隧道施工设计外文翻译--新意法的设计与施工
地铁隧道毕业设计外文翻译
外 文 翻 译
年 级: 2005 级 学 号:20057375 姓 名: 黄 磊 专 业:铁道工程 指导老师: 钟新樵
2009 年 6 月
西南交通大学本科毕业设计(论文)外文翻译
第1页
【原文】
A study on underground tunnel ventilation for piston effects influenced by draught relief shaft in subway system
西南交通大学本科毕业设计(论文)外文翻译
第3页
Cm
For air inflow,
AvVv Qb AV Qc
(1)
Cm K i
For air outflow,
ቤተ መጻሕፍቲ ባይዱAv A
Cp Cps
(2)
Cm K o where A Av Cm tunnel area (m2) relief shaft area (m2)
CΔHi Ki, Ko Qb, Qc
entrance loss at the bottom of relief shaft empirical constants for inflow and outflow air flow volume rate through relief shaft and upstream(or downstream) (m3/s)
Chi-Ji Lin, Yew Khoy Chuah, Chia-Wei Liu
Abstract
This is a study on underground tunnel ventilation for piston effects influenced by draught relief shaft. Field measurements of transient air movement in the draught relief shaft for a typical Taipei underground subway station were taken under winter and summer conditions. It has been found that the air in the draught relief shaft has a maximum of 2 m/s, and on average lies between 0.7 and 1.1 m/s. This study defines an index ηPE, for evaluating the efficiency of tunnel ventilation by piston effects. This index can be used to analyze the piston effects due to different shaft length and sectional area. The measurement results show that the train piston effects are effective only for certain shaft length and operating conditions. This study also used the authoritative SES computer program to simulate the piston effects. The simulation results for inflow and outflow velocity profile are almost consistent with the measurement. The shaft sectional area was also investigated and has been found that a larger sectional area resulted in larger volume flow rate, but the percentage increase is less than the percentage increase in the sectional area. This will result in smaller air velocity in shaft and less effective air exchange between the tunnel and the outside ambient. It also has been found that length of the draught relief shaft is more so an important design parameter for efficient air exchange by piston effects for underground subway systems. It is suggested here that the design of the draught relief shaft has to consider requirements including ηPE, pressure loss and noise.
隧道盾构-毕设论文外文翻译(翻译-原文)
毕业设计(论文)外文文献翻译院系:土木工程与建筑系年级专业:土木工程姓名:学号:附件:盾构SHIELDS指导老师评语:指导教师签名:年月日S HIEL D S【Abstr act】A tunnel shield is a structural system, used during the face excavation process. The paper mainly discusses the form and the structure of the shield. Propulsion for the shield is provided by a series of hydraulic jacks installed in the tail of the shield and the shield is widespread used in the underground environment where can not be in long time stable. The main enemy of the shield is ground pressure. Non-uniform ground pressure caused by the steering may act on the skin tends to force the shield off line and grade. And working decks inside the shield enable the miners to excavate the face, drill and load holes.【Keywor ds】shield hydraulic jacks ground pressure steering working decksA tunnel shield is a structural system, normally constructed of steel, used during the face excavation process. The shield has an outside configuration which matches the tunnel. The shield provides protection for the men and equipment and also furnished initial ground support until structural supports can be installed within the tail section of the shield. The shield also provides a reaction base for the breast-board system used to control face movement. The shield may have either an open or closed bottom. In a closed-bottom shield, the shield structure and skin provide 360-degree ground contact and the weight of the shield rests upon the invert section of the shield skin. The open shield has no bottom section and requires some additional provision is a pair of side drifts driven in advance of shield excavation. Rails or skid tracks are installed within these side drifts to provide bearing support for the shield.Shield length generally varies from1/2 to 3/4 of the tunnel diameter. The front of the shield is generally hooded to so that the top of the shield protrudes forward further than the invert portion which provides additional protection for the men working at the face and also ease pressure on the breast-boards. The steel skin of the shield may varyfrom 1.3 to 10 cm in thickness, depending on the expected ground pressures. The type of steel used in the shield is the subject of many arguments within the tunneling fraternity. Some prefer mild steel in the A36 category because of its ductility and case of welding in the underground environment where precision work is difficult. Others prefer a high-strength steel such as T-1 because of its higher strength/w eight ratio. Shield weight may range from 5 to 500 tons. Most of the heaviest shields are found in the former Sovier Union because of their preference for cast-iron in both structural and skin elements.Propulsion for the shield is provided by a series of hydraulic jacks installed in the tail of the shield that thrust against the last steel set that has been installed. The total required thrust will vary with skin area and ground pressure. Several shields have been constructed with total thrust capabilities in excess of 10000 tons. Hydraulic systems are usually self-contained, air-motor powered, and mounted on the shield. Working pressures in the hydraulic system may range from 20-70 Mpa. To resist the thrust of the shield jacks, a horizontal structure member (collar brace) must be installed opposite each jack location and between the flanges of the steel set. In addition, some structural provision must be made for transferring this thrust load into the tunnel walls. Without this provision the thrust will extend through the collar braces to the tunnel portal.An Englishman, Marc Brunel, is credited with inventing the shield. Brunel supposedly got his idea by studying the action of the Teredo navalis, a highly destructive woodworm, when he was working at the Chatham dock yard. In 1818 Brunel obtained an English patent for his rectangular shield which was subsequently uses to construct the first tunnel under the River Thames in London. In 1869 the first circular shield was devised by Barlow and Great Head in London and is referred to as the Great Head-type shield. Later that same year, Beach in New York City produced similar shield. The first use of the circular shield came during 1869 when Barlow and Great Head employed their device in the construction of the 2.1 in diameter Tower Subway under the River Thames. Despite the name of the tunnel, it was used only for pedestrian traffic. Beach also put his circular shield to work in 1869 to construct a demonstration project for a proposed NewYork City subway system. The project consisted of a 2.4 m diameter tunnel, 90 m long, used to experiment with a subway car propelled by air pressure.Here are some tunnels which were built by shield principle.Soft-ground tunneling Some tunnels are driven wholly or mostly through soft material. In very soft ground, little or no blasting is necessary because the material is easily excavated.At first, forepoling was the only method for building tunnels through very soft ground. Forepoles are heavy planks about 1.5 m long and sharpened to a point. They were inserted over the top horizontal bar of the bracing at the face of the tunnel. The forepoles were driven into the ground of the face with an outward inclination. After all the roof poles were driven for about half of their length, a timber was laid across their exposed ends to counter any strain on the outer ends. The forepoles thus provided an extension of the tunnel support, and the face was extended under them. When the ends of the forepoles were reached, new timbering support was added, and the forepoles were driven into the ground for the next advance of the tunneling.The use of compressed air simplified working in soft ground. An airlock was built, though which men and equipment passed, and sufficient air pressure was maintained at the tunnel face to hold the ground firm during excavation until timbering or other support was erected.Another development was the use of hydraulically powered shields behind which cast-iron or steel plates were placed on the circumference of the tunnels. These plates provided sufficient support for the tunnel while the work proceeded, as well as full working space for men in the tunnel.Under water tunneling The most difficult tunneling is that undertaken at considerable depths below a river or other body of water. In such cases, water seeps through porous material or crevices, subjecting the work in progress to the pressure of the water above the tunneling path. When the tunnel is driven through stiff clay, the flow of water may be small enough to be removed by pumping. In more porous ground,compressed air must be used to exclude water. The amount of air pressure that is needed increases as the depth of the tunnel increases below the surface.A circular shield has proved to be most efficient in resisting the pressure of soft ground, so most shield-driven tunnels are circular. The shield once consisted of steel plates and angle supports, with a heavily braced diaphragm across its face. The diaphragm had a number of openings with doors so that workers could excavate material in front of the shield. In a further development, the shield was shoved forward into the silty material of a riverbed, thereby squeezing displaced material through the doors and into the tunnel, from which the muck was removed. The cylindrical shell of the shield may extend several feet in front of the diaphragm to provide a cutting edge. A rear section, called the tail, extends for several feet behind the body of the shield to protect workers. In large shields, an erector arm is used in the rear side of the shield to place the metal support segments along the circumference of the tunnel.The pressure against the forward motion of a shield may exceed 48.8 Mpa. Hydraulic jacks are used to overcome this pressure and advance the shield, producing a pressure of about 245 Mpa on the outside surface of the shield.Shields can be steered by varying the thrust of the jacks from left side to right side or from top to bottom, thus varying the tunnel direction left or right or up or down. The jacks shove against the tunnel lining for each forward shove. The cycle of operation is forward shove, line, muck, and then another forward shove. The shield used about 1955 on the third tube of the Lincoln Tunnel in New York City was 5.5 m long and 9.6 m in diameter. It was moved about 81.2 cm per shove, permitting the fabrication of a 81.2 cm support ring behind it.Cast-iron segments commonly are used in working behind such a shield. They are erected and bolted together in a short time to provide strength and water tightness. In the third tube of the Lincoln Tunnel each segment is 2 m long, 81.2 cm wide, and 35.5 cm thick, and weighs about 1.5 tons. These sections form a ring of 14 segments that are linked together by bolts. The bolts were tightened by hand and then by machine.Immediately after they were in place, the sections were sealed at the joints to ensure permanent water tightness.Shields are most commonly used in ground condition where adequate stand-up time does not exist. The advantage of the shield in this type of ground, in addition to the protection afforded men and equipment , is the time available to install steel ribs, liner plates, or precast concrete segments under the tail segment of the shield before ground pressure and movement become adverse factors.One of the principle problems associated with shield use is steering. Non-uniform ground pressure acting on the skin tends to force the shield off line and grade. This problem is particularly acute with closed bottom shield that do not ride on rails or skid tracks. Steering is accomplished by varying the hydraulic pressure in individual thrust jacks. If the shied is trying to dive, additional pressure on the invert jacks will resist this tendency. It is not unusual to find shield wandering several feet from the required. Although lasers are frequently used to provide continuous line and grade data to operator, once the shield wanders off its course, its sheer bulk resists efforts to bring it back. Heterogeneous ground conditions, such as clay with random boulders, also presents steering problems.One theoretical disadvantage of the shield is the annular space left between the support system and the ground surface. When the support system is installed within the tail section of the shield, the individual support members are separated from the ground surface by the thickness of the tail skin. When steel ribs are used, the annular space is filled with timber blocking as the forward motion of the shield exposes the individual ribs.A continuous support system presents a different problem. In this case, a filler material, such as pea gravel or grout, is pumped behind the support system to fill the void between it and the ground surface.The main enemy of the shield is ground pressure. As ground pressure begins to build, two things happen, more thrust is required for shield propulsion and stress increases in the structural members of the shield. Shields are designed and function undera preselected ground pressure. Designers will select this pressure as a percentage of the maximum ground pressure contemplated by the permanent tunnel design. In some cases, unfortunately, the shield just gets built without specific consideration of the ground pressures it might encounter. When ground pressure exceeds the design limit, the shield gets “stuck”.The friction component of the ground pressure on the skin becomes greater than the thrust capability of the jacks. Several methods, including pumping bentonite slurry into the skin, ground interface, pushing heavy equipment, and bumping with dynamite, have been applied to stuck shields with occasional success.Because ground pressure tends to increase with time, the cardinal rule of operation is “keeping moving”.This accounts for the fracture activity when a shield has suffered a temporary mechanical failure. As ground pressure continues to build on the nonmoving shield , the load finally exceeds its structural limit and bucking begins. An example of shield destruction occurred in California in 1968 when two shields being used to drive the Carly V.Porter Tunnel were caught by excessive ground pressure and deformed beyond repair. One of the Porter Tunnel shields was brought to a halt in reasonably good ground by water bearing ground fault that required full breast-boards. While the contractor was trying to bring the face under control, skin pressure began to increase. While the face condition finally stabilized, the contractor prepared to resume operations and discovered the shield was stuck. No combination of methods was able to move it, and the increasing ground pressure destroyed the shield.To offset the ground pressure effect, a standard provision in design is a cutting edge radius several inches greater than the main body radius. This allows a certain degree o f ground movement before pressure can come to bear on the shield skin. Another approach, considered in theory but not yet put into practice, is the “w atermelon seed”design. The theory calls for a continuous taper in the shield configuration; maximum radius at the cutting edge and the minimum radius at the trailing edge of the tail. With this configuration, any amount of forward movement would create a drop in skin pressure.Working decks, spaced 2.4 to 3.0 m vertically, are provided inside the shield. These working decks enable the miners to excavate the face, drill and load holes, if necessary, and adjust the breast-board system. The hydraulic jacks for the breast-board are mounted on the underside of the work decks. Blast doors are sometimes installed as an integral part of the work decks if a substantial amount of blasting is expected.Some form of mechanical equipment is provided on the rear end of the working decks to assist the miners in handing and placing the element of the support system. In large tunnels, these individual support elements can weigh several tons and mechanical assistance becomes essential. Sufficient vertical clearance must be provided between the invert and the first working deck to permit access to the face by the loading equipment.盾构【摘要】隧道盾构是一结构系统,通常用于洞室开挖。
新意法
一、基本原理
隧道掘进时对隧道周边及前方一定范围的围岩 产生扰动,改变了围岩原始应力状态。在开挖面周 边区域内,围岩由三轴应力逐渐转变为平面应力状 态,开挖面及前方一定范围内围岩应力重分布。开 挖后围岩变形也在扰动区域内提前发生。
当开挖面前方围岩的应力状态处于弹性范围内时, 在开挖轮廓线 附近产生弹性变形 , 称为“ 拱部效 应”,这时开挖面处于稳定状态;
拱部效应
拱部效应
拱部效应
拱部效应
自然拱部效应
自然拱部效应
转移拱部效应
转移拱部效应
如果开挖后围岩处于弹~塑性状况,开挖轮廓四 拱部效应
拱部效应
周及开挖面将朝隧道内产生塑性变形,“拱部效应” 将从开挖轮廓周围往外移到地层中,但此“转移” 只能通过足够的支护措施来实现和控制; 自然拱部效应
转移拱部效应
无拱部效应
施工
注:(*)变形现象是指,开挖面挤压及在岩层体内部一定的变化距离 内的收敛。
二、实施要点
该工法分为两个实施阶段:在设计阶段完成地质 勘察、诊断及处理措施设计;施工阶段则边实施作 业边监控量测,然后优化调整,使开挖面和洞身结 构体系形成平衡,保持稳定。
勘察
设计阶段 诊断 处治 设计阶段
实施
监测 反馈
意大利博洛尼亚一佛罗伦萨高速铁路隧道工程
意大利博洛尼亚一佛罗伦萨高速铁路全长约92km,其 中隧道总长84.5 km。隧道穿越复杂多变的、极差的地 层,断面面积约140 m2 。该项目采用“新意法” 编制 设计规范,并以此为基础进行工程招标和施工设计。 该工程地质条件虽很差,但是,由于按“新意法” 进 行设计和施工,把风险降到了最低,因此仍以“交钥 匙”合同方式发包。该工程于1998年开工,全断面开 挖,机械化程度很高。工程进展顺利,每个工作面平 均月成洞50m。“新意法”在该工程中的应用取得了 巨大成功。
隧道设计与施工
14
世界著名隧道
1
我国自主建成的一座铁路隧道?
2
“世界第一高隧道”
3
世界上最长的一条隧道
4
世界海底长度最长的隧道
15
京张铁路八达岭隧道
它是中国杰出的
工程师詹天佑亲 自规划督造,依 靠中国人自己的 力量建成的第一 座铁路隧道。这 座单线越岭隧道 全长1091米,工 期仅用了18个月。
16
青藏铁路风火山隧道
21
22
2
全长:18.02km
3
“四步走战略”
1 2 3 4
Planning 规划
Survey 勘测 Design 设计
Construction 施工
4
Design - the Soul of Construction
Design
Principles
设计原则
emphasis on technology and economic benefits 重视技术与经济效益的结合。 focus on aesthetics, application and coordination 注重美观、适用和协调、 human-based 以人为本
“短进尺、弱不爆破、强支护、紧衬砌”
Main
processes
excavation 、tapping 、shoring、lining
开挖、出渣、支护、衬砌
8
9
Methods of construction
Mine tunneling method 矿山法 New Austrian Tunneling Method 新奥法 Tunnel-Boring Machine method 掘进机法 Shield method盾构法 Immersed tube method 沉管法 Pipe jacking method 顶进法 Cut and Cover Method 明挖法 Cover and cut-bottom up 盖挖法
地铁隧道施工外文文献翻译
地铁隧道施工外文文献翻译(文档含中英文对照即英文原文和中文翻译)原文:Urban Underground Railroad arch tunnel Construction Technology GroupAbstract Project in Guangzhou Metro Line, right-arch construction method of tunnels to explore. Subway Construction in Guangzhou for the first time put forward a double-arch tunnel to single-hole tunnel construction technology, and a single type of wall and split in the wall structure, comparison and selection of Technology solutions were obtained to meet the structural safety, construction safety and Economic benefits of better Technology solutions for the future design and construction of similar projects to provide reference and reference.Keywords: double-arch tunnel group; a single type of wall; construction Technology; split in the wall.As the circuit design requirements subway tunnel, the tunnel structure produces a variety of forms, ranging from cross-section from double-arch and the three-arch tunnel composed of double-arch tunnel section is commonly used in the connection lines andcrossing lines. In this paper, engineering examples, according to tunnel in which geological conditions, duration requirements, raised through the comparison and selection can achieve rapid construction and the purpose of construction cost savings of the best construction programs.1 Project OverviewGuangzhou Metro Line Road station turn-back line of sports for sports Road station after the return line, structure complex, DK3 016.047 ~ 037.157 varying cross-section set the double-arch structure, three-arch structure of tunnels. Ranging from cross-arch tunnel excavation span 20.1m, excavation height of 10.076m, cross-vector ratio of 1:0.5, after lining a hole span 5.2m, large holes, after lining span 11.4m, the wall thickness of 1.6 m. Three double-arch tunnel excavation span 19.9m, excavation height of 7.885m, cross-vector ratio of 1:0.1. -Arch tunnel section of rock from top to bottom are: artificial fill soil, red - alluvial sand, alluvial - alluvial soil, river and lake facies soil, plastic-like residual soil, hard plastic - a hard-like residual soil, all weathered rock, strong weathering rock, the weathered layer and the breeze layer. Tunnel through the rock strata are more homogeneous, the intensity high, carrying ability, good stability. Thickness of the tunnel vault covering 15.5 ~ 18m, of which grade ⅣWai rock vault thickness 5.6 ~ 7.6m. Double-arch tunnel segment groundwater table is 2.28 ~ 4.1m, mainly Quaternary pore water and fissure water.Section 2 dual-arch construction scheme comparisonAs the double-arch tunnel segment structure more complex, the tunnel cross-section changes in large, complicated construction process, construction was very difficult, the construction cycle is long, so I chose a good quality and efficient completion of the construction program segment arch tunnel construction is particularly important. Selection of a construction program, the main consideration the following aspects: (1) construction safety and structural safety; (2) construction difficulties; (3) the construction cycle; (4) cost-effectiveness. Based on these four principles, through the construction of research and demonstration program to select the following two programs to compare the selection of the construction.2.1 a single type of wall construction planThe program's main construction steps and measures are as follows:(1) The right line of double-arch tunnel hole within the return line side of temporary construction access, dual-arch and the three-arch in the wall construction, is completed in a timely support for the wall, the construction to prevent bias.(2) construction of the wall lining is completed, according to "first small then big, closed into a ring" principle, the right line with the step method of construction, with CRD engineering method returned a four-lane span tunnel construction.(3) When the return line side of the construction to the three-arch tunnel in the wall, then in accordance with the right line of the wall construction method and the three-arch-arch in the wall construction, during which the right line to stop excavation until the completion of construction of the wall.(4) The return line side of the wall construction is completed, the right line to continue to move forward the construction.The construction method for the domestic double-arch tunnel of conventional construction method, Guangzhou Metro, Nanjing and Beijing Metro subway both applications, and can secure successful completion of the construction of tunnels. However, examples of past engineering and construction Technology research can be found, the program has weaknesses and shortcomings.(1) The program used in this project, in a short span of 21.11m of double-arch tunnel, the tunnel's opening between the supporting and secondary lining will be converted four times, the conversion too frequently.(2) wall and side holes covered by waterproof layer of tunnel lining construction, steel engineering, formwork, concrete pouring required multiple conversions, the construction period up to 2 months.(3) The lining is completed, the wall of anti-bias materials, equipment, support and input, resulting in higher construction costs, Economic efficiency will drop.2.2 The split in the wall construction planThe program's main construction steps and measures are as follows:(1) ranging from cross-double-arch tunnel into two single-hole, change the formula for the separation wall, the first line of one-way right-forward construction of the tunnel.(2) three arch tunnel in the wall to make the first non-Shi lining, according to single-line working condition through.(3) the right line of large-section double-arch tunnel wall construction method adopted in accordance with CRD.(4) The return line is in accordance with the right line of the opposite side of the construction sequence of construction.Adoption of this program is in fact a one-way in accordance with the construction of two methods, compared with the previous one, after the program has the following advantages:(1) reduction of the construction process to speed up the convergence process conversion.(2) reduce the construction difficulty, shortening the construction cycle.(3) reduce the construction costs and improve Economic efficiency.(4) change a single type of wall to separate the wall, completely solved the structure of double-arch tunnel waterproofing defects.(5) The three-arch tunnel in the latter pArt of the construction hole, equivalent to large-span rock tunnels reserved for the core is conducive to both sides of the double-arch tunnel construction safety (Table 1).Section 3 three-arch construction planRight-line direct access to three double-arch tunnel, the Support parameters to the original designs for grating erection of the whole ring, according to design the whole ring of shotcrete, and enhance the bolt at the wall vault settings (return right side Tong Line Construction method), wall construction in the tunnel when you need to get rid of Office, located at a vertical grill joints strengthened beam.Strict control of excavation footage of each cycle, grid spacing of 0.6m / Pin. Weak in the wall excavation using millisecond blasting program (conditional maximize the use of static blasting programs), minimize the wall rock and the lining of the tunnel has beendisturbed, to ensure construction safety. The completion of excavation in the wall immediately after the secondary lining. After the completion of construction of the wall in wall voids of the backfilling, plus jack supports. The side of the construction is completed, carry out the other side of the wall construction. When both sides of the wall construction is complete, in a timely manner on both sides of a single-hole tunnel secondary lining, and then proceed to three-arch tunnel excavation and lining of the middle of rock. Construction, special attention should be three arch tunnel in the wall at the settlement and convergence deformation, such as the unusual phenomenon, an immediate reinforcement.4 construction of the force structure of Behavior AnalysisAcross the range of the double-arched wall canceled, changed to separate the wall, in the domestic urban underground railway engineering has not yet been a similar engineering design and construction experience, there is no such tunnel structure design, and therefore the structure is safe, as well as the course of construction conversion process of construction is safe, the program will be the focus of the study.Application of ANSYS finite element software for common procedures ranging from cross-arch tunnel numerical simulation, using stratigraphic - structural model of the structure of the tunnel by the force and deformation analysis (Figure 1, Figure 2, Figure 3). The scope of the horizontal direction taken by force along the direction of the tunnel cross-section to cross-hole 3 times the limit, taking the top of the vertical direction to the surface, the bottom-hole span to 3 times the limit, unit model uses the DP formation of elastic-plastic material entity, the tunnel Lining with elastic beam element simulation, beam elements and solid elements used to connect coupling equation. Through the analysis of data in Table 2 we can see that during the construction of large tunnels in a greater impact on small tunnel, if a small section of the tunnel with the necessary strengthening of measures and control the removal of temporary support to the longitudinal spacing, the program is useful and feasible to The.5 Construction of key technologies and corresponding measuresArch tunnel construction segment is required on a strict construction organization and strong technical assurance measures carried out under the good job in organizing theconstruction of steps to prepare the construction of a variety of technical preventive measures are key to success.5.1 pairs of pull anchor and strengthen the boltAbolition of a single type of wall, the excavation is complete in the wall thickness of 0.8m, pull anchor and strengthen the right bolt set is very necessary. Φ22 steel bolt used on the pull bolt drug volume, pitch, 0.6m × 0.5m, the length of the wall thickness according to the 0.8 ~ 2.0m. Strengthen the bolt in the wall located at the invert and side walls at both sides, using 3.0m of Φ25 hollow grouting anchor, spacing 0.6m × 0.8m.5.2 in the body wall, grouting rock block foldersIn the wall of rock thinnest Department to 0.15m, after repeated blasting excavation process, the impact of the rock wall around the loose, their bearing capacity affected. Therefore, we must separate the wall in the vault, wall, invert Department for loose rock for grouting. Φ42 embedded steel, cement slurry to take - water glass pairs of liquid slurry, the parameter of 1:1 cement and 30 ~ 45Be sodium silicate solution, grouting pressure of 0.2 ~ 1.0MPa. In both excavation grouting in the wall were carried out, after the completion of the final excavation carried out in saturated sandwich wall grouting.5.3 millisecond blasting technology microseismsTunnel excavation construction method used in all drilling and blasting. Because the lot is located in downtown Guangzhou, the ground-intensive buildings, and the Tunnel "0" spacing excavation, blasting must be set aside in accordance with glossy layer of smooth microseismic millisecond blasting program construction blasting vibration control will be allowed within the . For the double-arch tunnel in which strata of Ⅲ, Ⅳgrade rock blasting to take measures as follows:(1) The blasting equipment, using low-speed emulsion explosive shock.(2) strict control of footage per cycle (0.6 ~ 0.8m), around the borehole spacing of 0.4m, reduce the loading dose to control the smooth blasting effect (Figure 4).(3) The use of multiple detonators per blast detonation, using non-electric millisecond detonator initiation network asymmetric micro-vibration technology.(4), excavation and construction of the wall at the second to take first reserve 1m smooth layer, Cutting away from the eyes arranged in the side of the wall on the second floor reserved for smooth blasting around the eyes more than surface layout of the empty eyes, a small charge. Put an end to ultra-digging, digging, when partially due to artificial air pick excavation.Through the above effective measures, in the wall during the construction of the second blast, right in the thick wall of 0.15m basic did not cause damage to the smooth passage of the double-arch tunnel "0" from the excavation.5.4 Auxiliary scissors to strengthen supportingBy ANSYS simulation analysis, in order to ensure that small section of tunnel construction safety, the need for auxiliary support of small section tunnel reinforcement to resist the impact of blasting and rock produced by the instantaneous release of excavation loads generated by bias.Supporting materials, using I20 steel, welded steel plate embedded in the grille on both ends, using high-strength bolt reinforcement. Support arrangement spacing of 0.6m, which are arranged on a grid for each Pin, arranged to extend the scope to a double-arch on each side of 1.2m, and the completion of the excavation before the big end. The height and angle of support arrangements to ensure the smooth passage of construction machinery and equipment. Through the construction of proof, supporting the setting is necessary and effective, small-section tunnels in additional support after the convergence of scissors just 5mm.5.5 Information ConstructionIn order to ensure structural safety and construction safety, in the tunnel construction process to carry out real-time monitoring measurements to study the supporting structure and the surrounding strata deformation characteristics to predict the corresponding supporting structure deformation and verify that the supporting structure is reasonable, for the information technology provide the basis for the construction. Construction Monitoring and Measurement shows a small section of the tunnel maximum settlement of 14.6mm, maximum settlement of large-section tunnel 17.2mm, structural convergence of amaximum of 7.6mm, maximum ground subsidence of 10mm, three-arched vault in the largest settlement of tunnel excavation 22.8mm.6 Construction SummaryThrough this project example, proved that the use of separate programs to ensure that the wall construction of tunnels section of arch construction safety and structural safety, duration of more than a single type of wall construction program faster 1.0 to 1.5 months. This project for similar future subway construction has achieved successful experiences and Application examples.By summarizing the analysis, the following conclusions:(1) In accordance with the actual geological conditions boldly changed a single type of double-arched wall to separate the construction of walls, similar to conventional ultra-small-distance tunnel construction, eliminating double-arch tunnel Construction of the wall must be of conventional construction method, the final lining of structural forces has little effect on the structure of water is more favorable, and shorten the construction duration. Through the construction of this project in two to realize ultra-small space tunnel "0" spacing Excavation of a major breakthrough in technology.(2) The construction of the key technology is to reduce the damage and disturbance of surrounding rock, as well as the protection of the tunnel structure has been forming. Therefore, in the double-arched wall at the weak control of a weak good millisecond blasting will be the focus of the success of the construction. Smooth layer of smooth blasting using reserved achieved the desired results. If the reserved right to take a static smooth layer of rock blasting will be even better.(3) to strengthen the weak in the wall is also supporting the construction of this important reasons for the success. From the mechanical analysis of view, invert the junction with the side walls are most affected, ensuring adequate capacity to withstand the initial load supporting; second is to strengthen the body in the clip rock column grouting reinforcement of its use of the pull bolt, strengthening bolt and grouting reinforcement, ensuring the stability of surrounding rock. Used in the construction of the pull-bolt if the full use of prestressed reinforcement, the effect may be better.(4) reasonably arrange construction sequence so that all processes in the conversion with minimal impact during the construction of each other.References[1] LIU Xiao-bing. Double-arch tunnel in the form of wall-structured study [J]. Construction Technology 2004-10, 15[2] Wang Junming. Weak rock sections double-arch tunnel Construction Technology [J]. Western Exploration Engineering, 2003-06[3] GB50299-1999 underground railway Engineering Construction and acceptance of norms [S]. Beijing: China Planning Press, 1999城市地下铁道连拱隧道群施工技术研究摘要:利用广州地铁工程实例,对连拱隧道群施工工法进行探讨。
隧道施工的新奥法
新奥法新奥法【New Austrian Tunnelling Method】新奥法是应用岩体力学理论,以维护和利用围岩的自承能力为基点,采用锚杆和喷射混凝土为主要支护手段,及时的进行支护,控制围岩的变形和松弛,使围岩成为支护体系的组成部分,并通过对围岩和支护的量测、监控来指导隧道施工和地下工程设计施工的方法和原则。
新奥法是在利用围岩本身所具有的承载效能的前提下,采用毫秒爆破和光面爆破技术,进行全断面开挖施工,并以形成复合式内外两层衬砌来修建隧道的洞身,即以喷混凝土、锚杆、钢筋网、钢支撑等为外层支护形式,称为初次柔性支护,系在洞身开挖之后必须立即进行的支护工作。
因为蕴藏在山体中的地应力由于开挖成洞而产生再分配,隧道空间靠空洞效应而得以保持稳定,也就是说,承载地应力的主要是围岩体本身,而采用初次喷锚柔性支护的作用,是使围岩体自身的承载能力得到最大限度的发挥,第二次衬砌主要是起安全储备和装饰美化作用。
[编辑本段]历史和发展1934年,新奥法主要创始人L.V. 拉布采维茨在就试图将喷浆方法用于地下工程。
他在1942~1945年建造的洛伊布尔隧道中采用了双层薄衬砌,即先喷一层混凝土,待变形收敛后再喷一层。
1944年,他发表了有关喷混凝土的论文,并指出了围岩动态随时间变化的重要性。
1948年,又指出了量测工作的重要性。
又无公害的新喷敷方法。
1948~1953年喷混凝土在奥地利首次用于卡普伦水力发电站的默尔隧洞。
最早在欧洲推广使用锚杆的是1951~1953年建造的伊泽尔-阿尔克电站的有压输水隧洞。
1953~1955年修建普鲁茨-伊姆斯特电站的有压输水隧洞时,按照拉布采维茨的建议,充分采用锚杆而获得成功。
1957~1965年是着手发展新奥法的时期。
拉布采维茨于1963年将这一方法正式命名为新奥地利隧道施工法。
1964~1969年又提出了在岩石压力下隧道稳定性的理论分析,强调采用薄层支护,并及时修筑仰拱以闭合衬砌的重要性。
浅谈新意法隧道施工理念及主要施工方法
浅谈新意法隧道施工理念及主要施工方法摘要:新意法(NITM)即NewItalianTunnelingMethod,是40多年前意大利的PietroLunardi教授在围岩压力拱理论及新奥法理论研究的基础上,通过数百座隧道的结构分析和研究逐步创建出的岩土控制变形分析(ADECO-RS)法,它强调通过调节超前核心土的稳定性来控制隧道变形。
该工法被意大利公路、铁路领域广泛采用并纳入规范,且在欧洲许多国家的大型隧道施工项目中得到应用。
国内的卧龙隧道口、浏阳河隧道、桃树坪隧道等对新意法的部分要素进行了尝试,并取得了不错的效果。
本文主要分析新意法隧道施工理念及主要施工方法。
关键词:隧道施工;新意法;超前核心土;预支护引言在公路隧道建设中,为了方便公路桥梁与隧道的连接,保持线路线性平稳,高架桥连接的隧道经常采用多拱形隧道的设计形式。
连拱隧道具有位置选择自由和对地形适应性强的特点。
特别是在应用于城市时,门户电线的地板面积小,布线的复杂性小,可以大大降低拆除和设计成本。
然而,连拱隧道虽然具有上述优点,但也存在复杂的结构应力、许多施工工艺、结构系统频繁的应力转换、复杂的施工、缓慢的施工进度等缺点。
1、新意法核心理念新意法认为隧道围岩的变形分为收敛变形、预收敛变形及掌子面挤出变形。
因预收敛变形及掌子面挤出变形均取决于超前核心土的强度及变形特性,进而得出超前核心土的特性对整个隧道的围岩变形起关键作用。
新意法通过对隧道掌子面超前核心土岩体结构特性、岩体坚硬程度等特征判定将超前核心土稳定类型分为A、B、C三类,并将每种稳定类型与隧道整体变形情况对应关联。
当预测判定超前核心土为不稳定类型时,为了确保隧道安全穿越复杂地层,可以通过辅助手段将超前核心土加固至稳定类型,甚至依赖超前核心土,将其视为控制隧道围岩变形和稳定的重要工具,即提高超前核心土的刚度和强度就能够调整围岩预收敛及掌子面挤出变形的程度,达到围岩稳定的目的。
2、新意法主要内容2.1隧道围岩支护新方法的主要内容是预先保护隧道周围的岩石,主要是为了正确调整改良后的基性土的刚度和强度,实现对周围岩石变形的有效控制。
隧道工程资料:隧道施工新奥法.doc
隧道工程资料:隧道施工新奥法新奥法即新奥地利隧道施工方法的,原文是NewAustrianTunnellingMethod简称NATM,新奥法概念是奥地利学者拉布西维兹(L.V.RABCEWICZ)教授于50年代提出的,它是以隧道工程经验和岩体力学的理论为基础,将锚杆和喷射混凝土组合在一起作为主要支护手段的一种施工方法,经过一些国家的许多实践和理论研究,于60年代取得专利权并正式命名。
之后这个方法在西欧、北欧、美国和日本等许多地下工程中获得极为迅速发展,已成为现代隧道工程新技术标志之一。
六十年代NATM被介绍到我国,七十年代末八十年代初得到迅速发展。
至今,可以说在所有重点难点的地下工程中都离不开NATM。
新奥法几乎成为在软弱破碎围岩地段修筑隧道的一种基本方法。
新奥法是充分利用围岩的自承能力和开挖面的空间约束作用,采用锚杆和喷射混凝土为主要支护手段,对围岩进行加固,约束围岩的松弛和变形,并通过对围岩和支护的量测、监控,指导地下工程的设计施工。
新奥法(NATM)是新奥地利隧道施工方法的简称,在我国常把新奥法称为锚喷构筑法。
采用该方法修建地下隧道时,对地面干扰小,工程投资也相对较小,已经积累了比较成熟的施工经验,工程质量也可以得到较好的保证。
使用此方法进行施工时,对于岩石地层,可采用分步或全断面一次开挖,锚喷支护和锚喷支护复合衬砌,必要时可做二次衬砌;对于土质地层,一般需对地层进行加固后再开挖支护、衬砌,在有地下水的条件下必须降水后方可施工。
新奥法广泛应用于山岭隧道、城市地铁、地下贮库、地下厂房、矿山巷道等地下工程。
当前,世界范围内应用新奥法设计与施工城市地铁工程取得了相当大的发展。
如智利的圣地亚哥新地铁线采用新奥法施工地铁车站,车站位于城市道路下7~9m,开挖面积230m2,相当于17m(宽)14m (高);我国自1987年在北京地铁首次采用新奥法施工复兴门车站及折返线工程,车站跨度达26m。
针对我国城市地下工程的特点和地质条件,新奥法经过多年的完善与发展,又开发了浅埋暗挖法这一新方法,与明挖法、盾构法相比较,由于它可以避免明挖法对地表的干扰性,而又较盾构法具有对地层较强的适应性和高度灵活性,因此目前广泛应用于城市地铁区间隧道、车站、地下过街道、地下停车场等工程,如根据新奥法的基本原理,采用群洞方案修建的广州地铁二号线越秀公园站及南京地铁一期工程南京火车站站,断面复杂多变的折返线工程、联络线工程也多采用新奥法。
地铁隧道施工中英文外文翻译
地铁隧道施工中英文外文翻译(含:英文原文及中文译文)文献出处:Ercelebi S G, Copur H, Ocak I. Surface settlement predictions for Istanbul Metro tunnels excavated by EPB-TBM[J]. Environmental Earth Sciences, 2011, 62(2):357-365.英文原文Surface settlement predictions for Istanbul Metro tunnels excavated byEPB-TBMS. G. Ercelebi • H. Copur • I. OcakAbstractIn this study, short-term surface settlements are predicted for twin tunnels, which are to be excavated in the chainage of 0 ? 850 to 0 ? 900 m between the Esenler and Kirazl ıstati ons of the Istanbul Metro line, which is 4 km in length. The total length of the excavation line is 21.2 km between Esenler and Basaksehir. Tunnels are excavated by employing two earth pressure balance (EPB) tunnel boring machines (TBMs) that have twin tubes of 6.5 m diameter and with 14 m distance from center to center. The TBM in the right tube follows about 100 m behind the other tube. Segmental lining of 1.4 m length is currently employed as the final support. Settlement predictions are performed with finite element method by using Plaxis finite element program. Excavation, ground support and face support steps in FEM analyses are simulated as applied in the field.Predictions are performed for a typical geological zone, which is considered as critical in terms of surface settlement. Geology in the study area is composed of fill, very stiff clay, dense sand, very dense sand and hard clay, respectively, starting from the surface. In addition to finite element modeling, the surface settlements are also predicted by using semi-theoretical (semi-empirical) and analytical methods. The results indicate that the FE model predicts well the short-term surface settlements for a given volume loss value. The results of semi-theoretical and analytical methods are found to be in good agreement with the FE model. The results of predictions are compared and verified by field measurements. It is suggested that grouting of the excavation void should be performed as fast as possible after excavation of a section as a precaution against surface settlements during excavation. Face pressure of the TBMs should be closely monitored and adjusted for different zones.Keywords : Surface settlement prediction, Finite element method, Analytical method , Semi-theoretical method, EPB-TBM tunneling, Istanbul MetroIntroductionIncreasing demand on infrastructures increases attention to shallow soft ground tunneling methods in urbanized areas. Many surface and sub-surface structures make underground construction works very delicate due to the influence of ground deformation, which should bedefinitely limited/controlled to acceptable levels. Independent of the excavation method, the short- and long-term surface and sub-surface ground deformations should be predicted and remedial precautions against any damage to existing structures planned prior to construction. Tunneling cost substantially increases due to damages to structures resulting from surface settlements, which are above tolerable limits (Bilgin et al. 2009).Basic parameters affecting the ground deformations are ground conditions, technical/environmental parameters and tunneling or construction methods (O’Reilly and New 1982; Arioglu 1992; Karakus and Fowell 2003; Tan and Ranjit 2003; Minguez et al. 2005; Ellis 2005; Suwansawat and Einstein 2006). A thorough study of the ground by site investigations should be performed to find out the physical and mechanical properties of the ground and existence of underground water, as well as deformation characteristics, especially the stiffness. Technical parameters include tunnel depth and geometry, tunnel diameter–line –grade, single or double track lines and neighboring structures. The construction method, which should lead to a safe and economic project, is selected based on site characteristics and technical project constraints and should be planned so that the ground movements are limited to an acceptable level. Excavation method, face support pressure, advance (excavation) rate, stiffness of support system, excavation sequence andground treatment/improvement have dramatic effects on the ground deformations occurring due to tunneling operations.The primary reason for ground movements above the tunnel, also known as surface settlements, is convergence of the ground into the tunnel after excavation, which changes the in situ stress state of the ground and results in stress relief. Convergence of the ground is also known as ground loss or volume loss. The volume of the settlement on the surface is usually assumed to be equal to the ground (volume) loss inside the tunnel (O’Reilly and New 1982). Ground loss can be classified as radial loss around the tunnel periphery and axial (face) loss at the excavation face (Attewell et al. 1986; Schmidt 1974). The exact ratio of radial and axial volume losses is not fully demonstrated or generalized in any study. However, it is possible to diminish or minimize the face loss in full-face mechanized excavations by applying a face pressure as a slurry of bentonite– water mixture or foam-processed muck. The ground loss is usually more in granular soils than in cohesive soils for similar construction conditions. The width of the settlement trough on both sides of the tunnel axis is wider in the case of cohesive soils, which means lower maximum settlement for the same amount of ground loss.Time dependency of ground behavior and existence of underground water distinguish short- and long-term settlements (Attewell et al. 1986). Short-term settlements occur during or after a few days (mostly a fewweeks) of excavation, assuming that undrained soil conditions are dominant. Long-term settlements are mostly due to creep, stress redistribution and consolidation of soil after drainageof the underground water and elimination of pore water pressure inside the soil, and it may take a few months to a few years to reach a stabilized level. In dry soil conditions, the long-term settlements may be considered as very limited.There are mainly three settlement prediction approaches for mechanized tunnel excavations: (1) numerical analysis such as finite element method, (2) analytical method and (3) semi-theoretical (semi-empirical) method. Among them, the numerical approaches are the most reliable ones. However, the results of all methods should be used carefully by an experienced field engineer in designing the stage of an excavation project.In this study, all three prediction methods are employed for a critical zone to predict the short-term maximum surface settlements above the twin tunnels of the chainage between 0 ? 850 and 0 ? 900 m between Esenler and Kirazlı stations of Istanbul Metro line, which is 4 km in length. Plaxis finite element modeling program is used for numerical modeling; the method suggested by Loganathan and Poulos (1998) is used for the analytical solution. A few different semi-theoretical models are also used for predictions. The results are compared and validated byfield measurements.Description of the project, site and construction methodThe first construction phase of Istanbul Metro line was started in 1992 and opened to public in 2000. This line is being extended gradually, as well as new lines are being constructed in other locations. One of these metro lines is the twin line between Esenler and Basaksehir, which is 21.2 km. The excavation of this section has been started in May 2006. Currently, around 1,400 m of excavation has already been completed. The region is highly populated including several story buildings, industrial zones and heavy traffic. Alignment and stations of the metro line between Esenler and Basaksehir is presented in Fig.Totally four earth pressure balance (EPB) tunnel boring machines (TBM) are used for excavation of the tunnels. The metro lines in the study area are excavated by a Herrenknecht EPB-TBM in the right tube and a Lovat EPB-TBM in the left tube. Right tube excavation follows around 100 m behind the left tube. Some of the technical features of the machines are summarized in Table.Excavated material is removed by auger (screw conveyor) through the machine to a belt conveyor and than loaded to rail cars for transporting to the portal. Since the excavated ground bears water and includes stability problems, the excavation chamber is pressurized by 300 kPa and conditioned by applying water, foam, bentonite and polymersthrough the injection ports. Chamber pressure is continuously monitored by pressure sensors inside the chamber and auger. Installation of a segment ring with 1.4-m length (inner diameter of 5.7 m and outer diameter of 6.3 m) and 30-cm thickness is realized by a wing-type vacuum erector. The ring is configured as five segments plus a key segment. After installation of the ring, the excavation restarts and the void between the segment outer perimeter and excavated tunnel perimeter is grouted by300 kPa of pressure through the grout cannels in the trailing shield. This method of construction has been proven to minimize the surface settlements.The study area includes the twin tunnels of the chainage between 0 + 850 and 0 + 900 m, between Esenler and Kirazlı stations. Gung oren Formation of the Miosen age is found in the study area. Laboratory and in situ tests are applied to define the geotechnical features of the formations that the tunnels pass through. The name, thickness and some of the geotechnical properties of the layers are summarized in Table 2 (Ayson 2005). Fill layer of 2.5-m thick consists of sand, clay, gravel and some pieces of masonry. The very stiff clay layer of 4 m is grayish green in color, consisting of gravel and sand. The dense sand layer of 5 m is brown at the upper levels and greenish yellow at the lower levels, consisting of clay, silt and mica. Dense sand of 3 m is greenish yellow and consists of mica. The base layer of the tunnel is hard clay, which is dark green,consisting of shell. The underground water table starts at 4.5 m below the surface. The tunnel axis is 14.5 m below the surface, close to the contact between very dense sand and hard clay. This depth isquite uniform in the chainage between 0 + 850 and 0 + 900 m.Surface settlement prediction with finite element modelingPlaxis finite element code for soil and rock analysis is used to predict the surface settlement. First, the right tube is constructed, and then the left tube 100 m behind the right tube is excavated. This is based on the assumption that ground deformations caused by the excavation of the right tube are stabilized before the excavation of the left tube. The finite element mesh is shown in Fig. 2 using 15 stress point triangular elements. The FEM model consists of 1,838 elements and 15,121 nodes. In FE modeling, the Mohr – Coulomb failure criterion is applied.Staged construction is used in the FE model. Excavation of the soil and the construction of the tunnel lining are carried out in different phases. In the first phase, the soil in front of TBM is excavated, and a support pressure of 300 kPa is applied at the tunnel face to prevent failure at the face. In the first phase, TBM is modeled as shell elements. In the second phase, the tunnel lining is constructed using prefabricated concrete ring segments, which are bolted together within the tunnel boring machine. During the erection of the lining, TBM remains stationary. Once a lining ring has been bolted, excavation is resumed until sufficient soilexcavation is carried out for the next lining. The tunnel lining is modeled using volume elements. In the second phase, the lining is activated and TBM shell elements are deactivated.Verification of predictions by field measurements and discussionThe results of measurements performed on the surface monitoring points, by Istanbul Metropolitan Municipality, are presented in Table 4 for the left and right tubes. As seen, the average maximum surface settlements are around 9.6 mm for the right tube and 14.4 mm for the left tube, which excavates 100 m behind the right tube. Themaximum surface settlements measured around 15.2 mm for the right tube and 26.3 mm for the left tube. Higher settlements are expected in the left tube since the previous TBM excavation activities on the right tube overlaps the previous deformation. The effect of the left tube excavation on deformations of the right tube is presented in Fig. 9. As seen, after Lovat TBM in the right tube excavates nearby the surface monitoring point 25, maximum surface settlement reaches at around 9 mm; however, while Herrenknecht TBM in the left tube passes the same point, maximum surface settlement reaches at around 29 mm.ConclusionsIn this study, three surface settlement prediction methods for mechanized twin tunnel excavations betwee n Esenler and Kirazlı stations of Istanbul Metro Line are applied. Tunnels of 6.5-m diameters with 14-mdistance between their centers are excavated by EPM tunnel boring machines. The geologic structure of the area can be classified as soft ground. Settlement predictions are performed by using FE modeling, and semi-theoretical (semi-empirical) and analytical methods. The measured results after tunneling are compared to predicted results. These indicate that the FE model predicts well the short time surface settlements for a given volume loss value. The results of some semi-theoretical and analytical methods are found to be in good agreement with the FE model, whereas some methods overestimate the measured settlements. The FE model predicted the maximum surface settlement as 15.89 mm (1% volume loss) for the right tube, while the measured maximum settlement was 15.20 mm. For the left tube (opened after the right), FE prediction was 24.34 mm, while measured maximum settlement was 26.30 mm.中文译文由EPB-TBM发掘的伊斯坦布尔地铁隧道的地表沉降预测作者:SG Ercelebi ,H Copur ,I Ocak摘要在这项研究中,预测双隧道的短期地表沉降,这些隧道将在0的里程出土。
新意法
当开挖面前方围岩的应力状态处于弹性范围内时, 当开挖面前方围岩的应力状态处于弹性范围内时, 在开 挖轮廓线 附近产生 弹性变形 , 称为 “ 拱部效 这时开挖面处于稳定状态; 应”,这时开挖面处于稳定状态;
拱部效应
拱部效应
自然拱部效应
如果开挖后围岩处于弹~ 塑性状况, 如果开挖后围岩处于弹 ~ 塑性状况 , 开挖轮廓四 周及开挖面将朝隧道内产生塑性变形, 拱部效应” 周及开挖面将朝隧道内产生塑性变形 , “ 拱部效应 ” 将从开挖轮廓周围往外移到地层中, 但此“ 转移” 将从开挖轮廓周围往外移到地层中 , 但此 “ 转移 ” 只能通过足够的支护措施来实现和控制; 只能通过足够的支护措施来实现和控制;
一、基本原理
隧道掘进时对隧道周边及前方一定范围的围岩 产生扰动,改变了围岩原始应力状态。 产生扰动,改变了围岩原始应力状态。在开挖面周 边区域内, 边区域内,围岩由三轴应力逐渐转变为平面应力状 开挖面及前方一定范围内围岩应力重分布。 态,开挖面及前方一定范围内围岩应力重分布。开 挖后围岩变形也在扰动区域内提前发生。 挖后围岩变形也在扰动区域内提前发生。
工作程序表
时期 设计 阶段 ——勘测 勘测 ——诊断 诊断 ——处治 处治 ——作业 作业 ——监控 监控 ——最终设 最终设 计调整 概述 ——自然平衡状态分析 自然平衡状态分析 ——无稳定措施时变形现象的分析与预测(*) 无稳定措施时变形现象的分析与预测( ) 无稳定措施时变形现象的分析与预测 ——采用稳定措施时变形现象控制(*) 采用稳定措施时变形现象控制( ) 采用稳定措施时变形现象控制 ——运用稳定方法控制变形现象(*) 运用稳定方法控制变形现象( ) 运用稳定方法控制变形现象 ——变形现象的控制与监测(*),此变形现象被 变形现象的控制与监测( ) 此变形现象被 变形现象的控制与监测 作为隧道掘进过程中围岩的反应( 作为隧道掘进过程中围岩的反应(开挖处挤压 及隧道轮廓处收敛监测, 及隧道轮廓处收敛监测,以及岩层内部的变化 监测) 监测) ——变形现象解释(*) 变形现象解释( ) 变形现象解释 ——开挖面和隧道支护体系稳定平衡 开挖面和隧道支护体系稳定平衡
新意法(ADECO-RS法)
1.2
新意法(ADECO-RS)与其它隧道设计施工方法的区别
ADECO-RS 法隧道设计和施工就时间和实践而言,表现出是具有明显区别的两阶段; ADECO-RS 法采用新型的对于所有隧道均基于一个单一参数(掌子面~超前核心土体系的应 力~应变特性)的地下工程基本理念框架; ADECO-RS 法的基础是对围岩对开挖的变形反应进行预测、监控和分析,且围岩对开挖的变形 反应成了隧道设计与施工的唯一参考参数。首先,从理论上对围岩的变形反应进行预测和调节, 然后对变形反应进行实测、分析和实验,在此基础上对施工设计进行调整; 引进超前约束理念,对众所周知的约束理念进行完善;另外,引进超前约束理念后,即使在最 困难的静力条件下,也可以按预定计划有序进行隧道施工,而无需在施工期间再采取加固措施; ADECO-RS 法包括采用地层防护技术, 其目的在于保护地层的地质特性和结构特性。 ADECO-RS 法把地层看作“施工材料” ,在隧道施工中发挥极为重要的作用,应尽
与传统土木工程施工相比,隧道开挖“介质”(围岩)显示了极其不规则的特性:非连续性、 非均质性以及各向异性。对于地下工程而言,围岩特性根据应力状态的改变而改变,从而影响对隧 道开挖的反应。 当隧道掌子面在开挖介质中向前推进时,形成“隧道开挖”。这显然是一个动态现象:隧道掘 进可以形象地比喻为一个圆盘不停地以速度V向前移动,并在其后形成临空面。在隧道掘进的同时, 在纵向与横向上对开挖介质产生扰动,最终改变原始应力状态。 在扰动区域,原始应力场通过隧道开挖发生变化,并且在其附近产生应力增加。增加应力的大 小决定了每种介质受扰动的范围(在受扰动的开挖介质中,围岩随受扰动介质体积的增加而损失其 岩土力学特性),因此,隧道变形特性与围岩强度σgd相关。 靠近隧道掌子面的扰动区域的范围取决于掌子面影响半径Rf,设计工程师必须高度重视隧道开 挖扰动区域的范围,在此范围内空间应力转变为平面应力状态(掌子面或过渡区域);隧道研究要 求用三维法进行计算而不是只考虑二维空间。 “反应”是指开挖介质对隧道开挖行为的变形反应。变形在掌子面前方扰动区域内随着围岩周 围应力的增加提前发生,变形大小取决于开挖介质的强度以及隧道掌子面开挖的影响范围。变形的 大小,决定围岩是否侵入隧道设计理论开挖断面。发生隧道开挖设计净空侵限,也标志着隧道边墙 失稳。 可能发生以下三种基本情况: 假如隧道掘进过程中从空间应力状态转变为平面应力状态时,隧道掌子面应力递减(σ3=0), 造成隧道掌子面前方的应力处于弹性范围内,从而使开挖形成的隧道边墙(或掌子面)发生较 小的变形,或变形可以忽略,从而可以保持稳定;在此情形下,在开挖轮廓线较近的位置产生 围绕隧道开挖轮廓面的自然应力路径(或称“成拱效应”)。 假如隧道掌子面应力状态递减(σ3=0),使掌子面前方的应力处于弹~塑性范围内,那么此时 围岩的反应极为重要,隧道边墙和掌子面将向隧道内产生弹~塑性变形,并且维持短期稳定状 态。这意味着如果不采取任何措施,将引发塑性变形,并且塑性变形从开挖轮廓周围以径向、 纵向扩散,使“成拱效应”从开挖轮廓线周围转移到围岩中。此类“转移”只有通过采取足够 的稳定及支护措施才能得到控制。 假如隧道掌子面应力状态递减(σ3=0),使掌子面前方的应力处于破坏/坍塌范围内,那么变 形反应是不可接受的,而且隧道掌子面前方围岩变得极不稳定,从而不能形成“成拱效应”。 这种情况发生在粘结力差的地层中或松散地层中。在这种情况下,由于不能自然形成“成拱效 应”,必须采取人工措施形成“成拱效应”。 因此,隧道“成拱效应”的形成及其位置取决于隧道开挖介质对开挖施工的“变形反应”的特 性及大小(通过“成拱效应”,我们可以了解到隧道结构处于长期稳定还是处于短期稳定)。 在此基础上,早在20世纪70年代,便开始着手研究由于隧道掘进/开挖导致的应力状态改变与相 应的隧道变形反应之间的关系。
隧道施工外文文献及翻译
附录二外文参考文献及翻译NATM tunnel design principle in the construction of major andConstruction TechnologyW.BroereI.The NATM Design Principle1.Tunnel design and construction of two major theoretical and development processSince the 20th century, human space on the ground floor of the growing demand, thus the underground works of the study of a rapid development. In a large number of underground engineering practice, it is generally recognized that the tunnel and underground cavern project, the core of the problem, all up in the excavation and retaining two key processes. How excavation, it will be more conducive to the stability and cavern facilitate support : For more support, Supporting how they can more effectively ensure stability and facilitate the cavern excavation. This is the tunnels and underground works two promote each other and check each other's problems.Tunnels and underground caverns, and focusing on the core issues with the above practice and research, in different periods, People of different theories and gradually established a system of different theories, Each system includes theory and resolve (or are studying the resolution) from the works of understanding (concept), mechanics, engineering measures to the construction methods (Technology), a series of engineering problems.A theory of the 20th century the 1920s the traditional "load relaxation theory." Its core content is : a stable rock self-stability, no load : unstable rock may have collapsed. need shoring structure to be supported. Thus, the role of the supporting structure of the rock load is within a certain range may be due to relaxation and collapse of rock gravity. This is a traditional theory, and their representative is Taishaji and Principe's and others. It works similar to the surface issues of the thinking is still widely used to.Another theory of the 20th century made the 1950s the modern theory of timbering or "rock for the theory." Its core content is : rock stability is clearly bearing rock to their ownself-stability : unstable rock loss of stability is a process, and if this process in providing the necessary help or restrictions will still be able to enter the rock steady state. This theoretical system of representative characters Labuxiweici, Miller-Feiqieer, Fenner - Daluobo and Kashitenai others. This is a more modern theory, it is already out of the ground works to consider the ideas, and underground works closer to reality, the past 50 years has been widely accepted and applied. demonstrated broad development prospects.Can be seen from the above, the former theory more attention to the findings and the results of treatment : The latter theory is even more attention to the process and the control of the process, right from the rock for the full utilization of capacity. Given this distinction, which both theory and methods in the process, each with different performance characteristics. NATM theory is rock for the tunnel engineering practice in the representation method.2. NATMNATM that the new Austrian Tunneling Method short the original is in New Austrian Tunneling Method, referred to as the NATM. France said it convergence bound or some countries alleged to observe the dynamic design and construction of the basic principles.NATM concept of filibustering Xiweici Austria scholars in the 20th century, Professor age of 50. It was based on the experience of both the tunnel and rock mechanics theory, will bolt and shotcrete combination as a major means of supporting a construction method, Austria, Sweden, Italy and other countries, many practical and theoretical study in the 1960s and patented officially named. Following this approach in Western Europe, Scandinavia, the United States and Japan and many other underground works with a very rapid development, have become modern tunnels new technologies landmark. Nearly 40 years ago, the railway sector through research, design, construction combining, in many construction of the tunnel, according to their own characteristics successfully applied a new Austrian law, made more experience, have accumulated large amounts of data, This is the application stage. However, in the road sector NATM of only 50%. Currently, the New Austrian Tunneling Method almost become weak and broken rock section of a tunnel construction method, technical and economic benefits are clear. NATM the basic points can be summarized as follows : (1). Rock tunnel structure is the main loading unit, the construction must fully protect the rock, it minimize the disturbance to avoid excessive damage to the intensity of rock. Tothis end, the construction of sub-section should not block too much, excavation should be used smooth blasting, presplit blasting or mechanical tunneling.(2). In order to give full play to rock the carrying capacity should be allowed to control and rock deformation. While allowing deformation, which can be a rock bearing ring; The other hand, have to limit it, Rock is not so lax and excessive loss or greatly reduced carrying capacity. During construction should be used with rock close to, the timely building puzzle keeps strengthening Flexible support structure, such as bolting and shotcreting supporting. This adjustment will be adopted supporting structural strength, Stiffness and its participation in the work of the time (including the closure of time) to control the deformation of the rock mass.(3). In order to improve the support structure, the mechanical properties, the construction should be closed as soon as possible, and to become a closed cylindrical structure. In addition, the tunnel shape with a round should, as far as possible, to avoid the corner of the stress concentration.(4). Construction right through the rock and supporting the dynamic observation, measurement, and reasonable arrangements for the construction procedures, changes in the design and construction management of the day-to-day.(5). To lay waterproof layer, or is subject to bolt corrosion, deterioration of rock properties, rheological, swelling caused by the follow-up to load, use composite lining.(6). Lining in principle, and the early rock deformation Supporting the basic stability of the conditions under construction. rock and supporting structure into a whole, thereby improving the support system of security.NATM above the basic elements can be briefly summarized as : "less disturbance, early spray anchor, ground measurements, closed tight."3.With a spring to understand the principle NATM(1). Cavern brink of a point A in the original excavation ago with stress (stress self-respect and tectonic stress) in a state of equilibrium. As an elastic stiffness of the spring K, P0 under compression in a state of equilibrium.(2). Cavern excavation, A point in attacking lose face constraints, the original stress state to be adjusted, if the intensity of rock big enough, After less stress adjustments may cavern in a stable condition (without support). But most of the geological conditions of thepoor, that is, after the stress cavern adjustments, such as weak protection, we could have convergence deformation, even instability (landslides), must be provided to support power PE, in order to prevent landslides instability. Equivalent to the Spring of deformation u, in the role of PE is now in the midst of a state of equilibrium.(3). By the mechanical balance equation, we can see in the spring P0 role in a state of equilibrium; Spring in the event of deformation u, PE in the role they will be in equilibrium, assuming spring elasticity of K, were : P0=PE+KuDiscussion :(1) When u = 0, that is not allowed P0=PE rock deformation, is a rigid support, not economic;(2) when u ↑, PE ↓; When u ↓, PE ↑. That is, rock deformation occurred, t he release of some of the load (unloading), we should allow some extent rock deformation, to give full play to rock the capacity for self. Is an economic support measures, the rock self-stability P=P0-PE=Ku;(3) When u=umax, landslides, have relaxation load and unsafe.4. Points(1). Rock cavern excavation is affected by that part of rock (soil) body, the rock is a trinity : have a load bearing structure, building materials.(2). Tunnel construction is in the rock stress is of special architectural environment, which can not be equated with the construction on the ground.(3). Tunnel structure rock + = bracing system.II. The new Austrian highway construction in the basic methodNATM one of the characteristics is the scene monitoring, measurement information to guide construction, through the tunnel construction measure receipts and excavation of the geological observation for prediction and feedback. And in accordance with the established benchmark for measuring the tunnel construction, excavation section steps and sequences, Supporting the initial parameters for reasonable adjustments to guarantee the safety of construction, a tunnel rock stability, the quality of the project and supporting structure of the economy and so on. The author of commitments (Chengde) Chek (Chifeng) East Maojingba Tunnel NATM basic construction method for investigation concluded, synthesis of a newhighway tunnel Natm the selection of different types and the basic characteristics of the construction methods and tips.1. A tunnel construction method of choice tunnel construction method of choice, mainly based on the engineering geological and hydrogeological conditions Construction, rock type, buried deep tunnel, the tunnel section size and length lining types, Construction should be the premise of safety and engineering quality at the core, and with the use of the tunnel function, the level of construction technology, Construction machinery and equipment, time requirements and economic feasibility of factors to consider in selection.When choosing the method for tunnel construction on the surrounding environment negatively affected, should also be a tunnel, the environmental conditions as the method to choose one of the factors, taking into rock changes the method and the applicability of the possibility of change. Tunnel project to avoid mistakes and unnecessary increase investment in public works. NATM new construction, we should also consider the entire process of construction of auxiliary operations and changes in the surrounding rock to measure control methods and the tunnel through special geological lots of construction means for a reasonable choice.2. New Austrian Tunneling Method program New Austrian Tunneling Method used all methods can be divided into sections, Division level and the three major types of excavation method and some changes in the program.(1) Full-face method. That whole section excavation method is based on the design of an excavation face excavation molding. Excavation order is its full face excavation, steel bracing, pouring concrete lining. Often choose to IV-VI Class Rock Hard Rock Tunnel, which can be used blasting deep hole.Excavation whole section of the law is a larger space operations, introducing supporting large mechanized operations, improving the speed and process small, less interference and facilitate the construction organization and management. Excavation is due to shortcomings in the larger, lower relative stability of rock, and with each cycle of the relatively large workload, it requires the construction units should have a strong excavation, transport and slag out and support capability, Maojingba VI : Class V rock used in the full-face excavation to achieve the desired results.Full-face excavation face, drilling and blasting construction more efficient use of deep focus to accelerate the excavation blasting speed, and the rock blasting vibration frequency less conducive to a stable transfer rocks. The drawback is every deep hole blasting vibration larger. Therefore require careful drilling and blasting design and strict control of blasting operations.Full-face excavation method is the main process : the use of mobile carts (or platforms), the first full-face a bored, and installed a line, and then drilling platform car outside 50m back to a safe place and then detonate, Blasting to make a shape out after drilling Jardine car again moved to the excavation face in place, began a cycle of drilling and blasting operations, Anchor sprayed simultaneously supporting or after the first arch wall lining.(2) step method. Step method of design is generally divided into sections on the half-section and the lower half section two excavation molding. Excavation order is its first half excavation arch bolt jet concrete bracing, arch lining, the central part of the second half of excavation, sidewall of excavation, concrete wall jet bolt support and lining. The more applicable to the II, III and soft joint development of the surrounding rock, which were used Tim change program.Long-step method : The next stage distance away, on the general level above 50m ahead, Construction can be assigned to the Department of next larger machine with parallel operations, when mechanical deficiencies can be used interchangeably. When the case of a short tunnel, the upper section will be all dug later, and then dug under the section, the construction of which less interference, single process can work.Short step method : on the stage length 5-50m apply to Ⅱ, Ⅲrock can be shortened Invert closing time, Supporting improve early stress conditions, but larger construction interference, in the event of Soft Rock need to consider carefully, Auxiliary shall be applied measures to stabilize the excavation excavation face, in order to ensure the safety of construction.Ultrashort step method : The only step ahead 3-5m, section closed faster. The method used for the high level of mechanization of various rock section, in the event of the siege soft rock when required careful consideration. Auxiliary shall be applied measures to stabilize the construction excavation face to ensure the safety of construction.Excavation level of character is the first step to using light excavation drilling machine drill a hole, rather than through large drilling platform car. Two step method of excavation operations with sufficient space and a faster rate of construction. Level is conducive to the stability of excavation face. Especially Excavation in the upper, lower operational safety. Three step method of excavation is the next shortcomings of operations interfere with each other. It should be noted at the bottom of the upper operational stability, level of excavation will increase the number of country rock.(3) Segment excavation method. Excavation Law Division can be divided into five changes in the program : Excavation Division level, from top to bottom hole lead, heading advance on the excavation, single (double) and lateral pit method. Excavation will be conducted Section Division excavation by the Ministry of shape, and to advance some of excavation, it may be called derivative ahead excavation pit method.Law Division level : general application or soil collapse easily lots of soft rock, with its advantages - stage method, height can be lengthened, the two-lane tunnel for a hole-fold, cycling Road Tunnel - hole 2 times; rather than single (double) PENDANTS Heading a high degree of mechanization, can accelerate the progress of the projects.The next heading advance excavation method (that is guided pit wall first arch) : This Act applies to Ⅱ, Ⅲrock. in the soft ground tunneling, to be adopted next general guide advance excavation pit wall first arch Act. Its advantages are : Heading advance excavation, the use of proven geological conditions in advance to facilitate change in the method. Face to facilitate started procedures applicable to the labor arrangements for the use of small machinery and construction. The drawbacks : The next section will guide small, slow construction and construction processes more, construction and management difficult.Unilateral-arm pit Law : rock instability, the tunnel span larger, ground subsidence is difficult to control when using this method. Its characteristics are : a positive step and arms Heading Act advantages.Bilateral arm Heading law : in large-span shallow tunnels, surface subsidence require strict, especially poor rock used. Advantages of this method are : Construction of safe, reliable, but slow construction, high cost.III.The main tunnel construction technology1. Cave construction :(1)excavation slope around :Lofting total station measurements, the use of excavators from top to bottom, paragraph by paragraph excavation, not the amount of excavation or the end of next overlapping excavation, remove pits with the above may slump topsoil, shrubs and rock slopes, rock strata of slope excavation needs blasting, Discussion should focus mainly loose blasting. Also partial artificial finishing, when excavation and inspection slope of slope, if sliding and cracking phenomenon and slowing down due slope.(2).Cheng Tung-supporting :Yang Brush Singapore Singapore after the completion of timely inspection plate slope gradient, the gradient to pass the inspection, the system set up to fight time anchor, and the exposed bolt heads, hanging metal based network expansion and bolt welding into first overall. Linked network immediately after the completion of shotcrete and repeatedly jet until it reaches the thickness of the design so far.(3).as of gutter construction :Yang slope away from the groove 5 meters excavation ditch interception, interception gutter mainly mechanical excavation, artificial finishing, after dressing, 7.5# immediately masonry made of mortar and stones, and the floor surface with mortar.2. Auxiliary construction :(1)A long pipe roof :Sets arch construction : construction Lofting, template installation, assembling reinforcement, the guidance of lofting 127 installation guide, concrete pouring.Pipe specifications : Heat Nazarbayev Seamless Steel Tube ¢108 mm and a thickness of 6 mm, length of 3 m, 6 m;N pipe from : Central to the distance 50 cm;N Inclination : Elevation 1 ° (the actual construction works by 2 °), the direction parallel with the Central Line;N pipe construction error : Radial not more than 20 cm;N tunnel longitudinal joints within the same section with more than 50% adjacent pipe joints staggered at least a meter.A. pipe roof construction method :Lofting accurate measurement personnel, marking the centerline and the vault out of its hole elevation, soil excavation reserved as a core pipe roof construction work platform Excavation footage of 2.5 meters, after the end of excavation, artificial symmetrical on both sides of excavation (Commodities H) platform, level width of 1.5 meters, 2.0 meters high, as construction sets and pipe arch shed facilities drilling platform. Pipe-roof design position should be and it should be a good hole steel tube, grouting after playing non-porous tube steel, non-porous tube can be used as pipe inspection, Grouting quality inspection, drill vertical direction must be accurately controlled to guarantee the opening hole to the right, End each drilling a hole is a pipe jacking, drilling should always use dipcompass drilling pipe measuring the deflection, found that the deflection over design requirements in a timely fashion. Pipe joints using screw connection, screw length 15 cm, to stagger the pipe joints, odd-numbered as the first section of the introduction of three-meter steel pipes and even numbered the first section of pipe using 6 meters, After each have adopted six-meter-long steel pipe.B. pipe roof construction machinery :N drilling machinery : XY-28-300 equipped with electric drill, drilling and pipe jacking long shelf;N grouting machine : BW-250/50-injection pump two Taiwan;N using cement-water glass slurry. Mud and water volume ratio 1:0.5; water glass slurry concentration of water-cement ratio 1:1 silicate 35 Baume; The efficacy silicate modulus pressure grouting pressure early pressure 2.0MPA 0.5~1.0MPA; end.(2). a small catheterA. small catheter used ahead diameter of 42 mm and a thickness of 3.5 mm thermal Nazarbayev seamless steel tubes, steel pipe was front-tip, Welding on the tail ¢6 stiffening brace and the wall around the drilling hole grouting 8 mm, but the tail of a meter without grouting holes and Advance Construction of a small catheter, the tubes and the lining of the centerline parallel to 10 ° -30 ° Chalu into the rock arch. penstocks to 20-50 cm spacing. Each was over a steel tubes, should be closed immediately shotcrete excavation face and then grouting. After grouting, erecting steel Arch, Supporting the early completion of every (2-3 meters, and the paper attempts to be) another one for steel tubes, Advance small catheter general lap length of 1.0 meters.B. Grouting parameters :N water slurry and water glass volume : 1:0.5;N slurry water-cement ratio 1:1N 35 Baume concentration of sodium silicate; The efficacy silicate modulusN grouting pressure 0.5~1.0MPA; if necessary, set up only orifice Pulp Cypriots.(3). bolting ahead : The Chalu must be greater than 14 degrees, grouting satiated and lap length is not less than 1 meter.3.Correcting construction :Embedded parts used by the Design Dimensions plank make shape design, installation in contrast snoop plate car, and position accuracy (error ± 50CM), the firm shall not be fixed, you must be in possession of the wire through the middle wear.4. Leveling ConstructionInstallation templates, at the request of both sides leveling layer calibration position to install template. Side-channel steel templates used [10#, top elevation with a corresponding length of the road elevation unanimously to allow deviation ±2mm. adjusted using the standard measurement to determine elevation. Every template fixed a certain distance from the outside to ensure that no displacement, the joints template close comfort, not from a slit, crooked and formation, and the bottom connector templates are not allowed to leak plasma. Concrete before reperfusion, the bottom surface of concrete must be clean. When the concrete arrived at the construction site directly installed backward mode of the road bed, and using artificial Huabu uniform. Concrete paver should be considered after the earthquake destroyed the settlement. Unrealistically high can be 10% higher, Lan is the surface elevation and design line. Concrete earthquake destroyed at or anywhere near the corner with plug-Lan Lan pound for pound order; Flat-Lan pound for pound crisscross comprehensive Lan, Inside each location is no longer the time for concrete sinks, no longer emitted large bubbles, and the surface of cement mortar later. normally no less than 15 seconds, also should not be too long; Then Chun-pound beam along the longitudinal Lan-pound trailer, With redundant Chun-pound concrete beams were dragged shift Trim, Dixian Department should keep leveling Lan facts. Finally, the diameter 75~100mm rolling seamless steel pipe for further leveling. Just do prohibited in the surface spraying water, and threw cement.5. Water, cable duct constructionInstall groove wall reinforcement of location accuracy, the line must be linked to the construction. Install groove wall purity, the purity requirements of accurate location, a vertical line. Dyadic greatest degree of not more than 3 mm, and template-Ditch The top-pronged, pass the inspection before the concrete reperfusion, on the side of the original wall must pick hair, and embedded parts to the location accurately. Template using stereotypes purity.6.Gate ConstructionCleared the site for construction layout. By design size requirement dug-wall basis. M7.5# masonry made of mortar and stones.Template installation, location accuracy requirements purity, a vertical line, and timely inspection template slope. Concrete pouring 15 # Riprap concrete, concrete strength to be more than 70% for Myeongdong vault backfill.Myungdong vault backfill should hierarchical compaction said. The typical thickness of less than 0.3M, both backfill surface height difference of not more than 0.5M. restored to the vault after the pack to design hierarchical compaction high, the use of machines rolling, Ramming must manually filled to vault over 1.0M before mechanical compaction .7 .Construction safety and environmental controlEntrance to wear helmets to prevent crashes, in which the speed limit 5KM, lighting must be a 10-meter lights reckless goods stored material must be standardized and distributed under special guard.Spoil venues must be smooth drainage, and must be masonry retaining wall to prevent flooding, debris flow forming.8. The construction process has to tackle the problems :Construction of two liner after water seepage treatment :Small cracks with acrylic, water or slurry coating of epoxy resin and other caulking, a good effect; On the larger cracks, available on the 10th of cement mortar or cement mortar expansion caulking more appropriate and effective;Large cracks (crack width greater than 5MM), (if leakage of water, available along the cutting machine cutting a wide cracks around 2~4CM small groove depth approximately 10CM above the water, Cutting a 5 × 5CM Cube holes room, then insert a pipe 4 × 4CM MF7 plastic Blind groove, Cutting together into good pressure tank, the introduction of vertical water drains, Finally, cement and water Glass closed mixed mortar cutting groove) withoutseepage, it is appropriate epoxy mortar, or grouting, Reinforced concrete and other reinforced jet.IV. Example projectsNATM is from the introduction of the bolt and shotcrete a category of "active" support the new technology to promote the use began. Soon, the Chinese engineer on the tunnel not only in substance but also in terms of acceptance of the new Austrian law. To be held in China in the tunnel and underground engineering academic meeting, the new Austrian capital has become a hot topic.Engineers of the new Austrian law relishes is justified : the use of new Austrian law, has been successful in soft rock and difficult conditions of the construction of various types of underground works.Built on loose sand gravel stratum of Beijing Subway allowed back of the tunnel is a typical example. The tunnel is located in the main street-256, 358m long, the largest excavation section 9m high, 14.5m wide coverage stratigraphic top of the tunnel only minimum thickness 9.0m. Tunnel boring machine of excavation, strengthen the grid arch shotcrete initial support and advance small catheter care, Without prejudice to ground transportation, underground pipelines to ensure the safety of construction success.In the works is the experience, knowledge of the Chinese engineers, the use of new Austrian law principles can be used in the Mountain Tunnel Mine Act to expand the scope of application of the soft rock, even in the fourth strata of municipal shallow tunnel to replace the traditional method of digging or shield. In China, such a method called "shallow mining method."Following allowed back lane tunnel, gravel in the same folder of alluvial gravel layer is shallow mining method used to build the span of 21.67m in the Xidan MTR stations.Changan Avenue in the construction of the new Beijing metro line projects, shallow mining method has been selected as the main method of construction. For example, the Tiananmen Square in Beijing Metro West Point, 226m long, for two double-pole structure.Guangzhou Metro East is shallow mining method used in the construction. Experience shows that from the ground environmental protection, surface subsidence of the dug system。
土木外文文献与翻译--新奥法设计原理在隧道施工中的应用及主要施工工艺
NATM tunnel design principle in the construction of major andConstruction TechnologyW.BroereI.The NATM Design Principle1.Tunnel design and construction of two major theoretical and development processSince the 20th century, human space on the ground floor of the growing demand, thus the underground works of the study of a rapid development. In a large number of underground engineering practice, it is generally recognized that the tunnel and underground cavern project, the core of the problem, all up in the excavation and retaining two key processes. How excavation, it will be more conducive to the stability and cavern facilitate support : For more support, Supporting how they can more effectively ensure stability and facilitate the cavern excavation. This is the tunnels and underground works two promote each other and check each other's problems.Tunnels and underground caverns, and focusing on the core issues with the above practice and research, in different periods, People of different theories and gradually established a system of different theories, Each system includes theory and resolve (or are studying the resolution) from the works of understanding (concept), mechanics, engineering measures to the construction methods (Technology), a series of engineering problems.A theory of the 20th century the 1920s the traditional "load relaxation theory." Its core content is : a stable rock self-stability, no load : unstable rock may have collapsed. need shoring structure to be supported. Thus, the role of the supporting structure of the rock load is within a certain range may be due to relaxation and collapse of rock gravity. This is a traditional theory, and their representative is Taishaji and Principe's and others. It works similar to the surface issues of the thinking is still widely used to.Another theory of the 20th century made the 1950s the modern theory of timbering or "rock for the theory." Its core content is : rock stability is clearly bearing rock to their own self-stability : unstable rock loss of stability is a process, and if this process in providing thenecessary help or restrictions will still be able to enter the rock steady state. This theoretical system of representative characters Labuxiweici, Miller-Feiqieer, Fenner - Daluobo and Kashitenai others. This is a more modern theory, it is already out of the ground works to consider the ideas, and underground works closer to reality, the past 50 years has been widely accepted and applied. demonstrated broad development prospects.Can be seen from the above, the former theory more attention to the findings and the results of treatment : The latter theory is even more attention to the process and the control of the process, right from the rock for the full utilization of capacity. Given this distinction, which both theory and methods in the process, each with different performance characteristics. NATM theory is rock for the tunnel engineering practice in the representation method.2. NATMNATM that the new Austrian Tunneling Method short the original is in New Austrian Tunneling Method, referred to as the NATM. France said it convergence bound or some countries alleged to observe the dynamic design and construction of the basic principles.NATM concept of filibustering Xiweici Austria scholars in the 20th century, Professor age of 50. It was based on the experience of both the tunnel and rock mechanics theory, will bolt and shotcrete combination as a major means of supporting a construction method, Austria, Sweden, Italy and other countries, many practical and theoretical study in the 1960s and patented officially named. Following this approach in Western Europe, Scandinavia, the United States and Japan and many other underground works with a very rapid development, have become modern tunnels new technologies landmark. Nearly 40 years ago, the railway sector through research, design, construction combining, in many construction of the tunnel, according to their own characteristics successfully applied a new Austrian law, made more experience, have accumulated large amounts of data, This is the application stage. However, in the road sector NATM of only 50%. Currently, the New Austrian Tunneling Method almost become weak and broken rock section of a tunnel construction method, technical and economic benefits are clear. NATM the basic points can be summarized as follows : (1). Rock tunnel structure is the main loading unit, the construction must fully protect the rock, it minimize the disturbance to avoid excessive damage to the intensity of rock. Tothis end, the construction of sub-section should not block too much, excavation should be used smooth blasting, presplit blasting or mechanical tunneling.(2). In order to give full play to rock the carrying capacity should be allowed to control and rock deformation. While allowing deformation, which can be a rock bearing ring; The other hand, have to limit it, Rock is not so lax and excessive loss or greatly reduced carrying capacity. During construction should be used with rock close to, the timely building puzzle keeps strengthening Flexible support structure, such as bolting and shotcreting supporting. This adjustment will be adopted supporting structural strength, Stiffness and its participation in the work of the time (including the closure of time) to control the deformation of the rock mass.(3). In order to improve the support structure, the mechanical properties, the construction should be closed as soon as possible, and to become a closed cylindrical structure. In addition, the tunnel shape with a round should, as far as possible, to avoid the corner of the stress concentration.(4). Construction right through the rock and supporting the dynamic observation, measurement, and reasonable arrangements for the construction procedures, changes in the design and construction management of the day-to-day.(5). To lay waterproof layer, or is subject to bolt corrosion, deterioration of rock properties, rheological, swelling caused by the follow-up to load, use composite lining.(6). Lining in principle, and the early rock deformation Supporting the basic stability of the conditions under construction. rock and supporting structure into a whole, thereby improving the support system of security.NATM above the basic elements can be briefly summarized as : "less disturbance, early spray anchor, ground measurements, closed tight."3.With a spring to understand the principle NATM(1). Cavern brink of a point A in the original excavation ago with stress (stress self-respect and tectonic stress) in a state of equilibrium. As an elastic stiffness of the spring K, P0 under compression in a state of equilibrium.(2). Cavern excavation, A point in attacking lose face constraints, the original stress state to be adjusted, if the intensity of rock big enough, After less stress adjustments maycavern in a stable condition (without support). But most of the geological conditions of the poor, that is, after the stress cavern adjustments, such as weak protection, we could have convergence deformation, even instability (landslides), must be provided to support power PE, in order to prevent landslides instability. Equivalent to the Spring of deformation u, in the role of PE is now in the midst of a state of equilibrium.(3). By the mechanical balance equation, we can see in the spring P0 role in a state of equilibrium; Spring in the event of deformation u, PE in the role they will be in equilibrium, assuming spring elasticity of K, were : P0=PE+KuDiscussion :(1) When u = 0, that is not allowed P0=PE rock deformation, is a rigid support, not economic;(2) when u ↑, PE ↓; When u ↓, PE ↑. That is, rock deformation occurred, the release of some of the load (unloading), we should allow some extent rock deformation, to give full play to rock the capacity for self. Is an economic support measures, the rock self-stability P=P0-PE=Ku;(3) When u=umax, landslides, have relaxation load and unsafe.4. Points(1). Rock cavern excavation is affected by that part of rock (soil) body, the rock is a trinity : have a load bearing structure, building materials.(2). Tunnel construction is in the rock stress is of special architectural environment, which can not be equated with the construction on the ground.(3). Tunnel structure rock + = bracing system.II. The new Austrian highway construction in the basic methodNATM one of the characteristics is the scene monitoring, measurement information to guide construction, through the tunnel construction measure receipts and excavation of the geological observation for prediction and feedback. And in accordance with the established benchmark for measuring the tunnel construction, excavation section steps and sequences, Supporting the initial parameters for reasonable adjustments to guarantee the safety of construction, a tunnel rock stability, the quality of the project and supporting structure of theeconomy and so on. The author of commitments (Chengde) Chek (Chifeng) East Maojingba Tunnel NATM basic construction method for investigation concluded, synthesis of a new highway tunnel Natm the selection of different types and the basic characteristics of the construction methods and tips.1. A tunnel construction method of choice tunnel construction method of choice, mainly based on the engineering geological and hydrogeological conditions Construction, rock type, buried deep tunnel, the tunnel section size and length lining types, Construction should be the premise of safety and engineering quality at the core, and with the use of the tunnel function, the level of construction technology, Construction machinery and equipment, time requirements and economic feasibility of factors to consider in selection.When choosing the method for tunnel construction on the surrounding environment negatively affected, should also be a tunnel, the environmental conditions as the method to choose one of the factors, taking into rock changes the method and the applicability of the possibility of change. Tunnel project to avoid mistakes and unnecessary increase investment in public works. NATM new construction, we should also consider the entire process of construction of auxiliary operations and changes in the surrounding rock to measure control methods and the tunnel through special geological lots of construction means for a reasonable choice.2. New Austrian Tunneling Method program New Austrian Tunneling Method used all methods can be divided into sections, Division level and the three major types of excavation method and some changes in the program.(1) Full-face method. That whole section excavation method is based on the design of an excavation face excavation molding. Excavation order is its full face excavation, steel bracing, pouring concrete lining. Often choose to IV-VI Class Rock Hard Rock Tunnel, which can be used blasting deep hole.Excavation whole section of the law is a larger space operations, introducing supporting large mechanized operations, improving the speed and process small, less interference and facilitate the construction organization and management. Excavation is due to shortcomings in the larger, lower relative stability of rock, and with each cycle of the relatively large workload, it requires the construction units should have a strong excavation, transport and slag out andsupport capability, Maojingba VI : Class V rock used in the full-face excavation to achieve the desired results.Full-face excavation face, drilling and blasting construction more efficient use of deep focus to accelerate the excavation blasting speed, and the rock blasting vibration frequency less conducive to a stable transfer rocks. The drawback is every deep hole blasting vibration larger. Therefore require careful drilling and blasting design and strict control of blasting operations.Full-face excavation method is the main process : the use of mobile carts (or platforms), the first full-face a bored, and installed a line, and then drilling platform car outside 50m back to a safe place and then detonate, Blasting to make a shape out after drilling Jardine car again moved to the excavation face in place, began a cycle of drilling and blasting operations, Anchor sprayed simultaneously supporting or after the first arch wall lining.(2) step method. Step method of design is generally divided into sections on the half-section and the lower half section two excavation molding. Excavation order is its first half excavation arch bolt jet concrete bracing, arch lining, the central part of the second half of excavation, sidewall of excavation, concrete wall jet bolt support and lining. The more applicable to the II, III and soft joint development of the surrounding rock, which were used Tim change program.Long-step method : The next stage distance away, on the general level above 50m ahead, Construction can be assigned to the Department of next larger machine with parallel operations, when mechanical deficiencies can be used interchangeably. When the case of a short tunnel, the upper section will be all dug later, and then dug under the section, the construction of which less interference, single process can work.Short step method : on the stage length 5-50m apply to Ⅱ, Ⅲrock can be shortened Invert closing time, Supporting improve early stress conditions, but larger construction interference, in the event of Soft Rock need to consider carefully, Auxiliary shall be applied measures to stabilize the excavation excavation face, in order to ensure the safety of construction.Ultrashort step method : The only step ahead 3-5m, section closed faster. The method used for the high level of mechanization of various rock section, in the event of the siege softrock when required careful consideration. Auxiliary shall be applied measures to stabilize the construction excavation face to ensure the safety of construction.Excavation level of character is the first step to using light excavation drilling machine drill a hole, rather than through large drilling platform car. Two step method of excavation operations with sufficient space and a faster rate of construction. Level is conducive to the stability of excavation face. Especially Excavation in the upper, lower operational safety. Three step method of excavation is the next shortcomings of operations interfere with each other. It should be noted at the bottom of the upper operational stability, level of excavation will increase the number of country rock.(3) Segment excavation method. Excavation Law Division can be divided into five changes in the program : Excavation Division level, from top to bottom hole lead, heading advance on the excavation, single (double) and lateral pit method. Excavation will be conducted Section Division excavation by the Ministry of shape, and to advance some of excavation, it may be called derivative ahead excavation pit method.Law Division level : general application or soil collapse easily lots of soft rock, with its advantages - stage method, height can be lengthened, the two-lane tunnel for a hole-fold, cycling Road Tunnel - hole 2 times; rather than single (double) PENDANTS Heading a high degree of mechanization, can accelerate the progress of the projects.The next heading advance excavation method (that is guided pit wall first arch) : This Act applies to Ⅱ, Ⅲrock. in the soft ground tunneling, to be adopted next general guide advance excavation pit wall first arch Act. Its advantages are : Heading advance excavation, the use of proven geological conditions in advance to facilitate change in the method. Face to facilitate started procedures applicable to the labor arrangements for the use of small machinery and construction. The drawbacks : The next section will guide small, slow construction and construction processes more, construction and management difficult.Unilateral-arm pit Law : rock instability, the tunnel span larger, ground subsidence is difficult to control when using this method. Its characteristics are : a positive step and arms Heading Act advantages.Bilateral arm Heading law : in large-span shallow tunnels, surface subsidence require strict, especially poor rock used. Advantages of this method are : Construction of safe, reliable, but slow construction, high cost.III.The main tunnel construction technology1. Cave construction(1)excavation slope aroundLofting total station measurements, the use of excavators from top to bottom, paragraph by paragraph excavation, not the amount of excavation or the end of next overlapping excavation, remove pits with the above may slump topsoil, shrubs and rock slopes, rock strata of slope excavation needs blasting, Discussion should focus mainly loose blasting. Also partial artificial finishing, when excavation and inspection slope of slope, if sliding and cracking phenomenon and slowing down due slope.(2).Cheng Tung-supportingYang Brush Singapore Singapore after the completion of timely inspection plate slope gradient, the gradient to pass the inspection, the system set up to fight time anchor, and the exposed bolt heads, hanging metal based network expansion and bolt welding into first overall. Linked network immediately after the completion of shotcrete and repeatedly jet until it reaches the thickness of the design so far.(3).as of gutter constructionYang slope away from the groove 5 meters excavation ditch interception, interception gutter mainly mechanical excavation, artificial finishing, after dressing, 7.5# immediately masonry made of mortar and stones, and the floor surface with mortar.2. Auxiliary construction(1)A long pipe roofSets arch construction : construction Lofting, template installation, assembling reinforcement, the guidance of lofting 127 installation guide, concrete pouring.Pipe specifications : Heat Nazarbayev Seamless Steel Tube ¢108 mm and a thickness of 6 mm, length of 3 m, 6 m;N pipe from : Central to the distance 50 cm;N Inclination : Elevation 1 ° (the actual construction works by 2 °), the direction parallel with the Central Line;N pipe construction error : Radial not more than 20 cm;N tunnel longitudinal joints within the same section with more than 50% adjacent pipe joints staggered at least a meter.A. pipe roof construction methodLofting accurate measurement personnel, marking the centerline and the vault out of its hole elevation, soil excavation reserved as a core pipe roof construction work platform Excavation footage of 2.5 meters, after the end of excavation, artificial symmetrical on both sides of excavation (Commodities H) platform, level width of 1.5 meters, 2.0 meters high, as construction sets and pipe arch shed facilities drilling platform. Pipe-roof design position should be and it should be a good hole steel tube, grouting after playing non-porous tube steel, non-porous tube can be used as pipe inspection, Grouting quality inspection, drill vertical direction must be accurately controlled to guarantee the opening hole to the right, End each drilling a hole is a pipe jacking, drilling should always use dipcompass drilling pipe measuring the deflection, found that the deflection over design requirements in a timely fashion. Pipe joints using screw connection, screw length 15 cm, to stagger the pipe joints, odd-numbered as the first section of the introduction of three-meter steel pipes and even numbered the first section of pipe using 6 meters, After each have adopted six-meter-long steel pipe.B. pipe roof construction machineryN drilling machinery : XY-28-300 equipped with electric drill, drilling and pipe jacking long shelf;N grouting machine : BW-250/50-injection pump two Taiwan;N using cement-water glass slurry. Mud and water volume ratio 1:0.5; water glass slurry concentration of water-cement ratio 1:1 silicate 35 Baume; The efficacy silicate modulus pressure grouting pressure early pressure 2.0MPA 0.5~1.0MPA; end.(2). a small catheterA. small catheter used ahead diameter of 42 mm and a thickness of 3.5 mm thermal Nazarbayev seamless steel tubes, steel pipe was front-tip, Welding on the tail ¢6 stiffening brace and the wall around the drilling hole grouting 8 mm, but the tail of a meter without grouting holes and Advance Construction of a small catheter, the tubes and the lining of the centerline parallel to 10 ° -30 ° Chalu into the rock arch. penstocks to 20-50 cm spacing. Each was over a steel tubes, should be closed immediately shotcrete excavation face and thengrouting. After grouting, erecting steel Arch, Supporting the early completion of every (2-3 meters, and the paper attempts to be) another one for steel tubes, Advance small catheter general lap length of 1.0 meters.B. Grouting parametersN water slurry and water glass volume : 1:0.5;N slurry water-cement ratio 1:1N 35 Baume concentration of sodium silicate; The efficacy silicate modulusN grouting pressure 0.5~1.0MPA; if necessary, set up only orifice Pulp Cypriots.(3). bolting ahead : The Chalu must be greater than 14 degrees, grouting satiated and lap length is not less than 1 meter.3.Correcting constructionEmbedded parts used by the Design Dimensions plank make shape design, installation in contrast snoop plate car, and position accuracy (error ± 50CM), the firm shall not be fixed, you must be in possession of the wire through the middle wear.4. Leveling ConstructionInstallation templates, at the request of both sides leveling layer calibration position to install template. Side-channel steel templates used [10#, top elevation with a corresponding length of the road elevation unanimously to allow deviation ±2mm. adjusted using the standard measurement to determine elevation. Every template fixed a certain distance from the outside to ensure that no displacement, the joints template close comfort, not from a slit, crooked and formation, and the bottom connector templates are not allowed to leak plasma. Concrete before reperfusion, the bottom surface of concrete must be clean. When the concrete arrived at the construction site directly installed backward mode of the road bed, and using artificial Huabu uniform. Concrete paver should be considered after the earthquake destroyed the settlement. Unrealistically high can be 10% higher, Lan is the surface elevation and design line. Concrete earthquake destroyed at or anywhere near the corner with plug-Lan Lan pound for pound order; Flat-Lan pound for pound crisscross comprehensive Lan, Inside each location is no longer the time for concrete sinks, no longer emitted large bubbles, and the surface of cement mortar later. normally no less than 15 seconds, also should not be too long;Then Chun-pound beam along the longitudinal Lan-pound trailer, With redundant Chun-pound concrete beams were dragged shift Trim, Dixian Department should keep leveling Lan facts. Finally, the diameter 75~100mm rolling seamless steel pipe for further leveling. Just do prohibited in the surface spraying water, and threw cement.5. Water, cable duct constructionInstall groove wall reinforcement of location accuracy, the line must be linked to the construction. Install groove wall purity, the purity requirements of accurate location, a vertical line. Dyadic greatest degree of not more than 3 mm, and template-Ditch The top-pronged, pass the inspection before the concrete reperfusion, on the side of the original wall must pick hair, and embedded parts to the location accurately. Template using stereotypes purity.6.Gate ConstructionCleared the site for construction layout. By design size requirement dug-wall basis. M7.5# masonry made of mortar and stones.Template installation, location accuracy requirements purity, a vertical line, and timely inspection template slope. Concrete pouring 15 # Riprap concrete, concrete strength to be more than 70% for Myeongdong vault backfill.Myungdong vault backfill should hierarchical compaction said. The typical thickness of less than 0.3M, both backfill surface height difference of not more than 0.5M. restored to the vault after the pack to design hierarchical compaction high, the use of machines rolling, Ramming must manually filled to vault over 1.0M before mechanical compaction .7 .Construction safety and environmental controlEntrance to wear helmets to prevent crashes, in which the speed limit 5KM, lighting must be a 10-meter lights reckless goods stored material must be standardized and distributed under special guard.Spoil venues must be smooth drainage, and must be masonry retaining wall to prevent flooding, debris flow forming.8. The construction process has to tackle the problemsConstruction of two liner after water seepage treatment :Small cracks with acrylic, water or slurry coating of epoxy resin and other caulking, a good effect; On the larger cracks, available on the 10th of cement mortar or cement mortar expansion caulking more appropriate and effective;Large cracks (crack width greater than 5MM), (if leakage of water, available along the cutting machine cutting a wide cracks around 2~4CM small groove depth approximately 10CM above the water, Cutting a 5 × 5CM Cube holes room, then insert a pipe 4 × 4CM MF7 plastic Blind groove, Cutting together into good pressure tank, the introduction of vertical water drains, Finally, cement and water Glass closed mixed mortar cutting groove) without seepage, it is appropriate epoxy mortar, or grouting, Reinforced concrete and other reinforced jet.IV. Example projectsNATM is from the introduction of the bolt and shotcrete a category of "active" support the new technology to promote the use began. Soon, the Chinese engineer on the tunnel not only in substance but also in terms of acceptance of the new Austrian law. To be held in China in the tunnel and underground engineering academic meeting, the new Austrian capital has become a hot topic.Engineers of the new Austrian law relishes is justified : the use of new Austrian law, has been successful in soft rock and difficult conditions of the construction of various types of underground works.Built on loose sand gravel stratum of Beijing Subway allowed back of the tunnel is a typical example. The tunnel is located in the main street-256, 358m long, the largest excavation section 9m high, 14.5m wide coverage stratigraphic top of the tunnel only minimum thickness 9.0m. Tunnel boring machine of excavation, strengthen the grid arch shotcrete initial support and advance small catheter care, Without prejudice to ground transportation, underground pipelines to ensure the safety of construction success.In the works is the experience, knowledge of the Chinese engineers, the use of new Austrian law principles can be used in the Mountain Tunnel Mine Act to expand the scope ofapplication of the soft rock, even in the fourth strata of municipal shallow tunnel to replace the traditional method of digging or shield. In China, such a method called "shallow mining method."Following allowed back lane tunnel, gravel in the same folder of alluvial gravel layer is shallow mining method used to build the span of 21.67m in the Xidan MTR stations.Changan Avenue in the construction of the new Beijing metro line projects, shallow mining method has been selected as the main method of construction. For example, the Tiananmen Square in Beijing Metro West Point, 226m long, for two double-pole structure.Guangzhou Metro East is shallow mining method used in the construction. Experience shows that from the ground environmental protection, surface subsidence of the dug system and the cost and time period perspective, Shallow Mining Act of open or with the shield are compared with a competitive edge.Chinese engineers from Europe to the introduction of the new Austrian law, and in light of China's situation of the new Austrian law, and related technology expanding means of support, such as, measurement and control technology was further developed. As a new Austrian law an important background shotcrete technology in China has been widely used. With the international situation, in order to resolve the long-troubled people of dust pollution of the environment. Rebound serious and concrete uneven quality of such issues, and is vigorously implementing the wet spray. Recently by the China Academy of Railway Sciences Southwest Branch of the development of a "Rotor-Piston," a new type of jet aircraft. This type wet spraying process, which is to include the machines Mix Concrete Preparation good product mixture, However, material handling is different from the general-pumping wet spraying machine, using thin stream conveyor. Therefore machines compact and easy to use. Has been popularized in this country.It is no exaggeration to say that the new Austrian law implementation has indeed caused a mining method in the construction of the excavation, Construction of the tunnel design, and even the thinking of the major changes. Nevertheless, it should be said that China's implementation of the new Austrian law is not satisfactory. In many works was no lack of examples of failure. In addition to construction management, quality control and technology related to grasp, and other reasons, is the main tunnel engineers sometimes NATM real lack of a proper understanding.。
隧道施工外文文献及翻译
隧道施工外文文献及翻译附录二外文参考文献及翻译NATM tunnel design principle in the construction of major andConstruction TechnologyW.BroereI.The NATM Design Principle1.Tunnel design and construction of two major theoretical and development processSince the 20th century, human space on the ground floor of the growing demand, thus the underground works of the study of a rapid development. In a large number of underground engineering practice, it is generally recognized that the tunnel and underground cavern project, the core of the problem, all up in the excavation and retaining two key processes. How excavation, it will be more conducive to the stability and cavern facilitate support : For more support, Supporting how they can more effectively ensure stability and facilitate the cavern excavation. This is the tunnels and underground works two promote each other and check each other's problems.Tunnels and underground caverns, and focusing on the core issues with the above practice and research, in different periods, People of different theories and gradually established a system of different theories, Each system includes theory and resolve (or are studying the resolution) from the works of understanding (concept), mechanics, engineering measures to the construction methods (Technology), a series of engineering problems.A theory of the 20th century the 1920s the traditional "load relaxation theory." Its core content is : a stable rock self-stability, no load : unstable rock may have collapsed. need shoring structure to be supported. Thus, the role of the supporting structure of the rock load iswithin a certain range may be due to relaxation and collapse of rock gravity. This is a traditional theory, and their representative is Taishaji and Principe's and others. It works similar to the surface issues of the thinking is still widely used to.Another theory of the 20th century made the 1950s the modern theory of timbering or "rock for the theory." Its core content is : rock stability is clearly bearing rock to their own self-stability : unstable rock loss of stability is a process, and if this process in providing the necessary help or restrictions will still be able to enter the rock steady state. This theoretical system of representative characters Labuxiweici, Miller-Feiqieer, Fenner - Daluobo and Kashitenai others. This is a more modern theory, it is already out of the ground works to consider the ideas, and underground works closer to reality, the past 50 years has been widely accepted and applied. demonstrated broad development prospects.Can be seen from the above, the former theory more attention to the findings and the results of treatment : The latter theory is even more attention to the process and the control of the process, right from the rock for the full utilization of capacity. Given this distinction, which both theory and methods in the process, each with different performance characteristics. NATM theory is rock for the tunnel engineering practice in the representation method.2. NATMNATM that the new Austrian Tunneling Method short the original is in New Austrian Tunneling Method, referred to as the NATM. France said it convergence bound or some countries alleged to observe the dynamic design and construction of the basic principles.NATM concept of filibustering Xiweici Austria scholars in the 20th century, Professor age of 50. It was based on the experience of both the tunnel and rock mechanics theory, will bolt and shotcrete combination as a major means of supporting a construction method, Austria, Sweden, Italy and other countries, many practical and theoretical study in the 1960s and patented officially named. Following this approach in Western Europe, Scandinavia, the United States and Japan and many other underground works with a very rapid development, have become modern tunnels new technologies landmark. Nearly 40 years ago, the railway sector through research, design, construction combining, in many construction of the tunnel, according to their own characteristics successfully applied a new Austrian law, made more experience, have accumulated large amounts of data, This is the application stage. However, in the road sector NATM of only 50%. Currently, the New Austrian Tunneling Methodalmost become weak and broken rock section of a tunnel construction method, technical and economic benefits are clear. NATM the basic points can be summarized as follows : (1). Rock tunnel structure is the main loading unit, the construction must fully protect the rock, it minimize the disturbance to avoid excessive damage to the intensity of rock. To this end, the construction of sub-section should not block too much, excavation should be used smooth blasting, presplit blasting or mechanical tunneling.(2). In order to give full play to rock the carrying capacity should be allowed to control and rock deformation. While allowing deformation, which can be a rock bearing ring; The other hand, have to limit it, Rock is not so lax and excessive loss or greatly reduced carrying capacity. During construction should be used with rock close to, the timely building puzzle keeps strengthening Flexible support structure, such as bolting and shotcreting supporting. This adjustment will be adopted supporting structural strength, Stiffness and its participation in the work of the time (including the closure of time) to control the deformation of the rock mass.(3). In order to improve the support structure, the mechanical properties, the construction should be closed as soon as possible, and to become a closed cylindrical structure. In addition, the tunnel shape with a round should, as far as possible, to avoid the corner of the stress concentration.(4). Construction right through the rock and supporting the dynamic observation, measurement, and reasonable arrangements for the construction procedures, changes in the design and construction management of the day-to-day.(5). To lay waterproof layer, or is subject to bolt corrosion, deterioration of rock properties, rheological, swelling caused by the follow-up to load, use composite lining.(6). Lining in principle, and the early rock deformation Supporting the basic stability of the conditions under construction. rock and supporting structure into a whole, thereby improving the support system of security.NATM above the basic elements can be briefly summarized as : "less disturbance, early spray anchor, ground measurements, closed tight."3.With a spring to understand the principle NATM(1). Cavern brink of a point A in the original excavation ago with stress (stress self-respect and tectonic stress) in a state of equilibrium. As an elastic stiffness of the spring K,P0 under compression in a state of equilibrium.(2). Cavern excavation, A point in attacking lose face constraints, the original stress state to be adjusted, if the intensity of rock big enough, After less stress adjustments may cavern in a stable condition (without support). But most of the geological conditions of the poor, that is, after the stress cavern adjustments, such as weak protection, we could have convergence deformation, even instability (landslides), must be provided to support power PE, in order to prevent landslides instability. Equivalent to the Spring of deformation u, in the role of PE is now in the midst of a state of equilibrium.(3). By the mechanical balance equation, we can see in the spring P0 role in a state of equilibrium; Spring in the event of deformation u, PE in the role they will be in equilibrium, assuming spring elasticity of K, were : P0=PE+KuDiscussion :(1) When u = 0, that is not allowed P0=PE rock deformation, is a rigid support, not economic;(2) when u ↑, PE ↓; When u↓, PE ↑. That is, rock deformation occurred, the release of some of the load (unloading), we should allow some extent rock deformation, to give full play to rock the capacity for self. Is an economic support measures, the rock self-stability P=P0-PE=Ku;(3) When u=umax, landslides, have relaxation load and unsafe.4. Points(1). Rock cavern excavation is affected by that part of rock (soil) body, the rock is a trinity : have a load bearing structure, building materials.(2). Tunnel construction is in the rock stress is of special architectural environment, which can not be equated with the construction on the ground.(3). Tunnel structure rock + = bracing system.II. The new Austrian highway construction in the basic methodNATM one of the characteristics is the scene monitoring, measurement information to guide construction, through the tunnel construction measure receipts and excavation of the geological observation for prediction and feedback. And in accordance with the established benchmark for measuring the tunnel construction, excavation section steps and sequences,Supporting the initial parameters for reasonable adjustments to guarantee the safety of construction, a tunnel rock stability, the quality of the project and supporting structure of the economy and so on. The author of commitments (Chengde) Chek (Chifeng) East Maojingba Tunnel NATM basic construction method for investigation concluded, synthesis of a new highway tunnel Natm the selection of different types and the basic characteristics of the construction methods and tips.1. A tunnel construction method of choice tunnel construction method of choice, mainly based on the engineering geological and hydrogeological conditions Construction, rock type, buried deep tunnel, the tunnel section size and length lining types, Construction should be the premise of safety and engineering quality at the core, and with the use of the tunnel function, the level of construction technology, Construction machinery and equipment, time requirements and economic feasibility of factors to consider in selection.When choosing the method for tunnel construction on the surrounding environment negatively affected, should also be a tunnel, the environmental conditions as the method to choose one of the factors, taking into rock changes the method and the applicability of the possibility of change. Tunnel project to avoid mistakes and unnecessary increase investment in public works. NATM new construction, we should also consider the entire process of construction of auxiliary operations and changes in the surrounding rock to measure control methods and the tunnel through special geological lots of construction means for a reasonable choice.2. New Austrian Tunneling Method program New Austrian Tunneling Method used all methods can be divided into sections, Division level and the three major types of excavation method and some changes in the program.(1) Full-face method. That whole section excavation method is based on the design of an excavation face excavation molding. Excavation order is its full face excavation, steel bracing, pouring concrete lining. Often choose to IV-VI Class Rock Hard Rock Tunnel, which can be used blasting deep hole.Excavation whole section of the law is a larger space operations, introducing supporting large mechanized operations, improving the speed and process small, less interference and facilitate the construction organization and management. Excavation is due to shortcomings in the larger, lower relative stability of rock, and with each cycle of the relatively large workload,it requires the construction units should have a strong excavation, transport and slag out and support capability, Maojingba VI : Class V rock used in the full-face excavation to achieve the desired results.Full-face excavation face, drilling and blasting construction more efficient use of deep focus to accelerate the excavation blasting speed, and the rock blasting vibration frequency less conducive to a stable transfer rocks. The drawback is every deep hole blasting vibration larger. Therefore require careful drilling and blasting design and strict control of blasting operations.Full-face excavation method is the main process : the use of mobile carts (or platforms), the first full-face a bored, and installed a line, and then drilling platform car outside 50m back to a safe place and then detonate, Blasting to make a shape out after drilling Jardine car again moved to the excavation face in place, began a cycle of drilling and blasting operations, Anchor sprayed simultaneously supporting or after the first arch wall lining.(2) step method. Step method of design is generally divided into sections on the half-section and the lower half section two excavation molding. Excavation order is its first half excavation arch bolt jet concrete bracing, arch lining, the central part of the second half of excavation, sidewall of excavation, concrete wall jet bolt support and lining. The more applicable to the II, III and soft joint development of the surrounding rock, which were used Tim change program.Long-step method : The next stage distance away, on the general level above 50m ahead, Construction can be assigned to the Department of next larger machine with parallel operations, when mechanical deficiencies can be used interchangeably. When the case of a short tunnel, the upper section will be all dug later, and then dug under the section, the construction of which less interference, single process can work.Short step method : on the stage length 5-50m apply to Ⅱ, Ⅲrock can be shortened Invert closing time, Supporting improve early stress conditions, but larger construction interference, in the event of Soft Rock need to consider carefully, Auxiliary shall be applied measures to stabilize the excavation excavation face, in order to ensure the safety of construction.Ultrashort step method : The only step ahead 3-5m, section closed faster. The method used for the high level of mechanization of various rock section, in the event of the siege softrock when required careful consideration. Auxiliary shall be applied measures to stabilize the construction excavation face to ensure the safety of construction.Excavation level of character is the first step to using light excavation drilling machine drill a hole, rather than through large drilling platform car. Two step method of excavation operations with sufficient space and a faster rate of construction. Level is conducive to the stability of excavation face. Especially Excavation in the upper, lower operational safety. Three step method of excavation is the next shortcomings of operations interfere with each other. It should be noted at the bottom of the upper operational stability, level of excavation will increase the number of country rock.(3) Segment excavation method. Excavation Law Division can be divided into five changes in the program : Excavation Division level, from top to bottom hole lead, heading advance on the excavation, single (double) and lateral pit method. Excavation will be conducted Section Division excavation by the Ministry of shape, and to advance some of excavation, it may be called derivative ahead excavation pit method.Law Division level : general application or soil collapse easily lots of soft rock, with its advantages - stage method, height can be lengthened, the two-lane tunnel for a hole-fold, cycling Road Tunnel - hole 2 times; rather than single (double) PENDANTS Heading a high degree of mechanization, can accelerate the progress of the projects.The next heading advance excavation method (that is guided pit wall first arch) : This Act applies to Ⅱ, Ⅲrock. in the soft ground tunneling, to be adopted next general guide advance excavation pit wall first arch Act. Its advantages are : Heading advance excavation, the use of proven geological conditions in advance to facilitate change in the method. Face to facilitate started procedures applicable to the labor arrangements for the use of small machinery and construction. The drawbacks : The next section will guide small, slow construction and construction processes more, construction and management difficult.Unilateral-arm pit Law : rock instability, the tunnel span larger, ground subsidence is difficult to control when using this method. Its characteristics are : a positive step and arms Heading Act advantages.Bilateral arm Heading law : in large-span shallow tunnels, surface subsidence require strict, especially poor rock used. Advantages of this method are : Construction of safe, reliable, but slow construction, high cost.III.The main tunnel construction technology1. Cave construction :(1)excavation slope around :Lofting total station measurements, the use of excavators from top to bottom, paragraph by paragraph excavation, not the amount of excavation or the end of next overlapping excavation, remove pits with the above may slump topsoil, shrubs and rock slopes, rock strata of slope excavation needs blasting, Discussion should focus mainly loose blasting. Also partial artificial finishing, when excavation and inspection slope of slope, if sliding and cracking phenomenon and slowing down due slope.(2).Cheng Tung-supporting :Yang Brush Singapore Singapore after the completion of timely inspection plate slope gradient, the gradient to pass the inspection, the system set up to fight time anchor, and the exposed bolt heads, hanging metal based network expansion and bolt welding into first overall. Linked network immediately after the completion of shotcrete and repeatedly jet until it reaches the thickness of the design so far.(3).as of gutter construction :Yang slope away from the groove 5 meters excavation ditch interception, interception gutter mainly mechanical excavation, artificial finishing, after dressing, 7.5# immediately masonry made of mortar and stones, and the floor surface with mortar.2. Auxiliary construction :(1)A long pipe roof :Sets arch construction : construction Lofting, template installation, assembling reinforcement, the guidance of lofting 127 installation guide, concrete pouring.Pipe specifications : Heat Nazarbayev Seamless Steel Tube ¢108 mm and a thickness of 6 mm, length of 3 m, 6 m;N pipe from : Central to the distance 50 cm;N Inclination : Elevation 1 ° (the actual construction works by 2 °), the direction parallel with the Central Line;N pipe construction error : Radial not more than 20 cm;N tunnel longitudinal joints within the same section with more than 50% adjacent pipe joints staggered at least a meter.A. pipe roof construction method :Lofting accurate measurement personnel, marking the centerline and the vault out of its hole elevation, soil excavation reserved as a core pipe roof construction work platform Excavation footage of 2.5 meters, after the end of excavation, artificial symmetrical on both sides of excavation (Commodities H) platform, level width of 1.5 meters, 2.0 meters high, as construction sets and pipe arch shed facilities drilling platform. Pipe-roof design position should be and it should be a good hole steel tube, grouting after playing non-porous tube steel, non-porous tube can be used as pipe inspection, Grouting quality inspection, drill vertical direction must be accurately controlled to guarantee the opening hole to the right, End each drilling a hole is a pipe jacking, drilling should always use dipcompass drilling pipe measuring the deflection, found that the deflection over design requirements in a timely fashion. Pipe joints using screw connection, screw length 15 cm, to stagger the pipe joints, odd-numbered as the first section of the introduction of three-meter steel pipes and even numbered the first section of pipe using 6 meters, After each have adopted six-meter-long steel pipe.B. pipe roof construction machinery :N drilling machinery : XY-28-300 equipped with electric drill, drilling and pipe jacking long shelf;N grouting machine : BW-250/50-injection pump two Taiwan;N using cement-water glass slurry. Mud and water volume ratio 1:0.5; water glass slurry concentration of water-cement ratio 1:1 silicate 35 Baume; The efficacy silicate modulus pressure grouting pressure early pressure 2.0MPA 0.5~1.0MPA; end.(2). a small catheterA. small catheter used ahead diameter of 42 mm and a thickness of 3.5 mm thermal Nazarbayev seamless steel tubes, steel pipe was front-tip, Welding on the tail ¢6 stiffening brace and the wall around the drilling hole grouting 8 mm, but the tail of a meter without grouting holes and Advance Construction of a small catheter, the tubes and the lining of the centerline parallel to 10 ° -30 ° Chalu into the rock arch. penstocks to 20-50 cm spacing. Each was over a steel tubes, should be closed immediately shotcrete excavation face and thengrouting. After grouting, erecting steel Arch, Supporting the early completion of every (2-3 meters, and the paper attempts to be) another one for steel tubes, Advance small catheter general lap length of 1.0 meters.B. Grouting parameters :N water slurry and water glass volume : 1:0.5;N slurry water-cement ratio 1:1N 35 Baume concentration of sodium silicate; The efficacy silicate modulusN grouting pressure 0.5~1.0MPA; if necessary, set up only orifice Pulp Cypriots.(3). bolting ahead : The Chalu must be greater than 14 degrees, grouting satiated and lap length is not less than 1 meter.3.Correcting construction :Embedded parts used by the Design Dimensions plank make shape design, installation in contrast snoop plate car, and position accuracy (error ± 50CM), the firm shall not be fixed, you must be in possession of the wire through the middle wear.4. Leveling ConstructionInstallation templates, at the request of both sides leveling layer calibration position to install template. Side-channel steel templates used [10#, top elevation with a corresponding length of the road elevation unanimously to allow deviation ±2mm. adjusted using the standard measurement to determine elevation. Every template fixed a certain distance from the outside to ensure that no displacement, the joints template close comfort, not from a slit, crooked and formation, and the bottom connector templates are not allowed to leak plasma. Concrete before reperfusion, the bottom surface of concrete must be clean. When the concrete arrived at the construction site directly installed backward mode of the road bed, and using artificial Huabu uniform. Concrete paver should be considered after the earthquake destroyed the settlement. Unrealistically high can be 10% higher, Lan is the surface elevation and design line. Concrete earthquake destroyed at or anywhere near the corner with plug-Lan Lan pound for pound order; Flat-Lan pound for pound crisscross comprehensive Lan, Inside each location is no longer the time for concrete sinks, no longer emitted large bubbles, and the surface of cement mortar later. normally no less than 15 seconds, also should not be too long; Then Chun-pound beam along the longitudinal Lan-pound trailer, With redundant Chun-pound concrete beams were dragged shift Trim, Dixian Department should keepleveling Lan facts. Finally, the diameter 75~100mm rolling seamless steel pipe for further leveling. Just do prohibited in the surface spraying water, and threw cement.5. Water, cable duct constructionInstall groove wall reinforcement of location accuracy, the line must be linked to the construction. Install groove wall purity, the purity requirements of accurate location, a vertical line. Dyadic greatest degree of not more than 3 mm, and template-Ditch The top-pronged, pass the inspection before the concrete reperfusion, on the side of the original wall must pick hair, and embedded parts to the location accurately. Template using stereotypes purity.6.Gate ConstructionCleared the site for construction layout. By design size requirement dug-wall basis. M7.5# masonry made of mortar and stones.Template installation, location accuracy requirements purity, a vertical line, and timely inspection template slope. Concrete pouring 15 # Riprap concrete, concrete strength to be more than 70% for Myeongdong vault backfill.Myungdong vault backfill should hierarchical compaction said. The typical thickness of less than 0.3M, both backfill surface height difference of not more than 0.5M. restored to the vault after the pack to design hierarchical compaction high, the use of machines rolling, Ramming must manually filled to vault over 1.0M before mechanical compaction .7 .Construction safety and environmental controlEntrance to wear helmets to prevent crashes, in which the speed limit 5KM, lighting must be a 10-meter lights reckless goods stored material must be standardized and distributed under special guard.Spoil venues must be smooth drainage, and must be masonry retaining wall to prevent flooding, debris flow forming.8. The construction process has to tackle the problems :Construction of two liner after water seepage treatment :Small cracks with acrylic, water or slurry coating of epoxy resin and other caulking, a good effect; On the larger cracks, available on the 10th of cement mortar or cement mortar expansion caulking more appropriate and effective;Large cracks (crack width greater than 5MM), (if leakage of water, available along the cutting machine cutting a wide cracks around 2~4CM small groove depth approximately10CM above the water, Cutting a 5 × 5CM Cube holes room, then insert a pipe 4 × 4CM MF7 plastic Blind groove, Cutting together into good pressure tank, the introduction of vertical water drains, Finally, cement and water Glass closed mixed mortar cutting groove) without seepage, it is appropriate epoxy mortar, or grouting, Reinforced concrete and other reinforced jet.IV. Example projectsNATM is from the introduction of the bolt and shotcrete a category of "active" support the new technology to promote the use began. Soon, the Chinese engineer on the tunnel not only in substance but also in terms of acceptance of the new Austrian law. To be held in China in the tunnel and underground engineering academic meeting, the new Austrian capital has become a hot topic.Engineers of the new Austrian law relishes is justified : the use of new Austrian law, has been successful in soft rock and difficult conditions of the construction of various types of underground works.Built on loose sand gravel stratum of Beijing Subway allowed back of the tunnel is a typical example. The tunnel is located in the main street-256, 358m long, the largest excavation section 9m high, 14.5m wide coverage stratigraphic top of the tunnel only minimum thickness 9.0m. Tunnel boring machine of excavation, strengthen the grid arch shotcrete initial support and advance small catheter care, Without prejudice to ground transportation, underground pipelines to ensure the safety of construction success.In the works is the experience, knowledge of the Chinese engineers, the use of new Austrian law principles can be used in the Mountain Tunnel Mine Act to expand the scope of application of the soft rock, even in the fourth strata of municipal shallow tunnel to replace the traditional method of digging or shield. In China, such a method called "shallow mining method."Following allowed back lane tunnel, gravel in the same folder of alluvial gravel layer is shallow mining method used to build the span of 21.67m in the Xidan MTR stations.Changan Avenue in the construction of the new Beijing metro line projects, shallow mining method has been selected as the main method of construction. For example, the Tiananmen Square in Beijing Metro West Point, 226m long, for two double-pole structure.Guangzhou Metro East is shallow mining method used in the construction. Experience shows that from the ground environmental protection, surface subsidence of the dug system and the cost and time period perspective, Shallow Mining Act of open or with the shield are compared with a competitive edge.Chinese engineers from Europe to the introduction of the new Austrian law, and in light of China's situation of the new Austrian law, and related technology expanding means of support, such as, measurement and control technology was further developed. As a new Austrian law an important background shotcrete technology in China has been widely used. With the international situation, in order to resolve the long-troubled people of dust pollution of the environment. Rebound serious and concrete uneven quality of such issues, and is vigorously implementing the wet spray. Recently by the China Academy of Railway Sciences Southwest Branch of the development of a "Rotor-Piston," a new type of jet aircraft. This type wet spraying process, which is to include the machines Mix Concrete Preparation good product mixture, However, material handling is different from the general-pumping wet spraying machine, using thin stream conveyor. Therefore machines compact and easy to use. Has been popularized in this country.It is no exaggeration to say that the new Austrian law implementation has indeed caused a mining method in the construction of the excavation, Construction of the tunnel design, and even the thinking of the major changes. Nevertheless, it should be said that China's implementation of the new Austrian law is not satisfactory. In many works was no lack of examples of failure. In addition to construction management, quality control and technology related to grasp, and other reasons, is the main tunnel engineers sometimes NATM real lack of a proper understanding.For the "new Austrian law," the connotation of the word, people have an understanding of the development process. Just as the term itself - New Austrian Tunneling Method expressed in the , the new Austrian founder of the first as it is with a new supporting the tunnel construction method proposed. It was subsequently found that, NATM will stick to a particular method or specific technical support to implement it will be very much constrained. So, in some literature emphasized that the new Austrian law is a "concept" and "philosophy", "principle" or "channels" instead of a fixed concrete construction method or technology. Clarify this point, has important practical significance. Indeed, in some projects, As copy。
新意法隧道设计施工概述
新意法隧道设计施工概述
翟进营;杨会军;王莉莉
【期刊名称】《隧道建设》
【年(卷),期】2008(028)001
【摘要】20世纪70年代中期,意大利的Pietro Lunardi教授开始研究并逐步创立了岩土控制变形分析法(ADECO-RS法),该方法用中文解释为"新意法".介绍新意法的理论基础、新意法隧道设计施工的基本步骤以及新意法与新奥法的不同之处,为新意法在我国的推广应用提供参考.
【总页数】6页(P46-50,55)
【作者】翟进营;杨会军;王莉莉
【作者单位】中铁隧道集团有限公司洛阳科学技术研究所,河南,洛阳,471009;中铁隧道集团有限公司洛阳科学技术研究所,河南,洛阳,471009;中铁隧道集团有限公司洛阳科学技术研究所,河南,洛阳,471009
【正文语种】中文
【中图分类】U455
【相关文献】
1.公路隧道新奥法设计施工原理概述 [J], 周中续
2.响应曲面法优化城市深埋隧道新意法设计参数 [J], 陶连金;安林轩;安军海;袁松;许淇;
3.响应曲面法优化城市深埋隧道新意法设计参数 [J], 陶连金;安林轩;安军海;袁松;许淇
4.新意法和新奥法下隧道力学行为的对比分析 [J], 嵇晓晔;支彦锋;王玉富;姚永强;韦麟;赖允瑾
5.基于新意法理念的连拱隧道设计施工优化 [J], 张国浩;褚存;郭佳嘉
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附录附录A:外文翻译新意法的设计与施工10.4施工期间监控量测系统的设计施工期间监控量测系统的设计,应基于量测阶段预期出现的变形现象的类型和大小。
由于掌子面稳定的重要性,所以当一个隧道设计工程师在设计一个监测系统时,他将拟定一项计划对掌子面核心土的应力应变进行监测并通过对其监测结果进行分析和预测,然后通过这些信息与诊断阶段和处治阶段的预测结构进行对比分析。
过程如下:• 在掌子面核心土稳定的条件下时(如围岩性质比较坚硬),工程施工就应该立即大致地对开挖面地层的弹性范围和变形影响进行监测,但是没有必要反复监测和使用的精密的监测仪器,一般是在监测特殊的地质环境出现局部失稳时(例如岩石滑坡或岩石脱落)或者是在围岩性质不连续和出现裂痕的方向平行于隧道轴向需要用到刚性材料时才会用到精密的监测仪器,以此来预防发生岩爆。
因此,在这样的情况下通常都会在隧道内每个100米设置系统量测站和监控量测站来达到要求。
• (围岩的粘性现象)掌子面核心土虽然可以短期稳定,而且围岩应力在弹塑性范围内,但变形发生会在后期发生,而且是不可忽略的量级。
所以设计工程师在施工中通过挤出量测站、主量测站、监控量测站(与隧道埋深有关)及系统量测站,对变形和应力的大小及发展趋势进行及时监测尤为重要。
对测量进行校准和完善,这是得到的必要资料的唯一方法,可以此来评估经开挖后掌子面核心土是否充分稳定。
其中各种类型的量测站安装使用的频率将取决于当地地理环境和地质构造特征。
还应该设置掌子面挤出变形的量测站,因为在整个施工中要随时预测掌子面前方地层发生大幅度的塑性变形或是通过它来选择开挖方式和调控稳定监测技术,这项工作最好在隧道开挖停止7天后进行。
如果超前核心土在这种情况下没有充分保护,在过去的许多经验证明其实,在施工中,由于开挖使围岩内部缺少大量岩体将会产生一系列导致隧道不稳定的因素。
挤出变形量测站最好在系统量测站安装后,错开四分之一洞径的距离,以便量测掌子面核心土两侧的三维变形。
最后,通常每隔20~40米监控量测站与系统监测站隔开设置监测阶段所使用的测量仪器滑动变形计滑动变形计是滑动测微计的经济版本,应用广泛,操作简单,坚固可靠。
尽管滑动测微计有更高的精度,但滑动变形计0.02毫米/米的精度是可以满足要求的,可以不必采用高精度的滑动测微计。
滑动测微计是由一系列外径32mm的PVC管(每节长3m)组成。
管和管之间用套管连接组装成一个整体。
每隔1m设一个探测点。
测管的现场安装需钻约56mm的钻孔,然后用膨胀水泥锚固。
探测器的安装是通过球形头,它可以在管内安装的沟槽自由滑动,量测过程也是这样的。
M0是指探头与测量点之间的距离,这个值经过机器从测量杆上不间断的传送到位于测量管外的位移传感器上。
随后的测量是探头和测量点之间的新的距离(M1),L0的位移ΔL是由M1与M0之间的差值求得。
这些测量线上位移的差值就使得变形沿测斜管分布,测量线上的总位移可以通过所有的变形计算出来。
• 在掌子面核心土不稳定的情况下时(如围岩性质比较松散),在施工阶段如果没有对开挖土体进行适当的控制和加固等超前约束的话,地层的变形就会慢慢变大而导致不稳定。
所以设计工程师就应该立即指定安装极为频繁的挤出变形量测站、主量测站、监控量测站和系统量测站(相隔10~20米)。
通常从围岩稳定状态到围岩失稳状态是很突然的而且变形量很小。
如果变形在工程施工中期出现小的特殊变化或是恶化都将会足以引起极其严重和不可逆转的变形,例如会导致掌子面核心土失稳和隧道洞身的塌陷,所以对掌子面的挤出变形的量测是至关重要的。
在实际施工中当应力—应变状况难以监控时,单是收敛变形是不足以保持围岩的变形效应基本都处于控制范围内以及防止隧道塌方的,这是因为收敛变形处于整个变形过程的最后阶段,因此就出现无法控制的现象,这是隧道洞身周围岩体发生塑性变形的结果。
众所周知,塑性变形一旦明显以后就难以控制。
另一方面,掌子面的挤出变形是整个变形过程的第一阶段,如果经过妥善的监测的话,它将会出现大量的预收敛变形和收敛变形的现象,但是不会出现隧道塌方的现象,因为它有充足的时间来给隧道进行支护和加固等。
监测必须认真地按照具体情况执行。
例如当隧道内某区段受大型构造断裂带影响时,可能会遇到各种不同性质的材料和施工组织的混乱等情况,这种情况有时是难以预测。
在这种情形下,材料的地质力学预测是十分困难的,尤其是材料的变形性能。
模拟计算会变得很困难,只能通过精密仪器量测开挖期间和开挖后的变形的类型和大小。
了解地层压力张量也是十分有益的,或者是简单的水平与竖直压力的比例,通常是其中一个压力更大而使结构受力不均。
这时必须安装监控量测站进行隧道周边变形的量测,围岩内部位移的量测,以及围岩内部应力的量测,为了确定是否残余应力起作用。
这可以根据隧道承受的荷载情况确定是安装主量测站还是监控量测站。
如果在可能发生围岩滑坡的地方出现了破裂面或断层时,最好的方法是在围岩各个方向个不连续性处将测量器具综合使用。
然后工程师根据特殊的地理环境和地质情况等因素选择测量器械的种类、数量和测量位置。
在构造作用强烈的地区,水文地质量测是非常重要的。
因为岩性往往在水的渗透以及压力作用下将会方生急剧变化。
如果没有得到迅速的控制,强大水力梯度可能会严重影响隧道长期和短期稳定性。
监测阶段所使用的量测仪器磁力变形计磁力变形计主要广泛应用于测量施工期间道路路基的垂直沉降位移和大坝的水平位移。
它由一对受保护的波纹外套管保护着的检查管组成, (测量点)每隔一定的距离加上金属磁圈。
当检查管插入到钻孔内时,金属磁圈就固定到地层中了。
测量工作是将一个探头滑入检查管内测量金属磁圈的位置,因此在各个测量点就产生了位移。
磁力变形计每个金属磁圈的精确度可以达到± 1毫米左右,如果该测量精度达不到的话也要满足整个测量工作以及掌子面核心土的挤出变形的要求。
隧道开挖在遇到地下水层时对水的截断是非常重要的,所以要在衬砌后修输水渠道,然后进行系统地分析和测量排水流量。
必须弄清楚测压水位变化与弹簧两者在隧道附近产生影响之间的关系。
为了建立一个更为贴近实际而且能更好地评估在含水层隧道中排水设备所产生长期影响的水文地质模型,设计工程师也必须监控隧道浅埋段产生的围岩变形以及测量由于隧道开挖深度和水平地面沉降而引起的变形。
无论测量的结果是什么,对隧道在穿越下表结构时的施工都特别的重要,例如道路、建筑物或是当在河床下进行开挖工作时。
再者,表层结构本身就需要适当的仪器对其监测(表面测角器、不均匀沉降压力表等),通过监测来验证它的原始状况没有变化(绝对沉降和差异沉降监测、监测所有裂缝开放及受振动造成的影响等)。
在做好这些后对水文地质情况的监测也要必须进行,在监控隧道如何排除地表水流,并确保在隧道施工中不会出现任何静电干扰和安全问题上的监测工作是不可或缺的。
在隧道位于城市地区有可能毁坏一些基础设施时,设计工程师将更注重所有具有实用功能的基础设施。
由于地下隧道的通过甚至可能会导致下水道和天然气的泄漏而形成渡槽引起巨大的危险,高压电力线路也会因为受轻微的扰动将不再工作。
在这方面使用一个综合监测系统将是不可缺少的,以便交叉测量与数据重复处理能够同时进行,以消除或至少大大减少了因潜在的不准确的测量误差所产生错误的可能性。
10.5 隧道在使用时的监测如果该地下工程具有巨大的价值或者可能对周边环境产生正面或负面的影响时,就必须对其安全性和产生的效果进行清晰连续的监测,这项工作的持续时间应该是施工后和其整个使用寿命时间范围内。
在几年前这种类型的监测不是很常见,部分原因是在监测中可能要中断工程的使用以便给维修人员时间来采取必要的测量。
但是今天,远程遥控自动装置可以测量到关于监测该地下建筑可以正常运行的很多参数。
这就意味着一个监测系统可以在施工期间被使用,就能够在多年后还能继续提供数据来保证隧道不受外界影响以及隧道的正常使用。
根据隧道的情况在施工时结合现代化的最新信息这种方法使用以后,对地面结构体系的应力应变作用就有了足够的认识,在工程维护和修理的问题上就可以用科学的方法来解决。
检测阶段所使用的测量工具单点和多点式位移计单点和多点式位移计是用来测量地层沿钻孔轴线方向的移动,以此来保证洞口处不同深度测量点的数量。
是选用单点或是多点位移计取决于它安装的测量点的数量。
单点式位移计使用时需要一个有直径约4.5厘米的钻孔,而多点式位移计则需要一个直径约10厘米的钻孔。
它们都是用于测量隧道洞室周围岩体的变形。
该系统的组成是在地层中钻孔安装锚杆通过钢丝与地表相连接,殷钢和玻璃纤维杆受高强的润滑剂外壳保护。
因为殷钢的膨胀系数即大约高于普通钢的十分之一,所以在预计温度将要发生大幅度变化时选用殷钢更好。
玻璃纤维杆因为其实用性现在已经被广泛推广(它的伸长量可达到为准备安装的基本的折叠),但是当该测点的安装长度大于70 - 80米它不能用于测量收缩量。
玻璃纤维杆可以在保护壳内锚杆点与位移计口之间自由滑动,而它的每一次动作都将被数值比较器或电位仪传感器测量记录下来。
施工期间大部分用于监测的的仪器将被安装在测量站,其目的是提到监控量测的质量。
尤其是,如果在隧道的使用中采用解释的测量,与类似的测量直进行接比较的的话更容易理解和更有意义。
显然这些需要仔细监测服的隧道在使用时最务时将会因为一些随时间变化不稳定因素而受到影响。
例如发生隧道滑坡和严重的tectonised,或是在任何情况下受到大量粘性和徐变现象等。
对于浅埋隧道洞口段的施工方法应在整个施工工作中进行监测,因为由于周围环境任何时候的大幅扰动它将受到影响(如地震活动的结果),即使建设完成以后也一样。
那哪个才是隧道在运行时最合适的测量呢?在回答这个问题之前我们必须明确一个长期的监测目的。
它必须要做到以下几点:• 核实监测的作用,要知道所有的监测行为是为了确保地下洞室的稳定性和完整性,是工程设计活得符合规定的安全系数的保证。
• 给建筑对周围环境的影响进行监测和评估, 特别重视早已存在的水文地质环境的均衡性(监测范围应包括由于地表水位下降可能会使农作业土壤肥力减少或者是在它包含有害物质溶液或悬浮液时存在排水困难现象等潜在的危害)。
因此对于隧道使用时的监测应包括获得一些关于隧道洞身周围水文地质条件的变化和稳定器械应力——应变状态发生改变的数据。
该仪器在施工阶段就已经安装上而不可缺少,可直接测量在初期支护和二次衬砌时的压力分布。
设计工程师应该注意那些通常有数据模型预测不了的,特别是以前就存在地应力状态可能出现的不对称荷载。
收敛变形的量测在监测工作中占有重要的地位,它包括对衬砌内部轮廓的基本测量以及查明它不会随时间发生变形(即检查隧道断面是否会变成椭圆形)。
一般来说测距计、收敛钉和地形指标通常都可以满足这种类型的测量,但是这些系统必须保证对隧道的运行产生的影响很小甚至没有,比如雷达或电视等都可在特定情况下使用。