人教版八年级下册17.1.1勾股定理教案

合集下载

人教版初中数学八年级下册第十七章勾股定理17.1.1勾股定理(教案)

人教版初中数学八年级下册第十七章勾股定理17.1.1勾股定理(教案)
再者,实践活动中的分组讨论和实验操作,学生们表现得积极主动,课堂氛围很好。但我也发现,有些小组在讨论过程中容易偏离主题,需要我在旁边适时引导,确保讨论内容紧扣勾股定理的应用。此外,在实验操作环节,有些学生对实验步骤不够熟悉,导致操作不够顺畅。我打算在课后整理一份实验操作指南,以方便学生在课余时间进行自主练习。
至于学生小组讨论环节,我发现学生们对于勾股定理在实际生活中的应用有很多自己的想法,这是一个很好的现象。但同时,我也注意到有些学生在讨论中过于依赖别人,缺乏独立思考的能力。针对这一点,我计划在接下来的课程中,多设计一些开放性问题,鼓励学生发表自己的观点,提高他们的独立思考能力。
最后,在总结回顾环节,我觉得学生对勾股定理的基本概念和应用的掌握程度还是不错的。但我也意识到,仅仅依靠课堂上的学习是远远不够的,还需要学生在课后进行巩固。因此,我打算在课后布置一些与勾股定理相关的练习题,让学生在实践中进一步巩固所学知识。
5.培养学生团队合作和交流表达的能力,通过小组讨论、分享证明勾股定理的方法,提升数学交流素养。
三、教学难点与重点
1.教学重点
-勾股定理的概念及其表述:使学生明确勾股定理是直角三角形三条边长度关系的表达,理解其数学表达式a²+b²=c²。
-勾股定理的证明方法:通过拼贴法和代数法,让学生掌握证明勾股定理的过程,理解其逻辑推理。
-勾股数的识别与应用:使学生能够判断并运用勾股数解决实际问题。
-实际问题的解决:培养学生将勾股定理应用于解决生活中的直角三角形问题。
举例:在讲解勾股定理的应用时,重点强调如何将实际问题抽象为直角三角形问题,并运用勾股定理求解。
2.教学难点
-勾股定理的理解:学生可能对a²+b²=c²这一表达式中的平方概念理解不深,需要通过具体实例和图形进行讲解。

人教版初中数学八年级下册17.1.1《勾股定理》教案设计

人教版初中数学八年级下册17.1.1《勾股定理》教案设计

17.1 勾股定理一、教学目的1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2.培养在实际生活中发现问题总结规律的意识和能力。

3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。

二、重点、难点1.重点:勾股定理的内容及证明。

2.难点:勾股定理的证明。

【设计思路】本课时教学强调让学生经历数学知识的形成与应用过程,鼓励学生自主探索与合作交流,以学生自主探索为主,并强调同桌之间的合作与交流,强化应用意识,培养学生多方面的能力。

让学生通过动手、动脑、动口自主探索,感受到“无出不在的数学”与数学的美,以提高学习兴趣,进一步体会数学的地位与作用。

【教学流程安排】一、了解历史,探索勾股定理二、拼图验证并证明勾股定理三、例题讲解,:巩固练习,教学流程【导课】一、让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。

以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。

”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。

再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。

你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。

对于任意的直角三角形也有这个性质吗?二、证明勾股定理已知:如图在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。

求证:a2+b2=c2。

A Bbbba分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。

⑵拼成如图所示,其等量关系为:4S△+S小正=S大正:a2+b2=c2。

三、归纳定理:①用语言表达勾股定理②用式子表达勾股定理③运用勾股定理时该注意些什么?四、例题解析.求出下列直角三角形中未知边的长度五、课堂练习1.求下列直角三角形中未知边的长:2、在一个直角三角形中, 两边长分别为6、8,则第三边的长为________8273.求下列图中字母所代表的正方形的面积:2B44、蚂蚁沿图中的折线从A点爬到D点,一共爬了多少厘米?(小方格的边长为1厘米)5、校园内有两棵树,相距12m ,一棵树高13m ,另一棵树高8m,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞多少m?D12ABCDE六、课堂小节:勾股定理七、布置作业。

人教版八年级下册数学17.1勾股定理(教案)

人教版八年级下册数学17.1勾股定理(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示勾股定理的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
在教学过程中,教师要针对教学难点和重点进行有针对性的讲解和指导,确保学生能够透彻理解本节课的核心知识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过直角三角形的情况?”(如楼梯的倾斜角度等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解勾股定理的基本概念。勾股定理是指在直角三角形中,两条直角边的平方和等于斜边的平方。它是解决直角三角形相关问题的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了勾股定理在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的发现与证明、勾股定理的应用这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
在今后的教学中,我会注意以下几点:
1.加强对勾股定理证明过程的讲解,让学生们从多个角度理解定理的本质。
2.注重实践与理论相结合,通过丰富多样的案例和练习,提高学生们运用勾股定理解决问题的能力。

人教版八年级数学下册17.1勾股定理(教案)

人教版八年级数学下册17.1勾股定理(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
人教版八年级数学下册17.1勾股定理(教案)
一、教学内容
人教版八年级数学下册第十七章第一节:勾股定理。本节课主要内容包括:
1.勾股定理的概念:了解直角三角形的特性,理解勾股定理的含义,即直角三角形两个直角边的平方和等于斜边的平方。
2.勾股定理的证明:通过数形结合的方法,引导学生掌握勾股定理的证明过程。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的概念和证明这两个重点。对于难点部分,我会通过具体的图形和计算步骤来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量并计算学校楼梯的斜边长度。
-难点1:为了帮助学生理解勾股定理的普遍性,可以通过展示不同大小的直角三角形,并证明它们都满足定理。
-难点2:在证明过程中,教师需要详细解释每一步的逻辑,如为什么两个相同大小的正方形拼接在一起时,其中一个正方形的面积等于两个直角三角形直角边的平方和,另一个正方形的面积等于斜边的平方。
-难点3:针对灵活运用,教师可以设计一些变式题,如隐藏直角三角形的直角,让学生通过计算判断是否满足勾股定理,或者给出斜边和一条直角边,让学生求另一条直角边的长度。
五、教学反思

人教版八年级数学下册17.1勾股定理教案

人教版八年级数学下册17.1勾股定理教案
5.通过实际操作和练习,加深对勾股定理的理解,培养几何思维能力和解决问题的能力。
二、核心素养目标
1.培养学生的逻辑推理能力,通过探索勾股定理及其逆定理,使学生能够理解和运用严密的数学推理过程。
2.提升空间想象力,通过观察直角三角形的性质和图形变换,激发学生对几何图形的认识和理解。
3.增强数据分析能力,使学生能够运用勾股定理解决实际问题,并对数据进行准确计算和合理分析。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过直角三角形的情况?”比如,我们在测量窗台到地面的距离时,就可以用到直角三角形的性质。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
五、教学反思
今天我们在课堂上一起探讨了勾股定理,回顾整个教学过程,我觉得有几个地方值得反思。首先,我发现学生在理解勾股定理的概念时,对于直角三角形两直角边和斜边的关系还是有些混淆。在今后的教学中,我需要更加注重基础知识点的讲解,让学生从本质上理解勾股定理。
其次,在新课导入环节,通过提问的方式引导学生思考日常生活中的直角三角形问题,这个方法效果还不错,学生的兴趣和好奇心被激发。但在实际操作中,我意识到应该多举一些贴近生活的例子,让学生更直观地感受到勾股定理的实际应用。
人教版八年级数学下册17.1勾股定理教案
一、教学内容
人教版八年级数学下册第17.1节,本节课主要围绕勾股定理展开教学。内容包括:
1.了解勾理的表达式:直角三角形两直角边的平方和等于斜边的平方。
3.学会运用勾股定理解决实际问题,如计算直角三角形的边长。

人教版八年级数学下册教案:17.1《勾股定理》

人教版八年级数学下册教案:17.1《勾股定理》
(举例:计算直角三角形的未知边长,解决房屋建筑、道路设计等问题。)
2.教学难点
(1)勾股定理的理解:学生需要理解并掌握定理的内涵,能够从几何和代数两个角度来认识勾股定理。
(难点解析:理解直角三角形三条边的关系,如何从平方和的角度来描述这一关系。)
(2)勾股定理的证明:理解证明过程中的每一步,掌握证明方法,并能够灵活运用。
-证明方法:如何从不同角度证明勾股定理,各种证明方法的优势和局限?
-应用实例:如何将实际问题抽象为直角三角形,并运用勾股定理进行求解?
-难点突破:通过典型例题和练习,帮助学生逐步攻克难点,提高解决问题的能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过直角三角形的情况?”(如楼梯的斜坡、墙角的直角等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解勾股定理的基本概念。勾股定理是指在直角三角形中,两条直角边的平方和等于斜边的平方。它是解决直角三角形边长问题的有力工具,并在生活中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。通过计算一个直角三角形的边长,展示勾股定理在实际中的应用,以及它如何帮助我们解决问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

八年级数学下册(人教版)17.1.1勾股定理(第一课时)教学设计

八年级数学下册(人教版)17.1.1勾股定理(第一课时)教学设计
4.合作交流,提升能力:组织学生进行小组讨论,分享学习心得和解决问题的方法,培养学生的合作精神和交流能力。在此基础上,设计一些实际问题,让学生运用勾股定理进行求解,提高他们的问题解决能力。
5.总结反思,拓展提高:在教学结束时,引导学生对勾股定理进行总结,明确其应用范围和注意事项。同时,布置一些拓展提高的练习题,让学生在课后进行巩固。
本节课的教学设计以勾股定理为核心,紧密结合教材内容,注重培养学生的知识技能、过程方法和情感态度与价值观,旨在提高学生的数学素养和实际应用能力。
二、学情分析
八年级学生在经过前两年的数学学习后,已经具备了一定的数学基础和逻辑思维能力。在本节课之前,学生已经学习了平面几何、立体几何的基本概念,掌握了直角三角形的性质和判定方法,这些都为学习勾股定理奠定了基础。然而,由于勾股定理涉及斜边与直角边的平方关系,学生在理解上可能会存在一定难度。因此,在教学过程中,教师需关注以下几点:
2.自主探究,发现定理:引导学生观察教材中的直角三角形图形,鼓励他们大胆猜想勾股定理的表达形式。在学生自主探究的基础上,引导他们通过实际测量、计算,验证勾股定理的正确性。
3.精讲精练,突破难点:针对勾股定理的证明过程,教师进行详细讲解,并设计具有梯度的问题,让学生逐步掌握定理的证明方法。同时,通过典型例题的讲解和练习,帮助学生巩固定理的应用。
(四)课堂练习,500字
为了巩固学生对勾股定理的理解,我将设计一些课堂练习题。这些练习题分为基础题和提高题,以满足不同层次学生的学习需求。
1.基础题:主要针对勾股定理的基本应用,如已知直角三角形的两边,求解第三边。
2.提高题:涉及勾股定理在实际问题中的应用,如计算建筑物的高度、距离等。
我会让学生独立完成练习题,并在必要时给予指导。通过课堂练习,学生可以检验自己对勾股定理的掌握程度,并为课后作业打下基础。

人教版八年级下册数学第十七章17.1勾股定理教案

人教版八年级下册数学第十七章17.1勾股定理教案
五、教学反思
今天我们在课堂上一起学习了勾股定理,回顾整个教学过程,我觉得有几个地方值得反思和改进。
首先,关于导入新课的部分,我发现通过提问的方式引起学生的兴趣和好奇心是有效的,但可能问题设置得有些抽象,部分学生似乎并没有完全理解我想要表达的意思。下次我可以尝试用更具体、更贴近生活的例子来导入新课,让学生能更快地进入学习状态。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解勾股定理的基本概念。勾股定理是指直角三角形中,两条直角边的平方和等于斜边的平方。它在几何学中具有极高的地位,是解决直角三角形相关问题的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。通过计算一个实际直角三角形的边长,展示勾股定理如何帮助我们解决问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
在实践活动方面,我发现学生们在分组讨论和实验操作时表现得非常积极,这说明他们对于动手实践和合作学习很感兴趣。但我也注意到,有些小组在讨论过程中可能会偏离主题,下次我可以提前给出更明确的讨论要求和指导,确保实践活动能更好地为学习目标服务。

人教版数学八下17.1《勾股定理》教案3篇

人教版数学八下17.1《勾股定理》教案3篇

初中数学教学案例18.1勾股定理(第一课时)教学目标知识技能数学思考解决问题情感态度教学重点教学难点教具教学过程教学流程教师活动学生活动设计意图情景引人[活动1]讲述资料故事提出问题1:数学家大会为什么用该图做会徽呢?它有什么特殊的含义吗?教师作补充说明:这个图案是我国汉代数学家赵爽在证明勾股定理时用到的,被称为“赵爽弦图”.问题2:你听说过“勾股定理”吗?教师关注:学生对“赵爽弦图”及勾股定理的历史是否感兴趣.引人课题18.1《勾股定理》(板书课题)[活动2]学生观察图片发表见解.生1.会徽是很具有代表性的东西,比如2008年体育奥运会的会徽是五环旗.生2.我在其他的资料里见过这个图案.生3.课本面上也有这样的图案.(同学们积极踊跃的发言,学习积极性很高)学生当听到是“赵爽弦图”时,好奇之心更加强烈,学习热情很高.对“勾股定理”表示不从现实生活中提出“赵爽弦图”,为学生能够积极主动地投入到探索活动创设情境,激发学生学习热情,同时为探索勾股定理提供背景材料.探究新知A BC你知道他是通过什么途径找到怎样的三边关系的吗?问题1.你能发现S A、S B 、S C之间的关系吗?问题2.等腰直角三角形的三边a、b、c之间有什么关系?出示幻灯片3169254913否也有这样的性质呢?在本次活动中,教师重点关注:(1)教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其用不同的方法得出大正方形C的面积.理解观察图片后结合课本上的内容,学生很快就发现这一关系式SA+ SB=SCa2 + b2 = c2纷纷举手回答,并总结:等腰直角三角形的两条的平方问题是思维的起点,通过问题激发学生好奇心和主动学习的欲望.为学生提供参与数学活动的时间和组内交流(2)幻灯片展示答案(3)引导学生将三个正方形面积的关系转化为直角三角形三条边之间的关系,并用自己的语言叙述出来:[活动3] 实践验证早在公元3世纪,我国数学家赵爽就用赵爽弦图验证了“勾股定理”幻灯片展示赵爽弦图教师详细介绍赵爽弦图的拼割过程.问题:.你能利用手中的材料通过其他的拼法验证勾股定理吗?试试看,你能拼几种在独立探究的基础上,学生分组(前后位四人一组)合作交流.用不同的方法得出大正方形C的面积生1:把C“补” 成边长为7的正方形面积的一半.生2:将正方形C分“割”成若干个直角边为整数的三角形当答案不同、意见有分歧时,所有同学都在积极思考,大胆发言,各抒己见,直到探求出正确结果.学生总结命题:直角三角形的两条直角边的平方和等于斜边的平方空间,让学生积极动手,发挥学生的主体作用,使学生在相互欣赏、争辩、互助中得到提高.,得出猜想实践验证在本次活动中,教师重点关注:(1)学生能否进行合理的拼图.对不同层次的学生有针对性地给予分析、帮助;(2)学生能否用语言准确的表达自己的观点.勾股定理(毕达哥拉斯定理)(板书)直角三角形两直角边的平方和等于斜边的平方。

人教版数学八年级下册17.1.1勾股定理 教案设计

人教版数学八年级下册17.1.1勾股定理 教案设计

作者信息
教学设计
创设情境引入新课
利用多媒体介绍在北京召开的
2002年国际数学大会会标“赵爽弦
图”,激发学生学习兴趣和民族自豪

聆听并感受利用多媒体展示
在北京召开的
2002年国际数学
大会会标“赵爽
弦图”
师生互动探索新知
一、观察、发现、类比、猜测
1、通过多媒体让学生观察毕达哥拉
斯家的磁砖
2、提问:是否任意直角三角形三边
都符合等腰直角三角形三边的这个
关系?引导学生由特殊到一般。

3、由多媒体打出网格,在网格中给
出任意直角三角形,引导学生到格点
图中去验证自己的猜测。

由于网格的
不规则,引出用割补的方法进行计
算。

独立、仔细观察1分钟,然后4
人一小组讨并派代表发表观点
结论:a2+b2=c2
猜测并回答结果
小组讨论并举手回答:割补方
法不一。

原则:不规则经过割补变为规
则。

Ppt课件
几何画板演示
为了让学生感受数形结合这一数学
思想,利用多媒体,要求学生由两块
面积为a2与b2组成的图形经割补变
为c2。

学生课前准备了“L”形,要求
学生亲自动手,互相协助,将“L”
形进行割补。

提问:由以上过程,你能得到什么结论?
由此我们得到了证明勾股定理的一种方法:等积法。

用多媒体打出“总统证法”的图形
问题:你能用此图形证明勾股定理吗?
的直角三角形进行拼图。

小组合作,进行拼图。

上黑板将拼图粘贴在黑板上进行演示。

人教版八年级数学下册17.1.1勾股定理教学设计

人教版八年级数学下册17.1.1勾股定理教学设计

人教版八年级数学下册17.1.1 勾股定理教课方案17.1 勾股定理教课方案本节课是九年制义务教育课程人教版教科书八年级下第十七章第一节“勾股定理”的第一课时,勾股定理在初中数学中饰演着很重要的角色。

在此后的学习中会常常用到相关勾股定理的知识,本节课我们主要来研究勾股定理的由来。

三维目标1、知识与技术:认识勾股定理的证明,掌握勾股定理的内容,初步会用它进行相关的计算和证明.2、过程与方法:经过勾股定理的应用,培育方程的思想和逻辑推理能力.3、感情态度与价值观:对照介绍我国古代和西方数学家对于勾股定理的研究,对学生进行爱国主义教育.教课要点与难点要点:勾股定理的推导的过程内容勾股定理的详细内容难点:勾股定理的内容以及应用教课方法教师指引学生从已有的知识和生活经验出发,提出问题并与学生共同研究、议论。

让学生经历知识的形成与应用的过程,进而更好地理解勾股定理的意义。

教具学具多媒体教课法制浸透:《中华人民共和国道路交通安全法实行条例》第四十五条教课过程设计一、激发兴趣引入课题多媒体演示小兔讲故事:故事一:美国十七任总统伽菲尔德证明勾股定理故事故事二:古希腊数学家毕达哥拉斯与勾股定理的故事。

1 / 4人教版八年级数学下册17.1.1 勾股定理教课方案故事三:我国数学家商高发现勾股定理的故事。

二、勾股定理的研究,证明过程及命名1.证明猜想.多媒体演示:美国第17 任总统加菲尔德证明勾股定理的方法古希腊的数学家欧几里得在《几何本来》中记录的证明方法。

我国数学家赵爽的证明方法。

(指引学生研究证明过程)2.勾股定理的命名.我国称这个结论为“勾股定理”,西方称它为“毕达哥拉斯定理”,为何呢?(1)介绍《周髀算经》中对勾股定理的记录;(2)介绍西方毕达哥拉斯于公元前582~493 期间发现了勾股定理;(3)对照以上事实对学生进行爱国主义教育,激励他们奋斗向上.三、议一议你能发现直角三角形三边长度之间存在什么关系吗?与伙伴进行沟通。

人教版八下数学17.1 课时1 勾股定理教案+学案

人教版八下数学17.1 课时1 勾股定理教案+学案

人教版八年级下册数学第17章勾股定理17.1 勾股定理课时1 勾股定理教案【教学目标】1.经历探索及验证勾股定理的过程,体会数形结合的思想;2.掌握勾股定理,并运用它解决简单的计算题;3.了解利用拼图验证勾股定理的方法..【教学重点】1.经历探索及验证勾股定理的过程,体会数形结合的思想;2.掌握勾股定理,并运用它解决简单的计算题.【教学难点】了解利用拼图验证勾股定理的方法.【教学过程设计】一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究知识点一:勾股定理【类型一】直接运用勾股定理例1如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,CD⊥AB于D,求:(1)AC的长;(2)S△ABC;(3)CD的长.解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据面积公式得到CD·AB=BC·AC即可求出CD.解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12cm;(2)S△ABC=12CB·AC=12×5×12=30(cm2);(3)∵S△ABC=12AC·BC=12CD·AB,∴CD=AC·BCAB=6013cm.方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】分类讨论思想在勾股定理中的应用例2在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC 的周长.解析:本题应分△ABC为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC的周长为15+13+14=42;(2)当△ABC为钝角三角形时,如图②所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=9-5=4,∴△ABC的周长为15+13+4=32.∴当△ABC为锐角三角形时,△ABC 的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】勾股定理的证明例3探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC 绕其顶点A 旋转90°得直角三角形AED ,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE 的面积等于Rt △BAE 和Rt △BFE 的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和进行解答;方法2:根据△ABC 和Rt △ACD 的面积之和等于Rt △ABD 和△BCD的面积之和解答.解:方法1:S 正方形ACFD =S 四边形ABFE =S △BAE +S △BFE ,即b 2=12c 2+12(b +a )(b -a ),整理得2b 2=c 2+b 2-a 2,∴a 2+b 2=c 2;方法2:此图也可以看成Rt △BEA 绕其直角顶点E 顺时针旋转90°,再向下平移得到.∵S 四边形ABCD =S △ABC +S △ACD ,S 四边形ABCD =S △ABD +S △BCD ,∴S △ABC +S △ACD=S △ABD +S △BCD ,即12b 2+12ab =12c 2+12a (b -a ),整理得b 2+ab =c 2+a (b -a ),b 2+ab =c 2+ab -a 2,∴a 2+b 2=c 2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.知识点二:勾股定理与图形的面积例4 如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E 的面积是________.解析:根据勾股定理的几何意义,可得正方形A、B的面积和为S1,正方形C、D的面积和为S2,S1+S2=S3,即S3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A、B、C、D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A、B、C、D的面积和即是最大正方形的面积.【板书设计】17.1 勾股定理课时1 勾股定理1.勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.【教学反思】在课堂教学中应注意调动学生学习数学的积极性.让学生满怀激情地投入到数学学习中,提高数学课堂教学效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.人教版八年级下册数学第17章勾股定理17.1 勾股定理课时1 勾股定理学案【学习目标】1.经历勾股定理的探究过程,了解关于勾股定理的一些文化历史背景,会用面积法来证明勾股定理,体会数形结合的思想;2.会用勾股定理进行简单的计算.【学习重点】掌握用面积法来证明勾股定理,体会数形结合的思想.【学习难点】能够运用勾股定理进行有关的运算.【自主学习】一、知识回顾网格中每个小正方形的面积为单位1,你能数出图中的正方形A、B 的面积吗?你又能想到什么方法算出正方形C的面积呢?AB CCBA方法1:补形法(把以斜边为边长的正方形补成各边都在网格线上的正方形):左图:S c=__________________________;右图:S c=__________________________.方法2:分割法(把以斜边为边长的正方形分割成易求出面积的三角形和四边形):左图:S c=__________________________;右图:S c=__________________________.二、合作探究考点1:勾股定理的认识及验证想一想 1.2500年前,毕达哥拉斯去老朋友家做客,看到他朋友家用等腰三角形砖铺成的地面,联想到了正方形A,B和C面积之间的关系,你能想到是什么关系吗?2.右图中正方形A、B、C所围成的等腰直角三角形三边之间有什么特殊关系?3.在网格中一般的直角三角形,以它的三边为边长的三个正方形A、B、C 是否也有类似的面积关系?(每个小正方形的面积为单位1)4.正方形A、B、C 所围成的直角三角形三条边之间有怎样的特殊关系?思考你发现了直角三角形三条边之间的什么规律?你能结合字母表示出来吗?猜测:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么________.活动2 接下来让我们跟着以前的数学家们用拼图法来证明活动1的猜想.证法利用我国汉代数学家赵爽的“赵爽弦图”=________,证明:∵S大正方形S小正方形=________,S大正方形=___·S三角形+S小正方形,∴________=________+__________.要点归纳:勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 公式变形:222222, ,=+--.a cb bc a c a b知识点2:利用勾股定理进行计算【典例探究】例1如图,在Rt△ABC中,∠C=90°.(1)若a=b=5,求c;(2)若a=1,c=2,求b.变式题1 在Rt△ABC中,∠C=90°.(1)若a:b=1:2 ,c=5,求a;(2)若b=15,∠A=30°,求a,c.方法总结:已知直角三角形两边关系和第三边的长求未知两边时,要运用方程思想设未知数,根据勾股定理列方程求解.变式题2在Rt△ABC中,AB=4,AC=3,求BC的长.方法总结:当直角三角形中所给的两条边没有指明是斜边或直角边时,其中一较长边可能是直角边,也可能是斜边,这种情况下一定要进行分类讨论,否则容易丢解.例2已知∠ACB=90°,CD⊥AB,AC=3,BC=4.求CD的长.方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,它常与勾股定理联合使用.【跟踪训练】求下列图中未知数x、y的值:三、知识梳理内容勾股定理如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.注意1.在直角三角形中2.看清哪个角是直角3.已知两边没有指明是直角边还是斜边时一定要分类讨论四、学习中我产生的疑惑【学习检测】1.下列说法中,正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c22. 如图,Rt△ABC(∠C=90°)的主要性质:(用几何语言表示)(1)两锐角之间的关系:____________________.(2)若∠B=30°,则∠B的对边和斜边:_________.3.如果直角三角形的两直角边分别为a、b,斜边为c,那么_________.4. 右图中阴影部分是一个正方形,则此正方形的面积为_____________.5.在△ABC中,∠C=90°.(1)若a=15,b=8,则c=_______.(2)若c=13,b=12,则a=_______.6.若直角三角形中,有两边长是5和7,则第三边长的平方为_________.7.如图所示,所有的四边形都是正方形,三角形是直角三角形,其中最大的正方形的边长为6,则正方形A,B的面积的和为_______.8.求斜边长17cm、一条直角边长15cm的直角三角形的面积.9.如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1,求△ABC的周长.10.如图,将长为10米的梯子AC斜靠在墙上,BC长为6米,求梯子上端A到墙的底端B的距离AB。

人教版八年级数学下17.1勾股定理(教案)

人教版八年级数学下17.1勾股定理(教案)
五、教学Байду номын сангаас思
在今天的教学中,我发现学生们对勾股定理的概念和应用表现出浓厚的兴趣。通过引入日常生活中的例子,他们能够更直观地理解这个定理的重要性。在讲授理论时,我注意到有些学生对于定理的证明过程感到困惑,特别是几何证明部分。这让我意识到,需要进一步通过不同的例子和解释来帮助他们克服这个难点。
在实践活动环节,学生们分组讨论并进行了实验操作,这极大地提高了他们的参与度。我观察到他们在尝试解决实际问题时,能够积极思考,相互交流,这有助于巩固他们对勾股定理的理解。然而,我也注意到,在讨论过程中,有些小组在问题的分析和解决上存在困难,这时我及时给予了引导和启发,帮助他们找到了解决问题的方法。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的表述和证明这两个重点。对于难点部分,如定理的证明,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量实际物体的直角边和斜边长度,验证勾股定理。
举例解释:
-对于定理的证明,教师需要提供多个角度和方法的证明,如代数法、几何法等,帮助学生从不同角度理解定理的本质;
-在解决实际问题时,教师要指导学生如何从复杂问题中提取关键信息,识别出勾股定理的应用场景;
-在探索勾股数时,教师应引导学生通过具体的计算和观察,发现勾股数的规律,如3、4、5是勾股数,并能够推广到其他勾股数的寻找和应用。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过直角三角形的情况?”比如,我们常见的楼梯、墙壁与地面形成的角等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。

人教版数学八年级下册17.1《勾股定理(直角三角形三边的关系)》教案

人教版数学八年级下册17.1《勾股定理(直角三角形三边的关系)》教案
三、教学难点与重点
1.教学重点
-理解并掌握勾股定理的表达式:直角三角形两直角边的平方和等于斜边的平方。
-学会运用勾股定理计算直角三角形的边长。
-熟悉勾股定理的证明方法,如构造法、割补法等。
-能够识别和判断勾股数。
-掌握勾股定理在实际问题中的应用。
举例:在教学过程中,教师应通过多种例题和图形,反复强调勾股定理的表达式和应用方法,确保学生能够准确记忆并熟练运用。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解勾股定理的基本概念。勾股定理是指直角三角形两直角边的平方和等于斜边的平方。它是解决直角三角形边长计算问题的关键,广泛应用于建筑、工程等领域。
2.案例分析:接下来,我们来看一个具体的案例。通过计算一个直角三角形的边长,展示勾股定理在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的表达式和证明方法这两个重点。对于难点部分,如证明过程的理解,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如构造直角三角形模型,演示勾股定理的基本原理。
其次,在实践活动环节,我发现学生们在分组讨论时,有些小组的讨论并不充分,部分学生参与度不高。为了提高学生的参与度,我打算在接下来的课程中,尝试采取一些激励措施,如设立小组竞赛,鼓励学生积极发言,提高他们的讨论热情。
此外,在学生小组讨论环节,我发现有些学生对于勾股定理在实际生活中的应用了解不够深入。这可能是因为他们在生活中观察不够仔细,或者是对数学知识的应用意识不够强烈。针对这个问题,我计划在今后的教学中,多引入一些生活中的实际案例,让学生感受到数学知识的实用价值,激发他们学习数学的兴趣。

人教版数学八年级下册17.1第1课时《 勾股定理》教案

人教版数学八年级下册17.1第1课时《 勾股定理》教案

人教版数学八年级下册17.1第1课时《勾股定理》教案一. 教材分析《勾股定理》是中学数学中的一个重要定理,它揭示了直角三角形三边之间的一种简单而美妙的关系。

人教版八年级下册第17.1节《勾股定理》主要介绍了勾股定理的证明和应用。

通过这一节的学习,学生可以加深对勾股定理的理解,提高解决几何问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了相似三角形的性质、全等三角形的判定和性质等基础知识。

但勾股定理的证明和应用需要学生具备较强的逻辑思维能力和空间想象能力。

因此,在教学过程中,教师需要关注学生的学习基础,针对不同学生进行有针对性的教学。

三. 教学目标1.理解勾股定理的证明过程,掌握勾股定理的内容。

2.能够运用勾股定理解决实际问题,提高解决问题的能力。

3.培养学生的逻辑思维能力和空间想象能力。

四. 教学重难点1.勾股定理的证明过程。

2.勾股定理在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活中的实例,引发学生对勾股定理的思考,激发学生的学习兴趣。

2.演示教学法:通过几何画板等软件,直观地展示勾股定理的证明过程。

3.问题驱动法:引导学生通过解决问题,深入理解勾股定理的内涵。

4.小组合作法:鼓励学生分组讨论,培养学生的团队协作能力。

六. 教学准备1.教学课件:制作勾股定理的课件,包括证明过程的动画演示。

2.几何画板:用于展示勾股定理的证明过程。

3.练习题:准备一些有关勾股定理的应用题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过展示一些生活中的实例,如篮球架、自行车等,引导学生思考这些实例中是否存在勾股定理的应用。

让学生感受到勾股定理在现实生活中的重要性。

2.呈现(10分钟)利用几何画板,演示勾股定理的证明过程。

首先,展示一个直角三角形,然后通过动态变化,引导学生发现直角三角形三边之间存在的关系。

最后,给出勾股定理的数学表达式。

3.操练(10分钟)让学生分组讨论,运用勾股定理解决一些实际问题。

人教版初中数学八年级下册第十七章勾股定理17.1.1勾股定理说课稿

人教版初中数学八年级下册第十七章勾股定理17.1.1勾股定理说课稿
2.同伴互评:组织学生相互评价,提出建议,促进同学之间的相互学习和交流。
3.教师评价:针对学生的表现,给予积极的反馈和鼓励,指出学生的不足之处,并提出改进建议。
(五)作业布置
课后作业布置如下:
1.基础作业:布置一定数量的基础习题,让学生巩固勾股定理的计算方法。
2.提高作业:设计一些拓展性题目,让学生运用勾股定理解决实际问题,提高学生的应用能力。
1.主要内容:左侧包括勾股定理的定义、勾股数;中间部分展示勾股定理的证明过程、例题及解题步骤;右侧部分呈现本节课的总结和勾股定理应用时的注意事项。
2.风格:板书采用简洁明了的字体,用不同颜色粉笔区分重点、难点和关键步骤,以增强视觉效果。
3.作用:板书在教学过程中的作用是引导学生关注教学重点,帮助学生理清知识结构,便于复习和回顾。
3.技术工具:电子白板、几何画板等,方便学生直观地观察和操作几何图形,提高课堂互动性。
(三)互动方式
为实现师生互动和生生互动,我计划设计以下环节:
1.师生互动:在课堂提问环节,教师引导学生思考问题,学生回答问题,教师给予反馈和指导。
2.生生互动:将学生分成小组,进行合作探究、讨论。在小组内,学生共同分析问题、解决问题,相互交流想法,达成共识。
2.小组讨论:组织学生进行小组讨论,共同解决实际问题,培养学生的团队协作能力和解决问题的能力。
3.实践活动:让学生分组测量学校周围建筑物中的直角三角形,计算其边长,并验证勾股定理。
(四)总结反馈
在总结反馈阶段,我将采取以下措施:
1.自我评价:让学生回顾本节课的学习内容,进行自我评价,总结自己在学习过程中的收获和不足。
在课程体系中,勾股定理的学习是在学生已经掌握了直角三角形的基本概念、三角形面积计算以及相似三角形的基础上展开的。通过本节课的学习,学生将对直角三角形有更深入的理解,为后续学习平面几何中与直角三角形相关的内容奠定基础。

人教版八年级数学下册17.1.1勾股定理教学设计

人教版八年级数学下册17.1.1勾股定理教学设计

探索勾股定理教学设计教学目标知识能力目标:理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算;通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

过程方法目标:在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。

情感态度目标:通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

教学重点 探索勾股定理及定理的应用;教学难点 用语言表达勾股定理以及用所学知识说明勾股定理教学方法 合作、探索、发现教学手段 多媒体及学生动手操作教学过程一、开门见山,揭示课题这张邮票是希腊政府1955年发行的,它由三个棋盘排列而成。

这张邮票是用来纪念历史上一位对数学作出了杰出贡献的数学家——毕达哥拉斯。

这张邮票的图案就是根据他的发现而设计的。

他究竟发现了什么呢?这节课就让我门一起来共同探讨设计意图:为了有效的刺激学生的好奇心和求知欲,引用了一张邮票作为本节课的导入。

邮票是希腊政府1955年发行的,它由三个棋盘排列而成。

是为了纪念历史上一位对数学作出了杰出贡献的数学家——毕达哥拉斯。

这张邮票的图案就是根据他的发现而设计的。

引导学生思考:究竟毕达哥拉斯发现了什么呢?二、激趣质疑,探索新知(一)首先用多媒体展示课本图形19.2.1让学生观察图形,提出三个有梯度的问题 (1)正方形P、Q、R的面积分别是多少?他们有什么关系? (2)怎样用AC 表示S P ,用BC 表示S Q ,用AB 表示S R ?(3)从上面的结果中你能否发现直角三角形三边长度存在的关系吗?把你的结论与同伴进行交流.(二)接着让学生思考:其他的直角三角形是不是也有这样的性质呢?同样让学生计算正方形的面积,但正方形R 的面积不易求出,可让事先发给学生印好图案的统一的方格纸,在纸上剪一剪,拼一拼,学生可能有不同的方法,不管是通过直接数小方格的个数,还是将R 划分为4个全等的直角三角形来求等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《勾股定理》教案
【教学目标】
1.知识与技能
(1)了解关于勾股定理的一些文化历史背景。

(2)能用勾股定理解决一些简单问题。

2.过程与方法
发展观察、归纳、概括等能力,发展有条理的思考能力以及语言表达能力。

3.情感态度和价值观
通过师生共同活动,促进学生在学习活动中培养良好的情感,合作交流,主动参与的意识。

【教学重点】
勾股定理的推导
【教学难点】
利用勾股定理解决问题。

【教学方法】
自学与小组合作学习相结合的方法。

【课前准备】
教学课件。

【课时安排】
1课时
【教学过程】
一、情景导入
【过渡】如图所示为2002年在北京举行的国际数学家大会的会徽,它标志着我国古代数学的成就。

这个图形里到底蕴涵了什么样博大精深的知识呢?今天我们就来探究一下,关于这个图形,究竟有哪些知识。

二、新课教学
1.勾股定理
【过渡】相传2500年前,毕达哥拉斯有一次在朋友家里做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。

现在,我们也来观察一下,从图形中能发现什么知识呢?
【过渡】大家来看P22页的思考内容,我们发现,这个图形与上边的图形是一致的,今天,我们也来当一回科学家,来思考一下,这个图形到底有什么奥秘呢?
【过渡】我们能够看到,在这个图中,有三个正方形A、B、C,现在,我们假设小方格的边长为1。

正方形A、B、C的面积各为多少?
(学生回答)引导学生通过小方格的个数计算。

【过渡】通过观察,我们发现,三个正方形,S A=6,S B=6,S C=12。

由此,我们能够回答思考内容中的第一个问题,即三个正方形的关系是S A+S B=S C。

【过渡】现在,我们来看第二个问题,结合正方形的知识,我们知道三个正方形所围成的,即蓝色部分是一个等腰直角三角形。

我们假设A、B、C三个正方形对应的边长分别为a、b、c。

则通过正方形面积的计算,大家能得到什么呢?
(学生回答)
【过渡】大家都是很优秀的科学家,就是这样,我们能够得到a2+b2=c2,而从图中,我们又能发现,a、b、c刚好是等腰直角三角形的三条边。

那么,现在谁能来总结一下,等腰直角三角形中三边的关系呢?
对于等腰直角三角形有这样的性质:斜边的平方等于两直角边的平方和。

【过渡】既然等腰三角形中有这样的性质,那大家就可能会说,其他一般的三角形中会不会也有
同样的性质呢?我们来看课本探究的内容。

【过渡】同样是假设小方格为1,我们画出了一般情况下的直角三角形。

同样根据刚刚的面积法,我们来探索一下。

【过渡】同样的,我们能够得到S A+A B=S C,而对应的边所组成的三角形的边长也有同样的关系:a2+b2=c2。

【过渡】由以上的例子,我们得到这样的猜想:
如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2。

【过渡】从古至今,有很多科学家对命题1进行了证明,下边我们来介绍证明方法:
(1)赵爽弦图:学生阅读课本,进行理解。

【过渡】赵爽弦图是比较著名的证明方法,他的基本思路是用四个直角三角形围成如图所示的正方形。

从面积角度入手,大正方形的面积为c2,小正方形的面积(b-a)2。

与此同时,S大=4S三+S小。

即c2=2ab+a2-2ab+b2。

由此得到a2+b2=c2。

【过渡】赵爽弦图证明了命题1的正确性。

我们将其成为勾股定理。

勾股定理:直角三角形两直角边的平方和等于斜边的平方。

【过渡】利用勾股定理,可以简单的解决一些问题。

大家来练习一下吧。

【过渡】在勾股定理的应用当中,也会存在一些变式的应用。

如确定斜边等。

课件展示变式应用。

【典题精讲】
如果直角三角形两边长分别为3和4,那么第三边的长为 5或 .
解:(1)当两边均为直角边时,由勾股定理得,第三边为5,
(2)当4为斜边时,由勾股定理得,第三边为,
故答案为 5或.
如图已知AD是直角△ABC的中线,E为BD的中点,BA=BD,问AC、AE的长度有何等量关系?并证明你的结论。

解析:AB=2AE.
证明:设AB=x,
∵AD为斜边BC的中线,
∴BD=DC=DA=x,即△ABD为等边三角形,
∴AE== AB.
AC=,且BC=2AB,
∴AC=AB,∴AC=2AE
【知识巩固】1、如图,则正方形A的边长是(A)
A. 6
B. 36
C. 64
D. 8
2、若一个直角三角形的一条直角边长是7cm,另一条直角边比斜边短1cm,则斜边长为(D)
A. 18cm
B. 20cm
C. 24cm
D. 25cm
3、判断题:
(1)直角三角形三边分别为a, b, c ,则一定满足下面的式子:a2+b2 =c2错误
(2) 直角三角形的两边长分别是3和4,则第三边长是5错误
4、如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为(D)
A. 2
B. 2
C. +1
D. +1
【拓展提升】1、已知Rt△ABC的周长为14,面积为7.试求它的三边长。

解:设△ABC的三边长分别为a、b、c,其中c为斜边,依题意得方程组:a2+b2=c2①;ab=7②;a+b+c=14③
由③得:a+b=14-c
从而解得:c=6.
于是,a+b=14-c=8,ab=98-14c=14.
从而a、b是方程z2-8z+14=0的两根.解得z=4±.
故Rt△ABC的三边分别为4-,4+,6
【板书设计】
1、勾股定理:
直角三角形两直角边的平方和等于斜边的平方。

相关文档
最新文档