问题.现在回旋加速器被广泛应用于科学研究和医学设备中.某型号的回旋加速器的工作原理如图甲所示,图乙为俯视图.回旋加速器的核心部分为两个 D 形盒,分别为 D 1、D 2.D 形盒装在真空容器里,整个装置放在巨大的电磁铁两极之间的强大磁场中,磁场可以认为是匀强磁场,且与 D 形盒底面垂直.两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.D 形盒的半径为 R ,磁场的磁感应强度为 B .设质子从粒子源 A 处进入加速电场的初速度不计.质子质量为 m 、电荷量为+q .加速器接入一定频率的高频交变电源,加速电压为 U .加速过程中不考虑相对论效应和重力作用.求:(1)质子第一次经过狭缝被加速后进入 D 2 盒时的速度大小 v 1 和进入 D 2 盒后运动的轨道半径 r 1;(2)质子被加速后获得的最大动能 E k 和交变电压的频率 f ;(3)若两 D 形盒狭缝之间距离为 d ,且 d<<R .计算质子在电场中运动的总时间 t 1 与在磁场中运动总时间 t 2,并由此说明质子穿过电场时间可以忽略不计的原因.【答案】(1) 12qUv m=,112mU r B q =222K qB R E m = ,2qB f m π= (3)1BRd t U = ,222BR t U π= ; 122t d t R π=【解析】(1)设质子第1此经过狭缝被加速后的速度为v 1: 2112qU mv =解得1v = 2111v qv B m r =解得:1r =(2)当粒子在磁场中运动半径非常接近D 型盒的半径A 时,粒子的动能最大,设速度为v m ,则2mm v qv B m R=212km m E mv =解得222K qB R E m=回旋加速器正常工作时高频交变电压的频率等于粒子回旋的频率,则设粒子在磁场中运动的周期为T,则:22r mT v qBππ== 则2qBf mπ=(3)设质子从静止开始加速到粒子离开加速了n 圈,粒子在出口处的速度为v ,根据动能定理可得:22222q B R nqU m =可得224qB R n mU=粒子在夹缝中加速时,有:qUma d=,第n 次通过夹缝所用的时间满足:1n n n a t v v +∆=- 将粒子每次通过夹缝所用时间累加,则有1m v BRd t a U== 而粒子在磁场中运动的时间为(每圈周期相同)2222242qB R m BR t nT mU qB Uππ==⋅= 可解得122t dt Rπ=,因为d<<R ,则 t 1<<t 25.回旋加速器D 形盒的半径为R ,高频加速电压的频率为f ,空间存在方向垂直D 形盒、磁感应强度大小为B 的匀强磁场。
高考物理速度选择器和回旋加速器易错题提高题专题及答案解析
高考物理速度选择器和回旋加速器易错题提高题专题及答案解析一、高中物理解题方法:速度选择器和回旋加速器1.如图所示,有一对平行金属板,两板相距为0.05m 。
电压为10V ;两板之间有匀强磁场,磁感应强度大小为B 0=0.1T ,方向与金属板面平行并垂直于纸面向里。
图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B =33T ,方向垂直于纸面向里。
一质量为m =10-26kg 带正电的微粒沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出。
已知速度的偏转角60°,不计微粒重力。
求:(1)微粒速度v 的大小; (2)微粒的电量q ;(3)微粒在圆形磁场区域中运动时间t 。
【答案】(1)2000m/s (2)2×10-22C (3423-【解析】 【详解】(1)在正交场中运动时:0U B qv qd= 可解得:v =2000m/s(2)偏转角60°则轨迹对应的圆心角60°,轨迹半径3r R =2v Bqv m r=mv q rB=解得:q =2×10-22C(3)根据2mT Bqπ=则 4601036023t T -==2.如图所示为一速度选择器,也称为滤速器的原理图.K为电子枪,由枪中沿KA方向射出的电子,速度大小不一.当电子通过方向互相垂直的均匀电场和磁场后,只有一定速率的电子能沿直线前进,并通过小孔S.设产生匀强电场的平行板间的电压为300 V,间距为5 cm,垂直纸面的匀强磁场的磁感应强度为0.06 T,问:(1)磁场的方向应该垂直纸面向里还是垂直纸面向外?(2)速度为多大的电子才能通过小孔S?【答案】(1)磁场方向垂直纸面向里(2)1×105m/s【解析】【分析】【详解】(1)由题图可知,平行板产生的电场强度E方向向下.带负电的电子受到的静电力F E=eE,方向向上.若没有磁场,电子束将向上偏转,为了使电子能够穿过小孔S,所加的磁场施于电子束的洛伦兹力必须是向下的,根据左手定则分析得出,B的方向垂直于纸面向里.(2)能够通过小孔的电子,其速率满足evB=eE解得:v=E B又因为E=U d所以v=UBd=1×105m/s即只有速率为1×105m/s的电子才可以通过小孔S3.如图所示为质谱仪的原理图,A为粒子加速器,电压为1U,B为速度选择器,其内部匀强磁场与电场正交,磁感应强度为1B,左右两板间距离为d,C为偏转分离器,内部匀强磁场的磁感应强度为2B,今有一质量为m,电量为q且初速为0的带电粒子经加速器A 加速后,沿图示路径通过速度选择器B,再进入分离器C中的匀强磁场做匀速圆周运动,不计带电粒子的重力,试分析:(1)粒子带何种电荷;(2)粒子经加速器A 加速后所获得的速度v ; (3)速度选择器的电压2U ;(4)粒子在C 区域中做匀速圆周运动的半径R 。
高中物理速度选择器和回旋加速器易错剖析(1)
U
【答案】(1)
(2) 2v cos (3) L(1 sin )
B1d
B2 L
2 cos
【解析】
【详解】
(1)粒子在速度选择器中做匀速直线运动, 由平衡条件得:
qυB1=q U d
U 解得 υ= B1d ;
(2)粒子在磁场中做匀速圆周运动,运动轨迹如图所示:
由几何知识得:
r=
L
2 cos
=
L 2 cos
(1)D 形盒内有无电场?
(2)粒子在盒内做何种运动? (3)所加交流电压频率应是多大.粒子运动的角速度为多大? (4)粒子离开加速器时速度为多大?最大动能为多少? (5)设两 D 形盒间电场的电势差为 U,盒间距离为 d,其间电场均匀,求把静止粒子加速到 上述能量所需时间.
【答案】(1) D 形盒内无电场 (2) 粒子在盒内做匀速圆周运动
高中物理速度选择器和回旋加速器易错剖析(1)
一、速度选择器和回旋加速器 1.如图,正方形 ABCD 区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场, 已知该区域的边长为 L 。一个带电粒子(不计重力)从 AD 中点以速度 v 水平飞入,恰能 匀速通过该场区;若仅撤去该区域内的磁场,使该粒子以同样的速度 v 从 AD 中点飞入场 区,最后恰能从 C 点飞出;若仅撤去该区域内的电场,该带电粒子仍从 AD 中点以相同的 速度 v 进入场区,求:
粒子在边磁场中的最小半径为:rmin= 2 L 3
根据 rmin
mmin qB
v
得最小质量为:mmin=
2 B 2 Ldq 3U
.
【点睛】
本题考查了带电粒子在磁场中的运动,关键作出运动的轨迹,通过几何关系求出临界半径
高中物理速度选择器和回旋加速器易错剖析(1)
高中物理速度选择器和回旋加速器易错剖析(1)一、速度选择器和回旋加速器1.如图所示,有一对平行金属板,两板相距为0.05m 。
电压为10V ;两板之间有匀强磁场,磁感应强度大小为B 0=0.1T ,方向与金属板面平行并垂直于纸面向里。
图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B =3T ,方向垂直于纸面向里。
一质量为m =10-26kg 带正电的微粒沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出。
已知速度的偏转角60°,不计微粒重力。
求:(1)微粒速度v 的大小; (2)微粒的电量q ;(3)微粒在圆形磁场区域中运动时间t 。
【答案】(1)2000m/s (2)2×10-22C (3423-【解析】 【详解】(1)在正交场中运动时:0U B qv qd= 可解得:v =2000m/s(2)偏转角60°则轨迹对应的圆心角60°,轨迹半径3r R =2v Bqv m r=mv q rB=解得:q =2×10-22C(3)根据2mT Bqπ=则 46036023t T -==o o2.如图所示:在两个水平平行金属极板间存在着向下的匀强电场和垂直纸面向里的匀强磁场,电场强度和磁感应强度的大小分别为E =1×103N/C 和B 1=0.02T ,极板长度L =0.4m ,间距足够大。
在极板的右侧还存在着另一圆形匀强磁场区域,磁场的方向垂直纸面向外,圆形磁场的圆心O 位于平行金属板的中线上,圆形磁场的半径R =0.6m 。
有一带正电的粒子以一定初速度v 0沿极板中线水平向右飞入极板间恰好做匀速直线运动,然后进入圆形匀强磁场区域,飞出后速度方向偏转了74°,不计粒子重力,粒子的比荷qm=3.125×106C/kg ,sin37°=0.6,cos37°=0.8,5≈2.24。
高考物理速度选择器和回旋加速器易错题专项复习
高考物理速度选择器和回旋加速器易错题专项复习一、高中物理解题方法:速度选择器和回旋加速器1.如图所示,有一对平行金属板,两板相距为0.05m 。
电压为10V ;两板之间有匀强磁场,磁感应强度大小为B 0=0.1T ,方向与金属板面平行并垂直于纸面向里。
图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B =3T ,方向垂直于纸面向里。
一质量为m =10-26kg 带正电的微粒沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出。
已知速度的偏转角60°,不计微粒重力。
求:(1)微粒速度v 的大小; (2)微粒的电量q ;(3)微粒在圆形磁场区域中运动时间t 。
【答案】(1)2000m/s (2)2×10-22C (3423-【解析】 【详解】(1)在正交场中运动时:0U B qv qd= 可解得:v =2000m/s(2)偏转角60°则轨迹对应的圆心角60°,轨迹半径3r R =2v Bqv m r=mv q rB=解得:q =2×10-22C(3)根据2mT Bqπ=则 46036023t T -==2.如图所示的装置,左半部为速度选择器,右半部为匀强的偏转磁场.一束同位素离子(质量为m ,电荷量为+q )流从狭缝S 1射入速度选择器,速度大小为v 0的离子能够沿直线通过速度选择器并从狭缝S 2射出,立即沿水平方向进入偏转磁场,最后打在照相底片D 上的A 点处.已知A 点与狭缝S 2的水平间距为3L ,照相底片D 与狭缝S 1、S 2的连线平行且距离为L ,忽略重力的影响.则(1)设速度选择器内部存在的匀强电场场强大小为E 0,匀强磁场磁感应强度大小为B 0,求E 0∶B 0;(2)求偏转磁场的磁感应强度B 的大小和方向;(3)若将右半部的偏转磁场换成方向竖直向下的匀强电场,要求同位素离子仍然打到A 点处,求离子分别在磁场中和在电场中从狭缝S 2运动到A 点处所用时间之比t 1∶t 2.【答案】(1)v 0(2)02mv B qL =,磁场方向垂直纸面向外(3)12239=∶t t π【解析】 【详解】(1)能从速度选择器射出的离子满足qE 0=qv 0B 0所以E 0∶B 0=v 0(2)离子进入匀强偏转磁场后做匀速圆周运动,由几何关系得:222()(3)R R L L =-+则2R L =由200v Bqv m R= 则2mv B qL=磁场方向垂直纸面向外 (3)磁场中,离子运动周期2RT v π=运动时间101263L t T v π==电场中,离子运动时间203=Lt 则磁场中和在电场中时间之比12239=∶t t π3.如图所示,M 、N 为水平放置的两块平行金属板,板间距为L ,两板间存在相互垂直的匀强电场和匀强磁场,电势差为MN 0U U =-,磁感应强度大小为0B .一个带正电的粒子从两板中点垂直于正交的电、磁场水平射入,沿直线通过金属板,并沿与ab 垂直的方向由d 点进入如图所示的区域(忽略电磁场的边缘效应).直线边界ab 及ac 在同一竖直平面内,且沿ab 、ac 向下区域足够大,不计粒子重力,30a ∠=︒,求:(1)粒子射入金属板的速度大小;(2)若bac 区域仅存在垂直纸面向内的匀强磁场罗要使粒子不从ac 边界射出,设最小磁感应强度为B 1;若bac 区域内仅存在平行纸面且平行ab 方向向下的匀强电场,要使粒子不从ac 边射出,设最小电场强度为E 1.求B 1与E 1的比值为多少?【答案】(1)v =00U B L (2)01102B L B E U = 【解析】 【详解】(1)设带电粒子电荷量为q 、质量为m 、射入金属板速度为v ,粒子做直线运动时电场力与洛伦兹力平衡,根据平衡条件有:qvB 0= qE 0 ① E 0 =U L② 解得:v =0U B L③(2)仅存在匀强磁场时,若带电粒子刚好不从ac 边射出,则其轨迹圆与ac 边相切,则11sin 30ad R s R =+︒④ qvB 1 =2v m R⑤得:B 1=3admvqS ⑥ 仅存在匀强电场时,若粒子不从ac 边射出,则粒子到达边界线ac 且末速度也是与ac 边相切,即: x =vt ⑦ y =12at 2⑧ qE 1=ma ⑨ tan30º=ad xS y+ ⑩y v at = ⑾tan30º =yvv ⑿ 得:E 1=232admv qS ⒀ 所以:01102B L B E U = ⒁4.某粒子实验装置原理图如图所示,狭缝1S 、2S 、3S 在一条直线上,1S 、2S 之间存在电压为U 的电场,平行金属板1P 、2P 相距为d ,内部有相互垂直的匀强电场和匀强磁场,磁感应强度为1B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新物理速度选择器和回旋加速器易错剖析一、速度选择器和回旋加速器1.边长L =0.20m的正方形区域内存在匀强磁场和匀强电场,其电场强度为E =1×104V/m ,磁感强度B =0.05T ,磁场方向垂直纸面向里,当一束质荷比为mq=5×10-8kg/C的正离子流,以一定的速度从电磁场的正方形区域的边界中点射入,离子流穿过电磁场区域而不发生偏转,如右图所示,不计正离子的重力,求: (1)电场强度的方向和离子流的速度大小(2)在离电磁场区域右边界D=0.4m 处有与边界平行的平直荧光屏.若撤去电场,离子流击中屏上a 点;若撤去磁场,离子流击中屏上b 点,则ab 间的距离是多少?.【答案】(1)竖直向下;52s 10m /⨯(2)1.34m 【解析】 【详解】(1)正离子经过正交场时竖直方向平衡,因洛伦兹力向上,可知电场力向下,则电场方向竖直向下; 由受力平衡得qEqvB离子流的速度5210m /s Ev B==⨯ (2)撤去电场,离子在磁场中做匀速圆周运动,所需向心力由洛伦兹力提供,则有2v qvB m r=故0.2m mvr qB== 离子离开磁场后做匀速直线运动,作出离子的运动轨迹如图一所示图一由几何关系可得,圆心角60θ=︒1sin (0.60.13)m x L D R θ=+-=- 11tan (0.630.3)m=0.74m y x θ==-若撤去磁场,离子在电场中做类平抛运动,离开电场后做匀速直线运动,运动轨迹如图二所示图二通过电场的时间6110Lt s v-==⨯ 加速度11210m /s qEa m==⨯ 在电场中的偏移量210.1m 2y at ==粒子恰好从电场右下角穿出电场,则tan 1y xv v α==由几何关系得20.4m y =a 和b 的距离()120.63-0.30.40.2m ab y y y L =++=++=1.34m2.如图所示的装置,左半部为速度选择器,右半部为匀强的偏转磁场.一束同位素离子(质量为m ,电荷量为+q )流从狭缝S 1射入速度选择器,速度大小为v 0的离子能够沿直线通过速度选择器并从狭缝S 2射出,立即沿水平方向进入偏转磁场,最后打在照相底片D 上的A 点处.已知A 点与狭缝S 2的水平间距为3L ,照相底片D 与狭缝S 1、S 2的连线平行且距离为L ,忽略重力的影响.则(1)设速度选择器内部存在的匀强电场场强大小为E 0,匀强磁场磁感应强度大小为B 0,求E 0∶B 0;(2)求偏转磁场的磁感应强度B 的大小和方向;(3)若将右半部的偏转磁场换成方向竖直向下的匀强电场,要求同位素离子仍然打到A 点处,求离子分别在磁场中和在电场中从狭缝S 2运动到A 点处所用时间之比t 1∶t 2.【答案】(1)v 0(2)02mv B qL =,磁场方向垂直纸面向外(3)1223=∶t t π【解析】 【详解】(1)能从速度选择器射出的离子满足qE 0=qv 0B 0所以E 0∶B 0=v 0(2)离子进入匀强偏转磁场后做匀速圆周运动,由几何关系得:222()(3)R R L L =-+则2R L =由200v Bqv m R= 则2mv B qL=磁场方向垂直纸面向外 (3)磁场中,离子运动周期2RT v π=运动时间101263L t T v π==电场中,离子运动时间203=Lt 则磁场中和在电场中时间之比12239=∶t t π3.如图所示,在直角坐标系xOy 平面内有一个电场强度大小为E 、方向沿-y 方向的匀强电场,同时在以坐标原点O 为圆心、半径为R 的圆形区域内,有垂直于xOy 平面的匀强磁场,该圆周与x 轴的交点分别为P 点和Q 点,M 点和N 点也是圆周上的两点,OM 和ON 的连线与+x 方向的夹角均为θ=60°。
现让一个α粒子从P 点沿+x 方向以初速度v 0射入,α粒子恰好做匀速直线运动,不计α粒子的重力。
(1)求匀强磁场的磁感应强度的大小和方向;(2)若只是把匀强电场撤去,α粒子仍从P 点以同样的速度射入,从M 点离开圆形区域,求α粒子的比荷qm; (3)若把匀强磁场撤去,α粒子的比荷qm不变,α粒子仍从P 点沿+x 方向射入,从N 点离开圆形区域,求α粒子在P 点的速度大小。
【答案】(1)0E v ,方向垂直纸面向里03BR 3v 0【解析】【详解】(1)由题可知电场力与洛伦兹力平衡,即qE=Bqv0解得B=0 E v由左手定则可知磁感应强度的方向垂直纸面向里。
(2)粒子在磁场中的运动轨迹如图所示,设带电粒子在磁场中的轨迹半径为r,根据洛伦兹力充当向心力得Bqv0=m2 0 v r由几何关系可知r3,联立得q m3BR(3)粒子从P到N做类平抛运动,根据几何关系可得x=32R=vty 3=12×qEmt2又qE=Bqv0联立解得v=323Bqv Rm3v04.在图所示的平行板器件中,电场强度和磁感应强度相互垂直.具有某一水平速度的带电粒子,将沿着图中所示的虚线穿过两板间的空间而不发生偏转,具有其他速度的带电粒子将发生偏转.这种器件能把具有某一特定速度的带电粒子选择出来,叫作速度选择器.已知粒子A(重力不计)的质量为m,带电量为+q;两极板间距为d;电场强度大小为E,磁感应强度大小为B.求:(1)带电粒子A 从图中左端应以多大速度才能沿着图示虚线通过速度选择器?(2)若带电粒子A 的反粒子(-q, m)从图中左端以速度E/B 水平入射,还能沿直线从右端穿出吗?为什么?(3)若带电粒子A 从图中右端两极板中央以速度E/B 水平入射,判断粒子A 是否能沿虚线从左端穿出,并说明理由.若不能穿出而打在极板上.请求出粒子A 到达极板时的动能? 【答案】(1) E/B (2) 仍能直线从右端穿出,由(1)可知,选择器(B, E)给定时,与粒子的电性、电量无关.只与速度有关 (3) 不可能, 2122E Eqdm B ⎛⎫+ ⎪⎝⎭【解析】试题分析:,电场的方向与B 的方向垂直,带电粒子进入复合场,受电场力和安培力,且二力是平衡力,即Eq =qvB ,即可解得速度.仍能直线从右端穿出,由(1)可知,选择器(B, E)给定时,与粒子的电性、电量无关.只与速度有关.(1) 带电粒子在电磁场中受到电场力和洛伦兹力(不计重力),当沿虚线作匀速直线运动时,两个力平衡,即Eq =Bqv 解得:Ev B=(2)仍能直线从右端穿出,由(1)可知,选择器(B, E)给定时,与粒子的电性、电量无关.只与速度有关.(3)设粒子A 在选择器的右端入射是速度大小为v ,电场力与洛伦兹力同方向,因此不可能直线从左端穿出,一定偏向极板.设粒子打在极板上是的速度大小为v ′. 由动能定理得:22111222Eqd mv mv '=- 因为 E=Bv联立可得粒子A 到达极板时的动能为:2122k E EqdE m B ⎛⎫=+ ⎪⎝⎭点睛:本题主要考查了从速度选择器出来的粒子电场力和洛伦兹力相等,粒子的速度相同,速度选择器只选择速度,不选择电量与电性,同时要结合功能关系分析.5.如图,在整个直角坐标系xoy 区域存在方向沿y 轴负方向的匀强电场,场强大小为E ;在x>0区域还存在方向垂直于xoy 平面向内的匀强磁场。
一质量为m 、电荷量为q 的带正电粒子从x 轴上x=-L 的A 点射出,速度方向与x 轴正方向成45°,粒子刚好能垂直经过y 轴,并且在第一象限恰能做直线运动,不计粒子重力(1)求粒子经过y 轴的位置 (2)求磁感应强度B 的大小(3)若将磁场的磁感应强度减小为原来的一半,求粒子在x>0区域运动过程中的最大速度和最低点的y 坐标。
【答案】(1)y=12L (2)mE B qL = (3)3m qEL v m= 72y L =-【解析】 【分析】(1)粒子在第二象限做类平抛运动,根据平抛运动的规律求解粒子经过y 轴的位置;(2)粒子在第一象限恰能做直线运动,则电场力等于洛伦兹力,可求解B ;(3)将x>0区域的曲线运动看做以2v 1的匀速直线运动和以v 1的匀速圆周运动的合成,结合直线运动和圆周运动求解最大速度和最低点坐标。
【详解】(1)粒子在第二象限做类平抛运动,设初速度为v ,1222v v ==L=v 1t22v y t =联立解得2L y =,则经过y 轴上2Ly =的位置; (2)qE a m= v 2=at 可得1qELv m= qv 1B=qE解得mEB qL=(3)将x>0区域的曲线运动看做以2v 1的匀速直线运动和以v 1的匀速圆周运动的合成,如图;2112v Bqv m r⋅=解得2122mv r L qE == 24y r L ∆==最低点y 坐标为1722y L y L =-∆=- 此时速度最大为v m =2v 1+v 1解得3m qELv m=6.1897年,汤姆孙根据阴极射线在电场和磁场中的偏转情况断定,它的本质是带负电的粒子流并求出了这种粒子的比荷,图为汤姆孙测电子比荷的装置示意图。
在真空玻璃管内,阴极K 发出的电子经阳极A 与阴极K 之间的高电压加速后,形成细细的一束电子流,沿图示方向进入两极板C 、D 间的区域。
若两极板C 、D 间无电压,电子将打在荧光屏上的O 点,若在两极板间施加电压U ,则离开极板区域的电子将打在荧光屏上的P 点;若再在极板间施加磁感应强度大小为B 的匀强磁场,则电子在荧光屏上产生的光点又回到O 点,已知极板的长度L 1=5.00cm ,C 、D 间的距离d =1.50cm ,极板的右端到荧光屏的距离L 2=10.00cm ,U =200V ,B =6.3×10-4T ,P 点到O 点的距离Y =3.0cm 。
求:(1)判断所加磁场的方向;(2)电子经加速后射入极板C、D的速度v;(3)电子的比荷(结果保留三位有效数字)。
【答案】(1)磁场方向垂直纸面向外 (2)v=2.12×107m/s (3)=1.61×1011C/kg【解析】【详解】(1)由左手定则可知磁场方向垂直纸面向外;(2)当电子受到的电场力与洛伦兹力平衡时,电子做匀速直线运动,亮点重新回复到中心O点,设电子的速度为,则evB=eE得即代入数据得v=2.12×107m/s(3)当极板间仅有偏转电场时,电子以速度进入后,竖直方向作匀加速运动,加速度为电子在水平方向作匀速运动,在电场内的运动时间为这样,电子在电场中,竖直向下偏转的距离为离开电场时竖直向下的分速度为电子离开电场后做匀速直线运动,经t2时间到达荧光屏t2时间内向上运动的距离为这样,电子向上的总偏转距离为可解得代入数据得=1.61×1011C/kg【点睛】本题是组合场问题:对速度选择器,根据平衡条件研究;对于类平抛运动的处理,通常采用运动的分解法律:将运动分解成相互垂直的两方向运动,将一个复杂的曲线运动分解成两个简单的直线运动,并用牛顿第二定律和运动学公式来求解.7.如图所示的平面直角坐标系,x 轴水平,y 轴竖直,第一象限内有磁感应强度大小为B ,方向垂直坐标平面向外的匀强磁场;第二象限内有一对平行于x 轴放置的金属板,板间有正交的匀强电场和匀强磁场,电场方向沿y 轴负方向,场强大小未知,磁场垂直坐标平面向里,磁感应强度大小也为B ;第四象限内有匀强电场,电场方向与x 轴正方向成45°角斜向右上方,场强大小与平行金属板间的场强大小相同.现有一质量为m ,电荷量为q 的粒子以某一初速度进入平行金属板,并始终沿x 轴正方向运动,粒子进入第一象限后,从x 轴上的D 点与x 轴正方向成45°角进入第四象限,M 点为粒子第二次通过x 轴的位置.已知OD 距离为L ,不计粒子重力.求:(1)粒子运动的初速度大小和匀强电场的场强大小. (2)DM 间的距离.(结果用m 、q 、v 0、L 和B 表示) 【答案】(1)22B qLE m= (2)220222m v DM B q L =【解析】 【详解】(1)、粒子在板间受电场力和洛伦兹力做匀速直线运动,设粒子初速度为v 0,由平衡条件有:qv 0B=qE…①粒子在第一象限内做匀速圆周运动,圆心为O 1,半径为R ,轨迹如图,由几何关系知R =245LL cos =︒…② 由牛顿第二定律和圆周运动的向心力公式有:qv 0B =m 20 v R…③由②③式解得:v 0=2BqL…④由①④式解得:E=22B qLm…⑤(2)、由题意可知,粒子从D进入第四象限后做类平抛运动,轨迹如图,设粒子从D到M的运动时间为t,将运动分解在沿场强方向和垂直于场强的方向上,则粒子沿DG方向做匀速直线运动的位移为:DG=v0t…⑥粒子沿DF方向做匀加速直线运动的位移为:22122EqtDF atm==…⑦由几何关系可知:DG DF=,2DM DG=…⑧由⑤⑥⑦⑧式可解得22222m v DMq B L=.【点睛】此类型的题首先要对物体的运动进行分段,然后对物体在各段中进行正确的受力分析和运动的分析,进行列式求解; 洛伦兹力对电荷不做功,只是改变运动电荷的运动方向,不改变运动电荷的速度大小.带电粒子做匀速圆周运动的圆心、半径及运动时间的确定:①、圆心的确定:因为洛伦兹力提供向心力,所以洛伦兹力总是垂直于速度的方向,画出带电粒子运动轨迹中任意两点(一般是射入磁场和射出磁场的两点)洛伦兹力的方向,其延长线的交点即为圆心.②、半径的确定:半径一般都是在确定圆心的基础上用平面几何的知识求解,常常用到解三角形,尤其是直角三角形.③、运动时间的确定:利用圆心角与弦切角的关系或者四边形的内角和等于360°计算出粒子所经过的圆心角θ的大小,用公式t= 360Tθ︒可求出运动时间.8.如图所示,水平放置的两块带金属极板a、b 平行正对.极板长度为l ,板间距为d ,板间存在着方向坚直向下、场强大小为E 的匀强电场和垂直于纸面向里的匀强磁场.假设电场、磁场只顾在于两板间.一质量为m 、电荷量为q 的粒子,以水平速度v 0 从两极板的左端正中央沿垂直于电场、磁场的方向入极板间,恰好做做匀速直线运动.不计重力及空气阻力. (1)求匀强磁场感应强度B 的大小;(2)若撤去磁场,粒子能从极板间射出,求粒子穿过电场时沿电场方向移动的距离;(3)若撤去磁场,并使电场强度变为原来的2倍,粒子将打在下极板上,求粒子到达下极板时动能的大小.【答案】(1)0E B v = (2)2202qEl mv (3)2012k E mv qEd =+ 【解析】 【分析】(1)粒子恰好做匀速直线运动,可知电场力与洛仑兹力平衡,可求磁感应强度B ; (2)粒子做类平抛运动,由运动分解方法,求解粒子穿过电场时沿电场方向移动的距离; (3)用动能定理求解粒子到达下极板时动能. 【详解】(1)带电粒子匀速通过场区时受到的电场力与洛仑兹力平衡,qE=qv 0B ,解得磁感应强度大小B=0Ev ; (2)撤掉磁场后,粒子做类平抛运动,通过电场区偏转的距离22220011()222qE l qEl y at m v mv ==⨯⨯= (3)设粒子运动到下极板时的动能大小为E K ,根据动能定理得:q×2E×12d=E k -12m v 02 解得E K =12mv 02+qEd【点睛】对粒子搞好受力分析,挖掘“恰好做匀速直线运动”的隐含条件,对于撤掉磁场后的粒子的类平抛运动,要能够熟练分析解决,为常考内容.9.回旋加速器原理如图所示,D 1和D 2是两个中空的半圆形金属盒,置于与盒面垂直的匀强磁场中,它们接在交流电源上,位于D 1圆心处的离子源A 能不断产生正离子,它们在两盒之间被电场加速,当正离子被加速到最大动能E k 后,再设法将其引出。